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Introduction



Introduction
• Many real-world optimization problems include 

uncertainties which effect the quality of solutions.

For example: 
• Evaluating the performance of a machine does not give 

exactly the same result even if all parameters are the same.
• Traveling from A to B on a planned route takes different 

amounts of times and it’s hard to predict the exact duration 
of the trip.



Introduction
• Noise can occur at different stages.
• Theoretical studies distinguish where noise is applied before 

or after functions evaluation.

Prior noise: 
• effects the solution before the evaluations.
• Here a solution component might change before evaluation.

Posterior noise:
• adds noise to the functions value (dependent on a 

known/unknown distribution)



Introduction
• Many difficulties arise in stochastic optimization as the 

known realization is not known at the time of optimization.
• Knowledge about the ground truth is often gathered while 

implementing a solution.
• This new knowledge can potentially be used to reduce 

uncertainties for solution components that have not already 
been implemented.

• This tutorial will cover a selected set of topics for stochastic 
optimization using evolutionary algorithms.



Evolutionary algorithms (EAs)
• Evolutionary algorithms are general purpose algorithms.
• follow Darwin's principle (survival of the fittest).
• work with a set of solutions called population.
• parent population produces offspring population by variation 

operators (mutation, crossover).
• select individuals from the parents and children to create new 

parent population.
• Iterate the process until a “good solution” has been found.

EAs are adaptive and often yield good solutions for complex, 
dynamic and/or stochastic problems.
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Real-World Example
Mine Planning



• Optimising revenue taking into account uncertainties 
in the block  model.
• Capture the maximum economic potential of mineral resources.
• Optimising a strategic long term plan based on geological estimation 
uncertainty in the mine scheduling process.

 Significance of Uncertainty Modeling
 and Quantification



• Block model is a collection of spatially located blocks with 
set of attributes (rock lithological domain, ore grade, rock 
density).

• Example data based on the Neuronal Network prediction:

                     z                                     y

                                      
                  origin                                        x

                                        

Background on Uncertainties
 in the Block Model

Predicted copper grade (%Cu): 0.41285940

0.38882205

0.24948858

0.24949805

0.24949934Block



The Profit-based Discounted 
Knapsack Problem



Motivation
• Often benefits of a given goal function can be impacted by 

uncertainties (e.g., profit obtainable from blocks in mining).
• Our goal is to maximize profit, but we would also like to 

guarantee that the profit only drops with a small probability 
below an optimized profit value.

• Consider the classical knapsack problem with stochastic 
profit.

• We aim to maximize the profit value P for which we can 
guarantee that it’s achieved by the solution presented by 
our algorithm with probability at least 1 − 𝛼!.



Stochastic Knapsack Problem

In the classical problem, there are given n items 1, . . . , n where 
each item has a profit pi and a weight wi, the goal is to maximize
the profit under the condition that     

for a given weight bound B holds. 

We consider the stochastic version, where the profits pi are 
stochastic, and the weights are still deterministic. 



Goal: is to maximize the profit P among solutions x in {0,1}n  
for which we can guarantee that there is only a small 
probability αp of dropping below P.

We consider (a) the (1+1) EA, (b) the (1+1) EA with heavy tail 
mutation, (c) (μ + 1) EA with the heavy tail mutation and the 
Discounted Greedy Uniform Crossover.

Aneta Neumann, Xie Yue, Frank Neumann,
Evolutionary Algorithms for Limiting the Effect of Uncertainty for the Knapsack Problem with Stochastic Profit, PPSN (1) 2022
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and a study on groups of items whose stochastic uniform weights are correlated
with each other [27].

All previously mentioned studies concentrated on stochastic weights and
how algorithms can deal with the chance constraints with respect to the weight
bound of the knapsack problem. In [16], a version of the knapsack problem
stochastic profits and deterministic weights has been considered where the goal
is to maximize the probability that the profit meets a certain threshold value.
In contrast to this, we will maximize the profit under the condition that it is
achieved with high probability. We will provide the first study on evolutionary
algorithms for giving guarantees when maximizing stochastic profits, a topic that
is well motivated by the beforehand mentioned mine planning application but to
our knowledge not studied in the literature before.

The paper is structured as follows. In Section 2, we introduce the problem
formulation and tail bounds that will be used to construct fitness functions for
dealing with stochastic profit. In Section 3, we derive fitness functions that are able
to maximize the profit for which we can give guarantees. Section 4 introduces
evolutionary algorithms for the problem and we report on our experimental
investigations in Section 5. We finally finish with some conclusions.

2 Problem definition

In this section, we formally introduce the problem and tail inequalities for dealing
with stochastic profits that will later be used to design fitness functions. We
consider a stochastic version of the classical NP-hard knapsack problem. In
the classical problem, there are given n items 1, . . . , n where each item has a
profit pi and a weight wi, the goal is to maximize the profit p(x) =

P
n

i=1
pixi

under the condition that w(x) =
P

n

i=1
wixi  B for a given weight bound B

holds. The classical knapsack problem has been well studied in the literature. We
consider the following stochastic version, where the profits pi are stochastic and
the weights are still deterministic. Our goal is to maximize the profit P for which
we can guarantee that there is only a small probability ↵p of dropping below P .
Formally, we tackle the following problem:

maxP (1)

s.t. Pr(p(x) < P )  ↵p (2)

w(x)  B (3)

x 2 {0, 1}n (4)

Equation 2 is a chance constraint on the profit and the main goal of this paper
is to find a solution x that maximize the value of P such that the probability
of getting a profit lower than P is at most ↵p. We denote by µ(x) the expected
profit and by v(x) the variance of the profit throughout this paper.
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Algorithm 3: (µ+ 1) EA

1: Randomly generate µ initial solutions as the initial population P ;
2: while stopping criterion not meet do
3: Let x and y be two di↵erent individual from P chosen uniformly at random;
4: if rand([0, 1])  pc then
5: apply the discounted greedy uniform crossover operator to x and y to produce

an o↵spring z.
6: else
7: Choose one individual x from P uniformly at random and let z be a copy of x.
8: end if
9: apply the heavy-tail mutation operator to z;
10: if f(z) � f(x) then
11: P  (P \ {x}) [ {z};
12: else
13: if f(z) � f(y) then
14: P  (P \ {y}) [ {z};
15: end if
16: end if
17: end while

calculation based on Hoe↵ding bounds and set

p0
i
= µi � �p ·

✓q
ln(1/↵p) · 2(|z|1 + 1)�

q
ln(1/↵p) · 2|z|1

◆
.

The expected profit µi is therefore discounted with the additional uncertainty
that would be added according to the Hoe↵ding bound when adding an additional
element to z. Once, the discounted values p0

i
, the elements are sorted according

to p0
i
/wi. The final steps tries the elements of I in sorted order and adds element

i 2 I if it would not violate the weight constraint.

5 Experimental Investigation

In this section, we investigate the (1+1) EA and the (1+1) EA with heavy-tailed
mutation on several benchmarks with chance constraints and compare them to
the (µ + 1) EA algorithm with heavy-tailed mutation and new crossover operator.

5.1 Experimental Setup

Our goal is to study di↵erent chance constraint settings in terms of the uncer-
tainty level �p, and the probability bound ↵p. We consider di↵erent well-known
benchmarks from [12, 21] in their profit chance constrained versions. We con-
sider two types of instances, uncorrelated and bounded strong correlated ones,
with n = 100, 300, 500 items. For each benchmark, we study the performance of
(1+1) EA, (1+1) EA with heavy-tailed mutation and (µ + 1) EA with value of
µ = 10. We consider all combinations of ↵p = 0.1, 0.01, 0.001, and �p = 25, 50

Evolutionary Algorithms for Limiting the Effect 
of Uncertainty for the Knapsack Problem with 

Stochastic Profits



Setting for Stochastic Profit
We consider different chance constraint settings in terms of 
the uncertainty level δp, and the probability bound αp. 

Chebyshev’s Inequality:

We assume that for a given solution only the expected value 
μ(x) and the variance v(x) are known. 

Hoeffding Bound: 

We assume that each element i takes on a profit    
ind     independently of the other items. 



 Comparison of Chebyshev and Hoeffding based fitness 
functions

The fitness of a search point x ∈ {0, 1}n is given by
                              
where u(x) = max{w(x) − B, 0} is the amount of constraint 
violation of the bound B by the weight that should be minimized 
and          is the discounted profit of solution x that should be 
maximized.

4 Neumann et al.

2.1 Concentration bounds

In order to establish guarantees for the stochastic knapsack problem we make
use of well-known tail inequalities that limit the deviation from the expected
profit of a solution.

For a solution X with expected value E[X] and variance V ar[X] we can use
the lower tail of the following Chebyshev-Cantelli inequality.

Theorem 1 (One-sided Chebyshev’s / Cantelli’s inequality). Let X be a
random variable with expected value E[X] and variance Var[X] > 0. Then, for
all � > 0,

Pr[X � E[X]� �] � 1� Var[X]

Var[X] + �2
(5)

We will refer to this inequality as Chebyshev’s inequality in the following.
Chebyshev’s inequality only requires the expected value and variance of a solution,
but no additional requirements such as the independence of the random variables.

We use the additive Hoe↵ding bound given in Theorem 1.10.9 of [7] for the
case where the weights are independently chosen within given intervals.

Theorem 2 (Hoe↵ding bound). Let X1, . . . , Xn be independent random vari-
ables. Assume that each Xi takes values in a real interval [ai, bi] of length
ci := bi � ai. Let X =

P
n

i=1
Xi. Then for all � > 0,

Pr(X � E[X] + �)  e�2�
2
/(

P
n

i=1 c
2
i
) (6)

Pr(X  E[X]� �)  e�2�
2
/(

P
n

i=1 c
2
i
) (7)

3 Fitness functions for profit guarantees

The main task when dealing with the setting of chance constraint profits is to
come up with fitness functions that take the uncertainty into account.

In this section, we introduce di↵erent fitness functions that can be used in
an evolutionary algorithm to compute solutions that maximize the profit under
the uncertainty constraint. We consider the search space {0, 1}n and for a given
search point x 2 {0, 1}n, item i chosen i↵ xi = 1 holds.

The fitness of a search point x 2 {0, 1}n is given by

f(x) = (u(x), p̂(x))

where u(x) = max{w(x) � B, 0} is the amount of constraint violation of the
bound B by the weight that should be minimized and p̂(x) is the discounted
profit of solution x that should be maximized. We optimize f with respect to
lexicographic order and have

f(x) � f(y)

4 Neumann et al.
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Given the last expression, P is maximal for

P = µ(x)�
q

((1� ↵p)/↵p) · v(x).

We use the following profit function based on Chebyshev’s inequality:

p̂Cheb(x) = µ(x)�
q
(1� ↵p)/↵p ·

p
v(x) (8)

3.2 Hoe↵ding bound

We now assume that each element i takes on a profit pi 2 [µi � �p, µi + �p]
independently of the other items. Let µ(x) =

P
µixi. We have p(x) = µ(x) �

�p|x|1 + p0(x) where p0(x) is the sum of |x|1 independent random variables in
[0, 2�p]. We have E[p0(x)] = |x|1�p and

Pr(p(x)  µ(x)� �) = Pr(p0(x)  |x|1�p � �)  e�2�
2
/(4�

2
p
|x|1) = e��

2
/(2�

2
p
|x|1)

based on Theorem 2. The chance constraint is met if

e��
2
/(2�

2
p
|x|1)  ↵p

() ��2/(2�2
p
|x|1)  ln(↵p)

() �2 � ln(1/↵p) · (2�2p|x|1)

() � � �p ·
q

ln(1/↵p) · 2|x|1

Therefore, we get the following profit function based on the additive Hoe↵ding
bound from Theorem 2:

p̂Hoef (x) = µ(x)� �p ·
q

ln(1/↵p) · 2|x|1 (9)

3.3 Comparison of Chebyshev and Hoe↵ding based fitness functions

The fitness functions p̂Hoef and p̂Cheb give a conservative lower bound on the
value of P to be maximized. We now consider the setting investigated for the
Hoe↵ding bound and compare it to the use of Chebyshev’s inequality. If each
element is chosen independently and uniformly at random from an interval of
length 2�p as done in Section 3.2, then we have v(x) = |x|1 · �2p/3. Based on this
we can establish a condition on ↵p which shows when p̂Hoef (x)  p̂Cheb(x) holds.

We have

p̂Hoef (x) � p̂Cheb(x)

()
p

ln(1/↵p) · 2 · |x|1 
q

(1�↵p)|x|1
3↵p

() ln(1/↵p) · 2 · |x|1  (1�↵p)|x|1
3↵p

() ln(1/↵p) · ↵p/(1� ↵p)  1/6
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Hi Sharlotte und Clint,

I would like to update you on next 
steps.

\

Main Results:
• introduced the knapsack problem with chance constrained profits. 
• presented fitness functions for different stochastic settings that allow to maximize the 

profit value P such that the probability of obtaining a profit less than P is upper 
bounded by αp.

Settings: consider all combinations of αp = 0.1, 0.01, 0.001, and δp = 25, 50, uncorrelated 
and bounded strong correlated ones, with n = 100, 300, 500 items.

Results for the Chebyshev based function  pCheb.
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Table 1. Experimental results for the Chebyshev based function p̂Cheb.

(1+1) EA (1+1) EA-HT (µ+1) EA

B ↵p �p p̂Cheb std stat p̂Cheb std stat p̂Cheb std stat

uncorr 100 2407 0.1 25 11073.5863 36.336192 2
(⇤)

, 3
(⇤)

11069.0420 46.285605 1
(⇤)

, 3
(⇤)

11057.4420 59.495722 1
(⇤)

, 2
(⇤)

50 10863.1496 85.210231 2
(⇤)

, 3
(⇤)

10889.4840 37.175095 1
(⇤)

, 3
(⇤)

10883.7163 53.635972 1
(⇤)

, 2
(⇤)

0.01 25 10641.9089 63.402329 2
(⇤)

, 3
(⇤)

10664.5974 29.489838 1
(⇤)

, 3
(⇤)

10655.7251 43.869265 1
(⇤)

, 2
(⇤)

50 10054.6427 49.184220 2
(⇤)

, 3
(⇤)

10066.2854 36.689426 1
(⇤)

, 3
(⇤)

10064.8734 39.556767 1
(⇤)

, 2
(⇤)

0.001 25 9368.33053 46.894877 2
(⇤)

, 3
(⇤)

9368.2483 34.904933 1
(⇤)

, 3
(⇤)

9365.5257 40.458098 1
(⇤)

, 2
(⇤)

50 7475.44948 50.681386 2
(⇤)

, 3
(⇤)

7490.6387 27.819516 1
(⇤)

, 3
(⇤)

7497.5054 14.098629 1
(⇤)

, 2
(⇤)

strong 100 4187 0.1 25 8638.0428 68.740095 2
(�)

, 3
(�)

8698.2592 64.435352 1
(+)

, 3
(⇤)

8707.9271 49.633473 1
(+)

, 2
(⇤)

50 8441.9311 80.335771 2
(�)

, 3
(�)

8483.1151 45.284814 1
(+)

, 3
(⇤)

8481.0022 55.979520 1
(+)

, 2
(⇤)

0.01 25 8214.8029 56.705379 2
(�)

, 3
(�)

8230.9642 42.084563 1
(+)

, 3
(⇤)

8210.1448 55.148757 1
(+)

, 2
(⇤)

50 7512.3033 71.115520 2
(�)

, 3
(�)

7563.5495 37.758812 1
(+)

, 3
(⇤)

7554.7382 53.030592 1
(+)

, 2
(⇤)

0.001 25 6771.7849 58.314395 2
(�)

, 3
(�)

6797.0376 42.944371 1
(+)

, 3
(⇤)

6793.0387 43.492135 1
(+)

, 2
(⇤)

50 4832.2084 88.887119 2
(�)

, 3
(�)

4929.1483 52.858392 1
(+)

, 3
(⇤)

4902.0006 44.976733 1
(+)

, 2
(⇤)

uncorr 300 6853 0.1 25 34150.7224 167.458986 2
(⇤)

,3
(�)

34218.9806 164.65331 1
(⇤)

, 3
(⇤)

34319.8500 177.580430 1
(+)

, 2
(⇤)

50 33749.8625 202.704754 2
(⇤)

,3
(�)

33827.9115 158.675094 1
(⇤)

, 3
(⇤)

33992.7669 157.059148 1
(+)

, 2
(⇤)

0.01 25 33298.9369 215.463952 2
(⇤)

,3
(�)

33482.2230 186.361325 1
(⇤)

, 3
(⇤)

33584.5679 129.781221 1
(+)

, 2
(⇤)

50 32326.5299 203.976688 2
(⇤)

,3
(�)

32332.5785 190.826414 1
(⇤)

, 3
(⇤)

32504.2005 178.815508 1
(+)

, 2
(⇤)

0.001 25 30989.2470 242.861056 2
(⇤)

,3
(�)

31150.1989 187.329891 1
(⇤)

, 3
(⇤)

31281.7283 181.280416 1
(+)

, 2
(⇤)

50 27868.2812 180.822780 2
(⇤)

,3
(�)

27923.1672 148.146917 1
(⇤)

, 3
(⇤)

28024.3756 144.125407 1
(+)

, 2
(⇤)

strong 300 13821 0.1 25 24795.3122 143.413609 2
(�)

,3
(⇤)

24939.0678 94.941101 1
(+)

, 3
(⇤)

24850.2784 135.783162 1
(⇤)

, 2
(⇤)

50 24525.1204 161.185000 2
(�)

,3
(⇤)

24585.2993 112.692219 1
(+)

, 3
(⇤)

24589.7315 125.724850 1
(⇤)

, 2
(⇤)

0.01 25 24047.9634 147.055910 2
(�)

,3
(⇤)

24138.6765 103.635233 1
(+)

, 3
(⇤)

24121.8843 132.985469 1
(⇤)

, 2
(⇤)

50 22982.7691 169.377913 2
(�)

,3
(⇤)

23088.9710 81.229946 1
(+)

, 3
(⇤)

23057.3537 160.481591 1
(⇤)

, 2
(⇤)

0.001 25 21689.9288 168.324844 2
(�)

