Evolutionary computation for stochastic problems

Frank Neumann¹, Aneta Neumann¹ and Hemant Singh²

¹Optimisation and Logistics, School of Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia

²School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT 2600, Australia

Emails: <u>frank.neumann@adelaide.edu.au</u>, <u>aneta.neumann@adelaide.edu.au</u>, <u>h.singh@unsw.edu.au</u>

Instructors

Frank Neumann is a Professor and the leader of the Optimisation and Logistics group at the University of Adelaide and an Honorary Professorial Fellow at the University of Melbourne. His current position is funded by the Australian Research Council through a Future Fellowship and focuses on AI-based optimisation methods for problems with stochastic constraints. Frank has been the general chair of the ACM GECCO 2016 and co-organised ACM FOGA 2013 in Adelaide. He is an Associate Editor of the journals "Evolutionary Computation" (MIT Press) and ACM Transactions on Evolutionary Learning and Optimization. In his work, he considers algorithmic approaches in particular for combinatorial and multi-objective optimization problems and focuses on theoretical aspects of evolutionary computation as well as high impact applications in the areas of cybersecurity, renewable energy, logistics, and mining.

Aneta Neumann is a researcher in the School of Computer and Mathematical Sciences at the University of Adelaide, Australia, and focuses on real world problems using evolutionary computation methods. She is also part of the Integrated Mining Consortium at the University of Adelaide. Aneta graduated in Computer Science from the Christian-Albrechts-University of Kiel, Germany, and received her PhD from the University of Adelaide, Australia. She served as the co-chair of the Real-World Applications track at GECCO 2021 and GECCO 2022 and is a co-chair of the Genetic Algorithms track at GECCO 2023 and GECCO 2024. Her main research interests are bio-inspired computation methods, with a particular focus on dynamic and stochastic multi-objective optimization for real-world problems that occur in the mining industry, defence, cybersecurity, creative industries, and public health.

Hemant Kumar Singh is an Associate Professor at the School of Engineering and Information Technology at the University of New South Wales (UNSW), Australia. He completed his PhD from UNSW in 2011 and B.Tech in Mechanical Engineering from Indian Institute of Technology (IIT) Kanpur in 2007. He worked with General Electric (GE) Aviation at John F. Welch Technology Centre as a Lead Engineer during 2011-13. His research interests include development of evolutionary computation methods to deal with various challenges such as multiple objectives, constraints, uncertainties, hierarchical (bi-level) objectives, and decision-making. He is an Associate Editor for IEEE Transactions on Evolutionary Computation and has been in the organizing team of several conferences, e.g. ACM GECCO (Competition chair 2024, RWACMO workshop 2018-21), IEEE CEC (Program chair 2021), SSCI (MCDM cochair 2020-23).

• Many real-world optimization problems include uncertainties which effect the quality of solutions.

For example:

- Evaluating the performance of a machine does not give exactly the same result even if all parameters are the same.
- Traveling from A to B on a planned route takes different amounts of times and it's hard to predict the exact duration of the trip.

- Noise can occur at different stages.
- Theoretical studies distinguish where noise is applied before or after functions evaluation.

Prior noise:

- effects the solution before the evaluations.
- Here a solution component might change before evaluation.

Posterior noise:

adds noise to the functions value (dependent on a known/unknown distribution)

- Many difficulties arise in stochastic optimization as the known realization is not known at the time of optimization.
- Knowledge about the ground truth is often gathered while implementing a solution.
- This new knowledge can potentially be used to reduce uncertainties for solution components that have not already been implemented.
- This tutorial will cover a selected set of topics for stochastic optimization using evolutionary algorithms.

Evolutionary algorithms (EAs)

- Evolutionary algorithms are general purpose algorithms.
- follow Darwin's principle (survival of the fittest).
- work with a set of solutions called population.
- parent population produces offspring population by variation operators (mutation, crossover).
- select individuals from the parents and children to create new parent population.
- Iterate the process until a "good solution" has been found.

EAs are adaptive and often yield good solutions for complex, dynamic and/or stochastic problems.

Outline

- Introduction
- Real-World Example from Mine Planning
- Knapsack Problem with Stochastic Profits
- Submodular Optimization Problems with Chance Constraints
- 3D Pareto Optimization for Stochastic Problems
- Many Objective Optimization and Robustness
- Conclusions

Real-World Example Mine Planning

Significance of Uncertainty Modeling and Quantification

Metal Supply-Demand Conundrum

- Optimising revenue taking into account uncertainties in the block model.
- Capture the maximum economic potential of mineral resources.
- Optimising a strategic long term plan based on geological estimation uncertainty in the mine scheduling process.

Background on Uncertainties in the Block Model

- Block model is a collection of spatially located blocks with set of attributes (rock lithological domain, ore grade, rock density).
- Example data based on the Neuronal Network prediction:

The Profit-based Discounted Knapsack Problem

Motivation

- Often benefits of a given goal function can be impacted by uncertainties (e.g., profit obtainable from blocks in mining).
- Our goal is to maximize profit, but we would also like to guarantee that the profit only drops with a small probability below an optimized profit value.
- Consider the classical knapsack problem with stochastic profit.
- We aim to maximize the profit value P for which we can guarantee that it's achieved by the solution presented by our algorithm with probability at least $1 \alpha_p$.

Stochastic Knapsack Problem

In the classical problem, there are given *n* items 1, ..., *n* where each item has a profit p_i and a weight w_i , the goal is to maximize the profit $p(x) = \sum_{i=1}^{n} p_i x_i$ under the condition that $w(x) = \sum_{i=1}^{n} w_i x_i \leq B$ for a given weight bound B holds.

We consider the stochastic version, where the profits p_i are stochastic, and the weights are still deterministic.

Goal: is to maximize the profit P among solutions x in $\{0,1\}^n$ for which we can guarantee that there is only a small probability α_p of dropping below P.

 $\max P$

s.t.
$$Pr(p(x) < P) \le \alpha_p$$

 $w(x) \le B$

We consider (a) the (1+1) EA, (b) the (1+1) EA with heavy tail mutation, (c) (μ + 1) EA with the heavy tail mutation and the Discounted Greedy Uniform Crossover.

Aneta Neumann, Xie Yue, Frank Neumann,

Evolutionary Algorithms for Limiting the Effect of Uncertainty for the Knapsack Problem with Stochastic Profit, PPSN (1) 2022

Algorithm 3: $(\mu + 1)$ EA

- 1: Randomly generate μ initial solutions as the initial population P;
- 2: while stopping criterion not meet do
- 3: Let x and y be two different individual from P chosen uniformly at random;
- 4: **if** $rand([0,1]) \leq p_c$ **then**
- 5: apply the discounted greedy uniform crossover operator to x and y to produce an offspring z.
- 6: **else**
- 7: Choose one individual x from P uniformly at random and let z be a copy of x.
- 8: end if
- 9: apply the heavy-tail mutation operator to z;
- 10: **if** $f(z) \ge f(x)$ **then**
- 11: $P \leftarrow (P \setminus \{x\}) \cup \{z\};$
- 12: else
- 13: if $f(z) \ge f(y)$ then
- 14: $P \leftarrow (P \setminus \{y\}) \cup \{z\};$
- 15: **end if**
- 16: **end if**
- 17: end while

Setting for Stochastic Profit

We consider different chance constraint settings in terms of the uncertainty level δ_p , and the probability bound α_p .

Chebyshev's Inequality:

We assume that for a given solution only the expected value $\mu(x)$ and the variance v(x) are known.

Hoeffding Bound:

We assume that each element *i* takes on a profit

 $p_i \in [\mu_i - \delta_p, \mu_i + \delta_p]$ independently of the other items.

The fitness of a search point $x \in \{0, 1\}^n$ is given by

 $f(x) = (u(x), \hat{p}(x))$

where $u(x) = max\{w(x) - B, 0\}$ is the amount of constraint violation of the bound B by the weight that should be minimized and $\hat{p}(x)$ is the discounted profit of solution x that should be maximized.

$$\hat{p}_{Cheb}(x) = \mu(x) - \sqrt{(1-lpha_p)/lpha_p} \cdot \sqrt{v(x)}$$

$$\hat{p}_{Hoef}(x) = \mu(x) - \delta_p \cdot \sqrt{\ln(1/lpha_p) \cdot 2|x|_1}$$

Comparison of Chebyshev and Hoeffding based fitness functions $\hat{p}_{Hoef}(x) \ge \hat{p}_{Cheb}(x) \iff \ln(1/\alpha_p) \cdot \alpha_p/(1-\alpha_p) \le 1/6$

Settings: consider all combinations of $\alpha_p = 0.1$, 0.01, 0.001, and $\delta_p = 25$, 50, uncorrelated and bounded strong correlated ones, with n = 100, 300, 500 items.

Results for the Chebyshev based function p_{Cheb} .

