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Introduction



Introduction

* Many real-world optimization problems include
uncertainties which effect the quality of solutions.

For example:

* Evaluating the performance of a machine does not give
exactly the same result even if all parameters are the same.

* Traveling from A to B on a planned route takes different
amounts of times and it’s hard to predict the exact duration

of the trip.



Introduction

* Noise can occur at different stages.

 Theoretical studies distinguish where noise is applied before
or after functions evaluation.

Prior noise:
e effects the solution before the evaluations.

 Here a solution component might change before evaluation.

Posterior noise:

e adds noise to the functions value (dependent on a
known/unknown distribution)



Introduction

* Many difficulties arise in stochastic optimization as the
known realization is not known at the time of optimization.

 Knowledge about the ground truth is often gathered while
implementing a solution.

 This new knowledge can potentially be used to reduce
uncertainties for solution components that have not already
been implemented.

e This tutorial will cover a selected set of topics for stochastic
optimization using evolutionary algorithms.



Evolutionary algorithms (EAs)

* Evolutionary algorithms are general purpose algorithms.
 follow Darwin's principle (survival of the fittest).
 work with a set of solutions called population.

* parent population produces offspring population by variation
operators (mutation, crossover).

e select individuals from the parents and children to create new
parent population.

e |terate the process until a “good solution” has been found.

EAs are adaptive and often yield good solutions for complex,
dynamic and/or stochastic problems.
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Real-World Example
Mine Planning



Significance of Uncertainty Modeling

and Quantification
Metal Supply-Demand Conundrum
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e Optimising revenue taking into account uncertainties

in the block model.

e Capture the maximum economic potential of mineral resources.

e Optimising a strategic long term plan based on geological estimation
uncertainty in the mine scheduling process.



Background on Uncertainties
in the Block Model

* Block model is a collection of spatially located blocks with
set of attributes (rock lithological domain, ore grade, rock

density).

« Example data based on the Neuronal Network prediction:

y Predicted copper grade (%Cu): 0.41285940
0.38882205

0.24948858
0.24949805
origin  Block X 0.24949934




The Profit-based Discounted
Knapsack Problem



Motivation

e Often benefits of a given goal function can be impacted by
uncertainties (e.g., profit obtainable from blocks in mining).

 Qur goal is to maximize profit, but we would also like to
guarantee that the profit only drops with a small probability
below an optimized profit value.

e Consider the classical knapsack problem with stochastic
profit.

* We aim to maximize the profit value P for which we can
guarantee that it’s achieved by the solution presented by

our algorithm with probability at least 1 — a,,.



Stochastic Knapsack Problem

In the classical problem, there are given nitems 1, ..., n where
each item has a profit p; and a weight w;,, the goal is to maximize

the profit p(z) = >_._; pix; under the condition that
w(z) = >, w;x; < B fora given weight bound B holds.

We consider the stochastic version, where the profits p;are
stochastic, and the weights are still deterministic.




Evolutionary Algorithms for Limiting the Effect
of Uncertainty for the Knapsack Problem with
Stochastic Profits

Goal: is to maximize the profit P among solutions x in {0,1}"
for which we can guarantee that there is only a small
probability a, of dropping below P.

max P s.t. Pr(p(z) < )
w(x) <

We consider (a) the (1+1) EA, (b) the (1+1) EA with heavy tail
mutation, (c) (1 + 1) EA with the heavy tail mutation and the
Discounted Greedy Uniform Crossover.

Aneta Neumann, Xie Yue, Frank Neumann,
Evolutionary Algorithms for Limiting the Effect of Uncertainty for the Knapsack Problem with Stochastic Profit, PPSN (1) 2022
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Evolutionary Algorithms for Limiting the Effect
of Uncertainty for the Knapsack Problem with
Stochastic Profits

Algorithm 3: (1 + 1) EA

1: Randomly generate p initial solutions as the initial population P;
2: while stopping criterion not meet do
3: Let x and y be two different individual from P chosen uniformly at random:;

4:  if rand([0,1]) < p. then
5: apply the discounted greedy uniform crossover operator to z and y to produce
an offspring z.
6 else
T Choose one individual x from P uniformly at random and let z be a copy of x.
8 end if
9:  apply the heavy-tail mutation operator to z;
10:  if f(z) > f(z) then
11: P+ (P\{z})U{z}
12: else
13: if f(z) > f(y) then
14: P« (P\{y}) U{z}
15: end if
16:  end if

17: end while




Setting for Stochastic Profit

We consider different chance constraint settings in terms of
the uncertainty level 6,, and the probability bound a,,.

Chebyshev’s Inequality:

We assume that for a given solution only the expected value
1(x) and the variance v(x) are known.

Hoeffding Bound:
We assume that each element j takes on a profit
pi € [ — Op, i + 6p] independently of the other items.



Evolutionary Algorithms for Limiting the Effect
of Uncertainty for the Knapsack Problem with
Stochastic Profits

The fitness of a search point x € {0, 1}" is given by

f(z) = (u(z),p(x))
where u(x) = max{w(x) — B, 0} is the amount of constraint
violation of the bound B by the weight that should be minimized

and p(x) is the discounted profit of solution x that should be
maximized.