,3
(⇤)

21824.5028 77.615607 1
(+)

, 3
(⇤)

21786.4256 126.077269 1
(⇤)

, 2
(⇤)

50 18445.0866 125.747992 2
(�)

,3
(⇤)

18545.0084 98.512038 1
(+)

, 3
(⇤)

18543.0067 96.526569 1
(⇤)

, 2
(⇤)

uncorr 500 11243 0.1 25 58309.8801 266.319166 2
(�)

, 3
(�)

58454.4069 295.624416 1
(+)

,3
(�)

58708.9818 157.245339 1
(+)

, 2
(+)

50 57783.7554 316.155254 2
(�)

, 3
(�)

57927.2459 299.811063 1
(+)

, 3
(�)

58267.9737 204.854052 1
(+)

, 2
(+)

0.01 25 57262.7885 330.683000 2
(�)

, 3
(�)

57538.1166 260.869372 1
(+)

, 3
(�)

57770.6524 178.217884 1
(+)

, 2
(+)

50 55916.4463 260.392742 2
(�)

, 3
(�)

56086.6031 224.647105 1
(+)

, 3
(�)

56321.8437 197.704397 1
(+)

, 2
(+)

0.001 25 54149.7603 364.823822 2
(�)

, 3
(�)

54406.8517 249.217045 1
(+)

, 3
(�)

54806.6815 170.082092 1
(+)

, 2
(+)

50 50124.9811 265.408552 2
(�)

, 3
(�)

50312.3993 286.632525 1
(+)

, 3
(�)

50672.0950 197.712768 1
(+)

, 2
(+)

strong 500 22223 0.1 25 41104.1611 321.324820 2
(⇤)

, 3
(⇤)

41523.8952 222.691441 1
(⇤)

, 3
(⇤)

41458.8477 238.463764 1
(⇤)

, 2
(⇤)

50 40834.8213 243.308935 2
(⇤)

, 3
(⇤)

41067.8559 229.706142 1
(⇤)

, 3
(⇤)

41043.6296 173.586544 1
(⇤)

, 2
(⇤)

0.01 25 40248.7094 289.114488 2
(⇤)

, 3
(⇤)

40567.8724 133.387473 1
(⇤)

, 3
(⇤)

40448.5671 206.754226 1
(⇤)

, 2
(⇤)

50 38831.0336 298.888606 2
(⇤)

, 3
(⇤)

39123.3879 120.110352 1
(⇤)

, 3
(⇤)

38984.3118 169.701352 1
(⇤)

, 2
(⇤)

0.001 25 37201.8768 273.119842 2
(⇤)

, 3
(⇤)

37490.7767 118.382846 1
(⇤)

, 3
(⇤)

37395.7375 164.601365 1
(⇤)

, 2
(⇤)

50 32880.2003 272.672330 2
(⇤)

, 3
(⇤)

33013.4535 172.524052 1
(⇤)

, 3
(⇤)

32951.6884 206.900731 1
(⇤)

, 2
(⇤)

mutation. For example, for the instance with 300, 500 items uncorrelated and for
100 items bounded strongly correlated the statistical tests show that the (µ +
1) EA and (1 + 1) EA with heavy-tailed mutation outperforms the (1 + 1) EA.
For the other settings there is no statistical significant di↵erence in terms of the
results between all algorithms.

Table 2 shows the results obtained by the above mentioned algorithms using
Hoe↵ding bounds for the combinations of ↵p and �p and statistical tests. The
results show that the (1+1) EA with heavy-tailed mutation obtains the highest
mean values compared to the results obtained by (1+1) EA and (µ + 1) EA for
each setting for the instance with 100 items for both types, uncorrelated and
bounded strongly correlated. Similar to the previous investigation in the case for
the instances with 300 items, the (1+1) EA with heavy-tailed mutation obtains
the highest mean values compared to the results obtained by other algorithms in
most of the cases. However, the solutions obtained by (µ+1) EA are significantly
better performance than in the case for ↵p = 0.1, 0.001, �p = 25.

The use of the heavy-tailed mutation when compared to the use of standard bit
mutation in the (1+1) EA achieves a better performance for all cases. Furthermore,
the statistical tests show that for most combinations of ↵p and �p, the (1+1) EA
with heavy-tailed mutation significantly outperforms the other algorithms. This
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Table 2. Experimental results for the Hoe↵ding based function p̂Hoef .

(1+1) EA (1+1) EA-HT (µ+1) EA

B ↵p �p p̂Hoef std stat p̂Hoef std stat p̂Hoef std stat

uncorr 100 2407 0.1 25 10948.7292 90.633230 2
(�)

, 3
(⇤)

11016.8190 49.768932 1
(+)

,3
(+)

10981.3880 37.569308 1
(⇤)

, 2
(�)

50 10707.1094 43.869094 2
(�)

, 3
(⇤)

10793.1175 58.150646 1
(+)

,3
(+)

10708.6094 44.384035 1
(⇤)

,2
(�)

0.01 25 10836.0906 91.332983 2
(�)

, 3
(⇤)

10928.3054 45.464936 1
(+)

,3
(+)

10866.9831 45.408500 1
(⇤)

,2
(�)

50 10482.6216 46.444510 2
(�)

, 3
(⇤)

10611.1895 69.341044 1
(+)

,3
(+)

10477.2328 47.065426 1
(⇤)

,2
(�)

0.001 25 10765.3289 68.565293 2
(�)

, 3
(⇤)

10862.7124 49.091526 1
(+)

,3
(+)

10784.7286 38.187390 1
(⇤)

,2
(�)

50 10263.9426 90.504901 2
(�)

, 3
(⇤)

10487.5621 32.625499 1
(+)

,3
(+)

10309.8572 44.811326 1
(⇤)

,2
(�)

strong 100 4187 0.1 25 8553.1744 74.046187 2
(�)

, 3
(⇤)

8640.05156 39.413105 1
(+)

,3
(+)

8588.4894 53.878268 1
(⇤)

, 2
(�)

50 8264.8129 63.309264 2
(�)

, 3
(⇤)

8398.4354 46.013234 1
(+)

,3
(+)

8273.9670 41.403505 1
(⇤)

, 2
(�)

0.01 25 8422.9258 70.464985 2
(�)

, 3
(⇤)

8540.2095 63.072560 1
(+)

,3
(+)

8447.8489 59.841707 1
(⇤)

, 2
(�)

50 7996.0193 65.822419 2
(�)

, 3
(⇤)

8181.2980 45.667034 1
(+)

,3
(+)

8013.1724 56.445427 1
(⇤)

, 2
(�)

0.001 25 8338.5159 57.880350 2
(�)

, 3
(⇤)

8460.7513 53.402755 1
(+)

,3
(+)

8362.9405 51.607219 1
(⇤)

, 2
(�)

50 7794.1245 80.411946 2
(�)

, 3
(⇤)

8017.8843 53.266120 1
(+)

,3
(+)

7833.5575 37.293481 1
(⇤)

, 2
(�)

uncorr 300 6853 0.1 25 33831.9693 181.485453 2
(�)

, 3
(�)

34118.7631 200.095911 1
(+)

, 3
(⇤)

34129.8891 172.788856 1
(+)

, 2
(⇤)

50 33380.4952 157.014552 2
(�)

, 3
(�)

33715.2964 199.074378 1
(+)

, 3
(⇤)

33662.2668 124.206823 1
(+)

, 2
(⇤)

0.01 25 33655.5737 234.136500 2
(�)

, 3
(�)

34014.3456 200.488072 1
(+)

, 3
(⇤)

33962.8643 161.560953 1
(+)

, 2
(⇤)

50 32933.5174 291.623690 2
(�)

, 3
(�)

33327.8984 235.915481 1
(+)

, 3
(⇤)

33277.4015 142.387738 1
(+)

, 2
(⇤)

0.001 25 33515.7445 219.707660 2
(�)

, 3
(�)

33806.1572 184.532069 1
(+)

, 3
(⇤)

33835.4528 149.327823 1
(+)

, 2
(⇤)

50 32706.4466 176.599463 2
(�)

, 3
(�)

33112.7494 177.218747 1
(+)

, 3
(⇤)

32940.4397 173.836538 1
(+)

, 2
(⇤)

strong 300 13821 0.1 25 24602.1254 171.596469 2
(�)

, 3
(�)

24848.3209 100.078545 1
(+)

, 3
(+)

24734.7210 127.268428 1
(+)

,2
(�)

50 24184.8938 125.755762 2
(�)

, 3
(�)

24457.7279 118.679623 1
(+)

, 3
(+)

24205.9660 116.049342 1
(+)

,2
(�)

0.01 25 24476.1412 159.274566 2
(�)

, 3
(�)

24638.0751 105.088783 1
(+)

, 3
(+)

24538.4199 101.959196 1
(+)

,2
(�)

50 23653.3561 225.087307 2
(�)

, 3
(�)

24060.0806 87.242862 1
(+)

, 3
(+)

23830.8655 85.829604 1
(+)

,2
(�)

0.001 25 24256.4468 173.293324 2
(�)

, 3
(�)

24558.9506 105.253206 1
(+)

, 3
(+)

24345.4340 144.094192 1
(+)

,2
(�)

50 23377.6774 143.350899 2
(�)

, 3
(�)

23843.7258 114.231223 1
(+)

, 3
(+)

23520.1166 112.403711 1
(+)

,2
(�)

uncorr 500 11243 0.1 25 57995.2668 285.959899 2
(�)

, 3
(�)

58286.1443 253.880622 1
(+)

, 3
(�)

58527.7062 179.624520 1
(+)

,2
(+)

50 57331.7069 319.089163 2
(�)

, 3
(�)

57825.9426 227.649351 1
(+)

, 3
(�)

57899.9614 167.585846 1
(+)

,2
(+)

0.01 25 57757.1719 290.254639 2
(�)

, 3
(�)

58023.1930 277.702516 1
(+)

, 3
(�)

58224.2474 211.715398 1
(+)

,2
(+)

50 56787.0897 411.706381 2
(�)

, 3
(�)

57367.9869 206.916491 1
(+)

, 3
(+)

57309.9927 227.397029 1
(+)

,2
(�)

0.001 25 57519.6613 379.930530 2
(�)

, 3
(�)

57910.4812 250.540248 1
(+)

, 3
(�)

58052.4481 182.866780 1
(+)

,2
(+)

50 56446.5408 273.663433 2
(�)

, 3
(�)

57018.3566 253.684943 1
(+)

, 3
(+)

56942.4016 183.464200 1
(+)

,2
(�)

strong 500 22223 0.1 25 41060.1634 306.686391 2
(�)

, 3
(⇤)

41397.7895 146.844521 1
(+)

, 3
(+)

41186.7266 213.577571 1
(⇤)

, 2
(�)

50 40244.7545 272.646652 2
(�)

, 3
(⇤)

40897.9183 231.639926 1
(+)

, 3
(+)

40543.1279 221.615657 1
(⇤)

, 2
(�)

0.01 25 40800.7084 271.459688 2
(�)

, 3
(⇤)

41204.2676 179.999423 1
(+)

, 3
(+)

40967.2373 229.232904 1
(⇤)

, 2
(�)

50 39839.2235 271.298804 2
(�)

, 3
(⇤)

40445.3621 157.093438 1
(+)

, 3
(+)

40012.5861 189.516720 1
(⇤)

, 2
(�)

0.001 25 40561.9235 348.722449 2
(�)

, 3
(⇤)

41038.9246 136.670185 1
(+)

, 3
(+)

40768.4056 206.509572 1
(⇤)

, 2
(�)

50 39404.7836 249.449911 2
(�)

, 3
(⇤)

40087.0447 167.453651 1
(+)

, 3
(+)

39561.6572 216.629134 , 1
(⇤)

, 2
(�)

can be due to the fact that a higher number of bits can be flipped than in the
case of standard bit mutations flipping every bit with probability 1/n.

7 Conclusions

Stochastic problems play an important role in many real-world applications.
Based on real-world problems where profits in uncertain environments should be
guaranteed with a good probability, we introduced the knapsack problem with
chance constrained profits. We presented fitness functions for di↵erent stochastic
settings that allow to maximize the profit value P such that the probability
of obtaining a profit less than P is upper bounded by ↵p. In our experimental
study, we examined di↵erent types of evolutionary algorithms and compared
their performance on stochastic settings for classical knapsack benchmarks.
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Motivation
Many problems involve stochastic components and constraints 
that can only be violated with a small probability.
Example of such a constraint:

Such constraints are known as chance constraints.

We investigate bio-inspired algorithms for submodular 
problems with chance constraints.

possible approximation ratio in polynomial time, unless
P=NP (NWF78). (FGN+19) recently showed that greedy
approaches are also successful when dealing with non-
monotone submodular functions. Furthermore, Pareto opti-
mization approaches can achieve the same worst-case per-
formance guarantees while performing better than greedy
approaches in practice if the user allows for a sufficiently
large time budget (QSYT17; QYZ15; QSY+17). (RNNF19)
showed that the adaptation of greedy approaches to mono-
tone submodular problems with dynamic constraints might
lead arbitrarily bad approximation behavior, whereas a
Pareto optimization approach can effectively deal with dy-
namic changes. Evolutionary algorithms for the chance-
constrained knapsack problem, which constitutes a sub-
class of the chance-constrained submodular problems exam-
ined in this paper, have been experimentally investigated by
(XHA+19).

The paper is structured as follows. Next, we introduce
the class of submodular optimization problems and the al-
gorithms that are subject to our investigations. Afterwards,
we establish conditions to meet the chance constraints based
on tail-bound inequalities. We present our theoretical results
for chance-constrained submodular optimization for differ-
ent classes of weights. Building on these foundations, we
present empirical results that illustrate the effect of different
settings of uncertainty on the considered greedy algorithms
for the influence maximization problem in social networks.
Finally, we finish with some concluding remarks.

Chance-Constrained Submodular Functions

Given a set V = {v1, . . . , vn}, we consider the optimization
of a monotone submodular function f : 2V ! R�0. A func-
tion is called monotone iff for every S, T ✓ V with S ✓ T ,
f(S)  f(T ) holds. A function f is called submodular iff
for every S, T ✓ V with S ✓ T and x 62 T we have

f(S [ {x})� f(S) � f(T [ {x})� f(T ).

We consider the optimization of such a monotone sub-
modular function f subject to a chance constraint where
each element s 2 V takes on a random weight W (s). Pre-
cisely, we are considering constraints of the type

Pr[W (S) > B]  ↵.

where W (S) =
P

s2S W (s) is the sum of the random
weights of the elements and B is the given constraint bound.
The parameter ↵ quantifies the probability of exceeding the
bound B that can be tolerated.

It should be noted that for the uniform distribution, the
exact joint distribution can, in principle, be computed as
convolution if the random variables are independent. There
is also an exact expression for the Irwin-Hall distribu-
tion (JKB95) which assumes that all random variables are
independent and uniformly distributed within [0, 1]. How-
ever, using these approaches may not be practical when the
number of chosen items is large.

Greedy Algorithms

We consider in this work the performance of greedy algo-
rithms for the optimization of chance constrained submod-

ular functions. Our first greedy algorithm (GA, see Algo-
rithm 1) starts with an empty set and subsequently adds in
each iteration an element with the largest marginal gain that
does not violate the chance constraint. It ends when no fur-
ther element can be added. Algorithm 1 was already investi-
gated by (NWF78) in the deterministic setting. Note that the
computation of the probability Pr[W (S) > B] can usually
not be computed exactly and we make use of a surrogate
cPr[W (S) > B]  ↵ on this value (see line 5 of Algo-
rithm 1). Since we use upper bounds for the constraint vi-
olation probability, we are guaranteed that the constraint is
met whenever our surrogate cPr is at most ↵.

Our second greedy algorithm is the generalized greedy
algorithm (GGA), and is listed in Algorithm 2. The GGA
extends the GA to the case in which the elements have dif-
ferent expected weights. It has previously been used in the
deterministic setting (KMN99; LKG+07). The algorithm
starts with the empty set. In each iteration, it adds an el-
ement whose ratio of the additional gain with respect to
the submodular function f and the expected weight increase
E[W (S [ {v})�W (S)] of the constraint is maximal while
still satisfying the chance constraint. The algorithm termi-
nates if no further element can be added. At this point, it
compares this constructed greedy solution with each of the
n solutions consisting of a single element, and returns the
solution with the maximal f -value subject to the surrogate
function is at most ↵. Note that we are using the exact cal-
culation for Pr[W (v) > B] when considering a single el-
ement in line 9. Lines 9 and 10 of Algorithm 2 are needed
in cases where large items of high profit exist, see (KMN99;
LKG+07) for more details.

Concentration Bounds

We work with two different surrogates, which are con-
centration bounds of Chernoff and Chebyshev type. Such
bounds are frequently used in the analysis of randomized al-
gorithms (MR95). All bounds are well-known and can be
found, e.g., in (Doe18).
Theorem 1 (Multiplicative Chernoff bound). Let

X1, . . . , Xn be independent random variables taking

values in [0, 1]. Let X =
Pn

i=1 Xi. Let ✏ � 0. Then

Pr[X � (1 + ✏)E[X]] 
✓

e
✏

(1 + ✏)1+✏

◆E[X]

(1)

 exp

✓
� min{✏2, ✏}E[X]

3

◆
. (2)

For ✏  1, (2) simplifies to

Pr[X � (1 + ✏)E[X]]  exp

✓
� ✏

2
E[X]

3

◆
. (3)

For our experimental investigations, we work with equa-
tion (1), whereas equation (3) is used through our theoreti-
cal analysis. Note that equation (3) gives the weaker bound.
Therefore, our theoretical results showing approximation
guarantees also hold when working with equation (1). Cher-
noff bounds are very useful when requiring very small val-
ues of ↵. For larger values of ↵, e.g. ↵ = 0.1, we often get



Submodular Optimization Problems

Submodular functions are functions that allow to model 
problems with diminishing returns.
They allow to model many real-world optimization problems.
Evolutionary multi-objective algorithms using Pareto 
optimization approaches have been shown to be very 
successful for these problems, both from a theoretical and 
empirical perspective.