					(1+1) EA		(1	l+1) EA-HT	1		$(\mu+1)$ EA	
	B	α_p	δ_p	\hat{p}_{Cheb}	std	stat	\hat{p}_{Cheb}	std	stat	\hat{p}_{Cheb}	std	stat
uncorr_100	2407	0.1	25	11073.5863	36.336192	$2^{(*)}, 3^{(*)}$	11069.0420	46.285605	$1^{(*)}, 3^{(*)}$	11057.4420	59.495722	$1^{(*)}, 2^{(*)}$
			50	10863.1496	85.210231	$2^{(*)}, 3^{(*)}$	10889.4840	37.175095	$1^{(*)}, 3^{(*)}$	10883.7163	53.635972	$1^{(*)}, 2^{(*)}$
		0.01	25	10641.9089	63.402329	$2^{(*)}, 3^{(*)}$	10664.5974	29.489838	$1^{(*)}, 3^{(*)}$	10655.7251	43.869265	$1^{(*)}, 2^{(*)}$
			50	10054.6427	49.184220	$2^{(*)}, 3^{(*)}$	10066.2854	36.689426	$1^{(*)}, 3^{(*)}$	10064.8734	39.556767	$1^{(*)}, 2^{(*)}$
		0.001	25	9368.33053	46.894877	$2^{(*)}, 3^{(*)}$	9368.2483	34.904933	$1^{(*)}, 3^{(*)}$	9365.5257	40.458098	$1^{(*)}, 2^{(*)}$
			50	7475.44948	50.681386	$2^{(*)}, 3^{(*)}$	7490.6387	27.819516	$1^{(*)}, 3^{(*)}$	7497.5054	14.098629	$1^{(*)}, 2^{(*)}$
strong_100	4187	0.1	25	8638.0428	68.740095	$2^{(-)}, 3^{(-)}$	8698.2592	64.435352	$1^{(+)}, 3^{(*)}$	8707.9271	49.633473	$1^{(+)}, 2^{(*)}$
			50	8441.9311	80.335771	$2^{(-)}, 3^{(-)}$	8483.1151	45.284814	$1^{(+)}, 3^{(*)}$	8481.0022	55.979520	$1^{(+)}, 2^{(*)}$
		0.01	25	8214.8029	56.705379	$2^{(-)}, 3^{(-)}$	8230.9642	42.084563	$1^{(+)}, 3^{(*)}$	8210.1448	55.148757	$1^{(+)}, 2^{(*)}$
			50	7512.3033	71.115520	$2^{(-)}, 3^{(-)}$	7563.5495	37.758812	$1^{(+)}, 3^{(*)}$	7554.7382	53.030592	$1^{(+)}, 2^{(*)}$
		0.001	25	6771.7849	58.314395	$2^{(-)}, 3^{(-)}$	6797.0376	42.944371	$1^{(+)}, 3^{(*)}$	6793.0387	43.492135	$1^{(+)}, 2^{(*)}$
			50	4832.2084	88.887119	$2^{(-)}, 3^{(-)}$	4929.1483	52.858392	$1^{(+)}, 3^{(*)}$	4902.0006	44.976733	$1^{(+)}, 2^{(*)}$

Main Results:

- introduced the knapsack problem with chance constrained profits.
- presented fitness functions for different stochastic settings that allow to maximize the profit value P such that the probability of obtaining a profit less than P is upper bounded by α_p .

Results for the Hoeffding based function p_{Hoef}.

				-								
					(1+1) EA		()	1+1) EA-H ²	Г		$(\mu+1)$ EA	
	B	α_p	δ_p	\hat{p}_{Hoef}	std	stat	\hat{p}_{Hoef}	std	stat	\hat{p}_{Hoef}	std	stat
uncorr_100	2407	0.1	25	10948.7292	90.633230	$2^{(-)}, 3^{(*)}$	11016.8190	49.768932	$1^{(+)}, 3^{(+)}$	10981.3880	37.569308	$1^{(*)}, 2^{(-)}$
			50	10707.1094	43.869094	$2^{(-)}, 3^{(*)}$	10793.1175	58.150646	$1^{(+)}, 3^{(+)}$	10708.6094	44.384035	$1^{(*)}, 2^{(-)}$
		0.01	25	10836.0906	91.332983	$2^{(-)}, 3^{(*)}$	10928.3054	45.464936	$1^{(+)}, 3^{(+)}$	10866.9831	45.408500	$1^{(*)}, 2^{(-)}$
			50	10482.6216	46.444510	$2^{(-)}, 3^{(*)}$	10611.1895	69.341044	$1^{(+)}, 3^{(+)}$	10477.2328	47.065426	$1^{(*)}, 2^{(-)}$
		0.001	25	10765.3289	68.565293	$2^{(-)}, 3^{(*)}$	10862.7124	49.091526	$1^{(+)}, 3^{(+)}$	10784.7286	38.187390	$1^{(*)}, 2^{(-)}$
			50	10263.9426	90.504901	$2^{(-)}, 3^{(*)}$	10487.5621	32.625499	$1^{(+)}, 3^{(+)}$	10309.8572	44.811326	$1^{(*)}, 2^{(-)}$
strong_100	4187	0.1	25	8553.1744	74.046187	$2^{(-)}, 3^{(*)}$	8640.05156	39.413105	$1^{(+)},3^{(+)}$	8588.4894	53.878268	$1^{(*)}, 2^{(-)}$
			50	8264.8129	63.309264	$2^{(-)}, 3^{(*)}$	8398.4354	46.013234	$1^{(+)}, 3^{(+)}$	8273.9670	41.403505	$1^{(*)}, 2^{(-)}$
		0.01	25	8422.9258	70.464985	$2^{(-)}, 3^{(*)}$	8540.2095	63.072560	$1^{(+)}, 3^{(+)}$	8447.8489	59.841707	$1^{(*)}, 2^{(-)}$
			50	7996.0193	65.822419	$2^{(-)}, 3^{(*)}$	8181.2980	45.667034	$1^{(+)}, 3^{(+)}$	8013.1724	56.445427	$1^{(*)}, 2^{(-)}$
		0.001	25	8338.5159	57.880350	$2^{(-)}, 3^{(*)}$	8460.7513	53.402755	$1^{(+)}, 3^{(+)}$	8362.9405	51.607219	$1^{(*)}, 2^{(-)}$
			50	7794.1245	80.411946	$2^{(-)}, 3^{(*)}$	8017.8843	53.266120	$1^{(+)}, 3^{(+)}$	7833.5575	37.293481	$1^{(*)}, 2^{(-)}$
uncorr_300	6853	0.1	25	33831.9693	181.485453	$2^{(-)}, 3^{(-)}$	34118.7631	200.095911	$1^{(+)}, 3^{(*)}$	34129.8891	172.788856	$1^{(+)}, 2^{(*)}$
			50	33380.4952	157.014552	$2^{(-)}, 3^{(-)}$	33715.2964	199.074378	$1^{(+)}, 3^{(*)}$	33662.2668	124.206823	$1^{(+)}, 2^{(*)}$
		0.01	25	33655.5737	234.136500	$2^{(-)}, 3^{(-)}$	34014.3456	200.488072	$1^{(+)}, 3^{(*)}$	33962.8643	161.560953	$1^{(+)}, 2^{(*)}$
			50	32933.5174	291.623690	$2^{(-)}, 3^{(-)}$	33327.8984	235.915481	$1^{(+)}, 3^{(*)}$	33277.4015	142.387738	$1^{(+)}, 2^{(*)}$
		0.001	25	33515.7445	219.707660	$2^{(-)}, 3^{(-)}$	33806.1572	184.532069	$1^{(+)}, 3^{(*)}$	33835.4528	149.327823	$1^{(+)}, 2^{(*)}$
			50	32706.4466	176.599463	$2^{(-)}, 3^{(-)}$	33112.7494	177.218747	$1^{(+)}, 3^{(*)}$	32940.4397	173.836538	$1^{(+)}, 2^{(*)}$
strong_300	13821	0.1	25	24602.1254	171.596469	$2^{(-)}, 3^{(-)}$	24848.3209	100.078545	$1^{(+)}, 3^{(+)}$	24734.7210	127.268428	$1^{(+)}, 2^{(-)}$
			50	24184.8938	125.755762	$2^{(-)}, 3^{(-)}$	24457.7279	118.679623	$1^{(+)}, 3^{(+)}$	24205.9660	116.049342	$1^{(+)}, 2^{(-)}$
		0.01	25	24476.1412	159.274566	$2^{(-)}, 3^{(-)}$	24638.0751	105.088783	$1^{(+)}, 3^{(+)}$	24538.4199	101.959196	$1^{(+)}, 2^{(-)}$
			50	23653.3561	225.087307	$2^{(-)}, 3^{(-)}$	24060.0806	87.242862	$1^{(+)}, 3^{(+)}$	23830.8655	85.829604	$1^{(+)}, 2^{(-)}$
		0.001	25	24256.4468	173.293324	$2^{(-)}, 3^{(-)}$	24558.9506	105.253206	$1^{(+)}, 3^{(+)}$	24345.4340	144.094192	$1^{(+)}, 2^{(-)}$
			50	23377.6774	143.350899	$2^{(-)}, 3^{(-)}$	23843.7258	114.231223	$1^{(+)}, 3^{(+)}$	23520.1166	112.403711	$1^{(+)}, 2^{(-)}$

Multi-Objective Approaches for chance-constrained submodular problems

Motivation

Many problems involve stochastic components and constraints that can only be violated with a small probability.