Ponen(z) = plz) — /(1 = ap) fay - 1/ ()

PHoef(T) = pu(z \/ln (1/ep) - 2|z|1

Comparison of Chebyshev and Hoeffding based fitness

functions
PHoef (%) > Poner(z) <=  In(1/ay) - a,/(1 —a,) < 1/6




Evolutionary Algorithms for Limiting the Effect
of Uncertainty for the Knapsack Problem with

Stochastic Profits

Results for the Chebyshev based function pepep-

Settings: consider all combinations of a,= 0.1, 0.01, 0.001, and 6, = 25, 50, uncorrelated
and bounded strong correlated ones, with n = 100, 300, 500 items.

(1+1) EA (1+1) EA-HT (u+1) EA
B ap Op PCheb std stat PCheb std stat DPCheb std stat

uncorr_100 2407 0.1 25| [11073.5863] 36.336192| 2(*), 3(*)111069.0420| 46.285605| 1), 3(*) [11057.4420| 59.495722[ 1) 2(*)
50| |10863.1496| 85.210231| 2(*), 3(*) |10889.4840| 37.175095|1(*), 3(*) |10883.7163| 53.635972| 1(*), 2(*)

0.01 25| |10641.9089| 63.402329| 20*), 3(*) 110664.5974| 29.489838| 1), 3(*) |10655.7251| 43.869265( 1), 2(*)

50| |10054.6427| 49.184220| 2(*), 3(*) |10066.2854| 36.689426| 1(*), 3(*) |10064.8734| 39.556767|1(*), 2(*)

0.001 25| [9368.33053| 46.894877| 2(*) 3(*) | 9368.2483| 34.904933|1*), 3(*) | 9365.5257| 40.458098| 1(*), 2(*)

50| |7475.44948| 50.681386| 2(*), 3(*) | 7490.6387| 27.819516| 1), 3(*) | 7497.5054| 14.098629|1(*) 2(*)

strong_100 4187 0.1 25| | 8638.0428| 68.740095|2(), 3(=)| 8698.2592| 64.435352|1(F), 30V | 8707.9271| 49.633473|1(F), 20*)
50| | 8441.9311| 80.335771(2(7), 3(-)| 8483.1151| 45.284814|1(H), 3(*) | 8481.0022| 55.979520|1(1) 2(*)

0.01 25| | 8214.8029| 56.705379|2(), 3(=)| 8230.9642| 42.084563|1(F), 3(*)| 8210.1448| 55.148757|1(1), 2(*)

50| | 7512.3033| 71.115520(2(7), 3(=)| 7563.5495| 37.758812|1(t), 3(*) | 7554.7382| 53.030592|1(1) 2(*)

0.001 25| | 6771.7849| 58.314395(2(7) 3(=)| 6797.0376| 42.944371|1(1) 30| 6793.0387| 43.492135|1(+) 2(*)

50| | 4832.2084| 88.887119|2(7), 3(=)| 4929.1483| 52.858392|1(+) 3(*)| 4902.0006| 44.976733|1(F), 2(*)

Main Results:

* introduced the knapsack problem with chance constrained profits.

* presented fitness functions for different stochastic settings that allow to maximize the
profit value P such that the probability of obtaining a profit less than P is upper
bounded by a,,.




Evolutionary Algorithms for Limiting the Effect
of Uncertainty for the Knapsack Problem with

Stochastic Profits

Results for the Hoeffding based function pyger.

(1+1) EA (1+1) EA-HT (u+1) EA
B ap  Op PHoef std stat PHoef std stat DHoef std stat

uncorr_100 2407 0.1 25| [10948.7292| 90.633230[2(), 3(*) [11016.8190| 49.768932| 1(1),3(H) [10981.3880| 37.569308] 1(*), 2(—)
50| |10707.1094| 43.869094|2(~), 3(*) [10793.1175| 58.150646| 1) 3(H) |10708.6094| 44.384035| 1(*) 2(~)

0.01 25| |10836.0906| 91.332983|2(7), 3(*) 110928.3054| 45.464936| 1(1) 3(H) |10866.9831| 45.408500| 1(*) 2()

50| |10482.6216| 46.444510[2(7), 30*) |10611.1895| 69.341044| 1(+) 3(H) |10477.2328| 47.065426| 1(*) 2()

0.001 25| |10765.3289| 68.565293|2(7), 3(*) [10862.7124| 49.091526| 1) 3(H) [10784.7286| 38.187390| 1(*) 2(—)

50| |10263.9426| 90.504901|2(~), 3(*) |10487.5621| 32.625499| 1) 3(H) 110309.8572| 44.811326| 1(*) 2(~)

strong_100 4187 0.1 25| | 8553.1744| 74.046187|2(7), 3(*) [8640.05156| 39.413105| 1°P) 3(+) | 8588.4894| 53.878268] 1), 2(~)
50| | 8264.8129| 63.309264|2(7), 3(*) | 8398.4354| 46.013234| 1(+) 3(H) | 8273.9670| 41.403505| 1(*), 2(—)

0.01 25| | 8422.9258| 70.464985|2(), 3(*) | 8540.2095| 63.072560| 1(+) 3(H) | 8447.8489| 59.841707| 1(*), 2(~)

50| | 7996.0193| 65.822419|2(7), 3(*) | 8181.2980| 45.667034| 1) 3(+) | 8013.1724| 56.445427| 1) 2(7)

0.001 25| | 8338.5159| 57.880350|2(7), 3(*)| 8460.7513| 53.402755| 1(1) 3(+) | 8362.9405| 51.607219| 1), 2(-)