Example: Sensor placement
Cover the largest possible area by selecting k sensors:
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1 Introduction

We consider the problem of maximizing a nonnegative submodular function. This means, given a sub-
modular function f : 2X ! R+, we want to find a set S ✓ X maximizing f(S).

Definition 1.1. A function f : 2X ! R is submodular if for any S, T ✓ X,

f(S [ T ) + f(S \ T )  f(S) + f(T ).

An alternative definition of submodularity is the property of decreasing marginal values: For any
A ✓ B ✓ X and x 2 X \B, f(B [ {x})� f(B)  f(A[ {x})� f(A). This can be deduced from the first
definition by substituting S = A [ {x} and T = B; the reverse implication also holds.

We assume value oracle access to the submodular function; i.e., for a given set S, an algorithm can
query an oracle to find its value f(S).

Background. Submodularity, a discrete analog of convexity, has played an essential role in combina-
torial optimization [35]. It appears in many important settings including cuts in graphs [21, 42, 18], rank
function of matroids [10, 19], set covering problems [12], and plant location problems [8, 9]. In many
settings such as set covering or matroid optimization, the relevant submodular functions are monotone,
meaning that f(S)  f(T ) whenever S ✓ T . Here, we are more interested in the general case where f(S)
is not necessarily monotone. A canonical example of such a submodular function is f(S) =

P
e2�(S) w(e),

where �(S) is a cut in a graph (or hypergraph) induced by a set of vertices S and w(e) is the weight
of edge e. Cuts in undirected graphs and hypergraphs yield symmetric submodular functions, satisfying
f(S) = f(S̄) for all sets S. Symmetric submodular functions have been considered widely in the litera-
ture [17, 42]. It appears that symmetry allows better/simpler approximation results, and thus deserves
separate attention.

The problem of maximizing a submodular function is of central importance, with special cases includ-
ing Max Cut [21], Max Directed Cut [26], hypergraph cut problems, maximum facility location [1, 8, 9],
and certain restricted satisfiability problems [27, 11]. While the Min Cut problem in graphs is a classical
polynomial-time solvable problem, and more generally it has been shown that any submodular function
can be minimized in polynomial time [45, 18], maximization turns out to be more di�cult and indeed all
the aforementioned special cases are NP-hard.

A related problem is Max-k-Cover, where the goal is to choose k sets whose union is as large as
possible. It is known that a greedy algorithm provides a (1 � 1/e)-approximation for Max-k-Cover and
this is optimal unless P = NP [12]. More generally, this problem can be viewed as maximization of a
monotone submodular function under a cardinality constraint, i.e. max{f(S) : |S|  k}, assuming f

submodular and 0  f(S)  f(T ) whenever S ✓ T . Again, the greedy algorithm provides a (1 � 1/e)-
approximation for this problem [39] and this is optimal in the oracle model [40]. More generally, a
(1 � 1/e)-approximation can be achieved for monotone submodular maximization under a knapsack
constraint [46]. For the problem of maximizing a monotone submodular function subject to a matroid
constraint, the greedy algorithm gives only a 1

2 -approximation [16]. Recently, this has been improved to
an optimal (1� 1/e)-approximation using the multilinear extension of a submodular function [49, 6].

In contrast, here we consider the unconstrained maximization of a submodular function which is
not necessarily monotone. We only assume that the function is nonnegative.1 Typical examples of
such a problem are Max Cut and Max Directed Cut. Here, the best approximation factors have been
achieved using semidefinite programming: 0.878 for Max Cut [21] and 0.874 for Max Di-Cut [11, 31]. The
approximation factor for Max Cut has been proved optimal, assuming the Unique Games Conjecture [29,
38]. Without the use of semidefinite programming, only 1

2 -approximation for Max Cut was known for a
long time. For Max Di-Cut, a combinatorial 1

2 -approximation was presented in [26]. Recently, Trevisan
gave a 0.53-approximation algorithm for Max Cut using a spectral partitioning method [48].

1
For submodular functions without any restrictions, verifying whether the maximum of the function is greater than zero

is NP-hard and requires exponentially many queries in the value oracle model. Thus, no e�cient approximation algorithm

can be found for general submodular maximization. For a general submodular function f with minimum value f0, we can

design an approximation algorithm to maximize a normalized submodular function g where g(S) = f(S)� f0.

1

Submodular:
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3

This approximation factor is optimal in the general setting [25], and it is
optimal even for the special case of Max-k-cover, unless P = NP [8].

• Based on the more recent work of Lee, Mirrokni, Nagarajan, and Sviridenko
[21], we show that GSEMO achieves in polynomial time a 1/((k+2)(1+ε))-
approximation for maximizing symmetric submodular functions over k ma-
troid constraints. Note that this result even holds for non-monotone func-
tions.

Outline. The paper is organized as follows. In Section 2, we describe the setting
for submodular functions and introduce the algorithm that is subject to our
investigations. We analyze the algorithm on monotone submodular functions
with a uniform constraint in Section 3 and consider the case of non-monotane
submodular functions under matroid constraints in Section 4. Finally, we finish
with a discussion on open problems in Section 5.

2 Preliminaries

Optimization of submodular functions and matroids have received a lot of atten-
tion in the classical (non-evolutionary) optimization community. For a detailed
exposition, we refer to the textbooks of Schrijver [28] and Korte and Vygen [18].

Submodular Functions.When optimizing a submodular function f : 2X →
R, we will often consider the incremental value of adding a single element. For
this, we denote by FA(i) = f(A+ i)− f(A) the marginal value of i with respect
to A. Nemhauser et al. [24, Proposition 2.1] give seven equivalent definitions for
submodular functions. Additionally to the definition stated in the introduction
we will also use that a function f is submodular iff Fi(A) ≥ Fi(B) for all A ⊆
B ⊆ X and i ∈ X \B. We call f symmetric iff f(A) = f(X \A) for all A ⊆ X.

Many common pseudo-Boolean and combinatorial fitness functions are sub-
modular. As we are not aware of any general results for the optimization of
submodular function by evolutionary algorithms, we list a few examples of well-
known submodular functions:

• Linear functions: All linear functions f : 2X → R with f(A) =
∑

i∈A wi for
some weights w : X → R are submodular. If wi ≥ 0 for all i ∈ X, then f is
also monotone.

• Cut: Given a graph G = (V,E) with nonnegative edge weights w : E → R≥0.
Let δ(S) be the set of all edges that contain both a vertex in S and V \ S.
The cut function w(δ(S)) is symmetric and submodular but not monotone.

• Coverage: Let the ground set be X = {1, 2, . . . , n}. Given a universe U with
n subsets Ai ⊆ U for i ∈ X, and a non-negative weight function w : U →
R≥0. The coverage function f : 2X → R with f(S) = |

⋃
i∈S Ai| and the

weighted coverage function f ′ with f ′(S) = w(
⋃

i∈S Ai) =
∑

u∈
⋃

i∈S Ai
w(u)

are monotone submodular.
• Rank of a matroid: The rank function r(A) = max{|S| : S ⊆ A,S ∈ I} of a
matroid (X, I) is monotone submodular.



Chance Constraints
One of the difficulties lies in evaluating whether a given solution 
fulfills the chance constraint.
For independent Normally distributed random variables this can be 
done exactly.
In other cases, one way is to use sampling to estimate the 
probability of violating the constraint.
Another way is to use surrogate functions such as Chernoff bounds 
and Chebyshev’s inequality to determine whether a solution is 
feasible.
These bounds don’t allow for a precise calculation for the probability 
of a constraint violation.
However, the give an upper bound and a solution is accepted if its 
upper bound is at most      . 
We establish conditions based on the expected cost, the variance, 
and constraint B to show that a given solution is feasible.

↵
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Setting for Random Weights
We consider two settings for random weights of a given set of 
items.
Both settings assume that the weights of the items are chosen 
independent of each other.

Uniform independent and identically distributed (IID) weights:

Uniform Weights with same dispersion

Uniform IID Weights

We first study the case that all items have iid weights
W (s) 2 [a � �, a + �] (�  a). For this case we prove
that the greedy algorithm with the Chernoff bound surrogate
achieves a (1 � o(1))(1 � 1/e) approximation of the opti-
mal solution for the deterministic setting when B = !(1).
This extends the same bound for the deterministic setting by
(NWF78) to the chance-constrained case.

Theorem 3. Let a > 0 and 0  � < a. Let W (s) 2
[a � �, a + �] be chosen uniformly at random for all s. Let

✏(k) =
p

3�k ln(1/↵)

a and k
⇤

be the largest integer such that

k + ✏(k)  kopt := bB/ac.

Then the first k
⇤

items chosen by the greedy al-

gorithm satisfy the chance constraint and are a

1� (1/e) exp( 1+✏(k)
k⇤+1+✏(k) )-approximation. For B = !(1),

this is a (1� o(1))(1� 1/e)-approximation.

Proof. Let kopt = bB/ac be the number of elements that
are contained in an optimal solution OPT in the case that
the weights are deterministic and attain the value a.

Having produced a solution with k elements following the
greedy procedure, we have obtained a solution X where

f(X) � (1� (1� 1/kopt)
k) · f(OPT )

due to an inductive argument given by (NWF78).
We now give a lower bound on k using Chernoff bound

as a surrogate. Let X be a set of selected items containing
k = |X| elements and E[X] =

P
x2X a(x) be its expected

weight, � be the uncertainty common to all items.
Since all items have the same expected weight a, we have

E[W (X)] = ak. Using Lemma 1, the chance constraint is
met if (B � ak) �

p
3�k ln(1/↵). We have kopt = bB/ac

for the number of elements that could be added if the weights

were deterministic. So any k with k +
p

3�k ln(1/↵)

a  kopt

is feasible when using the Chernoff bound.
Let

k
⇤ = max

(
k

����� k +

p
3�k ln(1/↵)

a
 kopt

)
. (5)

Then

kopt < (k⇤ + 1) +

p
3�(k⇤ + 1) ln(1/↵)

a
=: �(k⇤).

Let X⇤ be a solution with k
⇤ elements constructed by the

greedy algorithm. Using the well-known estimate (1+x) 
e
x, we bound f(X⇤) from below by

(1�(1� 1/kopt)
k⇤
) · f(OPT )

�
 
1�

✓
1� 1

�(k⇤)

◆k⇤!
· f(OPT )

�
✓
1� exp

✓
� k

⇤

�(k⇤)

◆◆
· f(OPT )

=

✓
1� exp

✓
� k

⇤

k⇤ + 1 + ✏(k⇤ + 1)

◆◆
· f(OPT )

=

✓
1� 1

e
exp

✓
1 + ✏(k⇤ + 1)

k⇤ + 1 + ✏(k⇤ + 1)

◆◆
· f(OPT ).

When k
⇤ = !(1), the exp(·) expression is (1+o(1)), yield-

ing the asymptotic part of the claim.

For comparison, we now determine what can be obtained
from using a surrogate based on Chebyshev’s inequality.
This bound is weaker for small values of ↵, but can be bet-
ter for larger values of ↵ (depending on the other constants
involved).

We observe that Var[W (X)] = |X| · �2/3. Defining

✏̃(k) =
p

(1�↵)k�2p
3↵a

and replacing equation (5) by

k
⇤ = max {k | k + ✏̃  kopt}

our proof above yields the following theorem.
Theorem 4. Let a > 0 and 0  � < a. Let W (s) 2 [a �
�, a+�] be chosen uniformly at random for all s. Let ✏̃(k) =p

(1�↵)k�2p
3↵a

and k
⇤

be the largest integer such that k+✏̃(k) 
kopt := bB/ac.

Then the first k
⇤

items chosen by the greedy al-

gorithm satisfy the chance constraint and are a

1� (1/e) exp( 1+✏̃(k)
k⇤+1+✏̃(k) )-approximation. For B = !(1),

this is a (1� o(1))(1� 1/e)-approximation.

Note that the main difference between the Chernoff bound
and Chebyshev’s inequality lies in the confidence level of
↵ that needs to be achieved as the equation using Chernoff
only increases logarithmically with 1/↵, whereas the one
based on Chebyshev’s inequality increases with the square
root of 1/↵.

We note that, in principle, Chebyshev’s inequality does
not require that the items are chosen independently. We can
use Chebyshev’s inequality and the approach above when-
ever we can compute the variance.

Uniform Weights with the Same Dispersion

We now consider the case that the items may have different
random weights W (s) 2 [a(s)� �, a(s) + �]. However, we
still assume the weights are chosen independently and uni-
formly at random. We also assume that the uncertainty � is
the same for all items.

Let amax = maxs2V a(s). We assume that amax+��B
2� 

↵ holds. This means that every single item fulfills the chance
constraint. Note that items that would not fulfill this condi-
tion could be filtered out in a preprocessing step as they can
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Chance Constraint Conditions

Algorithm 1: Greedy Algorithm (GA)
input: Set of elements V , budget constraint B, failure

probability ↵.
1 S  ;;
2 V

0  V ;
3 repeat

4 v
⇤  argmaxv2V 0(f(S [ {v})� f(S));

5 if cPr[W (S [ {v⇤}) > B]  ↵ then

6 S  S [ {v⇤};
7 V

0  V
0 \ {v⇤};

8 until V
0  ;;

9 return S;

Algorithm 2: Generalized Greedy Algorithm (GGA)
input: Set of elements V , budget constraint B, failure

probability ↵.
1 S  ;;
2 V

0  V ;
3 repeat

4 v
⇤  argmaxv2V 0

f(S[{v})�f(S)
E[W (S[{v})�W (S)] ;

5 if cPr[W (S [ {v⇤}) > B]  ↵ then

6 S  S [ {v⇤};
7 V

0  V
0 \ {v⇤};

8 until V
0  ;;

9 v
⇤  argmax{v2V ;Pr[W (v)>B]↵} f(v);

10 return argmaxY 2{S,{v⇤}} f(Y );

better estimates when working with a variant of Chebyshev’s
inequality. As we are only interested in the probability of ex-
ceeding a given constraint bound, we consider a one-sided
Chebyshev inequality (also known as Cantelli’s inequality),
which estimates the probability of exceeding the expected
value taking into account the variance of the considered ran-
dom variable.
Theorem 2 ((One-sided) Chebyshev’s inequality). Let X be

a random variable with expected value E[X] and variance

Var[X] > 0. Then, for all � > 0,

Pr[X � E[X] + �]  Var[X]

Var[X] + �2
. (4)

Chance Constraint Conditions

We now establish conditions to meet the chance constraint.
We start by considering the Chernoff bound given in equa-
tion (3).
Lemma 1. Let W (s) 2 [a(s)��, a(s)+�] be independently

chosen uniformly at random. If

(B � E[W (X)]) �
p
3�k ln(1/↵),

where k = |X|, then Pr[W (X) > B]  ↵.

Proof. Every item has an uncertainty of �. Instead of con-
sidering W (s) 2 [a(s) � �, a(s) + �] chosen uniformly at

random, we can consider W 0(s) 2 [0, 2�] chosen uniformly
at random and have W (s) = a(s) � � + W

0(s). For a se-
lection X with |X| = k elements, we can therefore write
W (X) = E[W (X)]� �k +

P
x2X W

0(X).
We have E[W 0(X)] = �k. We consider the probability

for exceeding this expected value by ✏�k. We set ✏ = (B �
E[W (X)])/(�k) which implies ✏�k + E[W (X)] = B.

We investigate
Pr[W (X) > B] = Pr[W 0(X) > ✏�k + k�].

Note that if ✏ = (B � E[W (X)])/(�k) > 1 then
Pr[W (X) > B] = 0 as all weights being maximal within
their range would not exceed the bound B. For ✏  1, we
get

Pr[W (X) > B] = Pr[W 0(X) > ✏�k + k�]

 exp

✓
� ✏

2
k�

3

◆

using equation (3). In order to meet the chance constraint,
we require

exp

✓
� ✏

2
k�

3

◆
 ↵

() �✏
2
k�

3
 ln(↵)

() ✏
2
k� � 3 ln(1/↵)

() ✏
2 � (3 ln(1/↵))/(k�).

This implies that ✏ �
p

(3 ln(1/↵))/(k�) meets the
chance constraint condition according to the considered
Chernoff bound. Setting ✏ = (B � E[W (X)])/(�k) leads
to

(B � E[W (X)])/(�k) �
p
(3 ln(1/↵))/(k�)

() (B � E[W (X)]) �
p

3�k ln(1/↵),

which completes the proof.

Based on Chebyshev’s inequality, we can obtain the fol-
lowing condition for meeting the chance constraint.
Lemma 2. Let X be a solution with expected weight

E[W (X)] and variance Var[W (X)]. If

B � E[W (X)] �
r

(1� ↵)Var[W (X)]

↵

then Pr[W (X) > B]  ↵.

Proof. We have
Var[W (X)]

Var[W (X)] + (B � E[W (X)])2
 ↵

() Var[W (X)]  ↵(Var[W (X)] + (B � E[W (X)])2)

() (1� ↵)Var[W (X)]  ↵(B � E[W (X)])2

() (B � E[W (X)])2 � (1� ↵)Var[W (X)]

↵

This together with Lemma 2 implies that the chance con-
straint is met if

B � E[W (X)] �
r

(1� ↵)Var[W (X)]

↵

holds.
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better estimates when working with a variant of Chebyshev’s
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which estimates the probability of exceeding the expected
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Constraint bound
Chance constraint case stops earlier

How large is this gap?

Not too big!!!



• We consider the performance of the Global Simple Evolutionary Multi-
Objective Optimizer (GSEMO) and Non-dominated Sorting 
Genetic Algorithm (NSGA-II) for the optimisation of stochastic constrained 
submodular functions.

Goal: Bi-objective formulations of constrained submodular optimisation 
problems in terms of Pareto optimisation enable evolutionary algorithms to 
achieve:
Ø best theoretical performance guarantees and
Ø state-of-the-art practical results
Ø for a wide range of submodular optimisation problems.
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Submodular functions with Chance 
Constraints (stochastic settings)
We consider the optimization of a monotone submodular 
function f subject to a chance constraint where each element
s ∈ V takes on a random weight W(s). 

We examine constraints of the type 

where                                      is the sum of the random weights 
of the elements and C is the given constraint bound. The 
parameter α specifies the probability of exceeding the bound C 
that can be tolerated for a feasible solution S. 