Example of such a constraint:

$\Pr[W(S) > B] \le \alpha.$

Such constraints are known as chance constraints.

We investigate bio-inspired algorithms for submodular problems with chance constraints.

Submodular Optimization Problems

Submodular functions are functions that allow to model problems with diminishing returns.

They allow to model many real-world optimization problems.

Evolutionary multi-objective algorithms using Pareto optimization approaches have been shown to be very successful for these problems, both from a theoretical and empirical perspective.

Example: Sensor placement

Cover the largest possible area by selecting k sensors:

Example: Sensor placement

Cover the largest possible area by selecting k sensors:

Submodular: $A \subseteq B \subseteq X$ and $x \in X \setminus B$, $f(B \cup \{x\}) - f(B) \leq f(A \cup \{x\}) - f(A)$.

Examples of Submodular Functions

- Linear functions: All linear functions $f: 2^X \to \mathbb{R}$ with $f(A) = \sum_{i \in A} w_i$ for some weights $w: X \to \mathbb{R}$ are submodular. If $w_i \ge 0$ for all $i \in X$, then f is also monotone.
- Cut: Given a graph G = (V, E) with nonnegative edge weights $w: E \to \mathbb{R}_{\geq 0}$. Let $\delta(S)$ be the set of all edges that contain both a vertex in S and $V \setminus S$. The cut function $w(\delta(S))$ is symmetric and submodular but not monotone.
- Coverage: Let the ground set be $X = \{1, 2, ..., n\}$. Given a universe U with n subsets $A_i \subseteq U$ for $i \in X$, and a non-negative weight function $w: U \to \mathbb{R}_{\geq 0}$. The coverage function $f: 2^X \to \mathbb{R}$ with $f(S) = |\bigcup_{i \in S} A_i|$ and the weighted coverage function f' with $f'(S) = w(\bigcup_{i \in S} A_i) = \sum_{u \in \bigcup_{i \in S} A_i} w(u)$ are monotone submodular.
- Rank of a matroid: The rank function $r(A) = \max\{|S|: S \subseteq A, S \in \mathcal{I}\}$ of a matroid (X, \mathcal{I}) is monotone submodular.

Chance Constraints

One of the difficulties lies in evaluating whether a given solution fulfills the chance constraint.

For independent Normally distributed random variables this can be done exactly.

In other cases, one way is to use sampling to estimate the probability of violating the constraint.

Another way is to use surrogate functions such as Chernoff bounds and Chebyshev's inequality to determine whether a solution is feasible.

These bounds don't allow for a precise calculation for the probability of a constraint violation.

However, the give an upper bound and a solution is accepted if its upper bound is at most α .

We establish conditions based on the expected cost, the variance, and constraint B to show that a given solution is feasible.

Setting for Random Weights

We consider two settings for random weights of a given set of items.

Both settings assume that the weights of the items are chosen independent of each other.

Uniform independent and identically distributed (IID) weights:

$$W(s) \in [a - \delta, a + \delta] \ (\delta \leq a).$$

Uniform Weights with same dispersion

$$W(s) \in [a(s) - \delta, a(s) + \delta].$$

Chance Constraint Conditions

Chernoff:

Lemma 1. Let $W(s) \in [a(s) - \delta, a(s) + \delta]$ be independently chosen uniformly at random. If

$$(B - E[W(X)]) \ge \sqrt{3\delta k \ln(1/\alpha)},$$

where k = |X|, then $\Pr[W(X) > B] \le \alpha$.

Chebyshev:

Lemma 2. Let X be a solution with expected weight E[W(X)] and variance Var[W(X)]. If

$$B - E[W(X)] \ge \sqrt{\frac{(1 - \alpha) \operatorname{Var}[W(X)]}{\alpha}}$$

then $\Pr[W(X) > B] \le \alpha$.

Bi-objective approach / Pareto Optimisation

Function value

Bi-objective approach using multi-objective EAs enables greedy behavior, local search and benefit of interactions between trade-offs solutions

> Practice: Benefit of evolution leads to high performance in practice

B Constraint bound Cost value

Bi-objective approach / Pareto Optimisation

Function value

 We consider the performance of the Global Simple Evolutionary Multi-Objective Optimizer (GSEMO) and Non-dominated Sorting Genetic Algorithm (NSGA-II) for the optimisation of stochastic constrained submodular functions.

Goal: Bi-objective formulations of constrained submodular optimisation problems in terms of Pareto optimisation enable evolutionary algorithms to achieve:

- best theoretical performance guarantees and
- state-of-the-art practical results
- ➢ for a wide range of submodular optimisation problems.

<u>Aneta Neumann</u>, <u>Frank Neumann</u>: <u>Optimising Monotone Chance-Constrained Submodular Functions</u> Using Evolutionary Multi-objective Algorithms. PPSN (1) 2020

Submodular functions with Chance Constraints (stochastic settings)

We consider the optimization of a monotone submodular function f subject to a chance constraint where each element

 $s \in V$ takes on a random weight W(s).

We examine constraints of the type

 $\Pr[W(S) > C] \le \alpha.$

where $W(S) = \sum_{s \in S} w(s)$ is the sum of the random weights of the elements and C is the given constraint bound. The parameter α specifies the probability of exceeding the bound C that can be tolerated for a feasible solution S.

The multi-objective fitness function: $g(X) = (g_1(X), g_2(X))$

- g₁ measures the tightness in terms of the constraint
- g₂ measures the quality of X in terms of the given submodular function f.

$$\begin{array}{ll} \text{constraint} \\ \text{function} \end{array} & g_1(X) = \begin{cases} E_W(X) - C & \text{if} & (C - E_W(X))/(\delta \cdot |X|) \geq 1 & \text{always feasible} \\ \hat{Pr}(W(X) > C) & \text{if} & (E_W(X) < C) \wedge (C - E_W(X))/(\delta |X| < 1) \\ 1 + (E_W(X) - C) & \text{if} & E_W(X) \geq C & \text{infeasible} \end{cases} \\ \\ \text{objective} \\ \text{function} & g_2(X) = \begin{cases} f(X) & \text{if} & g_1(X) \leq \alpha \\ -1 & \text{if} & \text{otherwise} \end{cases} \end{array}$$

• The case of uniform identically distributed (IID) weights.

Theorem 1. Let $k = \min\{n+1, \lfloor C/a \rfloor\}$ and assume $\lfloor C/a \rfloor = \omega(1)$. Then the expected time until GSEMO has computed a (1-o(1))(1-1/e)-approximation for a given monotone submodular function under a chance constraint with uniform iid weights is $O(nk(k + \log n))$.

Main Results:

 GSEMO using a multi-objective formulation of the problem based on tail inequalities is able to achieve the same approximation guarantee as recently studied greedy approaches.

Results for Influence Maximization and Maximum Coverage with uniform chance constraints, respectively.