50| | 7794.1245| 80.411946|2(7), 3() | 8017.8843| 53.266120| 1) 3(H) | 7833.5575| 37.293481| 1), 2(—)

uncorr_300 6853 0.1 25| [33831.9693|181.485453[2(7), 3(7)[34118.7631/200.095911] 1(H), 30) [34129.8891[172.788856] 1(H), 20+
50| [33380.4952|157.014552|2(7), 3(-)|33715.2964(199.074378| 1(1) | 3(*) |33662.2668|124.206823| 1(H), 2(*)

0.01 25| |33655.5737|234.136500(2( ), 3(7)|34014.3456|200.488072| 1), 3(*) |33962.8643(161.560953| 1(+), 2(*)

50| |32933.5174(291.623690|2(7), 3(~)(33327.8984(235.915481| 1(1), 3(*) 133277.4015|142.387738| 1(1) 2(*)

0.001 25| [33515.7445(219.707660(2( ), 3()|33806.1572|184.532069| 1), 3(*) |33835.4528|149.327823| 1(H), 2(*)

50| [32706.4466|176.599463|2( ), 3()|33112.7494|177.218747| 11, 3(*) |32940.4397|173.836538| 1(1) 2(*)

strong-300 13821 0.1 25| [24602.1254[171.596469[2(), 3(7)[24848.3209(100.078545| 1(F), 3(F) [24734.7210[127.268428| 1(H) 2()
50| |24184.8938(125.755762|2(7), 3(7)(24457.7279(118.679623| 1(T), 3(H) 124205.9660|116.049342| 1(+) 2(—)

0.01 25| |24476.1412|159.274566(2( ), 3(=)|24638.0751|105.088783| 1), 3(+) 124538.4199(101.959196| 1(H) 2()

50| [23653.3561|225.087307|2(7), 3()|24060.0806| 87.242862|1(+), 3(+) 123830.8655| 85.829604| 1(+) 2(~)

0.001 25| [24256.4468|173.293324(2(7), 3()|24558.9506|105.253206| 1), 3(+) 1243454340 |144.094192| 1(+) 2(=)

50| |23377.6774[143.350899|2(7), 3()(23843.7258|114.231223| 1(H), 3(H) 123520.1166(112.403711| 1(H) 2(~)




Multi-Objective Approaches for
chance-constrained submodular
problems



Motivation

Many problems involve stochastic components and constraints
that can only be violated with a small probability.

Example of such a constraint:
Pr(W(S) > B] < a.

Such constraints are known as chance constraints.

We investigate bio-inspired algorithms for submodular
problems with chance constraints.



Submodular Optimization Problems

Submodular functions are functions that allow to model|
problems with diminishing returns.

They allow to model many real-world optimization problems.

Evolutionary multi-objective algorithms using Pareto
optimization approaches have been shown to be very
successful for these problems, both from a theoretical and
empirical perspective.



Example: Sensor placement

Cover the largest possible area by selecting k sensors:




Example: Sensor placement

Cover the largest possible area by selecting k sensors:
Submodularr AC BC X and x € X\ B, f(BU{z}) — f(B) < f(Au{z}) — f(A).




Examples of Submodular Functions

Linear functions: All linear functions f: 2% — R with f(A) =", , w; for
some weights w: X — R are submodular. If w; > 0 for all ¢+ € X, then f is
also monotone.

Cut: Given a graph G = (V, F/) with nonnegative edge weights w: F — R>.
Let 6(S) be the set of all edges that contain both a vertex in S and V' \ S.
The cut function w(d(S)) is symmetric and submodular but not monotone.
Coverage: Let the ground set be X = {1,2,...,n}. Given a universe U with
n subsets A; C U for ¢ € X, and a non-negative weight function w: U —
R>o. The coverage function f: 2% — R with f(S) = |U,;cq Al and the
weighted coverage function f’ with f'(S) = w(lJ,cq 4i) = ZUGUies 4, w(u)
are monotone submodular.

e Rank of a matroid: The rank function r(A) = max{|S|: S C A,S € I} of a
matroid (X,Z) is monotone submodular.



Chance Constraints

One of the difficulties lies in evaluating whether a given solution
fulfills the chance constraint.

For independent Normally distributed random variables this can be
done exactly.

In other cases, one way is to use sampling to estimate the
probability of violating the constraint.

Another way is to use surrogate functions such as Chernoff bounds
?nd %Flwebyshev’s inequality to determine whether a solution is
easible.

These bounds don’t allow for a precise calculation for the probability
of a constraint violation.

However, the give an upper bound and a solution is accepted if its
upper bound is at most .

We establish conditions based on the expected cost, the variance,
and constraint B to show that a given solution is feasible.



Setting for Random Weights

We consider two settings for random weights of a given set of
items.

Both settings assume that the weights of the items are chosen
independent of each other.

Uniform independent and identically distributed (/ID) weights:

Wi(s) € [a—9d,a+ 9] (6 < a).

Uniform Weights with same dispersion

Wi(s) € la(s) — d,a(s) + 6.



Chance Constraint Conditions
Chernoff:

Lemma 1. Let W (s) € |a(s)—9, a(s)+0] be independently
chosen uniformly at random. If

(B~ EIW(X))) > \/36kTn(1/a),
where k = | X |, then Pr[W(X) > B] < a.

Chebyshev:

Lemma 2. Let X be a solution with expected weight
E\W (X)| and variance Var|W (X)|. If

B EW(X)| > \/(1 — a) Var[W(X)]

o)
then Pr[W(X) > B] <




Bi-objective approach / Pareto

Optimisation
Function value

A

‘ Theory: Greedy behavior
allows to obtain good
approximation results

Bi-objective approach
using multi-objective EAs
enables greedy behavior,
local search and benefit of
* interactions between
trade-offs solutions

Practice: Benefit of
evolution leads to high
performance in practice

»
»

B Cost value
Constraint bound



Bi-objective approach / Pareto
Optimisation

Function value
A

How large is this gap?