The multi-objective fitness function:  g(X) = (g1(X), g2(X))

•  g1 measures the tightness in terms of the constraint 
•  g2 measures the quality of X in terms of the given submodular function f. 

\constraint 
function

objective
function otherwise

always feasible

infeasible
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• The case of uniform identically distributed (IID) weights. 

Main Results:

• GSEMO using a multi-objective formulation of the problem based on tail 
inequalities is able to achieve the same approximation guarantee as recently 
studied greedy approaches.
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Main Results:
• Experimental results show that GSEMO computes significantly better solutions 

than the greedy approach and often outperforms NSGA-II.

Results for Influence Maximization and Maximum Coverage with uniform 
chance constraints, respectively. 
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3-Objective Pareto Optimization for Problems with Chance Constraints A PREPRINT

objective can enable a different way of searching for high quality solutions. We investigate in detail how 3-objective
formulations can be used for chance constrained problems.

Our first contribution is a theoretical runtime analysis which generalizes the results obtained in [22] to the 3-objective
formulation. Here we show that the 3-objective formulation allows to compute all possible trade-offs for independent
Normally distributed weight for the whole set of possible uniform constraints. Investigating the problem furthermore,
we show that in order to compute the whole set of trade-offs, only 1-bit flips are required in the 3-objective formulation
which significantly improves upper the results given in [22]. Afterwards, we investigate the 3-objective formulation
and compare it to the bi-objective one through experimental investigations. We consider the chance constrained dom-
inating set problem in the same set up as done in [22]. Our results show that the 3-objective formulation provides a
clear advantage for graphs with up to 500 nodes.

The outline of the paper is as follows. In Section 2, we introduce the two chance constrained problem setups that we are
investigating in this paper. In Section 3, we introduce the 3-objective formulation that is subject to our investigations.
Sections 4 and 5 provide a rigorous runtime analysis of our approach which shows that it efficiently computes a set up
solutions that includes optimal solutions for a wide range of constrained settings of the two considered problems. We
present our experimental results for the chance constrained dominating set problem in Section 6 and finish with some
conclusions.

2 Preliminaries

Pareto optimization approaches are usually used to tackle constrained single-objective optimization problems by taking
the constraint as an additional objective. Chance constrained problems involve constraints that are impacted by the
expected (cost) value as well as its variance. In [22], a chance constrained problem has been considered which involves
such stochastic components and has an additional deterministic constraint. We motivate our multi-objective settings
by these recent investigations.

We consider the chance constrained problem investigated in [22]. Given a set of n items I = {1, . . . , n} with stochastic
weights wi, 1 ≤ i ≤ n, we want to solve

minW subject to (Pr (w(x) ≤W ) ≥ α) ∧ (|x|1 ≥ k) (1)

where w(x) =
∑n

i=1 wixi, x ∈ {0, 1}n, and α ∈ [1/2, 1[. The weights are independent and each wi is distributed
according to a Normal distribution N(µi,σ2

i ), 1 ≤ i ≤ n, where µi ≥ 1 and σi ≥ 1, 1 ≤ i ≤ n. We denote by
µ(x) =

∑n
i=1 µixi the expected weight and by v(x) =

∑n
i−1 σ

2
i xi the variance of the weight of solution x.

As stated in [22], the problem given in Equation 1 is equivalent to minimizing

ŵ(x) = µ(x) +Kα

√

v(x), (2)

under the constraint that |x|1 ≥ k holds. Here, Kα denotes the α-fractional point of the standard Normal distribution.

The uniform constraint |x|1 ≥ k requires that each feasible solution has to contain at least k elements. As expected
weights and variances are strictly positive, an optimal solution has exactly k elements. Depending on the choice of α,
the difficulties lies in finding the right trade-off between the expected weight and variance among all solutions with
exactly k elements.

It has been shown that this problem given in Equation 1 can be solved by the following bi-objective formulation [22].
The objective function is given as f2D(x) = (µ̂(x), v̂(x)) where

µ̂(x) =

{∑n
i=1 µixi |x|1 ≥ k

(k − |x|1) · (1 +
∑n

i=1 µi) |x|1 < k

v̂(x) =

{∑n
i=1 σ

2
i xi |x|1 ≥ k

(k − |x|1) · (1 +
∑n

i=1 σ
2
i ) |x|1 < k

We say that a solution x dominates a solution y (x ≽ y) iff µ̂(x) ≤ µ̂(y) ∧ v̂(x) ≤ v̂(y). Furthermore, a solution
x strongly dominates a solution y (x ≻ y) iff x ≽ y and f2D(x) ̸= f2D(y). The setup can be generalized by using
c(x) ≥ k for a constraint function c(x) instead of |x|1 = k. In the experimental investigations carried out in [22], c(x)
is counting the number of dominated nodes in the dominating set problem in graphs with n nodes, and c(x) = n is
required for a solution to be feasible.
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Given n elements with stochastic weight where each weight 𝑤!
is chosen independently of the others according to a Normal distribution
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under the constraint that |x|1 ≥ k holds. Here, Kα denotes the α-fractional point of the standard Normal distribution.

The uniform constraint |x|1 ≥ k requires that each feasible solution has to contain at least k elements. As expected
weights and variances are strictly positive, an optimal solution has exactly k elements. Depending on the choice of α,
the difficulties lies in finding the right trade-off between the expected weight and variance among all solutions with
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It has been shown that this problem given in Equation 1 can be solved by the following bi-objective formulation [22].
The objective function is given as f2D(x) = (µ̂(x), v̂(x)) where

µ̂(x) =

{∑n
i=1 µixi |x|1 ≥ k

(k − |x|1) · (1 +
∑n

i=1 µi) |x|1 < k

v̂(x) =

{∑n
i=1 σ

2
i xi |x|1 ≥ k

(k − |x|1) · (1 +
∑n

i=1 σ
2
i ) |x|1 < k

We say that a solution x dominates a solution y (x ≽ y) iff µ̂(x) ≤ µ̂(y) ∧ v̂(x) ≤ v̂(y). Furthermore, a solution
x strongly dominates a solution y (x ≻ y) iff x ≽ y and f2D(x) ̸= f2D(y). The setup can be generalized by using
c(x) ≥ k for a constraint function c(x) instead of |x|1 = k. In the experimental investigations carried out in [22], c(x)
is counting the number of dominated nodes in the dominating set problem in graphs with n nodes, and c(x) = n is
required for a solution to be feasible.

2

3-Objective Pareto Optimization for Problems with Chance Constraints A PREPRINT

objective can enable a different way of searching for high quality solutions. We investigate in detail how 3-objective
formulations can be used for chance constrained problems.

Our first contribution is a theoretical runtime analysis which generalizes the results obtained in [22] to the 3-objective
formulation. Here we show that the 3-objective formulation allows to compute all possible trade-offs for independent
Normally distributed weight for the whole set of possible uniform constraints. Investigating the problem furthermore,
we show that in order to compute the whole set of trade-offs, only 1-bit flips are required in the 3-objective formulation
which significantly improves upper the results given in [22]. Afterwards, we investigate the 3-objective formulation
and compare it to the bi-objective one through experimental investigations. We consider the chance constrained dom-
inating set problem in the same set up as done in [22]. Our results show that the 3-objective formulation provides a
clear advantage for graphs with up to 500 nodes.

The outline of the paper is as follows. In Section 2, we introduce the two chance constrained problem setups that we are
investigating in this paper. In Section 3, we introduce the 3-objective formulation that is subject to our investigations.
Sections 4 and 5 provide a rigorous runtime analysis of our approach which shows that it efficiently computes a set up
solutions that includes optimal solutions for a wide range of constrained settings of the two considered problems. We
present our experimental results for the chance constrained dominating set problem in Section 6 and finish with some
conclusions.

2 Preliminaries

Pareto optimization approaches are usually used to tackle constrained single-objective optimization problems by taking
the constraint as an additional objective. Chance constrained problems involve constraints that are impacted by the
expected (cost) value as well as its variance. In [22], a chance constrained problem has been considered which involves
such stochastic components and has an additional deterministic constraint. We motivate our multi-objective settings
by these recent investigations.

We consider the chance constrained problem investigated in [22]. Given a set of n items I = {1, . . . , n} with stochastic
weights wi, 1 ≤ i ≤ n, we want to solve

minW subject to (Pr (w(x) ≤W ) ≥ α) ∧ (|x|1 ≥ k) (1)

where w(x) =
∑n

i=1 wixi, x ∈ {0, 1}n, and α ∈ [1/2, 1[. The weights are independent and each wi is distributed
according to a Normal distribution N(µi,σ2

i ), 1 ≤ i ≤ n, where µi ≥ 1 and σi ≥ 1, 1 ≤ i ≤ n. We denote by
µ(x) =

∑n
i=1 µixi the expected weight and by v(x) =

∑n
i−1 σ

2
i xi the variance of the weight of solution x.

As stated in [22], the problem given in Equation 1 is equivalent to minimizing
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weights and variances are strictly positive, an optimal solution has exactly k elements. Depending on the choice of α,
the difficulties lies in finding the right trade-off between the expected weight and variance among all solutions with
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It has been shown that this problem given in Equation 1 can be solved by the following bi-objective formulation [22].
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We say that a solution x dominates a solution y (x ≽ y) iff µ̂(x) ≤ µ̂(y) ∧ v̂(x) ≤ v̂(y). Furthermore, a solution
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c(x) ≥ k for a constraint function c(x) instead of |x|1 = k. In the experimental investigations carried out in [22], c(x)
is counting the number of dominated nodes in the dominating set problem in graphs with n nodes, and c(x) = n is
required for a solution to be feasible.
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objective can enable a different way of searching for high quality solutions. We investigate in detail how 3-objective
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inating set problem in the same set up as done in [22]. Our results show that the 3-objective formulation provides a
clear advantage for graphs with up to 500 nodes.

The outline of the paper is as follows. In Section 2, we introduce the two chance constrained problem setups that we are
investigating in this paper. In Section 3, we introduce the 3-objective formulation that is subject to our investigations.
Sections 4 and 5 provide a rigorous runtime analysis of our approach which shows that it efficiently computes a set up
solutions that includes optimal solutions for a wide range of constrained settings of the two considered problems. We
present our experimental results for the chance constrained dominating set problem in Section 6 and finish with some
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The key idea of the result given in [22] is to show that the algorithm computes the extremal points of the Pareto front
of the given problem. Note that as the expected costs and variances are strictly positive, each Pareto optimal solution
contains exactly k elements when considering this bi-objective formulation.

We also consider the problem of maximizing a given deterministic objective c(x) under a given chance constraint, i.e

max c(x) subject to Pr(w(x) ≤ B) ≥ α. (3)

with w(x) =
∑n

i=1 wixi where each wi is chosen independently of the other according to a Normal distribution

N(µi,σ2
i ), and B and α ∈ [1/2, 1[ are a given weight bound and reliability probability.

Such a problem formulation includes for example the maximum coverage problem in graphs with so-called chance
constraints [23, 14], where c(x) denotes the nodes of covered by a given solution x and the costs are stochastic.
Furthermore, the chance constrained knapsack problem as investigated in [20, 24] fits into this problem formulation.

3 3-Objective Pareto Optimization

The now introduce the 3-objective formulation of the problems given in Equation 1 and 3 and the algorithms that we
study in this paper.

3.1 3-Objective Formulation

We investigate the 3-objective formulation given as

f3D(x) = (µ(x), v(x), c(x))

where c(x) is the constraint value of a given solution that should be maximized. In our theoretical study, we focus on
the case c(x) = |x|1, which turns the constraint |x|1 ≥ k into the additional objective of maximizing the number of
bits in the given bitstring.

Similar to the bi-objective model we minimize the expected weight µ(x) =
∑n

i=1 µixi and the variance v(x) =
∑n

i=1 σ
2
i xi of the weight of solution x. Note that here we do not consider penalty terms for violating the constraint

|x|1 ≥ k as done in the bi-objective formulation. We say that a solution x dominates a solution y (x ≽ y) iff
c(x) ≥ c(y) ∧ µ(x) ≤ µ(y) ∧ v(x) ≤ v(y). Furthermore, a solution x strongly dominates y (x ≻ y) iff x ≽ y and
f3D(x) ̸= f3D(y).

Generalizing the results given in [22], we show that our problem formulation solves the problem given in Equation 1
for every possible value of k and α, Furthermore, we use the 3-objective problem to compute, for any possible pair of
B and α values, a solution with the highest possible c(x)-value according to Equation 3.

Using the expected cost and variance as objectives for the problem given in Equation 3, allows here to explore the
trade-offs with respect to the expected cost and variance for the different values of B and α that lead to a maximum
possible value of c(x). We will show that the 3-objective formulation is obtaining for any possible B and α ∈ [1/2, 1]
a feasible solution with the maximal value for c(x) = |x|1 in expected pseudo-polynomial time. We first show this
by adapting the proof given in [22] to the 3-objective setting. The proof makes use of specific 2-bit flips that allow to
compute all convex points of the Pareto front when constraining the number of elements to one particular constraint
value k and thereby solving the problem given in Equation 1 as well.

Afterwards, we improve our upper bound by showing that the 3-objective formulation enables an additional search
direction for evolutionary multi-objective algorithms which only relies on the use of 1-bit flips. As specific 1-bits
occur more frequently than specific 2-bit flips, we obtain an improved upper bound.

3.2 Algorithms

For our investigations, we consider variants of the well-known Global Simple Evolutionary Multi-Objective Optimizer
(GSEMO) [25, 26] given in Algorithm 1. The algorithm starts with one initial solution chosen uniformly at random
and produces in each iteration a single offspring by standard bit mutations. GSEMO maintains at each point in the
time for each non-dominated objective vector found so far one single solution. The variant of GSEMO called SEMO
originally introduced in [25] differs from GSEMO by flipping in each mutation step exactly one randomly chosen bit.

We investigate the algorithms GSEMO2D and GSEMO3D which are using our bi-objective and 3-objective problem
formulation together with standard bit-mutations as outlined in Algorithm 1. As the proofs for the bi-objective for-
mulation carried out in [22] rely on 1- and 2-bit flips, we consider the algorithm SEMO2D which with probability
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B and α values, a solution with the highest possible c(x)-value according to Equation 3.

Using the expected cost and variance as objectives for the problem given in Equation 3, allows here to explore the
trade-offs with respect to the expected cost and variance for the different values of B and α that lead to a maximum
possible value of c(x). We will show that the 3-objective formulation is obtaining for any possible B and α ∈ [1/2, 1]
a feasible solution with the maximal value for c(x) = |x|1 in expected pseudo-polynomial time. We first show this
by adapting the proof given in [22] to the 3-objective setting. The proof makes use of specific 2-bit flips that allow to
compute all convex points of the Pareto front when constraining the number of elements to one particular constraint
value k and thereby solving the problem given in Equation 1 as well.

Afterwards, we improve our upper bound by showing that the 3-objective formulation enables an additional search
direction for evolutionary multi-objective algorithms which only relies on the use of 1-bit flips. As specific 1-bits
occur more frequently than specific 2-bit flips, we obtain an improved upper bound.
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For our investigations, we consider variants of the well-known Global Simple Evolutionary Multi-Objective Optimizer
(GSEMO) [25, 26] given in Algorithm 1. The algorithm starts with one initial solution chosen uniformly at random
and produces in each iteration a single offspring by standard bit mutations. GSEMO maintains at each point in the
time for each non-dominated objective vector found so far one single solution. The variant of GSEMO called SEMO
originally introduced in [25] differs from GSEMO by flipping in each mutation step exactly one randomly chosen bit.
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by returning for any given B and α the solution of maximal 
c(x)-value in the final population that meets the constraint.
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Algorithm 1: GSEMO

Choose x ∈ {0, 1}n uniformly at random;
P ← {x};
repeat

Choose x ∈ P uniformly at random;

Create y by flipping each bit xi of x with probability 1
n ;

if !w ∈ P : w ≺ y then
P ← (P \ {z ∈ P | y ≼ z}) ∪ {y};

until stop;

1/2 carries out a 1-bit flip and otherwise carries out a 2-bit flip in the mutation step. Similarly, as our investigations
for the 3-objective model show that it performs well with 1-bit operations only, we consider the algorithm SEMO3D
which flips in each mutation step one single bit. Note that SEMO3D is exactly the algorithm variant introduced in [25]
although it has only been applied to bi-objective problems in that paper.

For our theoretical investigations, we measure time in terms of the number of fitness evaluations to achieve a desired
goal. The expected number of fitness evaluations is also called the expected time to achieve the given goal.

4 Analysis Based on 2-Bit Flips

We investigate the problem given in Equation 3 for the case where c(x) = |x|1, and each wi is chosen according to
the Normal distribution N(µi,σ2

i ) independently of the others. As done in [22], we assume µi ≥ 1 and σ2
i ≥ 1,

1 ≤ i ≤ n, in the following. We claim that GSEMO computes an optimal solution for any combination of B and
α ∈ [1/2, 1[ in expected pseudo-polynomial time for the Problem given in Equation 3.

Inspired by the analysis of chance-constrained minimum spanning trees [27], we consider sets of Pareto optimal search
points having exactly k, 0 ≤ k ≤ n, elements that are minimal with respect to

ŵ(x) = µ(x) +Kα

√

v(x)

for each fixed k and α.

To do this, we follow the ideas given in [22]. Our goal is to minimize fλ(x) = λµ(x) + (1 − λ)v(x). This can
be done by choosing iteratively k minimal elements with respect to fλ(ei) = λµi + (1 − λ)σ2

i , 0 < λ < 1. For
λ = 0 and λ = 1, fλ is minimized by minimizing f0(x) = (v(x), µ(x)) and f1(x) = (µ(x), v(x)) with respect to the
lexicographic order. Note that for each λ ∈ [0, 1], an optimal solution for fλ can be obtained by selecting the first k
items in increasing order with respect to fλ. In terms of notation, we use fλ for the evaluation of a search point x as
well as the evaluation of an element ei in the following.