С	α	δ	GA (1)		G	SEMO	(2)			NS	SGA-II	I (3)		$C \mid \alpha$	δ	GA (1)	GSEMO Mean	(2) Min 1	lax	Std	Stat	NSGA- Mean	II (3) Min	Max	Std	Stat
				mean	min	max	\mathbf{std}	stat	mean	min	max	\mathbf{std}	stat				1				!					
20	0.1	0.5	51.51	55.75	54.44	56.85 (0.5571	$1^{(+)}$	55.66	54.06	56.47 (0.5661	$1^{(+)}$	10 0 0	$0.1 0.5 \\ 0.1 1.0$	448.00 376.00	458.80 4 383.33 3	51.00 46 79.00 38	1.00 3. 4.00 1.	3156 7555	1 ⁽⁺⁾ 1 ⁽⁺⁾	457.97 44 382.90 37	9.00 46 9.00 38	1.00 4.1 4.00 2.0	480 060	$1^{(+)}$ $1^{(+)}$
50	0.1 0.1 0.1	1.0 0.5 1.0	40.80 90.55 85.71	94.54 88.63	49.53 93.41 86.66	95.61 (90.68 ().5704).5390 1).9010 1	$1^{(+)}, 3^{(+)}$ $1^{(+)}, 3^{(+)}$	50.54 92.90 86.89	49.01 90.75 85.79	94.82 1 88.83 (0.6494 1.0445 1 0.8479 1	$(+), 2^{(-)}$ $(+), 2^{(-)}$	15 0 0	0.1 0.5 0.1 1.0 0.1 0.5	559.00 503.00 587.00	559.33 5 507.80 5 587.20 5	55.00 56 03.00 50 85.00 58	2.00 2. 9.00 1. 9.00 1	0057 1567 2149	$3^{(+)}$ $1^{(+)}$ $3^{(+)}$	557.23 55 507.23 50 583 90 58	1.0056 2.0050 0.0058	1.00 2.4 9.00 1.8 8.00 1.9	309 1 ⁽⁻ 323 360 1 ⁽⁻	$(-), 2^{(-)}$ $1^{(+)}$ $(-), 2^{(-)}$
100	0.1 0.1	0.5 1.0	144.16 135.61	147.28 140.02	145.94 138.65	149.33 (142.52 ().8830 1).7362 1	$1^{(+)}, 3^{(+)}$ $1^{(+)}, 3^{(+)}$	144.17 136.58	42.37 134.80	146.18 (138.21 (0.9902 0.9813	$2^{(-)}$ $2^{(-)}$	$\frac{20}{0}$	0.1 1.0	569.00 413.00	569.13	66.00 57 18.00 42	2.00 1. 5.00 1.	4559 8815	3 ⁽⁺⁾	565.30 56 422.27 41	0.00 56 6.00 42	9.00 2.1 5.00 2.6	520 1 ⁽⁻	$\frac{1}{1^{(+)}}$
20	0.001 0.001	L 0.5 L 1.0	48.19 39.50	50.64 44.53	49.10 43.63	51.74 (45.55 ().6765).4687	1 ⁽⁺⁾ 1 ⁽⁺⁾	50.33 44.06	49.16 42.18	51.25 (45.39 (0.5762 0.7846	1 ⁽⁺⁾ 1 ⁽⁺⁾	10 0.0 15 0.0	001 1.0 001 0.5 001 1.0	376.00 526.00 448.00	383.70 3 527.97 5 458.87 4	79.00 38 25.00 53 53.00 46	$4.00\ 1.$ $2.00\ 2.$ $1.00\ 2.$	1492 1573 9564	$1^{(+)}$ $1^{(+)}$ $1^{(+)}$	381.73 37 527.30 52 457.10 44	7.00 38 0.00 53 9.00 46	4.00 2.6 2.00 2.7 1.00 4.1	514 436 469	1 ⁽⁺⁾ 1 ⁽⁺⁾
50	0.001 0.001	L 0.5 L 1.0	75.71 64.49	80.65 69.79	78.92 68.89	82.19 (71.74 ().7731).6063	1 ⁽⁺⁾ 1 ⁽⁺⁾	80.58 69.96	79.29 68.90	81.63 (71.05 (0.6167 0.6192	1 ⁽⁺⁾ 1 ⁽⁺⁾	20 ^{0.0} 0.0	001 0.5 001 1.0	568.00 526.00	568.87 5 528.03 5	65.00 57 25.00 53	2.00 1. 0.00 1.	5025 8843	3 ⁽⁺⁾ 1 ⁽⁺⁾	564.60 56 527.07 52	0.00 57 2.00 53	0.00 2.7	618 1 ⁽ 427	-) _{,2} (-)
100	0.001 0.001	L 0.5 L 1.0	116.05 96.18	130.19 108.95	128.59 107.26	131.51 (109.93 ().7389 1).6466 1	$1^{(+)}, 3^{(+)}$ $1^{(+)}, 3^{(+)}$	127.50 1 107.91 1	25.38 06.67	129.74 (110.17 (0.9257 1 0.7928 1	$(^{(+)}, 2^{(-)})$ $(^{(+)}, 2^{(-)})$													

Main Results:

• Experimental results show that GSEMO computes significantly better solutions than the greedy approach and often outperforms NSGA-II.

References

- Aneta Neumann, Yue Xie, Frank Neumann: Evolutionary Algorithms for Limiting the Effect of Uncertainty for the Knapsack Problem with Stochastic Profits. In: Parallel Problem Solving from Nature, PPSN 2022, Proceedings, Part I, Lecture Notes in Computer Science, pp. 294—307.
- Aneta Neumann, Frank Neumann: Optimising Chance-Constrained Submodular Functions Using Evolutionary Multi-Objective Algorithms. In: Parallel Problem Solving from Nature, PPSN 2020, Proceedings, Part I, Lecture Notes in Computer Science, pp. 404—417.
- Benjamin Doerr, Carola Doerr, Aneta Neumann, Frank Neumann, Andrew M. Sutton: Optimization of Chance-Constrained Submodular Functions. In: AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 1460—1467.
- Yue Xie, Oscar Harper, Hirad Assimi, Aneta Neumann, Frank Neumann: Evolutionary algorithms for the chance-constrained knapsack problem. In GECCO 2019, pp. *338-346.*
- Hirad Assimi, Oscar Harper, Yue Xie, Aneta Neumann, Frank Neumann: Evolutionary Bi-Objective Optimization for the Dynamic Chance-Constrained Knapsack Problem Based on Tail Bound Objectives. In. European Conference on Artificial Intelligence, ECAI 2020, pp. 307—314.
- Yue Xie, Aneta Neumann, Frank Neumann: Specific single- and multi-objective evolutionary algorithms for the chance-constrained knapsack problem. In GECCO 2020, pp. 271—279.

3D Pareto Optimisation for Problems with Chance Constraints

Chance constrained problem

Given n elements with stochastic weight where each weight w_i is chosen independently of the others according to a Normal distribution

 $N(\mu_i, \sigma_i^2), 1 \leq i \leq n$, where $\mu_i \geq 1$ and $\sigma_i \geq 1, 1 \leq i \leq n$.

Our goal is to

min W subject to
$$(Pr(w(x) \le W) \ge \alpha) \land (|x|_1 \ge k)$$
 (1)
where $w(x) = \sum_{i=1}^{n} w_i x_i, x \in \{0, 1\}^n$, and $\alpha \in [1/2, 1[.$

Problem is equivalent to minimizing

$$\hat{w}(x) = \mu(x) + K_{\alpha} \sqrt{v(x)}, \quad \text{subject to} \qquad (|x|_1 \ge k)$$

 K_{α} denotes the α -fractional point of the standard Normal distribution

2- and 3-objective Models

min

$$f_{2D}(x) = (\hat{\mu}(x), \hat{v}(x))$$

where

$$\hat{\mu}(x) = \begin{cases} \sum_{i=1}^{n} \mu_i x_i & |x|_1 \ge k \\ (k - |x|_1) \cdot (1 + \sum_{i=1}^{n} \mu_i) & |x|_1 < k \end{cases}$$

$$\hat{v}(x) = \begin{cases} \sum_{i=1}^{n} \sigma_i^2 x_i & |x|_1 \ge k \\ (k - |x|_1) \cdot (1 + \sum_{i=1}^{n} \sigma_i^2) & |x|_1 < k \end{cases}$$

Neumann/Witt IJCAI 2022

$$f_{3D}(x) = (\mu(x), v(x), c(x))$$

min

max

Pareto optimization turns constraint c(x) into third objective. Expected weight and variance no longer need penalty terms.

Consequence:

Additional search direction, but also many more trade-off objective vectors.

Using the 3-objective model, we can also solve:

 $\max c(x)$ subject to $Pr(w(x) \le B) \ge \alpha$.

by returning for any given B and α the solution of maximal c(x)-value in the final population that meets the constraint.

(3)

GSEMO

Algorithm 1: GSEMO

Choose $x \in \{0,1\}^n$ uniformly at random; $P \leftarrow \{x\}$; **repeat** Choose $x \in P$ uniformly at random; Create y by flipping each bit x_i of x with probability $\frac{1}{n}$; **if** $\nexists w \in P : w \prec y$ **then** $\[P \leftarrow (P \setminus \{z \in P \mid y \preceq z\}) \cup \{y\}$; **until** *stop*;

Apply GSEMO to 2-objective and 3-objective model

SEMO differs from GSEMO flipping in each iteration exactly one or two bits (2D case) or 1-bit (3D case).

Theoretical Investigations

Analyze GSEMO with respect to the time until it has produced for each k and $\alpha \ge \frac{1}{2}$ an optimal solution for the case $c(x) = |x|_1$.

Runtime Analysis: Measure time by the (expected) number of fitness evaluations to reach the goal.

Theoretical Investigations

Key argument: When considering $c(x) = |x|_1$. Then there exists for each $\alpha \ge \frac{1}{2}$ a convex combination of $\mu(x)$ and $\nu(x)$, i.e. $f_{\lambda}(x) = \lambda \mu(x) + (1 - \lambda)\nu(x), \lambda \in [0, 1]$ such that if x^* is minimal for $f_{\lambda}(x)$ under the constraint

 $c(x) \ge k$ then x^* is minimal for $\hat{w}(x) = \mu(x) + K_{\alpha}\sqrt{v(x)}$, and $c(x) \ge k$.

Implies: Set of desired solutions can be obtained by computing the extremal corner points of the Pareto front.