‘ * Not too big!!!

Chance constraint case stops earlier B Cost value
Constraint bound



Optimising Monotone Chance-Constrained
Submodular Functions Using Evolutionary
Multi-Objective Algorithms

* We consider the performance of the Global Simple Evolutionary Multi-
Objective Optimizer (GSEMO) and Non-dominated Sorting
Genetic Algorithm (NSGA-II) for the optimisation of stochastic constrained
submodular functions.

Goal: Bi-objective formulations of constrained submodular optimisation

problems in terms of Pareto optimisation enable evolutionary algorithms to
achieve:

» best theoretical performance guarantees and
» state-of-the-art practical results
» for a wide range of submodular optimisation problems.

Aneta Neumann, Frank Neumann: Optimising Monotone Chance-Constrained Submodular Functions
Using Evolutionary Multi-objective Algorithms. PPSN (1) 2020
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Submodular functions with Chance
Constraints (stochastic settings)

We consider the optimization of a monotone submodular
function f subject to a chance constraint where each element

s € V takes on a random weight W(s).

We examine constraints of the type
Pr(W(S) > C] < a

where W(S) =) .csw(s) isthe sum of the random weights
of the elements and Cis the given constraint bound. The
parameter a specifies the probability of exceeding the bound C
that can be tolerated for a feasible solution S.



Optimising Monotone Chance-Constrained
Submodular Functions Using Evolutionary
Multi-Objective Algorithms

The multi-objective fitness function: g(X) = (g,(X), g5(X))

* g, measures the tightness in terms of the constraint
* g, measures the quality of X in terms of the given submodular function f.

| Ew(X)-C if (C-Ew(X))/(6-1X])>1 always feasible
constraint g (x) = {Pr(W( )>C) if (Bw(X) <C)A(C - Ew(X))/(8]X] <1)
function 1+ (Bw(X) - C) if Ew(X)>C infeasible

f(X) if 91(X) <«

objective  gy(X) = {_1 if otherwise

function




Optimising Monotone Chance-Constrained
Submodular Functions Using Evolutionary
Multi-Objective Algorithms

* The case of uniform identically distributed (IID) weights.

l

: Theorem 1. Let k = min{n + 1, |C/a]} and assume |C/a| = w(1). Then the
| expected time until GSEMO has computed a (1—0(1))(1—1/e)-approzimation for
[ a given monotone submodular function under a chance constraint with uniform
: itd weights is O(nk(k + logn)).

Main Results:

e GSEMO using a multi-objective formulation of the problem based on tail

inequalities is able to achieve the same approximation guarantee as recently
studied greedy approaches.




Optimising Monotone Chance-Constrained
Submodular Functions Using Evolutionary
Multi-Objective Algorithms

Results for Influence Maximization and Maximum Coverage with uniform
chance constraints, respectively.

GA (1) GSEMO (2) NSGA-II (3) cla |6 [ca 1) GSEMO (2) NSGA-II (3)
C a § Mean Min |Max |Std |Stat Mean |Min |Max |Std |Stat
| mean min max std stat |mean min max std stat
0.1 0.5 5151| 55.75 5444 56.850.5571 1(H) £5.68 BA08 SEATOSEEL it 1o 01 05 448.00 |458.80 451.00 461.00 3.3156 1) 1457.97 449.00 461.00 4.1480  1(H)
20 0.1 1.0 376.00 |383.33 379.00 384.00 1.7555 1(*) |382.90 379.00 384.00 2.0060 1(+)
0.1 1.0 46.80| 50.65 49.53 51.680.5704 1V 50.54 49.61 52.010.6494 19 15 01 05 559.00 [559.33 555.00 562.00 2.0057 3(+)  [557.23 551.00 561.00 2.4309 1(=?,2(~)
50 0.1 0.5 90.55 94.54 93.41 95.610.5390 1() 3(+)| 92.90 90.75 94.82 1.0445 1() 2(>) 0.1 1.0 503.00 [507.80 503.00 509.00 1.1567 1¢¥)  |507.23 502.00 509.00 1.8323 1V
0.1 1.0 85.71| 88.63 86.66 90.68 0.9010 1(1) 3(+)| 86.89 85.79 88.83 0.8479 1(1) 2(-) b0 O-1 0.5 587.00 [587.20 585.00 589.00 1.2149  3(+)  583.90 580.00 588.00 1.9360 1(7),2(7)
oo Ol 05 144.16(147.28 145.94 149.33 0.8830 19 3(+)1144.17 142.37 146.18 0.9902  2(7) 0.1 1.0 569.00 |569.13 566.00 572.00 1.4559  3(*) |565.30 560.00 569.00 2.1520 1(=),2(7)
0.1 1.0 135.61/140.02 138.65 142.52 0.7362 1(1), 3(+)|136.58 134.80 138.21 0.9813  2(7) 0.001 0.5 413.00 |423.67 418.00 425.00 1.8815 1 |422.27 416.00 425.00 2.6121 19

0.001 1.0 376.00 |383.70 379.00 384.00 1.1492  1(¥)  |381.73 377.00 384.00 2.6514  1(+)

0.001 0.5 48.19| 50.64 49.10 51.74 0.6765 1(H) 50.33 49.16 51.250.5762 1(1)
0 0.001 0.5 526.00 |527.97 525.00 532.00 2.1573 1) 527.30 520.00 532.00 2.7436