We denote by X∗
k,λ ⊆ {0, 1}n the set of minimal elements with respect to fλ having exactly k elements. Note that all

points in the sets X∗
k,λ, 0 ≤ λ ≤ 1, are not strongly dominated in {0, 1}n as the expected cost and variance strictly

increase when adding any additional element. Therefore, the sets X∗
k,λ, 0 ≤ λ ≤ 1, 0 ≤ k ≤ n, constitute Pareto

optimal points. Note there may be other Pareto optimal points not included in these sets.

Definition 1 (Extreme point of set X). For a given set X ⊆ {0, 1}n, we call f(x) = (µ(x), v(x)) an extreme point
of X if there is a λ ∈ [0, 1] such that x ∈ X∗

k,λ and v(x) = maxy∈X∗

k,λ
v(x).

We denote by Pmax the maximum population size that GSEMO encounters during the run of the algorithm, i. e., before
reaching its goal of optimization.

Let vmax = max1≤i≤n σ2
i and µmax = max1≤i≤n µi. we assume that vmax ≤ µmax holds. Otherwise, the bounds in

Theorem 1 and 2 and can be tightened by replacing vmax by µmax.

Let Xk = {x ∈ {0, 1}n | |x|1 = k} be the set of all solutions having exactly k elements. The following theorem
shows that GSEMO computes for each k and α an optimal solution for the problem given in Equation 1, which has
been investigated in [22] in the context of the 2-objective formulation given in Section 2.

Theorem 1. GSEMO computes a population P which contains for each α ∈ [1/2, 1[ and k ∈ {0, . . . , n} a solution

xk
α = arg min

x∈Xk

{

µ(x) +Kα

√

v(x)
}

(4)

in expected time O(Pmaxn4(logn+ log vmax)).
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Apply GSEMO to 2-objective and 3-objective model

SEMO differs from GSEMO flipping in each iteration
exactly one or two bits (2D case) or 1-bit (3D case).



Theoretical Investigations
Analyze GSEMO with respect to the time until it has produced for 
each k and α ≥ 𝟏

𝟐
an optimal solution for the case 𝑐 𝑥 = 𝒙 𝟏.

Runtime Analysis: Measure time by the (expected) number of 
fitness evaluations to reach the goal.



Theoretical Investigations
Key argument: When considering 𝒄 𝒙 = 𝒙 𝟏. Then there exists 
for each α ≥ 𝟏

𝟐
a convex combination of 𝝁 𝒙 and 𝒗 𝒙 , i.e.

𝒇ƛ 𝒙 = 𝝀𝝁 𝒙 + (𝟏 − 𝝀)𝒗 𝒙 , 𝝀 ∈ 𝟎, 𝟏
such that if 𝒙∗ is minimal for 𝒇ƛ 𝒙 under the constraint   

𝒄 𝒙 ≥ 𝒌 then 𝒙∗ is minimal for                                    
and 𝒄 𝒙 ≥ 𝒌. 

Implies: Set of desired solutions can be obtained by computing the 
extremal corner points of the  Pareto front.
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objective can enable a different way of searching for high quality solutions. We investigate in detail how 3-objective
formulations can be used for chance constrained problems.

Our first contribution is a theoretical runtime analysis which generalizes the results obtained in [22] to the 3-objective
formulation. Here we show that the 3-objective formulation allows to compute all possible trade-offs for independent
Normally distributed weight for the whole set of possible uniform constraints. Investigating the problem furthermore,
we show that in order to compute the whole set of trade-offs, only 1-bit flips are required in the 3-objective formulation
which significantly improves upper the results given in [22]. Afterwards, we investigate the 3-objective formulation
and compare it to the bi-objective one through experimental investigations. We consider the chance constrained dom-
inating set problem in the same set up as done in [22]. Our results show that the 3-objective formulation provides a
clear advantage for graphs with up to 500 nodes.

The outline of the paper is as follows. In Section 2, we introduce the two chance constrained problem setups that we are
investigating in this paper. In Section 3, we introduce the 3-objective formulation that is subject to our investigations.
Sections 4 and 5 provide a rigorous runtime analysis of our approach which shows that it efficiently computes a set up
solutions that includes optimal solutions for a wide range of constrained settings of the two considered problems. We
present our experimental results for the chance constrained dominating set problem in Section 6 and finish with some
conclusions.

2 Preliminaries

Pareto optimization approaches are usually used to tackle constrained single-objective optimization problems by taking
the constraint as an additional objective. Chance constrained problems involve constraints that are impacted by the
expected (cost) value as well as its variance. In [22], a chance constrained problem has been considered which involves
such stochastic components and has an additional deterministic constraint. We motivate our multi-objective settings
by these recent investigations.

We consider the chance constrained problem investigated in [22]. Given a set of n items I = {1, . . . , n} with stochastic
weights wi, 1 ≤ i ≤ n, we want to solve

minW subject to (Pr (w(x) ≤W ) ≥ α) ∧ (|x|1 ≥ k) (1)

where w(x) =
∑n

i=1 wixi, x ∈ {0, 1}n, and α ∈ [1/2, 1[. The weights are independent and each wi is distributed
according to a Normal distribution N(µi,σ2

i ), 1 ≤ i ≤ n, where µi ≥ 1 and σi ≥ 1, 1 ≤ i ≤ n. We denote by
µ(x) =

∑n
i=1 µixi the expected weight and by v(x) =

∑n
i−1 σ

2
i xi the variance of the weight of solution x.

As stated in [22], the problem given in Equation 1 is equivalent to minimizing

ŵ(x) = µ(x) +Kα

√

v(x), (2)

under the constraint that |x|1 ≥ k holds. Here, Kα denotes the α-fractional point of the standard Normal distribution.

The uniform constraint |x|1 ≥ k requires that each feasible solution has to contain at least k elements. As expected
weights and variances are strictly positive, an optimal solution has exactly k elements. Depending on the choice of α,
the difficulties lies in finding the right trade-off between the expected weight and variance among all solutions with
exactly k elements.

It has been shown that this problem given in Equation 1 can be solved by the following bi-objective formulation [22].
The objective function is given as f2D(x) = (µ̂(x), v̂(x)) where

µ̂(x) =

{∑n
i=1 µixi |x|1 ≥ k

(k − |x|1) · (1 +
∑n

i=1 µi) |x|1 < k

v̂(x) =

{∑n
i=1 σ

2
i xi |x|1 ≥ k

(k − |x|1) · (1 +
∑n

i=1 σ
2
i ) |x|1 < k

We say that a solution x dominates a solution y (x ≽ y) iff µ̂(x) ≤ µ̂(y) ∧ v̂(x) ≤ v̂(y). Furthermore, a solution
x strongly dominates a solution y (x ≻ y) iff x ≽ y and f2D(x) ̸= f2D(y). The setup can be generalized by using
c(x) ≥ k for a constraint function c(x) instead of |x|1 = k. In the experimental investigations carried out in [22], c(x)
is counting the number of dominated nodes in the dominating set problem in graphs with n nodes, and c(x) = n is
required for a solution to be feasible.
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In case of a failure, we repeat the argumentation. The expected number of repetitions is at most 2+o(1), so that the total
expected time until all processes have reached the target is O((2+o(1))2Pmaxn2T ∗) = O(Pmaxn4(log n+logwmax)).
As explained above, this also bounds the time to include a solution xk

α in the population of GSEMO for all α ∈ [1/2, 1[
and all k ∈ {1, . . . , n− 1}.

The previous theorem bounds the time to include solutions of the type described in (4), which may look abstract.
The following theorem shows that these solutions allow us to find solutions for the chance-constrained problem in (3)
efficiently from the population of GSEMO for different settings of confidence level and constraint.

Theorem 2. The expected time until GSEMO has computed a population which includes an optimal solution for the
problem given in Equation 3 with c(x) = |x|1 for any possible choice of B and α ∈ [1/2, 1[ is O(Pmaxn4(logn +
log vmax)),

Proof. We show that the population P ⊇ {xk
α | 0 ≤ k ≤ n,α ∈ [1/2, [ given in Theorem 1 contains the optimal

solutions for any choice of α ∈ [1/2, 1[. Let x∗
α be an optimal solution for a given value of α ∈ [1/2, 1[.

For a given α, the solution xj
α with the maximum number of elements for which

ŵ(x) = µ(x) +Kα

√

v(x) ≤ B

holds satisfies |xj
α| = |x∗

α| as otherwise xj
α would not be a solution with the maximal number of elements for which

the constraint holds or x∗
α would not be optimal for α. This implies that xj

α is an optimal solution for α.

5 Improved Upper Bound Based on 1-Bit Flips Only

The analysis from the previous section relied on specific 2-bit flips that allow to produce the solutions for each value
of α by swapping elements to produce new Pareto optimal solutions for a given number of k elements.

We now show that 2-bit flips are not necessary in the 3-objective formulation and also improve the upper bound
by considering only 1-bit flips. We note that the upper bound is by an asymptotic factor Ω(n2) lower compared to
Theorem 1 and includes the same Pmax.

Theorem 3. The expected time until SEMO3D and GSEMO have computed a population which includes an optimal
solution for the problems given in Equation 1 (for any choice of k and α) and Equation 3 (with c(x) = |x|1 for any

choice of B and α) is O(Pmaxn2) and it is at most 2ePmaxn2 with probability 1− e−Ω(n).

Proof. To prove the theorem, we show that the same set of Pareto optimal objective vectors can be computed by
GSEMO as in the proof of Theorem 1 when considering 1-bit flips only. Theorem 2 implies that then not only all
optimal solutions with respect to Equation 1 but also with respect to Equation 3 have been computed.

By a simple fitness-level argument, the expected time until the Pareto optimal search point 0n has been included in the
population is O(Pmaxn logn). This search point will never be removed from the population as it is the unique search
point with minimum expected cost and variance.

As done in [22], we define λi,j =
σ2

j−σ2

i

(µi−µj)+(σ2

j−σ2

i )
for the pair of items i and j where σ2

i < σ2
j and µi > µj holds,

1 ≤ i < j ≤ n. The set Λ = {λ0,λ1, . . . ,λℓ,λℓ+1} where λ1, . . . ,λℓ are the values λi,j in increasing order and
λ0 = 0 and λℓ+1 = 1.

Following [22], we define the function

fλ(x) = λµ(x) + (1− λ)v(x)

and also use it applied to elements ei of the given input, i.e.

fλ(ei) = λµi + (1 − λ)σ2
i .

Note that for a given λ the function fλ can be optimized by a greedy approach which iteratively selects a set of k
smallest elements according to fλ(ei). For any λ ∈ [0, 1[ an optimal solution for fλ with k elements is Pareto optimal
as there is no other solution with at least k elements that improves the expected cost or variance without impairing the
other. Hence, once obtained a solution with the resulting objective vector will remain in the population for the rest of
the optimization process. Furthermore, the set of optimal solutions for different λ values only change at the λ values
of the set Λ as these λ values constitute the weightening where the order of items according to fλ can switch [27, 22].
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Algorithm 1: GSEMO

Choose x ∈ {0, 1}n uniformly at random;
P ← {x};
repeat

Choose x ∈ P uniformly at random;

Create y by flipping each bit xi of x with probability 1
n ;

if !w ∈ P : w ≺ y then
P ← (P \ {z ∈ P | y ≼ z}) ∪ {y};

until stop;

1/2 carries out a 1-bit flip and otherwise carries out a 2-bit flip in the mutation step. Similarly, as our investigations
for the 3-objective model show that it performs well with 1-bit operations only, we consider the algorithm SEMO3D
which flips in each mutation step one single bit. Note that SEMO3D is exactly the algorithm variant introduced in [25]
although it has only been applied to bi-objective problems in that paper.

For our theoretical investigations, we measure time in terms of the number of fitness evaluations to achieve a desired
goal. The expected number of fitness evaluations is also called the expected time to achieve the given goal.

4 Analysis Based on 2-Bit Flips

We investigate the problem given in Equation 3 for the case where c(x) = |x|1, and each wi is chosen according to
the Normal distribution N(µi,σ2

i ) independently of the others. As done in [22], we assume µi ≥ 1 and σ2
i ≥ 1,

1 ≤ i ≤ n, in the following. We claim that GSEMO computes an optimal solution for any combination of B and
α ∈ [1/2, 1[ in expected pseudo-polynomial time for the Problem given in Equation 3.

Inspired by the analysis of chance-constrained minimum spanning trees [27], we consider sets of Pareto optimal search
points having exactly k, 0 ≤ k ≤ n, elements that are minimal with respect to

ŵ(x) = µ(x) +Kα

√

v(x)

for each fixed k and α.

To do this, we follow the ideas given in [22]. Our goal is to minimize fλ(x) = λµ(x) + (1 − λ)v(x). This can
be done by choosing iteratively k minimal elements with respect to fλ(ei) = λµi + (1 − λ)σ2

i , 0 < λ < 1. For
λ = 0 and λ = 1, fλ is minimized by minimizing f0(x) = (v(x), µ(x)) and f1(x) = (µ(x), v(x)) with respect to the
lexicographic order. Note that for each λ ∈ [0, 1], an optimal solution for fλ can be obtained by selecting the first k
items in increasing order with respect to fλ. In terms of notation, we use fλ for the evaluation of a search point x as
well as the evaluation of an element ei in the following.

We denote by X∗
k,λ ⊆ {0, 1}n the set of minimal elements with respect to fλ having exactly k elements. Note that all

points in the sets X∗
k,λ, 0 ≤ λ ≤ 1, are not strongly dominated in {0, 1}n as the expected cost and variance strictly

increase when adding any additional element. Therefore, the sets X∗
k,λ, 0 ≤ λ ≤ 1, 0 ≤ k ≤ n, constitute Pareto

optimal points. Note there may be other Pareto optimal points not included in these sets.

Definition 1 (Extreme point of set X). For a given set X ⊆ {0, 1}n, we call f(x) = (µ(x), v(x)) an extreme point
of X if there is a λ ∈ [0, 1] such that x ∈ X∗

k,λ and v(x) = maxy∈X∗

k,λ
v(x).

We denote by Pmax the maximum population size that GSEMO encounters during the run of the algorithm, i. e., before
reaching its goal of optimization.

Let vmax = max1≤i≤n σ2
i and µmax = max1≤i≤n µi. we assume that vmax ≤ µmax holds. Otherwise, the bounds in

Theorem 1 and 2 and can be tightened by replacing vmax by µmax.

Let Xk = {x ∈ {0, 1}n | |x|1 = k} be the set of all solutions having exactly k elements. The following theorem
shows that GSEMO computes for each k and α an optimal solution for the problem given in Equation 1, which has
been investigated in [22] in the context of the 2-objective formulation given in Section 2.

Theorem 1. GSEMO computes a population P which contains for each α ∈ [1/2, 1[ and k ∈ {0, . . . , n} a solution

xk
α = arg min

x∈Xk

{

µ(x) +Kα

√

v(x)
}

(4)

in expected time O(Pmaxn4(logn+ log vmax)).
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In case of a failure, we repeat the argumentation. The expected number of repetitions is at most 2+o(1), so that the total
expected time until all processes have reached the target is O((2+o(1))2Pmaxn2T ∗) = O(Pmaxn4(log n+logwmax)).
As explained above, this also bounds the time to include a solution xk

α in the population of GSEMO for all α ∈ [1/2, 1[
and all k ∈ {1, . . . , n− 1}.

The previous theorem bounds the time to include solutions of the type described in (4), which may look abstract.
The following theorem shows that these solutions allow us to find solutions for the chance-constrained problem in (3)
efficiently from the population of GSEMO for different settings of confidence level and constraint.

Theorem 2. The expected time until GSEMO has computed a population which includes an optimal solution for the
problem given in Equation 3 with c(x) = |x|1 for any possible choice of B and α ∈ [1/2, 1[ is O(Pmaxn4(logn +
log vmax)),

Proof. We show that the population P ⊇ {xk
α | 0 ≤ k ≤ n,α ∈ [1/2, [ given in Theorem 1 contains the optimal

solutions for any choice of α ∈ [1/2, 1[. Let x∗
α be an optimal solution for a given value of α ∈ [1/2, 1[.

For a given α, the solution xj
α with the maximum number of elements for which

ŵ(x) = µ(x) +Kα

√

v(x) ≤ B

holds satisfies |xj
α| = |x∗

α| as otherwise xj
α would not be a solution with the maximal number of elements for which

the constraint holds or x∗
α would not be optimal for α. This implies that xj

α is an optimal solution for α.

5 Improved Upper Bound Based on 1-Bit Flips Only

The analysis from the previous section relied on specific 2-bit flips that allow to produce the solutions for each value
of α by swapping elements to produce new Pareto optimal solutions for a given number of k elements.

We now show that 2-bit flips are not necessary in the 3-objective formulation and also improve the upper bound
by considering only 1-bit flips. We note that the upper bound is by an asymptotic factor Ω(n2) lower compared to
Theorem 1 and includes the same Pmax.

Theorem 3. The expected time until SEMO3D and GSEMO have computed a population which includes an optimal
solution for the problems given in Equation 1 (for any choice of k and α) and Equation 3 (with c(x) = |x|1 for any

choice of B and α) is O(Pmaxn2) and it is at most 2ePmaxn2 with probability 1− e−Ω(n).

Proof. To prove the theorem, we show that the same set of Pareto optimal objective vectors can be computed by
GSEMO as in the proof of Theorem 1 when considering 1-bit flips only. Theorem 2 implies that then not only all
optimal solutions with respect to Equation 1 but also with respect to Equation 3 have been computed.

By a simple fitness-level argument, the expected time until the Pareto optimal search point 0n has been included in the
population is O(Pmaxn logn). This search point will never be removed from the population as it is the unique search
point with minimum expected cost and variance.

As done in [22], we define λi,j =
σ2

j−σ2

i

(µi−µj)+(σ2

j−σ2

i )
for the pair of items i and j where σ2

i < σ2
j and µi > µj holds,

1 ≤ i < j ≤ n. The set Λ = {λ0,λ1, . . . ,λℓ,λℓ+1} where λ1, . . . ,λℓ are the values λi,j in increasing order and
λ0 = 0 and λℓ+1 = 1.

Following [22], we define the function

fλ(x) = λµ(x) + (1− λ)v(x)

and also use it applied to elements ei of the given input, i.e.

fλ(ei) = λµi + (1 − λ)σ2
i .