3D Analysis based on 2-bit flips

The Other Expected prime appropriate and the set of t

in expected time $O(P_{\max}n^4(\log n + \log v_{\max}))$.

c(x)=k

First step: Analyse time to get for each k a solution with k elements and minimal expected value

Afterwards: Analyse progress via 2-bit flips using argument from Neumann/Witt (IJCAI 2022)

Expected value

3D Analysis based on 1-bit flips

Theorem 3. The expected time until SEMO3D and GSEMO have computed a population which includes an optimal solution for the problems given in Equation 1 (for any choice of k and α) and Equation 3 (with $c(x) = |x|_1$ for any choice of B and α) is $O(P_{\max}n^2)$ and it is at most $2eP_{\max}n^2$ with probability $1 - e^{-\Omega(n)}$.

Expected value

Experiments

We consider a stochastic version of the minimum dominating set problem in a given undirected graph

G=(V, E) with stochastic weights on the nodes.

A node dominates itself and all of its neighbors.

c(x) denotes the number of nodes dominated in the given search point x. Constraint c(x)=n.

Weight of each node v_i is chosen independently of the others according to a Normal distribution $N(\mu_i, \sigma_i^2)$.

10M fitness evaluations, 30 independent runs of each instance.

Uniform, Uniform-fixed, degree based weights.

Different values of $\alpha = 1 - \beta$.

Maximum Population Size during runs

Graph	weight gype	SEMO)2D	SEM	03D	GSEM	[O2D	GSEM	[O3D
Orapii	weight gype	Mean	Std	Mean	Std	Mean	Std	Mean	Std
cfat200-1	uniform	57	19	2921	964	56	16	2923	929
cfat200-2	uniform	29	11	348	128	23	10	361	128
ca-netscience	uniform	69	22	5531	997	40	11	4631	678
ca-GrQc	uniform	4	3	7519	488	3	1	3921	262
Erdos992	uniform	2	1	4476	338	1	1	2173	153
cfat200-1	uniform-fixed	1	0	66	12	1	0	67	11
cfat200-2	uniform-fixed	1	0	18	4	1	0	18	4
ca-netscience	uniform-fixed	1	0	401	43	1	0	403	40
ca-GrQc	uniform-fixed	1	0	3565	251	1	0	1942	133
Erdos992	uniform-fixed	1	0	2217	102	1	0	1313	61
cfat200-1	degree	2	1	335	36	2	1	340	35
cfat200-2	degree	1	1	42	6	1	0	42	6
ca-netscience	degree	22	8	3293	764	18	7	2981	585
ca-GrQc	degree	3	2	6112	371	3	2	3240	252
Erdos992	degree	2	1	3128	166	2	1	1725	84

Table 1: Maximum population size for stochastic minimum weight dominating set.

Experimental Results (Uniform random)

Crowh	weight aven	0	SEM	O2D	SEMO	D3D		GSEN	102D	GSEM	103D	
Graph	weight gype	β	Mean	Std	Mean	Std	<i>p</i> -value	Mean	Std	Mean	Std	p-value
		0.2	3618	76	3599	82	0.308	3615	91	3599	79	0.544
		0.1	3994	82	3970	82	0.268	3989	96	3972	80	0.544
		0.01	4877	101	4842	86	0.169	4866	109	4845	86	0.535
		1.0E-4	6030	123	5985	94	0.128	6015	126	5991	98	0.455
of at 200 1	uniform	1.0E-6	6870	139	6824	103	0.201	6855	138	6832	108	0.605
c1at200-1	unnorm	1.0E-8	7562	152	7519	113	0.326	7546	147	7525	118	0.641
		1.0E-10	8163	163	8122	123	0.469	8145	154	8125	125	0.751
		1.0E-12	8700	172	8660	130	0.535	8680	159	8660	130	0.859
		1.0E-14	9190	180	9150	136	0.657	9169	164	9148	133	0.842
		1.0E-16	9633	188	9593	142	0.636	9611	168	9589	137	0.865
		0.2	1797	72	1788	53	0.923	1791	49	1767	32	0.049
		0.1	2049	78	2035	55	0.865	2040	54	2016	37	0.074
		0.01	2634	92	2617	69	0.739	2621	72	2593	51	0.162
		1.0E-4	3394	111	3369	85	0.535	3381	97	3336	65	0.070
of at 200 2	uniform	1.0E-6	3948	125	3918	95	0.511	3937	113	3880	71	0.044
clat200-2	unitorini	1.0E-8	4403	134	4372	106	0.496	4394	124	4329	77	0.032
		1.0E-10	4799	143	4768	117	0.549	4793	132	4720	82	0.028
		1.0E-12	5153	150	5123	125	0.559	5149	139	5071	85	0.024
		1.0E-14	5476	157	5447	133	0.589	5475	145	5391	88	0.020
		1.0E-16	5769	164	5740	141	0.559	5769	150	5681	91	0.021
		0.2	32922	1308	32608	904	0.506	33042	1289	33007	1023	0.712
		0.1	34456	1323	34115	907	0.544	34568	1302	34514	1028	0.745
		0.01	38097	1361	37694	919	0.408	38189	1334	38089	1040	0.848
		1.0E-4	42938	1414	42461	938	0.274	43012	1380	42846	1054	1.000
ca netscience	uniform	1.0E-6	46527	1457	45995	951	0.255	46591	1415	46377	1065	0.824
ca-netselence	unitorini	1.0E-8	49500	1493	48923	960	0.198	49557	1442	49303	1076	0.712
		1.0E-10	52091	1526	51478	970	0.165	52145	1465	51857	1087	0.615
		1.0E-12	54416	1554	53773	979	0.147	54467	1487	54150	1096	0.564
		1.0E-14	56542	1581	55873	987	0.132	56592	1507	56249	1105	0.487
		1.0E-16	58469	1605	57776	996	0.117	58517	1526	58151	1114	0.478
		0.0	2001	100	2071	100	0.520	2012	105	2721	50	0.000

Experimental Results (Uniform fixed variance)

Graph	weight gung	B	SEM	O2D	SEMO)3D		GSEM	IO2D	GSEN	103D	
Graph	weight gype	ρ	Mean	Std	Mean	Std	<i>p</i> -value	Mean	Std	Mean	Std	<i>p</i> -value
		0.2	3891	183	3851	129	0.530	3813	125	3721	59	0.006
		0.1	4353	195	4306	135	0.464	4269	133	4169	59	0.006
		0.01	5450	224	5385	149	0.333	5352	151	5235	59	0.006
		1.0E-4	6913	264	6823	169	0.258	6795	177	6655	59	0.006
-6-4200 1	····: : : : : : : : : : : : : : : : : :	1.0E-6	7999	293	7890	183	0.234	7868	196	7710	59	0.006
crat200-1	uniform-fixed	1.0E-8	8901	317	8776	195	0.223	8757	212	8586	59	0.006
		1.0E-10	9688	339	9549	206	0.217	9534	226	9350	59	0.006
		1.0E-12	10395	358	10243	216	0.206	10232	239	10036	59	0.006
		1.0E-14	11043	376	10878	225	0.191	10871	250	10665	59	0.006
		1.0E-16	11630	392	11455	234	0.186	11450	261	11235	59	0.006
		0.2	1989	116	1980	112	0.690	1937	104	1866	50	0.011
		0.1	2307	128	2297	123	0.679	2249	115	2171	54	0.011
		0.01	3064	157	3048	149	0.554	2990	141	2897	63	0.011
		1.0E-4	4073	196	4049	185	0.554	3978	176	3864	76	0.011
afat200.2	non dome fixed	1.0E-6	4822	225	4792	213	0.554	4712	203	4583	86	0.011
clat200-2	random-fixed	1.0E-8	5444	249	5410	236	0.554	5321	225	5179	94	0.011
		1.0E-10	5986	269	5948	257	0.554	5853	244	5700	102	0.011
		1.0E-12	6474	288	6432	275	0.554	6330	261	6168	108	0.011
		1.0E-14	6920	305	6875	292	0.554	6768	277	6596	114	0.011
		1.0E-16	7325	321	7276	308	0.554	7164	291	6984	120	0.011
		0.2	35378	1891	32956	844	0.000	34936	1747	32926	816	0.000
		0.1	37239	1934	34718	844	0.000	36779	1785	34687	819	0.000
		0.01	41659	2038	38901	844	0.000	41156	1878	38869	825	0.000
		1.0E-4	47551	2178	44475	844	0.000	46991	2004	44439	831	0.000
co natecianca	uniform fixed	1.0E-6	51927	2282	48614	843	0.000	51325	2098	48576	835	0.000
ca-metscience	unitorni-nzeu	1.0E-8	55559	2369	52049	842	0.000	54922	2177	52009	838	0.000
		1.0E-10	58729	2445	55048	842	0.000	58061	2246	55006	841	0.000
		1.0E-12	61577	2513	57741	843	0.000	60881	2309	57698	844	0.000
		1.0E-14	64184	2576	60207	843	0.000	63463	2366	60162	847	0.000
		1.0E-16	66548	2633	62443	844	0.000	65805	2418	62397	850	0.000

Experimental Results (degree-based)