(+) (+) 15
0.001 1.0 39.50| 44.53 43.63 45.550.4687 1 44.06 42.18 45.390.7846 1 0.001 1.0 448.00 |458.87 453.00 461.00 2.9564 1¢F)  |457.10 449.00 461.00 4.1469 19
0.001 0.5 75.71| 80.65 78.92 82.190.7731 1(}) 80.58 79.29 81.630.6167 1(}) 0.001 0.5 568.00 |568.87 565.00 572.00 1.5025 3¢*)  |564.60 560.00 570.00 2.7618 1¢=),2(=)
0.001 1.0 64.49| 69.79 68.89 71.740.6063 1Y) [69.96 68.90 71.050.6192 1(P) 0.001 1.0 526.00 |528.03 525.00 530.00 1.8843 1V [527.07 522.00 530.00 2.2427

100 0001 0.5 116.05(130.19 128.59 131.51 0.7389 10 3(H) 127,50 125.38 129.74 0.9257 1(H) 2(—)
0.001 1.0  96.18[108.95 107.26 109.93 0.6466 1(+),3(+)1107.91 106.67 110.17 0.7928 1(1) 2(~)

Main Results:
e Experimental results show that GSEMO computes significantly better solutions
than the greedy approach and often outperforms NSGA-II.
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3D Pareto Optimisation for
Problems with Chance Constraints



Chance constrained problem

Given n elements with stochastic weight where each weight w;
is chosen independently of the others according to a Normal distribution

N(p;,02),1 <1 <mn,where y; > lando; > 1,1 < ¢ < n.
Our goal is to
min W subjectto (Pr(w(z) < W) > a) A (Jz|1 > k) (1)

where w(z) = Y., wx;, x € {0,1}", and @ € [1/2,1].

Problem is equivalent to minimizing

(2) = plz) + Kan/ole), et (o], > k)

K, denotes the a-fractional point of the standard Normal distribution



2- and 3-objective Models

™
fan (@) = (A(), 5(x)

where

_ Z?:l“ixi x|y >k
) = {(k— 2h) - (L3 ) Jaly <

v

(SU) _ {Z?—l Uzzmi ‘l”l >k
(k—lzh)- A+, 07) lzh <k

Neumann/Witt 1JCAI 2022

Using the 3-objective model, we can also solve:

max c(x) subjectto Pr(w(x) < B) > a.

by returning for any given B and a the solution of maximal

c(x)-value in the final population that meets the constraint.

fap(x) = (p(z), v(z), c(x))

Pareto optimization turns
constraint c(x) into third objective.
Expected weight and variance no
longer need penalty terms.

Consequence:

Additional search direction,
but also many more trade-off
objective vectors.

3)



GSEMO

Algorithm 1: GSEMO

Choose = € {0, 1}" uniformly at random;
P« {z};
repeat
Choose x € P uniformly at random;
Create y by flipping each bit x; of x with probability %;
if Aw € P: w < y then
| P (P\{zePly=xz})U{y}

until stop;

Apply GSEMO to 2-objective and 3-objective model

SEMO differs from GSEMO flipping in each iteration
exactly one or two bits (2D case) or 1-bit (3D case).



Theoretical Investigations

Analyze GSEMO with respect to the time until it has produced for
each kand o = %an optimal solution for the case c(x) = |x|4.

Runtime Analysis: Measure time by the (expected) number of
fitness evaluations to reach the goal.



Theoretical Investigations

Key argument When considering ¢(x) = |x|{. Then there exists
for each a > ~ a convex combination of u(x) and v(x), i.e.

fx(x) = Ap(x) + (1 - Hv(x), 1 €[0,1]
such that if x* is minimal for f5(x) under the constraint
c(x) = kthen x* is minimal for @(z) = pu(z) + Kav/v(2),
and c(x) = k.

Implies: Set of desired solutions can be obtained by computing the
extremal corner points of the Pareto front.



3D Analysis based on 2-bit flips

Theditewr@u 1746 550 Ectadtime apiplGedaMPO lials aomapnstid engropiddticn Windl: indludes, ap optlmiah solution for the
problem given in Equation 3 with c(x)x= |x|1 for gny pgssi lerczin? ice of B and o € [1/2,1] is O(Bnaxn®(logn +
log Umax)), ga Lréxe*l)?k {I'UJ%/JQF %]3 o } (5511

in expected time O(Pyaxn®(logn + 108 Vmax))-

First step: Analyse time to get for each k
a solution with k elements and minimal expected value
Ar C(X)=k

Afterwards: Analyse progress via 2-bit flips
using argument from Neumann/Witt (1JCAI 2022)

Variance

v

Expected value



3D Analysis based on 1-bit flips

Theorem 3. The expected time until SEMO3D and GSEMO have computed a population which includes an optimal
solution for the problems given in Equation 1 (for any choice of k and o) and Equation 3 (with ¢(x) = |x|, for any

choice of B and o) is O(Ppaxn?) and it is at most 2e Py, axn?® with probability 1 — e~ (™),

4 c(x)=k
* () First step: Get the search point O".

Afterwards: Analyse progress via 1-bit flips

Variance

v

Expected value



Experiments

We consider a stochastic version of the minimum dominating set problem in
a given undirected graph

G=(V, E) with stochastic weights on the nodes.
A node dominates itself and all of its neighbors.

c(x) denotes the number of nodes dominated in the given search point x.
Constraint c(x)=n.