Note that for a given λ the function fλ can be optimized by a greedy approach which iteratively selects a set of k
smallest elements according to fλ(ei). For any λ ∈ [0, 1[ an optimal solution for fλ with k elements is Pareto optimal
as there is no other solution with at least k elements that improves the expected cost or variance without impairing the
other. Hence, once obtained a solution with the resulting objective vector will remain in the population for the rest of
the optimization process. Furthermore, the set of optimal solutions for different λ values only change at the λ values
of the set Λ as these λ values constitute the weightening where the order of items according to fλ can switch [27, 22].
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Experiments
We consider a stochastic version of the minimum dominating set problem in 
a given undirected graph 
G=(V, E) with stochastic weights on the nodes. 
A node dominates itself and all of its neighbors.
c(x) denotes the number of nodes dominated in the given search point x. 
Constraint c(x)=n.
Weight of each node 𝒗𝒊 is chosen independently of the others according to a 
Normal distribution 𝑁 𝜇! , 𝜎!# .
10M fitness evaluations, 30 independent runs of each instance.
Uniform, Uniform-fixed, degree based weights.
Different values of 𝜶 = 𝟏 − 𝜷.



Maximum Population Size during runs
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Graph weight gype
SEMO2D SEMO3D GSEMO2D GSEMO3D

Mean Std Mean Std Mean Std Mean Std
cfat200-1 uniform 57 19 2921 964 56 16 2923 929
cfat200-2 uniform 29 11 348 128 23 10 361 128

ca-netscience uniform 69 22 5531 997 40 11 4631 678
ca-GrQc uniform 4 3 7519 488 3 1 3921 262
Erdos992 uniform 2 1 4476 338 1 1 2173 153
cfat200-1 uniform-fixed 1 0 66 12 1 0 67 11
cfat200-2 uniform-fixed 1 0 18 4 1 0 18 4

ca-netscience uniform-fixed 1 0 401 43 1 0 403 40
ca-GrQc uniform-fixed 1 0 3565 251 1 0 1942 133
Erdos992 uniform-fixed 1 0 2217 102 1 0 1313 61
cfat200-1 degree 2 1 335 36 2 1 340 35
cfat200-2 degree 1 1 42 6 1 0 42 6

ca-netscience degree 22 8 3293 764 18 7 2981 585
ca-GrQc degree 3 2 6112 371 3 2 3240 252
Erdos992 degree 2 1 3128 166 2 1 1725 84

Table 1: Maximum population size for stochastic minimum weight dominating set.

gate larger graphs, namely ca-GrQC and Erdoes992 which have 4158 and 6100 nodes, respectively, in order to show
the limitations of the 3-objective approach.

We consider the following categories for choosing the weights as done in [22]. In the uniform setting each weight
µ(u) is an integer chosen independently and uniformly at random in {n, . . . , 2n}. The variance v(u) is an integer
chosen independently and uniformly at random in {n2, . . . , 2n2}. In the degree-based setting, we have µ(u) =
(n + deg(u))5/n4 where deg(u) is the degree of node u in the given graph. The variance v(u) is an integer chosen
independently and uniformly at random in {n2, . . . , 2n2}. Furthermore, we consider the uniform-fixed setting where
the expected weights are chosen as in the uniform setting, but the variances are set to 2n2 for each given node. Our goal
here is to study how fixed the variance for each node that therefore making it determined by the number of chosen nodes
influences the results compared to the uniform setting. As done in [22], we consider for each combination of graph
and weight setting values of α = 1− β where β ∈ {0.2, 0.1, 10−2, 10−4, 10−6, 10−8, 10−10, 10−12, 10−14, 10−16}.

The 3-objective formulation is expected to produce much more trade-offs than the bi-objective formulation. We com-
pare SEMO2D and SEMO3D, and GSEMO2D and GSEMO3D, respectively, in terms of the results that they obtain.
Comparing SEMO2D and SEMO3D allows to judge whether the additional objective that increases the population
size is helpful in practice even if the mutation operation is highly restrictive. Each algorithm is run for each setting
30 times whereas each run consists of 10M iterations. The results for the 30 runs carried out for each algorithm are
obtained on a the same set of 30 instances that are generated in the way described above. Note that one run produces
results for each considered value of α as we chose from the final population the feasible solution with the smallest
weight according to Equation 2. Obviously, finding these solutions can be done in time linear in the size of the final
population produced by the considered algorithm.

The results for the maximum population sizes of the considered settings are shown in Table 1. For each setting and
algorithm, we show the average maximum population size within the 30 runs and their standard deviations. It can be
observed that the population sizes encountered by the approaches using the 3-objective formulations are significantly
higher than the maximum population sizes for the bi-objective formulations. Even for relatively small graphs such
as cfat200-1, the maximum population sizes for SEMO3D and GSEMO3D are close to 3000, and reach up to 7500
for SEMO3D and ca-GrQc in the uniform setting. Comparing SEMO3D and GSEMO3D, it is interesting to see that
the maximum population size encountered by GSEMO3D is in most cases smaller than for SEMO3D. A possible
explanations is that the standard bit mutations used in GSEMO3D are often able to create objective vectors that
dominate part of the current population, which reduces the population size.

The optimization results for the different graphs and chance constrained settings are shown in Table 2. For each
setting, we show the average weight value according to Equation 2 and standard deviation for the algorithms. The
best average value in the direct comparison of SEMO2D and SEMO3D, and GSEMO2D and GSEMO3D, respecively,
are highlighted in bold. Furthermore, we highlight in grey the best result among all 4 algorithms. We also display
the p-value obtained by the Mann-Whitney test for the comparison of SEMO2D and SEMO3D, and GSEMO2D and
GSEMO3D, respectively. We call a result statistically significant if the p-value is at most 0.05.

Our results show that for the graphs cfat200-1, cfat200-2, and ca-netscience, there is usually a strong benefit of using
the 3-objective formulation instead of the bi-objective one. For the uniform setting where the expected weights and
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Graph weight gype β
SEMO2D SEMO3D GSEMO2D GSEMO3D

Mean Std Mean Std p-value Mean Std Mean Std p-value

cfat200-1 uniform

0.2 3618 76 3599 82 0.308 3615 91 3599 79 0.544
0.1 3994 82 3970 82 0.268 3989 96 3972 80 0.544
0.01 4877 101 4842 86 0.169 4866 109 4845 86 0.535

1.0E-4 6030 123 5985 94 0.128 6015 126 5991 98 0.455
1.0E-6 6870 139 6824 103 0.201 6855 138 6832 108 0.605
1.0E-8 7562 152 7519 113 0.326 7546 147 7525 118 0.641
1.0E-10 8163 163 8122 123 0.469 8145 154 8125 125 0.751
1.0E-12 8700 172 8660 130 0.535 8680 159 8660 130 0.859
1.0E-14 9190 180 9150 136 0.657 9169 164 9148 133 0.842
1.0E-16 9633 188 9593 142 0.636 9611 168 9589 137 0.865

cfat200-2 uniform

0.2 1797 72 1788 53 0.923 1791 49 1767 32 0.049
0.1 2049 78 2035 55 0.865 2040 54 2016 37 0.074
0.01 2634 92 2617 69 0.739 2621 72 2593 51 0.162

1.0E-4 3394 111 3369 85 0.535 3381 97 3336 65 0.070
1.0E-6 3948 125 3918 95 0.511 3937 113 3880 71 0.044
1.0E-8 4403 134 4372 106 0.496 4394 124 4329 77 0.032
1.0E-10 4799 143 4768 117 0.549 4793 132 4720 82 0.028
1.0E-12 5153 150 5123 125 0.559 5149 139 5071 85 0.024
1.0E-14 5476 157 5447 133 0.589 5475 145 5391 88 0.020
1.0E-16 5769 164 5740 141 0.559 5769 150 5681 91 0.021

ca-netscience uniform

0.2 32922 1308 32608 904 0.506 33042 1289 33007 1023 0.712
0.1 34456 1323 34115 907 0.544 34568 1302 34514 1028 0.745
0.01 38097 1361 37694 919 0.408 38189 1334 38089 1040 0.848

1.0E-4 42938 1414 42461 938 0.274 43012 1380 42846 1054 1.000
1.0E-6 46527 1457 45995 951 0.255 46591 1415 46377 1065 0.824
1.0E-8 49500 1493 48923 960 0.198 49557 1442 49303 1076 0.712
1.0E-10 52091 1526 51478 970 0.165 52145 1465 51857 1087 0.615
1.0E-12 54416 1554 53773 979 0.147 54467 1487 54150 1096 0.564
1.0E-14 56542 1581 55873 987 0.132 56592 1507 56249 1105 0.487
1.0E-16 58469 1605 57776 996 0.117 58517 1526 58151 1114 0.478

cfat200-1 uniform-fixed

0.2 3891 183 3851 129 0.530 3813 125 3721 59 0.006
0.1 4353 195 4306 135 0.464 4269 133 4169 59 0.006
0.01 5450 224 5385 149 0.333 5352 151 5235 59 0.006

1.0E-4 6913 264 6823 169 0.258 6795 177 6655 59 0.006
1.0E-6 7999 293 7890 183 0.234 7868 196 7710 59 0.006
1.0E-8 8901 317 8776 195 0.223 8757 212 8586 59 0.006
1.0E-10 9688 339 9549 206 0.217 9534 226 9350 59 0.006
1.0E-12 10395 358 10243 216 0.206 10232 239 10036 59 0.006
1.0E-14 11043 376 10878 225 0.191 10871 250 10665 59 0.006
1.0E-16 11630 392 11455 234 0.186 11450 261 11235 59 0.006

cfat200-2 random-fixed

0.2 1989 116 1980 112 0.690 1937 104 1866 50 0.011
0.1 2307 128 2297 123 0.679 2249 115 2171 54 0.011
0.01 3064 157 3048 149 0.554 2990 141 2897 63 0.011

1.0E-4 4073 196 4049 185 0.554 3978 176 3864 76 0.011
1.0E-6 4822 225 4792 213 0.554 4712 203 4583 86 0.011
1.0E-8 5444 249 5410 236 0.554 5321 225 5179 94 0.011
1.0E-10 5986 269 5948 257 0.554 5853 244 5700 102 0.011
1.0E-12 6474 288 6432 275 0.554 6330 261 6168 108 0.011
1.0E-14 6920 305 6875 292 0.554 6768 277 6596 114 0.011
1.0E-16 7325 321 7276 308 0.554 7164 291 6984 120 0.011

ca-netscience uniform-fixed

0.2 35378 1891 32956 844 0.000 34936 1747 32926 816 0.000
0.1 37239 1934 34718 844 0.000 36779 1785 34687 819 0.000
0.01 41659 2038 38901 844 0.000 41156 1878 38869 825 0.000

1.0E-4 47551 2178 44475 844 0.000 46991 2004 44439 831 0.000
1.0E-6 51927 2282 48614 843 0.000 51325 2098 48576 835 0.000
1.0E-8 55559 2369 52049 842 0.000 54922 2177 52009 838 0.000
1.0E-10 58729 2445 55048 842 0.000 58061 2246 55006 841 0.000
1.0E-12 61577 2513 57741 843 0.000 60881 2309 57698 844 0.000
1.0E-14 64184 2576 60207 843 0.000 63463 2366 60162 847 0.000
1.0E-16 66548 2633 62443 844 0.000 65805 2418 62397 850 0.000

cfat200-1 degree

0.2 4495 143 4392 10 0.002 4444 115 4387 6 0.001
0.1 4835 148 4727 14 0.002 4781 119 4721 9 0.003
0.01 5642 158 5523 25 0.001 5582 129 5512 16 0.004

1.0E-4 6718 172 6584 39 0.001 6650 143 6566 26 0.003
1.0E-6 7517 184 7372 50 0.001 7443 154 7349 34 0.003
1.0E-8 8180 193 8025 59 0.001 8101 163 7999 40 0.003
1.0E-10 8758 202 8596 67 0.001 8675 171 8567 45 0.003
1.0E-12 9278 210 9108 74 0.001 9191 178 9076 50 0.003
1.0E-14 9754 217 9578 81 0.001 9663 185 9542 55 0.003
1.0E-16 10185 223 10003 87 0.001 10091 191 9965 59 0.003

cfat200-2 degree

0.2 3218 227 3029 154 0.033 3041 172 2963 4 0.027
0.1 3448 235 3256 160 0.033 3267 178 3185 6 0.027
0.01 3996 255 3795 173 0.033 3803 194 3713 11 0.027

1.0E-4 4726 280 4514 193 0.033 4518 216 4416 17 0.027
1.0E-6 5268 300 5048 209 0.033 5049 232 4938 22 0.027
1.0E-8 5718 316 5491 223 0.033 5490 245 5371 26 0.027
1.0E-10 6110 329 5878 235 0.033 5875 257 5749 30 0.027
1.0E-12 6463 342 6225 247 0.033 6220 267 6089 33 0.027
1.0E-14 6786 354 6543 257 0.033 6537 277 6400 36 0.027
1.0E-16 7079 364 6832 267 0.033 6823 286 6682 38 0.027

ca-netscience degree

0.2 28587 1535 26148 201 0.000 28164 1002 26169 196 0.000
0.1 30122 1580 27636 207 0.000 29689 1029 27657 200 0.000
0.01 33758 1686 31158 228 0.000 33300 1098 31183 216 0.000

1.0E-4 38593 1828 35840 269 0.000 38103 1192 35874 251 0.000
1.0E-6 42180 1936 39313 306 0.000 41665 1265 39355 285 0.000
1.0E-8 45155 2026 42192 338 0.000 44620 1327 42243 317 0.000
1.0E-10 47751 2104 44705 367 0.000 47198 1381 44763 347 0.000
1.0E-12 50082 2175 46962 394 0.000 49514 1429 47026 374 0.000
1.0E-14 52216 2239 49027 420 0.000 51633 1474 49098 400 0.000
1.0E-16 54151 2297 50900 444 0.000 53555 1515 50977 423 0.000

Table 2: Results for stochastic minimum weight dominating set with different confidence levels of α where α = 1−β.
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Experimental Results (Uniform fixed 
variance)

3-Objective Pareto Optimization for Problems with Chance Constraints A PREPRINT

Graph weight gype β
SEMO2D SEMO3D GSEMO2D GSEMO3D

Mean Std Mean Std p-value Mean Std Mean Std p-value

cfat200-1 uniform

0.2 3618 76 3599 82 0.308 3615 91 3599 79 0.544
0.1 3994 82 3970 82 0.268 3989 96 3972 80 0.544
0.01 4877 101 4842 86 0.169 4866 109 4845 86 0.535

1.0E-4 6030 123 5985 94 0.128 6015 126 5991 98 0.455
1.0E-6 6870 139 6824 103 0.201 6855 138 6832 108 0.605
1.0E-8 7562 152 7519 113 0.326 7546 147 7525 118 0.641
1.0E-10 8163 163 8122 123 0.469 8145 154 8125 125 0.751
1.0E-12 8700 172 8660 130 0.535 8680 159 8660 130 0.859
1.0E-14 9190 180 9150 136 0.657 9169 164 9148 133 0.842
1.0E-16 9633 188 9593 142 0.636 9611 168 9589 137 0.865

cfat200-2 uniform

0.2 1797 72 1788 53 0.923 1791 49 1767 32 0.049
0.1 2049 78 2035 55 0.865 2040 54 2016 37 0.074
0.01 2634 92 2617 69 0.739 2621 72 2593 51 0.162

1.0E-4 3394 111 3369 85 0.535 3381 97 3336 65 0.070
1.0E-6 3948 125 3918 95 0.511 3937 113 3880 71 0.044
1.0E-8 4403 134 4372 106 0.496 4394 124 4329 77 0.032
1.0E-10 4799 143 4768 117 0.549 4793 132 4720 82 0.028
1.0E-12 5153 150 5123 125 0.559 5149 139 5071 85 0.024
1.0E-14 5476 157 5447 133 0.589 5475 145 5391 88 0.020
1.0E-16 5769 164 5740 141 0.559 5769 150 5681 91 0.021

ca-netscience uniform

0.2 32922 1308 32608 904 0.506 33042 1289 33007 1023 0.712
0.1 34456 1323 34115 907 0.544 34568 1302 34514 1028 0.745
0.01 38097 1361 37694 919 0.408 38189 1334 38089 1040 0.848

1.0E-4 42938 1414 42461 938 0.274 43012 1380 42846 1054 1.000
1.0E-6 46527 1457 45995 951 0.255 46591 1415 46377 1065 0.824
1.0E-8 49500 1493 48923 960 0.198 49557 1442 49303 1076 0.712
1.0E-10 52091 1526 51478 970 0.165 52145 1465 51857 1087 0.615
1.0E-12 54416 1554 53773 979 0.147 54467 1487 54150 1096 0.564
1.0E-14 56542 1581 55873 987 0.132 56592 1507 56249 1105 0.487
1.0E-16 58469 1605 57776 996 0.117 58517 1526 58151 1114 0.478

cfat200-1 uniform-fixed

0.2 3891 183 3851 129 0.530 3813 125 3721 59 0.006
0.1 4353 195 4306 135 0.464 4269 133 4169 59 0.006
0.01 5450 224 5385 149 0.333 5352 151 5235 59 0.006

1.0E-4 6913 264 6823 169 0.258 6795 177 6655 59 0.006
1.0E-6 7999 293 7890 183 0.234 7868 196 7710 59 0.006
1.0E-8 8901 317 8776 195 0.223 8757 212 8586 59 0.006
1.0E-10 9688 339 9549 206 0.217 9534 226 9350 59 0.006
1.0E-12 10395 358 10243 216 0.206 10232 239 10036 59 0.006
1.0E-14 11043 376 10878 225 0.191 10871 250 10665 59 0.006
1.0E-16 11630 392 11455 234 0.186 11450 261 11235 59 0.006

cfat200-2 random-fixed

0.2 1989 116 1980 112 0.690 1937 104 1866 50 0.011
0.1 2307 128 2297 123 0.679 2249 115 2171 54 0.011
0.01 3064 157 3048 149 0.554 2990 141 2897 63 0.011