Croph	waight guna	P	SEM	O2D	SEMO)3D		GSEN	102D	GSEN	103D	
Graph	weight gype	ρ	Mean	Std	Mean	Std	p-value	Mean	Std	Mean	Std	p-value
		0.2	4495	143	4392	10	0.002	4444	115	4387	6	0.001
		0.1	4835	148	4727	14	0.002	4781	119	4721	9	0.003
		0.01	5642	158	5523	25	0.001	5582	129	5512	16	0.004
		1.0E-4	6718	172	6584	39	0.001	6650	143	6566	26	0.003
afat200_1	daaraa	1.0E-6	7517	184	7372	50	0.001	7443	154	7349	34	0.003
c1at200-1	degree	1.0E-8	8180	193	8025	59	0.001	8101	163	7999	40	0.003
		1.0E-10	8758	202	8596	67	0.001	8675	171	8567	45	0.003
		1.0E-12	9278	210	9108	74	0.001	9191	178	9076	50	0.003
		1.0E-14	9754	217	9578	81	0.001	9663	185	9542	55	0.003
		1.0E-16	10185	223	10003	87	0.001	10091	191	9965	59	0.003
		0.2	3218	227	3029	154	0.033	3041	172	2963	4	0.027
		0.1	3448	235	3256	160	0.033	3267	178	3185	6	0.027
		0.01	3996	255	3795	173	0.033	3803	194	3713	11	0.027
		1.0E-4	4726	280	4514	193	0.033	4518	216	4416	17	0.027
ofat200.2	dagraa	1.0E-6	5268	300	5048	209	0.033	5049	232	4938	22	0.027
Clat200-2	uegree	1.0E-8	5718	316	5491	223	0.033	5490	245	5371	26	0.027
		1.0E-10	6110	329	5878	235	0.033	5875	257	5749	30	0.027
		1.0E-12	6463	342	6225	247	0.033	6220	267	6089	33	0.027
		1.0E-14	6786	354	6543	257	0.033	6537	277	6400	36	0.027
		1.0E-16	7079	364	6832	267	0.033	6823	286	6682	38	0.027
		0.2	28587	1535	26148	201	0.000	28164	1002	26169	196	0.000
		0.1	30122	1580	27636	207	0.000	29689	1029	27657	200	0.000
		0.01	33758	1686	31158	228	0.000	33300	1098	31183	216	0.000
		1.0E-4	38593	1828	35840	269	0.000	38103	1192	35874	251	0.000
co netscience	degree	1.0E-6	42180	1936	39313	306	0.000	41665	1265	39355	285	0.000
ca-netselence	uegree	1.0E-8	45155	2026	42192	338	0.000	44620	1327	42243	317	0.000
		1.0E-10	47751	2104	44705	367	0.000	47198	1381	44763	347	0.000
		1.0E-12	50082	2175	46962	394	0.000	49514	1429	47026	374	0.000
		1.0E-14	52216	2239	49027	420	0.000	51633	1474	49098	400	0.000
		1.0E-16	54151	2297	50900	444	0.000	53555	1515	50977	423	0.000

"Many"-objective optimization + robustness

- Colloquially, "many-objective" optimization problems (MaOP) is a term used in evolutionary computation community to denote a subset of multi-objective problems (MOP) with more than 3 objectives
- The reason for this differentiation is that increasing number of objectives, especially beyond 3, bring additional challenges in search, visualization and decision-making
- The research in MaOPs has proliferated in the last decade, but limited for the most part to the deterministic optimization scenarios
- In this part of the tutorial, we look into some works that use MaOP formulations while considering stochasticity

Robustness – different types

Feasibility robustness: Robustness with respect to constraint violation. (also referred to as Reliability). *It measures how likely a design is to violate certain constraints.*

Performance robustness: Robustness with respect to the given objective value. *It measures how likely a design is to deliver its performance.*

(a) Feasibility robustness

(b) Performance robustness

Types of robustness. Design 'B' is more robust in both cases, while 'A' has better objective value (f(x) is being maximized)

Robustness – different types

- Robustness is primarily incorporated in the problem through re-formulation by:
 - Additional or modified the objectives
 - Additional or modified constraints
- If robustness is specified as an objective, there is an opportunity to view trade-offs between the design performance and robustness
- If *both* feasibility and performance robustness are considered as additional objectives, the problem tends to become MaOP. Solving such a formulation might provide more options for studying trade-offs, but is more challenging than solving MOPs.
- Therefore many of the studies are inclined towards limiting the objectives, and using constraints in the re-formulation.
- Given the advancements in the field of deterministic MaOPs in the last decade, it is worthwhile considering formulations that use additional objectives for robust optimization

Common (re-)formulations

Reference work	Robust formulation	Type of robustness considered	Robustness as an additional objective?	Quantification of robustness	Ability to generate robust solutions with varying lev- els of robustness in a single run?	Optimization method	Type of problems studied
Deb and Gupta [35]	$\begin{split} & \text{Min.}[f_1, f_2 \dots, f_M] \text{ Subject to } f^p(x) \\ & -f(x) / f(x) \leq \eta \text{ Or Min.}[f_1^{\text{eff}}, f_2^{\text{eff}} \dots, f_M^{\text{eff}}] \end{split}$	Performance robustness (as additional constraint)	No	Expected measure	No	Nondominated sorting algorithm- II(NSGA-II)	(MO, C)
Jin and Sendhoff [8]	$\operatorname{Min.}[f_1 = f, f_2 = \sigma_f] \text{ Subject to } g_j \leq 0$	Performance robustness (as additional objective)	Yes	Variance measure	Yes, with respect to performance	ES	(SO, C)
Chen et al. [3]	Min. $[(\mu_f, \sigma_f^2)]$ Subject to $E[g_j(x, z)] + n\sigma_{g_j} \le 0$	Performance and feasibility robustness	Yes	Expected and variance measures	Yes, with respect to performance	Adaptive linear programing	(MO, C)
G. Sun et al. [4]	$\begin{array}{l} \text{Min.}[(\mu_{f_1}, \sigma_{f_1}), (\mu_{f_2}, \sigma_{f_2}), \dots, \\ (\mu_{f_M}, \sigma_{f_M})] \text{ Subject to } \mu_{g_j} + n\sigma_{g_j} \leq 0 \end{array}$	Performance and feasibility robustness	Yes	Sigma level based measure	Yes, with respect to performance	PSO	(MO, C)
Sundaresan et al. [5]	Min.E [f] Subject to $E[g_j] \le 0, E[h_j] = 0$	Feasibility robustness	No	Expected measure	No	Statistical optimization technique/design of experiments	(SO, C)
Wang et al. [11]	$\operatorname{Min}.[\mu_f + k\sigma_f] \text{ Subject to } \mu_{g_j} + n\sigma_{g_j} \leq 0$	Performance and feasibility robustness	No	Aggregation of expected and variance measure	No	Sequential optimization and reliability assessment	(SO, C)
Mourelatos and Liang [65]	$\begin{array}{l} \text{Min.}[(\mu_{f}, \Delta R_{\sigma} = \sigma_{R2} \\ -\sigma_{R1})] \text{ Subject to Prob } \{g_{j} \leq 0\} \geq \alpha_{i}, i = 1, 2,, M\end{array}$	Performance and feasibility robustness	Yes	Expected and variance measures	Yes, with respect to performance	Single-loop reliability based design optimization RBDO	(MO, C)
Youn et al. [89]	$\begin{aligned} &\operatorname{Min.}[(\mu_{H} - h_{t}/\mu_{H_{0}} - h_{t})^{2} \\ &+ (\sigma_{H}/\sigma_{H_{0}})^{2}]\operatorname{or}[(\operatorname{sgn}(\mu_{H}))(\mu_{H}/\mu_{H_{0}})^{2} \\ &+ (\sigma_{H}/\sigma_{H_{0}})^{2}]\operatorname{or}[(\operatorname{sgn}(\mu_{H}))(\mu_{1}/H/\mu_{1}/H_{0})^{2} \\ &+ (\sigma_{1}/H/\sigma_{2}/H_{0})^{2} \operatorname{Subject} \text{ to Prob } \{ \sigma_{i} \leq 0 \} \geq \sigma_{i}, i = 1, 2,, M \end{aligned}$	Performance and feasibility robustness	No	Expected and variance measures	No	Enhanced hybrid mean value (HMV+)	(MO, C)
Du et al. [26]	$\begin{aligned} &\text{Min.}[(\mu_{g_{obj}},\Delta g_{obj_a}^{n_2})] \text{ Subject to } [g_i^n \leq 0, i = 1, 2, \dots m] \end{aligned}$	Performance and feasibility robustness	No	Percentile performance	No	MPP of inverse reliability (MPPIR) search method	(SO, C)
Gunawan and Azarm [66]	$\begin{array}{l} \operatorname{Min.f}(\mathbf{x},\mathbf{p}) = [f_1,f_2,\ldots,f_M] \\ \operatorname{Subject to} \ g_j(\mathbf{x},\mathbf{p}) \leq 0, j = 1,2,\ldots J1 - (\eta_f,\eta_g) \leq 0 \end{array}$	Performance and feasibility robustness	No	Worst Case sensitivity region (WCSR)	No	NSGA	(MO, C)
Asafuddoula et. al. [81]	Four different formulations, Form-1 to Form-4; incorporating FR alone or both FPR	Performance and feasibility robustness	Yes	Sigma-level	Yes, with respect to feasibility and performance	DBEA-r optimization DBEA-r	(MO/MaO, C)

Note: SO: single objective; MO: multi-objective; MaO: many-objective (≥ 4 objectives); C: constrained. For complete details on the robust formulations, please refer to the cited publications.