Weight of each node v; is chosen independently of the others according to a
Normal distribution N (ui, o}

10M fitness evaluations, 30 independent runs of each instance.

Uniform, Uniform-fixed, degree based weights.
Different valuesofa =1 — B.



Maximum Population Size during runs

Graph weight gype SEMO2D SEMO3D GSEMO2D | GSEMO3D
Mean | Std | Mean | Std Mean | Std | Mean | Std
cfat200-1 uniform 57 19 2921 | 964 56 16 2923 | 929
cfat200-2 uniform 29 11 348 128 23 10 361 128
ca-netscience uniform 69 22 5531 | 997 40 11 4631 | 678
ca-GrQc uniform 4 3 7519 | 488 3 1 3921 | 262
Erdos992 uniform 2 1 4476 | 338 1 1 2173 153
cfat200-1 uniform-fixed 1 0 66 12 1 0 67 11
cfat200-2 uniform-fixed 1 0 18 4 1 0 18 4
ca-netscience | uniform-fixed 1 0 401 43 1 0 403 40
ca-GrQc uniform-fixed 1 0 3565 | 251 1 0 1942 | 133
Erdos992 uniform-fixed 1 0 2217 | 102 1 0 1313 61
cfat200-1 degree 2 1 335 36 2 1 340 35
cfat200-2 degree 1 1 42 6 1 0 42 6
ca-netscience degree 22 8 3293 | 764 18 7 2981 | 585
ca-GrQc degree 3 2 6112 | 371 3 2 3240 | 252
Erdos992 degree 2 1 3128 | 166 2 1 1725 84

Table 1: Maximum population size for stochastic minimum weight dominating set.




Experimental Results (Uniform random)

Graph weight gype 3 SEMO2D SEMO3D GSEMO2D GSEMO3D

Mean Std Mean Std p-value Mean Std Mean Std p-value

0.2 3618 76 3599 82 0.308 3615 91 3599 79 0.544

0.1 3994 82 3970 82 0.268 3989 96 3972 80 0.544

0.01 4877 101 4842 86 0.169 4866 109 4845 86 0.535

1.0E-4 6030 123 5985 94 0.128 6015 126 5991 98 0.455

fat200-1 uniform 1.0E-6 6870 139 6824 103 0.201 6855 138 6832 108 0.605

1.0E-8 7562 152 7519 113 0.326 7546 147 7525 118 0.641

1.0E-10 8163 163 8122 123 0.469 8145 154 8125 125 0.751

1.0E-12 8700 172 8660 130 0.535 8680 159 8660 130 0.859

1.0E-14 9190 180 9150 136 0.657 9169 164 9148 133 0.842

1.0E-16 9633 188 9593 142 0.636 9611 168 9589 137 0.865

0.2 1797 72 1788 53 0.923 1791 49 1767 32 0.049

0.1 2049 78 2035 55 0.865 2040 54 2016 37 0.074

0.01 2634 92 2617 69 0.739 2621 72 2593 51 0.162

1.0E-4 3394 111 3369 85 0.535 3381 97 3336 65 0.070

fat200-2 uniform 1.0E-6 3948 125 3918 95 0.511 3937 113 3880 71 0.044

1.0E-8 4403 134 4372 106 0.496 4394 124 4329 77 0.032

1.0E-10 4799 143 4768 117 0.549 4793 132 4720 82 0.028

1.0E-12 5153 150 5123 125 0.559 5149 139 5071 85 0.024

1.0E-14 5476 157 5447 133 0.589 5475 145 5391 88 0.020

1.0E-16 5769 164 5740 141 0.559 5769 150 5681 91 0.021

0.2 32922 1308 32608 904 0.506 33042 1289 33007 1023 0.712

0.1 34456 1323 34115 907 0.544 34568 1302 34514 1028 0.745

0.01 38097 1361 37694 919 0.408 38189 1334 38089 1040 0.848

1.0E-4 42938 1414 42461 938 0.274 43012 1380 42846 1054 1.000

ca-netscience uniform 1.0E-6 46527 1457 45995 951 0.255 46591 1415 46377 1065 0.824

1.0E-8 49500 1493 48923 960 0.198 49557 1442 49303 1076 0.712

1.0E-10 52091 1526 51478 970 0.165 52145 1465 51857 1087 0.615

1.0E-12 54416 1554 53773 979 0.147 54467 1487 54150 1096 0.564

1.0E-14 56542 1581 55873 987 0.132 56592 1507 56249 1105 0.487

1.0E-16 58469 1605 57776 996 0.117 58517 1526 58151 1114 0.478




Experimental Results (Uniform fixed
variance)