1.0E-4 4073 196 4049 185 0.554 3978 176 3864 76 0.011
1.0E-6 4822 225 4792 213 0.554 4712 203 4583 86 0.011
1.0E-8 5444 249 5410 236 0.554 5321 225 5179 94 0.011
1.0E-10 5986 269 5948 257 0.554 5853 244 5700 102 0.011
1.0E-12 6474 288 6432 275 0.554 6330 261 6168 108 0.011
1.0E-14 6920 305 6875 292 0.554 6768 277 6596 114 0.011
1.0E-16 7325 321 7276 308 0.554 7164 291 6984 120 0.011

ca-netscience uniform-fixed

0.2 35378 1891 32956 844 0.000 34936 1747 32926 816 0.000
0.1 37239 1934 34718 844 0.000 36779 1785 34687 819 0.000
0.01 41659 2038 38901 844 0.000 41156 1878 38869 825 0.000

1.0E-4 47551 2178 44475 844 0.000 46991 2004 44439 831 0.000
1.0E-6 51927 2282 48614 843 0.000 51325 2098 48576 835 0.000
1.0E-8 55559 2369 52049 842 0.000 54922 2177 52009 838 0.000
1.0E-10 58729 2445 55048 842 0.000 58061 2246 55006 841 0.000
1.0E-12 61577 2513 57741 843 0.000 60881 2309 57698 844 0.000
1.0E-14 64184 2576 60207 843 0.000 63463 2366 60162 847 0.000
1.0E-16 66548 2633 62443 844 0.000 65805 2418 62397 850 0.000

cfat200-1 degree

0.2 4495 143 4392 10 0.002 4444 115 4387 6 0.001
0.1 4835 148 4727 14 0.002 4781 119 4721 9 0.003
0.01 5642 158 5523 25 0.001 5582 129 5512 16 0.004

1.0E-4 6718 172 6584 39 0.001 6650 143 6566 26 0.003
1.0E-6 7517 184 7372 50 0.001 7443 154 7349 34 0.003
1.0E-8 8180 193 8025 59 0.001 8101 163 7999 40 0.003
1.0E-10 8758 202 8596 67 0.001 8675 171 8567 45 0.003
1.0E-12 9278 210 9108 74 0.001 9191 178 9076 50 0.003
1.0E-14 9754 217 9578 81 0.001 9663 185 9542 55 0.003
1.0E-16 10185 223 10003 87 0.001 10091 191 9965 59 0.003

cfat200-2 degree

0.2 3218 227 3029 154 0.033 3041 172 2963 4 0.027
0.1 3448 235 3256 160 0.033 3267 178 3185 6 0.027
0.01 3996 255 3795 173 0.033 3803 194 3713 11 0.027

1.0E-4 4726 280 4514 193 0.033 4518 216 4416 17 0.027
1.0E-6 5268 300 5048 209 0.033 5049 232 4938 22 0.027
1.0E-8 5718 316 5491 223 0.033 5490 245 5371 26 0.027
1.0E-10 6110 329 5878 235 0.033 5875 257 5749 30 0.027
1.0E-12 6463 342 6225 247 0.033 6220 267 6089 33 0.027
1.0E-14 6786 354 6543 257 0.033 6537 277 6400 36 0.027
1.0E-16 7079 364 6832 267 0.033 6823 286 6682 38 0.027

ca-netscience degree

0.2 28587 1535 26148 201 0.000 28164 1002 26169 196 0.000
0.1 30122 1580 27636 207 0.000 29689 1029 27657 200 0.000
0.01 33758 1686 31158 228 0.000 33300 1098 31183 216 0.000

1.0E-4 38593 1828 35840 269 0.000 38103 1192 35874 251 0.000
1.0E-6 42180 1936 39313 306 0.000 41665 1265 39355 285 0.000
1.0E-8 45155 2026 42192 338 0.000 44620 1327 42243 317 0.000
1.0E-10 47751 2104 44705 367 0.000 47198 1381 44763 347 0.000
1.0E-12 50082 2175 46962 394 0.000 49514 1429 47026 374 0.000
1.0E-14 52216 2239 49027 420 0.000 51633 1474 49098 400 0.000
1.0E-16 54151 2297 50900 444 0.000 53555 1515 50977 423 0.000

Table 2: Results for stochastic minimum weight dominating set with different confidence levels of α where α = 1−β.
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3-Objective Pareto Optimization for Problems with Chance Constraints A PREPRINT

Graph weight gype β
SEMO2D SEMO3D GSEMO2D GSEMO3D

Mean Std Mean Std p-value Mean Std Mean Std p-value

cfat200-1 uniform

0.2 3618 76 3599 82 0.308 3615 91 3599 79 0.544
0.1 3994 82 3970 82 0.268 3989 96 3972 80 0.544
0.01 4877 101 4842 86 0.169 4866 109 4845 86 0.535

1.0E-4 6030 123 5985 94 0.128 6015 126 5991 98 0.455
1.0E-6 6870 139 6824 103 0.201 6855 138 6832 108 0.605
1.0E-8 7562 152 7519 113 0.326 7546 147 7525 118 0.641
1.0E-10 8163 163 8122 123 0.469 8145 154 8125 125 0.751
1.0E-12 8700 172 8660 130 0.535 8680 159 8660 130 0.859
1.0E-14 9190 180 9150 136 0.657 9169 164 9148 133 0.842
1.0E-16 9633 188 9593 142 0.636 9611 168 9589 137 0.865

cfat200-2 uniform

0.2 1797 72 1788 53 0.923 1791 49 1767 32 0.049
0.1 2049 78 2035 55 0.865 2040 54 2016 37 0.074
0.01 2634 92 2617 69 0.739 2621 72 2593 51 0.162

1.0E-4 3394 111 3369 85 0.535 3381 97 3336 65 0.070
1.0E-6 3948 125 3918 95 0.511 3937 113 3880 71 0.044
1.0E-8 4403 134 4372 106 0.496 4394 124 4329 77 0.032
1.0E-10 4799 143 4768 117 0.549 4793 132 4720 82 0.028
1.0E-12 5153 150 5123 125 0.559 5149 139 5071 85 0.024
1.0E-14 5476 157 5447 133 0.589 5475 145 5391 88 0.020
1.0E-16 5769 164 5740 141 0.559 5769 150 5681 91 0.021

ca-netscience uniform

0.2 32922 1308 32608 904 0.506 33042 1289 33007 1023 0.712
0.1 34456 1323 34115 907 0.544 34568 1302 34514 1028 0.745
0.01 38097 1361 37694 919 0.408 38189 1334 38089 1040 0.848

1.0E-4 42938 1414 42461 938 0.274 43012 1380 42846 1054 1.000
1.0E-6 46527 1457 45995 951 0.255 46591 1415 46377 1065 0.824
1.0E-8 49500 1493 48923 960 0.198 49557 1442 49303 1076 0.712
1.0E-10 52091 1526 51478 970 0.165 52145 1465 51857 1087 0.615
1.0E-12 54416 1554 53773 979 0.147 54467 1487 54150 1096 0.564
1.0E-14 56542 1581 55873 987 0.132 56592 1507 56249 1105 0.487
1.0E-16 58469 1605 57776 996 0.117 58517 1526 58151 1114 0.478

cfat200-1 uniform-fixed

0.2 3891 183 3851 129 0.530 3813 125 3721 59 0.006
0.1 4353 195 4306 135 0.464 4269 133 4169 59 0.006
0.01 5450 224 5385 149 0.333 5352 151 5235 59 0.006

1.0E-4 6913 264 6823 169 0.258 6795 177 6655 59 0.006
1.0E-6 7999 293 7890 183 0.234 7868 196 7710 59 0.006
1.0E-8 8901 317 8776 195 0.223 8757 212 8586 59 0.006
1.0E-10 9688 339 9549 206 0.217 9534 226 9350 59 0.006
1.0E-12 10395 358 10243 216 0.206 10232 239 10036 59 0.006
1.0E-14 11043 376 10878 225 0.191 10871 250 10665 59 0.006
1.0E-16 11630 392 11455 234 0.186 11450 261 11235 59 0.006

cfat200-2 random-fixed

0.2 1989 116 1980 112 0.690 1937 104 1866 50 0.011
0.1 2307 128 2297 123 0.679 2249 115 2171 54 0.011
0.01 3064 157 3048 149 0.554 2990 141 2897 63 0.011

1.0E-4 4073 196 4049 185 0.554 3978 176 3864 76 0.011
1.0E-6 4822 225 4792 213 0.554 4712 203 4583 86 0.011
1.0E-8 5444 249 5410 236 0.554 5321 225 5179 94 0.011
1.0E-10 5986 269 5948 257 0.554 5853 244 5700 102 0.011
1.0E-12 6474 288 6432 275 0.554 6330 261 6168 108 0.011
1.0E-14 6920 305 6875 292 0.554 6768 277 6596 114 0.011
1.0E-16 7325 321 7276 308 0.554 7164 291 6984 120 0.011

ca-netscience uniform-fixed

0.2 35378 1891 32956 844 0.000 34936 1747 32926 816 0.000
0.1 37239 1934 34718 844 0.000 36779 1785 34687 819 0.000
0.01 41659 2038 38901 844 0.000 41156 1878 38869 825 0.000

1.0E-4 47551 2178 44475 844 0.000 46991 2004 44439 831 0.000
1.0E-6 51927 2282 48614 843 0.000 51325 2098 48576 835 0.000
1.0E-8 55559 2369 52049 842 0.000 54922 2177 52009 838 0.000
1.0E-10 58729 2445 55048 842 0.000 58061 2246 55006 841 0.000
1.0E-12 61577 2513 57741 843 0.000 60881 2309 57698 844 0.000
1.0E-14 64184 2576 60207 843 0.000 63463 2366 60162 847 0.000
1.0E-16 66548 2633 62443 844 0.000 65805 2418 62397 850 0.000

cfat200-1 degree

0.2 4495 143 4392 10 0.002 4444 115 4387 6 0.001
0.1 4835 148 4727 14 0.002 4781 119 4721 9 0.003
0.01 5642 158 5523 25 0.001 5582 129 5512 16 0.004

1.0E-4 6718 172 6584 39 0.001 6650 143 6566 26 0.003
1.0E-6 7517 184 7372 50 0.001 7443 154 7349 34 0.003
1.0E-8 8180 193 8025 59 0.001 8101 163 7999 40 0.003
1.0E-10 8758 202 8596 67 0.001 8675 171 8567 45 0.003
1.0E-12 9278 210 9108 74 0.001 9191 178 9076 50 0.003
1.0E-14 9754 217 9578 81 0.001 9663 185 9542 55 0.003
1.0E-16 10185 223 10003 87 0.001 10091 191 9965 59 0.003

cfat200-2 degree

0.2 3218 227 3029 154 0.033 3041 172 2963 4 0.027
0.1 3448 235 3256 160 0.033 3267 178 3185 6 0.027
0.01 3996 255 3795 173 0.033 3803 194 3713 11 0.027

1.0E-4 4726 280 4514 193 0.033 4518 216 4416 17 0.027
1.0E-6 5268 300 5048 209 0.033 5049 232 4938 22 0.027
1.0E-8 5718 316 5491 223 0.033 5490 245 5371 26 0.027
1.0E-10 6110 329 5878 235 0.033 5875 257 5749 30 0.027
1.0E-12 6463 342 6225 247 0.033 6220 267 6089 33 0.027
1.0E-14 6786 354 6543 257 0.033 6537 277 6400 36 0.027
1.0E-16 7079 364 6832 267 0.033 6823 286 6682 38 0.027

ca-netscience degree

0.2 28587 1535 26148 201 0.000 28164 1002 26169 196 0.000
0.1 30122 1580 27636 207 0.000 29689 1029 27657 200 0.000
0.01 33758 1686 31158 228 0.000 33300 1098 31183 216 0.000

1.0E-4 38593 1828 35840 269 0.000 38103 1192 35874 251 0.000
1.0E-6 42180 1936 39313 306 0.000 41665 1265 39355 285 0.000
1.0E-8 45155 2026 42192 338 0.000 44620 1327 42243 317 0.000
1.0E-10 47751 2104 44705 367 0.000 47198 1381 44763 347 0.000
1.0E-12 50082 2175 46962 394 0.000 49514 1429 47026 374 0.000
1.0E-14 52216 2239 49027 420 0.000 51633 1474 49098 400 0.000
1.0E-16 54151 2297 50900 444 0.000 53555 1515 50977 423 0.000

Table 2: Results for stochastic minimum weight dominating set with different confidence levels of α where α = 1−β.
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Experimental Results (degree-based)

3-Objective Pareto Optimization for Problems with Chance Constraints A PREPRINT

Graph weight gype β
SEMO2D SEMO3D GSEMO2D GSEMO3D

Mean Std Mean Std p-value Mean Std Mean Std p-value

cfat200-1 uniform

0.2 3618 76 3599 82 0.308 3615 91 3599 79 0.544
0.1 3994 82 3970 82 0.268 3989 96 3972 80 0.544
0.01 4877 101 4842 86 0.169 4866 109 4845 86 0.535

1.0E-4 6030 123 5985 94 0.128 6015 126 5991 98 0.455
1.0E-6 6870 139 6824 103 0.201 6855 138 6832 108 0.605
1.0E-8 7562 152 7519 113 0.326 7546 147 7525 118 0.641
1.0E-10 8163 163 8122 123 0.469 8145 154 8125 125 0.751
1.0E-12 8700 172 8660 130 0.535 8680 159 8660 130 0.859
1.0E-14 9190 180 9150 136 0.657 9169 164 9148 133 0.842
1.0E-16 9633 188 9593 142 0.636 9611 168 9589 137 0.865

cfat200-2 uniform

0.2 1797 72 1788 53 0.923 1791 49 1767 32 0.049
0.1 2049 78 2035 55 0.865 2040 54 2016 37 0.074
0.01 2634 92 2617 69 0.739 2621 72 2593 51 0.162

1.0E-4 3394 111 3369 85 0.535 3381 97 3336 65 0.070
1.0E-6 3948 125 3918 95 0.511 3937 113 3880 71 0.044
1.0E-8 4403 134 4372 106 0.496 4394 124 4329 77 0.032
1.0E-10 4799 143 4768 117 0.549 4793 132 4720 82 0.028
1.0E-12 5153 150 5123 125 0.559 5149 139 5071 85 0.024
1.0E-14 5476 157 5447 133 0.589 5475 145 5391 88 0.020
1.0E-16 5769 164 5740 141 0.559 5769 150 5681 91 0.021

ca-netscience uniform

0.2 32922 1308 32608 904 0.506 33042 1289 33007 1023 0.712
0.1 34456 1323 34115 907 0.544 34568 1302 34514 1028 0.745
0.01 38097 1361 37694 919 0.408 38189 1334 38089 1040 0.848

1.0E-4 42938 1414 42461 938 0.274 43012 1380 42846 1054 1.000
1.0E-6 46527 1457 45995 951 0.255 46591 1415 46377 1065 0.824
1.0E-8 49500 1493 48923 960 0.198 49557 1442 49303 1076 0.712
1.0E-10 52091 1526 51478 970 0.165 52145 1465 51857 1087 0.615
1.0E-12 54416 1554 53773 979 0.147 54467 1487 54150 1096 0.564
1.0E-14 56542 1581 55873 987 0.132 56592 1507 56249 1105 0.487
1.0E-16 58469 1605 57776 996 0.117 58517 1526 58151 1114 0.478

cfat200-1 uniform-fixed

0.2 3891 183 3851 129 0.530 3813 125 3721 59 0.006
0.1 4353 195 4306 135 0.464 4269 133 4169 59 0.006
0.01 5450 224 5385 149 0.333 5352 151 5235 59 0.006

1.0E-4 6913 264 6823 169 0.258 6795 177 6655 59 0.006
1.0E-6 7999 293 7890 183 0.234 7868 196 7710 59 0.006
1.0E-8 8901 317 8776 195 0.223 8757 212 8586 59 0.006
1.0E-10 9688 339 9549 206 0.217 9534 226 9350 59 0.006
1.0E-12 10395 358 10243 216 0.206 10232 239 10036 59 0.006
1.0E-14 11043 376 10878 225 0.191 10871 250 10665 59 0.006
1.0E-16 11630 392 11455 234 0.186 11450 261 11235 59 0.006

cfat200-2 random-fixed

0.2 1989 116 1980 112 0.690 1937 104 1866 50 0.011
0.1 2307 128 2297 123 0.679 2249 115 2171 54 0.011
0.01 3064 157 3048 149 0.554 2990 141 2897 63 0.011

1.0E-4 4073 196 4049 185 0.554 3978 176 3864 76 0.011
1.0E-6 4822 225 4792 213 0.554 4712 203 4583 86 0.011
1.0E-8 5444 249 5410 236 0.554 5321 225 5179 94 0.011
1.0E-10 5986 269 5948 257 0.554 5853 244 5700 102 0.011
1.0E-12 6474 288 6432 275 0.554 6330 261 6168 108 0.011
1.0E-14 6920 305 6875 292 0.554 6768 277 6596 114 0.011
1.0E-16 7325 321 7276 308 0.554 7164 291 6984 120 0.011

ca-netscience uniform-fixed

0.2 35378 1891 32956 844 0.000 34936 1747 32926 816 0.000
0.1 37239 1934 34718 844 0.000 36779 1785 34687 819 0.000
0.01 41659 2038 38901 844 0.000 41156 1878 38869 825 0.000

1.0E-4 47551 2178 44475 844 0.000 46991 2004 44439 831 0.000
1.0E-6 51927 2282 48614 843 0.000 51325 2098 48576 835 0.000
1.0E-8 55559 2369 52049 842 0.000 54922 2177 52009 838 0.000
1.0E-10 58729 2445 55048 842 0.000 58061 2246 55006 841 0.000
1.0E-12 61577 2513 57741 843 0.000 60881 2309 57698 844 0.000
1.0E-14 64184 2576 60207 843 0.000 63463 2366 60162 847 0.000
1.0E-16 66548 2633 62443 844 0.000 65805 2418 62397 850 0.000

cfat200-1 degree

0.2 4495 143 4392 10 0.002 4444 115 4387 6 0.001
0.1 4835 148 4727 14 0.002 4781 119 4721 9 0.003
0.01 5642 158 5523 25 0.001 5582 129 5512 16 0.004