Some existing formulations used for robust optimization [Ray et al, JMD 2015]

Proposed formulation(s)

Robust form	Formulation type	Robust formulation	Robust measure	ATGFSSR ^a
FR	Optimization of expected	Minimize $\mu_{f_i(\mathbf{d}, \mathbf{x})}, i = 1, 2,M$	Sigma level based	Yes
	objective function(s) with FK	$\underset{(\mathbf{d},\mathbf{x})}{\text{Maximize}} f_{M+1}(\mathbf{d},\mathbf{x}) = \text{Min}(\text{Sigma}_g, R_c)$	ineasure (Sigina _g)	
		Subject to:		
		$\operatorname{Sigma}_g \equiv \operatorname{Min}(\mu_{g_j(\mathbf{d},\mathbf{x})} / \sigma_{g_j(\mathbf{d},\mathbf{x})}) \geq 0$		
		$\mathbf{x}^{(L)} \le \mathbf{x} \le \mathbf{x}^{(U)}, \mathbf{d}^{(L)} \le \mathbf{d} \le \mathbf{d}^{(U)} $ (5)		
FPR	Optimization of expected objective function(s) with FPR	$\underset{(\mathbf{d},\mathbf{x})}{\text{Minimize}} \mu_{f_i(\mathbf{d},\mathbf{x})}, i = 1, 2, \dots, M$	Sigma level based measure (Sigma _e , Sigma _f)	Yes
		$\underset{(\mathbf{d},\mathbf{x})}{\text{Maximize}} f_{M+1}(\mathbf{d},\mathbf{x}) = \text{Min}(\text{Sigma}_g, R_c)$		
		$\underset{(\mathbf{d},\mathbf{x})}{\text{Maximize}} f_{M+2}(\mathbf{d},\mathbf{x}) = \text{Min}(\text{Sigma}_f, R_f)$		
		Subject to		
		$\operatorname{Sigma}_g \equiv \operatorname{Min}(\mu_{g_j(\mathbf{d},\mathbf{x})} / \sigma_{g_j(\mathbf{d},\mathbf{x})}) \ge 0$		
		$\mathbf{x}^{(L)} \leq \mathbf{x} \leq \mathbf{x}^{(U)}, \mathbf{d}^{(L)} \leq \mathbf{d} \leq \mathbf{d}^{(U)}$		
		where		
		$\text{Sigma}_{f} \equiv \text{Min}(\sigma_{f_{0,i}(\mathbf{d},\mathbf{x})} / \sigma_{f_{i}(\mathbf{d},\mathbf{x})})$		
		$\mathbf{x}^{(L)} \le \mathbf{x} \le \mathbf{x}^{(U)}, \mathbf{d}^{(L)} \le \mathbf{d} \le \mathbf{d}^{(U)} $ (6)		

^aATGFSSR: Ability to generate tradeoff solutions with various levels of robustness in a single run. The values of R_c and R_f are considered 6 to meet the six sigma quality.

 $Sigma_g$ and $Sigma_f$ are robustness measures denoting the number of standard deviations between the mean and spec limit

Sigma Level	Confidence Interval (CI)	Defects per million
$\pm 1\sigma$	68.26	691462
$\pm 2\sigma$	95.46	308538
$\pm 3\sigma$	99.73	66807
$\pm 4\sigma$	99.9937	6210
$\pm 5\sigma$	99.999943	233
$\pm 6\sigma$	99.9999998	2

[Asafuddoula et al, IEEE TEVC 2015]

Search method

Decomposition based Evolutionary Algorithm (DBEA) for robust optimization

Algorithm 1 DBEA-rg

Input: Gen_{max} (maximum number of generations), W (number of reference points), p_c (probability of crossover), p_m (probability of mutation), η_c (distribution index for crossover), η_m (distribution index for mutation)

- 1: $gen = 1; CS = \emptyset;$
- 2: Generate the reference points using Normal Boundary Intersection (NBI) method.
- 3: Initialize the population \mathbf{P} consisting of W individuals. Randomly assign each individual of \mathbf{P} to an unique reference direction.
- 4: Assign a random binary vector *BV* of size *n* to each solution, where *n* denotes the number of variables of the problem.
- 5: Repair the individuals of the population based on its BV and the base design.
- 6: Evaluate the initial population using prescribed robust formulation.
- 7: Compute the ideal point and the extreme point.
- 8: Normalize the individuals of the population
- 9: Use corner-sort to identify 2M corner solutions and assign them to Corner Set (CS).
- 10: while $(gen \leq Gen_{max})$ do
- 11: Select $I_1 = 1$: W as the base parents
- 12: I_2 =Generate a shuffled list of individuals in the population
- 13: Create offspring solutions C via recombination of I_1 and I_2
- 14: Create offspring *BV*'s via recombination of I_1 and I_2
- 15: Repair the offspring solutions using their *BV*'s and the base design.
- 16: Evaluate the offspring solutions C
- 17: Update the corner set CS, ideal and extreme points
- 18: Normalize the individuals of P and C
- 19: Compute the distances $(d_1 \text{ and } d_2)$ for all members of **P** in their respective reference directions.
- 20: Compute the distances $(d_1 \text{ and } d_2)$ for all members of C in all reference directions.
- 21: Update the parent solutions in the shuffled order of W with C_l using *single-first encounter strategy* satisfying replacement condition.
- 22: gen = gen + 1
- 23: end while

(Other methods suitable for MaOPs can also be used)

[Ray et al, JMD 2015]

Results

Fig. 6. Solutions obtains using Form-4 robust formulation. The solutions are labeled as $(x, f, \text{sigma}_g, \text{sigma}_f)$ i.e., A = (0.1000, -1.000, 0.0012, 0.3952), B = (0.1136, -0.8715, 0.3948, 0.3937), C" = (0.4892, -0.7151, 6, 3.3624), D = (0.8169, -1.057e-4, 6, 5.4359), and E = (0.9832, -5.89e-5, 6, 6).

Test problem: bi-objective

Test problem: single-objective

Applications studied:

- Welded beam design, Coil compression spring design, Car side impact design problem, Aircraft design, Water resource management, etc.
- The problems span one to ten objectives.

[Asafuddoula et al, IEEE TEVC 2015; Ray et al, JMD 2015]

Robust re-design

- Re-Design for Robustness (RDR) represents a practical class of problems, where a limited set of components of *an existing product* are redesigned to improve the overall robustness of the product.
- This avoids the need to design the product from scratch and enables the use of existing inventory of some of the components.
- The central question is given an existing baseline design, which components can be changed to improve the robustness of the product?
- The number of changed components relative to the existing design can be added as an objective while solving the previous (FPR) formulation
- The resulting formulation is referred to as FPRR

$$\begin{split} & \underset{(\mathbf{x})}{\text{Minimize }} \mu_{f_i(\mathbf{x})}, i = 1, 2, \dots, M \\ & \underset{(\mathbf{x})}{\text{Maximize }} f_{M+1}(\mathbf{x}) = \text{Min}(sigma_g, R_c) \\ & \underset{(\mathbf{x})}{\text{Maximize }} f_{M+2}(\mathbf{x}) = \text{Min}(sigma_f, R_f) \\ & \underset{(\mathbf{x})}{\text{Minimize }} f_{M+3} = F_{nc}(\mathbf{x}, \mathbf{x}^b) \\ & \text{subject to} \\ & sigma_g \equiv \text{Min}(\mu_{g_j(\mathbf{x})} / \sigma_{g_j(\mathbf{x})}) \geq 0 \\ & \mathbf{x}^{(L)} \leq \mathbf{x} \leq \mathbf{x}^{(U)} \end{split}$$

where

$$sigma_{f} \equiv \operatorname{Min}(\sigma_{f_{0,i}(\mathbf{x})} / \sigma_{f_{i}(\mathbf{x})})$$
$$\mathbf{x}^{(L)} \leq \mathbf{x} \leq \mathbf{x}^{(U)}$$

[Singh et al, EMO 2015]

Robust re-design example

Example: Car side impact design problem

- 1 objective, 7 Variables, 10 constraints
- Baseline design available is infeasible (hence sigma level 0)
- The re-design enables it to get to nearly 6-sigma design by changing only 2 of the variables
- Expected performance is very similar to the case of enabling all variables to change

[Singh et al, EMO 2015]

An alternate many-objective formulation

Consider a single-objective optimization problem with stochasticity

Some basic reformulations: optimize $\mu_f + w\sigma_f$, worst f, or multi-objective (μ_f, σ_f)

• The limitations of the existing optimization formulations include, e.g.