Graph weight gype 3 SEMO2D SEMO3D GSEMO2D GSEMO3D

Mean Std Mean Std p-value Mean Std Mean Std p-value

0.2 3891 183 3851 129 0.530 3813 125 3721 59 0.006

0.1 4353 195 4306 135 0.464 4269 133 4169 59 0.006

0.01 5450 224 5385 149 0.333 5352 151 5235 59 0.006

1.0E-4 6913 264 6823 169 0.258 6795 177 6655 59 0.006

fat200-1 uniform-fixed 1.0E-6 7999 293 7890 183 0.234 7868 196 7710 59 0.006

1.0E-8 8901 317 8776 195 0.223 8757 212 8586 59 0.006

1.0E-10 9688 339 9549 206 0.217 9534 226 9350 59 0.006

1.0E-12 10395 358 10243 216 0.206 10232 239 10036 59 0.006

1.0E-14 11043 376 10878 225 0.191 10871 250 10665 59 0.006

1.0E-16 11630 392 11455 234 0.186 11450 261 11235 59 0.006

0.2 1989 116 1980 112 0.690 1937 104 1866 50 0.011

0.1 2307 128 2297 123 0.679 2249 115 2171 54 0.011

0.01 3064 157 3048 149 0.554 2990 141 2897 63 0.011

1.0E-4 4073 196 4049 185 0.554 3978 176 3864 76 0.011

fat200-2 random-fixed 1.0E-6 4822 225 4792 213 0.554 4712 203 4583 86 0.011

1.0E-8 5444 249 5410 236 0.554 5321 225 5179 94 0.011

1.0E-10 5986 269 5948 257 0.554 5853 244 5700 102 0.011

1.0E-12 6474 288 6432 275 0.554 6330 261 6168 108 0.011

1.0E-14 6920 305 6875 292 0.554 6768 277 6596 114 0.011

1.0E-16 7325 321 7276 308 0.554 7164 291 6984 120 0.011

0.2 35378 1891 32956 844 0.000 34936 1747 32926 816 0.000

0.1 37239 1934 34718 844 0.000 36779 1785 34687 819 0.000

0.01 41659 2038 38901 844 0.000 41156 1878 38869 825 0.000

1.0E-4 47551 2178 44475 844 0.000 46991 2004 44439 831 0.000

ca-netscience uniform-fixed 1.0E-6 51927 2282 48614 843 0.000 51325 2098 48576 835 0.000

1.0E-8 55559 2369 52049 842 0.000 54922 2177 52009 838 0.000

1.0E-10 58729 2445 55048 842 0.000 58061 2246 55006 841 0.000

1.0E-12 61577 2513 57741 843 0.000 60881 2309 57698 844 0.000

1.0E-14 64184 2576 60207 843 0.000 63463 2366 60162 847 0.000

1.0E-16 66548 2633 62443 844 0.000 65805 2418 62397 850 0.000




Experimental Results (degree-based)

Graph weight gype J¢] SEMO2D SEMO3D GSEMO2D GSEMO3D

Mean Std Mean Std p-value Mean Std Mean Std p-value

0.2 4495 143 4392 10 0.002 4444 115 4387 6 0.001

0.1 4835 148 4727 14 0.002 4781 119 4721 9 0.003

0.01 5642 158 5523 25 0.001 5582 129 5512 16 0.004

1.0E-4 6718 172 6584 39 0.001 6650 143 6566 26 0.003

fat200-1 degree 1.0E-6 7517 184 7372 50 0.001 7443 154 7349 34 0.003

1.0E-8 8180 193 8025 59 0.001 8101 163 7999 40 0.003

1.0E-10 8758 202 8596 67 0.001 8675 171 8567 45 0.003

1.0E-12 9278 210 9108 74 0.001 9191 178 9076 50 0.003

1.0E-14 9754 217 9578 81 0.001 9663 185 9542 55 0.003

1.0E-16 10185 223 10003 87 0.001 10091 191 9965 59 0.003

0.2 3218 227 3029 154 0.033 3041 172 2963 4 0.027

0.1 3448 235 3256 160 0.033 3267 178 3185 6 0.027

0.01 3996 255 3795 173 0.033 3803 194 3713 11 0.027

1.0E-4 4726 280 4514 193 0.033 4518 216 4416 17 0.027

fat200-2 degree 1.0E-6 5268 300 5048 209 0.033 5049 232 4938 22 0.027

1.0E-8 5718 316 5491 223 0.033 5490 245 5371 26 0.027

1.0E-10 6110 329 5878 235 0.033 5875 257 5749 30 0.027

1.0E-12 6463 342 6225 247 0.033 6220 267 6089 33 0.027

1.0E-14 6786 354 6543 257 0.033 6537 277 6400 36 0.027

1.0E-16 7079 364 6832 267 0.033 6823 286 6682 38 0.027

0.2 28587 1535 26148 201 0.000 28164 1002 26169 196 0.000

0.1 30122 1580 27636 207 0.000 29689 1029 27657 200 0.000

0.01 33758 1686 31158 228 0.000 33300 1098 31183 216 0.000

1.0E-4 38593 1828 35840 269 0.000 38103 1192 35874 251 0.000

ca-netscience degree 1.0E-6 42180 1936 39313 306 0.000 41665 1265 39355 285 0.000

1.0E-8 45155 2026 42192 338 0.000 44620 1327 42243 317 0.000

1.0E-10 47751 2104 44705 367 0.000 47198 1381 44763 347 0.000

1.0E-12 50082 2175 46962 394 0.000 49514 1429 47026 374 0.000

1.0E-14 52216 2239 49027 420 0.000 51633 1474 49098 400 0.000

1.0E-16 54151 2297 50900 444 0.000 53555 1515 50977 423 0.000




“Many”-objective optimization +
robustness



Introduction

e Colloquially, “many-objective” optimization problems (MaOP) is a
term used in evolutionary computation community to denote a
subset of multi-objective problems (MOP) with more than 3
objectives

* The reason for this differentiation is that increasing number of
objectives, especially beyond 3, bring additional challenges in
search, visualization and decision-making

* The research in MaOPs has proliferated in the last decade, but
limited for the most part to the deterministic optimization
scenarios

* In this part of the tutorial, we look into some works that use
MaOP formulations while considering stochasticity



Robustness — different types

Feasibility robustness: Robustness with respect to constraint violation. (also referred
to as Reliability). /It measures how likely a design is to violate certain constraints.