1.0E-4 6718 172 6584 39 0.001 6650 143 6566 26 0.003
1.0E-6 7517 184 7372 50 0.001 7443 154 7349 34 0.003
1.0E-8 8180 193 8025 59 0.001 8101 163 7999 40 0.003
1.0E-10 8758 202 8596 67 0.001 8675 171 8567 45 0.003
1.0E-12 9278 210 9108 74 0.001 9191 178 9076 50 0.003
1.0E-14 9754 217 9578 81 0.001 9663 185 9542 55 0.003
1.0E-16 10185 223 10003 87 0.001 10091 191 9965 59 0.003

cfat200-2 degree

0.2 3218 227 3029 154 0.033 3041 172 2963 4 0.027
0.1 3448 235 3256 160 0.033 3267 178 3185 6 0.027
0.01 3996 255 3795 173 0.033 3803 194 3713 11 0.027

1.0E-4 4726 280 4514 193 0.033 4518 216 4416 17 0.027
1.0E-6 5268 300 5048 209 0.033 5049 232 4938 22 0.027
1.0E-8 5718 316 5491 223 0.033 5490 245 5371 26 0.027
1.0E-10 6110 329 5878 235 0.033 5875 257 5749 30 0.027
1.0E-12 6463 342 6225 247 0.033 6220 267 6089 33 0.027
1.0E-14 6786 354 6543 257 0.033 6537 277 6400 36 0.027
1.0E-16 7079 364 6832 267 0.033 6823 286 6682 38 0.027

ca-netscience degree

0.2 28587 1535 26148 201 0.000 28164 1002 26169 196 0.000
0.1 30122 1580 27636 207 0.000 29689 1029 27657 200 0.000
0.01 33758 1686 31158 228 0.000 33300 1098 31183 216 0.000

1.0E-4 38593 1828 35840 269 0.000 38103 1192 35874 251 0.000
1.0E-6 42180 1936 39313 306 0.000 41665 1265 39355 285 0.000
1.0E-8 45155 2026 42192 338 0.000 44620 1327 42243 317 0.000
1.0E-10 47751 2104 44705 367 0.000 47198 1381 44763 347 0.000
1.0E-12 50082 2175 46962 394 0.000 49514 1429 47026 374 0.000
1.0E-14 52216 2239 49027 420 0.000 51633 1474 49098 400 0.000
1.0E-16 54151 2297 50900 444 0.000 53555 1515 50977 423 0.000

Table 2: Results for stochastic minimum weight dominating set with different confidence levels of α where α = 1−β.
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Graph weight gype β
SEMO2D SEMO3D GSEMO2D GSEMO3D

Mean Std Mean Std p-value Mean Std Mean Std p-value

cfat200-1 uniform

0.2 3618 76 3599 82 0.308 3615 91 3599 79 0.544
0.1 3994 82 3970 82 0.268 3989 96 3972 80 0.544
0.01 4877 101 4842 86 0.169 4866 109 4845 86 0.535

1.0E-4 6030 123 5985 94 0.128 6015 126 5991 98 0.455
1.0E-6 6870 139 6824 103 0.201 6855 138 6832 108 0.605
1.0E-8 7562 152 7519 113 0.326 7546 147 7525 118 0.641
1.0E-10 8163 163 8122 123 0.469 8145 154 8125 125 0.751
1.0E-12 8700 172 8660 130 0.535 8680 159 8660 130 0.859
1.0E-14 9190 180 9150 136 0.657 9169 164 9148 133 0.842
1.0E-16 9633 188 9593 142 0.636 9611 168 9589 137 0.865

cfat200-2 uniform

0.2 1797 72 1788 53 0.923 1791 49 1767 32 0.049
0.1 2049 78 2035 55 0.865 2040 54 2016 37 0.074
0.01 2634 92 2617 69 0.739 2621 72 2593 51 0.162

1.0E-4 3394 111 3369 85 0.535 3381 97 3336 65 0.070
1.0E-6 3948 125 3918 95 0.511 3937 113 3880 71 0.044
1.0E-8 4403 134 4372 106 0.496 4394 124 4329 77 0.032
1.0E-10 4799 143 4768 117 0.549 4793 132 4720 82 0.028
1.0E-12 5153 150 5123 125 0.559 5149 139 5071 85 0.024
1.0E-14 5476 157 5447 133 0.589 5475 145 5391 88 0.020
1.0E-16 5769 164 5740 141 0.559 5769 150 5681 91 0.021

ca-netscience uniform

0.2 32922 1308 32608 904 0.506 33042 1289 33007 1023 0.712
0.1 34456 1323 34115 907 0.544 34568 1302 34514 1028 0.745
0.01 38097 1361 37694 919 0.408 38189 1334 38089 1040 0.848

1.0E-4 42938 1414 42461 938 0.274 43012 1380 42846 1054 1.000
1.0E-6 46527 1457 45995 951 0.255 46591 1415 46377 1065 0.824
1.0E-8 49500 1493 48923 960 0.198 49557 1442 49303 1076 0.712
1.0E-10 52091 1526 51478 970 0.165 52145 1465 51857 1087 0.615
1.0E-12 54416 1554 53773 979 0.147 54467 1487 54150 1096 0.564
1.0E-14 56542 1581 55873 987 0.132 56592 1507 56249 1105 0.487
1.0E-16 58469 1605 57776 996 0.117 58517 1526 58151 1114 0.478

cfat200-1 uniform-fixed

0.2 3891 183 3851 129 0.530 3813 125 3721 59 0.006
0.1 4353 195 4306 135 0.464 4269 133 4169 59 0.006
0.01 5450 224 5385 149 0.333 5352 151 5235 59 0.006

1.0E-4 6913 264 6823 169 0.258 6795 177 6655 59 0.006
1.0E-6 7999 293 7890 183 0.234 7868 196 7710 59 0.006
1.0E-8 8901 317 8776 195 0.223 8757 212 8586 59 0.006
1.0E-10 9688 339 9549 206 0.217 9534 226 9350 59 0.006
1.0E-12 10395 358 10243 216 0.206 10232 239 10036 59 0.006
1.0E-14 11043 376 10878 225 0.191 10871 250 10665 59 0.006
1.0E-16 11630 392 11455 234 0.186 11450 261 11235 59 0.006

cfat200-2 random-fixed

0.2 1989 116 1980 112 0.690 1937 104 1866 50 0.011
0.1 2307 128 2297 123 0.679 2249 115 2171 54 0.011
0.01 3064 157 3048 149 0.554 2990 141 2897 63 0.011

1.0E-4 4073 196 4049 185 0.554 3978 176 3864 76 0.011
1.0E-6 4822 225 4792 213 0.554 4712 203 4583 86 0.011
1.0E-8 5444 249 5410 236 0.554 5321 225 5179 94 0.011
1.0E-10 5986 269 5948 257 0.554 5853 244 5700 102 0.011
1.0E-12 6474 288 6432 275 0.554 6330 261 6168 108 0.011
1.0E-14 6920 305 6875 292 0.554 6768 277 6596 114 0.011
1.0E-16 7325 321 7276 308 0.554 7164 291 6984 120 0.011

ca-netscience uniform-fixed

0.2 35378 1891 32956 844 0.000 34936 1747 32926 816 0.000
0.1 37239 1934 34718 844 0.000 36779 1785 34687 819 0.000
0.01 41659 2038 38901 844 0.000 41156 1878 38869 825 0.000

1.0E-4 47551 2178 44475 844 0.000 46991 2004 44439 831 0.000
1.0E-6 51927 2282 48614 843 0.000 51325 2098 48576 835 0.000
1.0E-8 55559 2369 52049 842 0.000 54922 2177 52009 838 0.000
1.0E-10 58729 2445 55048 842 0.000 58061 2246 55006 841 0.000
1.0E-12 61577 2513 57741 843 0.000 60881 2309 57698 844 0.000
1.0E-14 64184 2576 60207 843 0.000 63463 2366 60162 847 0.000
1.0E-16 66548 2633 62443 844 0.000 65805 2418 62397 850 0.000

cfat200-1 degree

0.2 4495 143 4392 10 0.002 4444 115 4387 6 0.001
0.1 4835 148 4727 14 0.002 4781 119 4721 9 0.003
0.01 5642 158 5523 25 0.001 5582 129 5512 16 0.004

1.0E-4 6718 172 6584 39 0.001 6650 143 6566 26 0.003
1.0E-6 7517 184 7372 50 0.001 7443 154 7349 34 0.003
1.0E-8 8180 193 8025 59 0.001 8101 163 7999 40 0.003
1.0E-10 8758 202 8596 67 0.001 8675 171 8567 45 0.003
1.0E-12 9278 210 9108 74 0.001 9191 178 9076 50 0.003
1.0E-14 9754 217 9578 81 0.001 9663 185 9542 55 0.003
1.0E-16 10185 223 10003 87 0.001 10091 191 9965 59 0.003

cfat200-2 degree

0.2 3218 227 3029 154 0.033 3041 172 2963 4 0.027
0.1 3448 235 3256 160 0.033 3267 178 3185 6 0.027
0.01 3996 255 3795 173 0.033 3803 194 3713 11 0.027

1.0E-4 4726 280 4514 193 0.033 4518 216 4416 17 0.027
1.0E-6 5268 300 5048 209 0.033 5049 232 4938 22 0.027
1.0E-8 5718 316 5491 223 0.033 5490 245 5371 26 0.027
1.0E-10 6110 329 5878 235 0.033 5875 257 5749 30 0.027
1.0E-12 6463 342 6225 247 0.033 6220 267 6089 33 0.027
1.0E-14 6786 354 6543 257 0.033 6537 277 6400 36 0.027
1.0E-16 7079 364 6832 267 0.033 6823 286 6682 38 0.027

ca-netscience degree

0.2 28587 1535 26148 201 0.000 28164 1002 26169 196 0.000
0.1 30122 1580 27636 207 0.000 29689 1029 27657 200 0.000
0.01 33758 1686 31158 228 0.000 33300 1098 31183 216 0.000

1.0E-4 38593 1828 35840 269 0.000 38103 1192 35874 251 0.000
1.0E-6 42180 1936 39313 306 0.000 41665 1265 39355 285 0.000
1.0E-8 45155 2026 42192 338 0.000 44620 1327 42243 317 0.000
1.0E-10 47751 2104 44705 367 0.000 47198 1381 44763 347 0.000
1.0E-12 50082 2175 46962 394 0.000 49514 1429 47026 374 0.000
1.0E-14 52216 2239 49027 420 0.000 51633 1474 49098 400 0.000
1.0E-16 54151 2297 50900 444 0.000 53555 1515 50977 423 0.000

Table 2: Results for stochastic minimum weight dominating set with different confidence levels of α where α = 1−β.
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“Many”-objective optimization + 
robustness



Introduction
• Colloquially, “many-objective” optimization problems (MaOP) is a 

term used in evolutionary computation community to denote a 
subset of multi-objective problems (MOP) with more than 3 
objectives

• The reason for this differentiation is that increasing number of 
objectives, especially beyond 3, bring additional challenges in 
search, visualization and decision-making

• The research in MaOPs has proliferated in the last decade, but 
limited for the most part to the deterministic optimization 
scenarios

• In this part of the tutorial, we look into some works that use 
MaOP formulations while considering stochasticity



Robustness – different types
Feasibility robustness: Robustness with respect to constraint violation. (also referred 

to as Reliability). It measures how likely a design is to violate certain constraints.

Performance robustness: Robustness with respect to the given objective value. It measures 
how likely a design is to deliver its performance. 

Types of robustness. Design ‘B’ is more robust in both cases, while ‘A’ 
has better objective value (f(x) is being maximized)



Robustness – different types
• Robustness is primarily incorporated in the problem through re-formulation by: 

• Additional or modified the objectives
• Additional or modified constraints

• If robustness is specified as an objective, there is an opportunity to view trade-offs 
between the design performance and robustness

• If both feasibility and performance robustness are considered as additional objectives, the 
problem tends to become MaOP. Solving such a formulation might provide more options 
for studying trade-offs, but is more challenging than solving MOPs. 

• Therefore many of the studies are inclined towards limiting the objectives, and using 
constraints in the re-formulation. 

• Given the advancements in the field of deterministic MaOPs in the last decade, it is 
worthwhile considering formulations that use additional objectives for robust optimization



Common (re-)formulations

Some existing formulations used for robust optimization [Ray et al, JMD 2015]



Proposed formulation(s)

𝑆𝑖𝑔𝑚𝑎!  and 𝑆𝑖𝑔𝑚𝑎"  are 
robustness measures 
denoting the number of 
standard deviations between 
the mean and spec limit

[Asafuddoula et al, IEEE TEVC 2015]



Search method
Decomposition based Evolutionary Algorithm (DBEA) for robust optimization

(Other methods suitable for MaOPs can also be used) [Ray et al, JMD 2015]



Results

Test problem: single-objective

Test problem: bi-objective

Applications studied: 
• Welded beam design, Coil compression spring design, Car side impact design 

problem, Aircraft design, Water resource management, etc. 
• The problems span one to ten objectives.

[Asafuddoula et al, IEEE TEVC 2015; Ray et al, JMD 2015]



Robust re-design

• Re-Design for Robustness (RDR) represents a 
practical class of problems, where a limited set 
of components of an existing product are re-
designed to improve the overall robustness of 
the product. 

• This avoids the need to design the product from 
scratch and enables the use of existing inventory 
of some of the components. 

• The central question is given an existing baseline 
design, which components can be changed to 
improve the robustness of the product? 

• The number of changed components relative to 
the existing design can be added as an objective 
while solving the previous (FPR) formulation

• The resulting formulation is referred to as FPRR

[Singh et al, EMO 2015]



Robust re-design example
Example: Car side impact design problem

• 1 objective, 7 Variables,  10 constraints
• Baseline design available is infeasible (hence sigma level 0)
• The re-design enables it to get to nearly 6-sigma design by changing only 2 of the 

variables
• Expected performance is very similar to the case of enabling all variables to change

[Singh et al, EMO 2015]



An alternate many-objective formulation

• The limitations of the existing optimization formulations include, e.g. 
o 𝑝(𝑓	(𝐴) 	≤ 	𝑓	(𝐶)) 	= 	88.23%; yet 𝜇" 	+ 	4𝜎" or worst 𝑓 metrics will (mis-)identify 

C as the better design among the two.
o worst 𝑓 has many indistinguishable regions and needs bilevel formulation.
o considering all ( 𝜇" 	, 𝜎" )-ND solutions yields several designs with poor 

performance and low uncertainty.

Consider a single-objective optimization problem with stochasticity

Some basic reformulations: optimize	𝜇" 	+ 𝑤𝜎", worst 𝑓,	or multi-objective (𝜇", 𝜎") 

[Singh and Branke, PPSN 2022]



An alternate many-objective formulation

• This function defines, for each possible probability 𝑝	 ∈ 	 [0, 1] the fitness value that is 
obtained at least with that probability. More formally: 

𝑄𝐹	(𝑥, 𝑝) 	= 	inf{𝑦	 ∈ 	𝑅 ∶ 	𝑝	 ≤ 	𝐺(𝑓	(𝑥))}

• To identify all first-order stochastically non-dominated solutions, we solve: 
min𝑄𝐹	(𝑥, 𝑝)	 ∀𝑝	 𝑠. 𝑡. 	 𝑥#$ 	≤ 	𝑥_𝑖	 ≤ 	 𝑥#% 	, 𝑖	 = 	1, . . . 𝑛& .	

• In this definition, a solution 𝑥' is considered better than another solution 𝑥( if 𝑄𝐹(𝑥') 
yields a lower or equal value than 𝑄𝐹(𝑥() (for minimization) for all values of 𝑝	 ∈
	[0, 1]. This is equivalent to 𝑥' first-order stochastically dominating 𝑥(.

We propose robustness based on the quantile function (QF) of the 
objective computed within 𝑥#

• In this figure, 
o Solution A stochastically 

dominates B, D, E
o {A,C} and {B,C} are non-

dominated
o A, B, C, D all dominate E
o (and so on)

[Singh and Branke, PPSN 2022]



Search
Customized EA for finding stochastically non-dominated 
solutions:

• Discretization: The quantile function is discretized 
using 𝑀 uniformly sampled values of 𝑝 ∈ 	 [0	1]; leading 
to 𝑀−objective problem. 𝑁)   samples are used to 
compute the objective values.

• Environmental selection using first-order stochastic 
non-domination ranking: 
o Compute 𝑑#* = max(max

+	
𝑓+ 𝑗 − 𝑓+ 𝑖 ), 0)

o Compute 𝑑𝑀𝑖𝑛 𝑖 = min
*∈.	

𝑑#*
o Remove solution with lowest 𝑑𝑀𝑖𝑛; recompute 𝑑#*
o Repeat until all solutions are eliminated; reverse 

the sequence to get the final ranks
• Strategies for reducing function evaluations: 

o reuse the neighbor solutions’ samples for QF 
calculation

o Use Kriging models to approximate the QF values 
in lieu of true evaluations

[Singh and Branke, PPSN 2022]



Results
Our experiments thus include four variants: 
• V1 = Baseline; neighboring samples OFF, surrogates OFF 
• V2 = reuse neighboring samples OFF, surrogates ON 
• V3 = reuse neighboring samples ON, surrogates OFF 
• V4 = reuse neighboring samples ON, surrogates ON.

• All variants achieve a low median IGD. Thus, the proposed EA is competent in 
identifying stochastically ND solutions. 

• The IGD of V2-V4 is generally 1-4 times that obtained by V1. At the same time, the 
typical reduction in FE is 8-fold for V2 and 20 to 40-fold for V3-V4 relative to V1. Thus, 
large savings in FE are achieved with little compromise on solution quality.

[Singh and Branke, PPSN 2022]



Results

For each problem, left subfigure shows solutions in 𝑓	space, while the
            right figure shows the solutions in the QF space

(a) TP3 (b) TP7

(c) TP8 (d) TP10

A visualization of the typical results obtained (similar quality for all variants)

The median convergence 
plots indicate drastic 
speed-up

Convergence plots for selected problems (TP1, TP2, TP3)
[Singh and Branke, PPSN 2022]
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