- $p(f(A) \le f(C)) = 88.23\%$; yet $\mu_f + 4\sigma_f$ or worst *f* metrics will (mis-)identify C as the better design among the two.
- \circ worst *f* has many indistinguishable regions and needs bilevel formulation.
- \circ considering all (μ_f , σ_f)-ND solutions yields several designs with poor performance and low uncertainty.

An alternate many-objective formulation

We propose robustness based on the quantile function (QF) of the objective computed within x_{Δ}

- This function defines, for each possible probability *p* ∈ [0, 1] the fitness value that is obtained at least with that probability. More formally:
 QF(*x*, *p*) = inf{*y* ∈ *R* : *p* ≤ *G*(*f*(*x*))}
- To identify all first-order stochastically non-dominated solutions, we solve: $\min QF(x,p) \quad \forall p \quad s.t. \quad x_i^L \leq x_i \leq x_i^U, i = 1, \dots n_x.$
- In this definition, a solution x_A is considered better than another solution x_B if $QF(x_A)$ yields a lower or equal value than $QF(x_B)$ (for minimization) for all values of $p \in [0, 1]$. This is equivalent to x_A first-order stochastically dominating x_B .
- In this figure,
 - Solution A stochastically dominates B, D, E
 - {A,C} and {B,C} are nondominated
 - $\circ~$ A, B, C, D all dominate E
 - o (and so on)

[[]Singh and Branke, PPSN 2022]

Search

Customized EA for finding stochastically non-dominated solutions:

- **Discretization:** The quantile function is discretized using *M* uniformly sampled values of $p \in [0 \ 1]$; leading to *M*-objective problem. N_s samples are used to compute the objective values.
- Environmental selection using first-order stochastic non-domination ranking:
 - Compute $d_{ij} = \max(\max_{q} f_q(j) f_q(i)), 0)$
 - Compute $dMin(i) = \min_{i \in S} d_{ij}$
 - Remove solution with lowest dMin; recompute d_{ij}
 - Repeat until all solutions are eliminated; reverse the sequence to get the final ranks
- Strategies for reducing function evaluations:
 - reuse the neighbor solutions' samples for QF calculation
 - Use Kriging models to approximate the QF values in lieu of true evaluations

[Singh and Branke, PPSN 2022]

Results

Our experiments thus include four variants:

- V1 = Baseline; neighboring samples OFF, surrogates OFF
- V2 = reuse neighboring samples OFF, surrogates ON
- V3 = reuse neighboring samples ON, surrogates OFF
- V4 = reuse neighboring samples ON, surrogates ON.

Table 1: Median IGD and number of evaluations (FE). The numbers in parenthesis denote the ratio relative to the baseline (V*/V1 for IGD, V1/V* for FE). \uparrow and \downarrow denote higher or lower than baseline, respectively.

			IGD				\mathbf{FE}	
$\mathbf{Problem}$	V1	V2	V3	V4	V1	V2	V3	V4
TP1	0.0002	$0.0006~(2.45 \times \uparrow)$	$0.0021~(9.23 \times \uparrow)$	$0.0054~(23.59 \times \uparrow)$	$1.01\mathrm{e}{+}05$	$13020 \ (7.76 \times \downarrow)$	$3721 \ (27.14 \times \downarrow)$	2824 $(35.76 \times \downarrow)$
$\mathrm{TP2}$	0.0002	$0.0004~(2.82 \times \uparrow)$	$0.0006~(3.93 \times \uparrow)$	$0.0006~(3.54 imes\uparrow)$	$1.01\mathrm{e}{+}05$	$13020 \ (7.76 \times \downarrow)$	$3958~(25.52 \times \downarrow)$	2845 $(35.5 \times \downarrow)$
TP3	0.0012	$0.0012~(1.05 \times \uparrow)$	$0.0019~(1.62 \times \uparrow)$	$0.0012~(1.05 \times \uparrow)$	$1.01\mathrm{e}{+}05$	$13020 \ (7.76 \times \downarrow)$	$4000 (25.25 \times \downarrow)$	2845 $(35.5 \times \downarrow)$
TP4	0.0004	$0.0004 (1.21 \times \uparrow)$	$0.0007~(1.90 \times \uparrow)$	$0.0004~(1.16 \times \uparrow)$	$1.01\mathrm{e}{+}05$	$13020 \ (7.76 \times \downarrow)$	$3241 \ (31.16 \times \downarrow)$	2341 (43.14× \downarrow)
TP5	0.0012	$0.0022~(1.78 \times \uparrow)$	$0.0019~(1.61 \times \uparrow)$	$0.0023~(1.89 \times \uparrow)$	$1.01\mathrm{e}{+}05$	$13020 \ (7.76 \times \downarrow)$	$3984~(25.35 \times \downarrow)$	2892 $(34.92 \times \downarrow)$
TP6	0.0072	$0.0065 (0.91 \times \downarrow)$	$0.0083~(1.15 \times \uparrow)$	$0.0061~(0.85 \times \downarrow)$	$1.01\mathrm{e}{+}05$	$13020 \ (7.76 \times \downarrow)$	$4869~(20.74 \times \downarrow)$	3180 $(31.76 \times \downarrow)$
$\mathrm{TP7}$	0.1421	$0.5141~(3.62 \times \uparrow)$	$1.3860~(9.75 \times \uparrow)$	$6.6902~(47.09 \times \uparrow)$	$1.01\mathrm{e}{+}05$	$13020 \ (7.76 \times \downarrow)$	$3742~(26.99 \times \downarrow)$	2776 $(36.38 \times \downarrow)$
TP8	0.0384	$0.0395~(1.03 \times \uparrow)$	$0.0450~(1.17 \times \uparrow)$	$0.0436~(1.13 \times \uparrow)$	$1.01\mathrm{e}{+}05$	$13020 \ (7.76 \times \downarrow)$	$5315~(19.00 \times \downarrow)$	$3217 (31.4 \times \downarrow)$
TP9	0.0051	$0.0051 (1.01 \times \uparrow)$	$0.0088~(1.73 \times \uparrow)$	$0.0055~(1.08 \times \uparrow)$	$1.01\mathrm{e}{+}05$	$13020 \ (7.76 \times \downarrow)$	$3927 (25.72 \times \downarrow)$	2949 $(34.25 \times \downarrow)$
TP10	0.0117	$0.0124~(1.06 \times \uparrow)$	$0.0137~(1.17 \times \uparrow)$	$0.0124~(1.06 \times \uparrow)$	$1.001\mathrm{e}{+06}$	31020 $(32.27 \times \downarrow)$	30849 (32.45 $\times \downarrow$)	21031 (47.6 × \downarrow)

- All variants achieve a low median IGD. Thus, the proposed EA is competent in identifying stochastically ND solutions.
- The IGD of V2-V4 is generally 1-4 times that obtained by V1. At the same time, the typical reduction in FE is 8-fold for V2 and 20 to 40-fold for V3-V4 relative to V1. Thus, large savings in FE are achieved with little compromise on solution quality.

Results

A visualization of the typical results obtained (similar quality for all variants)

plots indicate drastic speed-up

ЦD

0.

0.05

10

10³

104

Evaluations

Convergence plots for selected problems (TP1, TP2, TP3)

Evaluations

10³

0.02

0.015

0.01

0.005

СD

0.04

0.02

10

10³

Evaluations

-V2

-V3 -V4

[Singh and Branke, PPSN 2022]

References

The contents for this (many-objective) part of the tutorial are taken from the following:

- Singh, H.K. and Branke, J., "Identifying stochastically non-dominated solutions using evolutionary computation," in Proceedings of Parallel Problem Solving from Nature, (Dortmund, Germany), pp. 193-206, 2022.
- Asafuddoula, M., **Singh, H.K.**, and Ray, T., "Six Sigma Robust Design Optimization using a Many-objective Decomposition Based Evolutionary Algorithm." IEEE Transactions on Evolutionary Computation, vol. 19, issue 4, pp. 490-507, 2015
- Ray, T., Asafuddoula, M., **Singh, H.K.,** and Alam, K.," An Approach to Identify Six Sigma Robust Solutions of Multi/Many-objective Engineering Design Optimization Problems." ASME Journal of Mechanical Design, vol. 137, issue 5, pp. 051404-051404, 2015.
- Singh, H.K., Asafuddoula, M., Ray, T. and Alam, K., "Re-design for robustness using manyobjective decomposition based evolutionary optimization," in Proceedings of International Conference on Evolutionary Multi-Criteria Optimization (Guimarães, Portugal), Lecture Notes in Computer Science, vol. 9019, pp. 343–357, Springer, 2015.
- Singh, H.K., and Ray, T., "Many-objective optimization in engineering design: Case studies using a decomposition based evolutionary algorithm," in Advances in Structural and Multidisciplinary Optimization, Proceedings of the Eleventh World Congress of Structural and Multidisciplinary Optimization, (Sydney, Australia), pp. 106-111, 2015.