Performance robustness: Robustness with respect to the given objective value. It measures

how likely a design is to deliver its performance.

f(x)A

Deterministic optimum - designs
become infeasible due to variable
uncertainty (low feasibility
robustness)

High feasibility
robustness

lllll
IIIII
lllll
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A (Low performance robustness)
] High performance
//" robusLtness
o
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B X

Types of robustness. Design ‘B’ is more robust in both cases, while A’

(a) Feasibility robustness

(b) Performance robustness

has better objective value (f(x) is being maximized)




Robustness — different types

Robustness is primarily incorporated in the problem through re-formulation by:
« Additional or modified the objectives
« Additional or modified constraints

If robustness is specified as an objective, there is an opportunity to view trade-offs
between the design performance and robustness

If both feasibility and performance robustness are considered as additional objectives, the
problem tends to become MaOP. Solving such a formulation might provide more options
for studying trade-offs, but is more challenging than solving MOPs.

Therefore many of the studies are inclined towards limiting the objectives, and using
constraints in the re-formulation.

Given the advancements in the field of deterministic MaOPs in the last decade, it is
worthwhile considering formulations that use additional objectives for robust optimization



ommon (re-)formulations

Ability to generate

Robustness robust solutions
as an with varying lev- Type of
Robust Type of additional Quantification els of robustness Optimization problems
Reference work formulation robustness objective? of robustness in a single run? method studied
considered
Deb and Gupta [35] Min.[f;,fs....fu] Subject to ||f?(x) Performance No Expected measure No Nondominated (MO, ©)
S/ < n Or Min [ 57 .. f5f1 robustness sorting
(as additional algorithm-
constraint) II(INSGA-II)
Jin and Sendhoff [8] Min.[f; = f.f» = a7] Subject to g; <0 Performance Yes Variance measure  Yes, with respect ES (SO, C)
robustness to performance
(as additional
objective)
Chen et al. [3] Min.[(g;, ﬂf)] Subject to E[gj(x,z)] + na,, <0 Performance and Yes Expected and Yes, with respect Adaptive linear (MO, ©)
feasibility robustness variance measures  to performance  programing
G. Sunetal. [4] Min.[(1y,, 07 ), (Hp, 0 G ) -oons Performance and Yes Sigma level based Yes, with respect PSO (MO, C)
(14, 95 )] Subject to My + 10y < 0 feasibility robustness measure to performance
Sundaresan et al. [5] Min.E [f] Subject to E[g;] < 0,E[h] =0 Feasibility robustness No Expected measure No Statistical (SO, C)
optimization
technique/design
of experiments
Wangetal. [11] MinA[;tf + kay] Subject to My +noy <0 Performance and No Aggregation of No Sequential (SO, C)
g feasibility robustness expected and optimization and
variance measure reliability
assessment
Mourelatos and Liang [65] MinA[(u, AR, = 6> Performance and Yes Expected and Yes, with respect  Single-loop (MO, ©O)
Gr1)] Subject to Prob {g; <0} > o;,i = 1,2,... M feasibility robustness variance measures  toperformance reliability based
design
optimization
RBDO
Youn et al. [89] Min.[(uy — b/ py, — by )2 Performance and No Expected and No Enhanced hybrid (MO, ©)
i : \ PRy feasibility robustness variance measures mean value
+(an/ au, ) Jor[(sgn(uy) ) (g / 1u, ) “
2 . \2 (HMV +)
+(ou/ . ) Jor[(sgn(py) ) (s /H [ 11/ Ho )™
t(61/H /a2 /Hy)*] Subject to Prob {g; < 0} > o;,i = 1,2,... M
Du et al. [26] Mi“~[[l‘w~ Aﬁ’zi;.,l)] Subject to [¢ < 0,i =1,2,...m] Performance and No Percentile No MPP of inverse (SO, C)
feasibility robustness performance reliability
(MPPIR) search
method
Gunawan and Azarm [66] Min.f(x.p) = [fi.fo. ... ul Performance and No Worst Case No NSGA (MO, ©)
Subject to g;i(x,p) £ 0,j=1,2,..J1 = (ns,n,) <0 feasibility robustness sensitivity region
(WCSR)
Asafuddoula et. al. [81] Four different formulations, Performance and Yes Sigma-level Yes, with respect DBEA-r (MO/Ma0, C)
Form-1 to Form-4; incorporating FR alone or both FPR feasibility robustness to feasibility and optimization
performance DBEA-r

Note: SO: single objective; MO: multi-objective; MaO: many-objective (> 4 objectives); C: constrained. For complete details on the robust formulations, please refer to the cited publications.

Some existing formulations used for robust optimization [Ray et al, IMID 2015]



Proposed formulation(s)

Robust form Formulation type Robust formulation Robust measure ATGFSSR*

FR Optimization of expected Minimize p; g4y, = 1,2,....M Sigma level based Yes
objective function(s) with FR @x) 7 measure (Sigma,)
Maximize fys 4 (d, x) = Min(Sigma,, R.)
(dx) ¢
Subject to:
Sigma, = Min(,uwd“,/ﬂ_g},:(i_“.) >0
x»“I_J <x< xnjl»'p‘d{[_l < d < dlll;'p 5)
FPR Optimization of expected Minimize g g4y, = 1,2,.....M Sigma level based measure Yes
(d,x) AT

objective function(s) with FPR (d (Sigma,, Sigmay)
Maxlirllizef\,+| (d,x) = Min(Sigma,, R.)
(dx) E

Maxlimizeﬁ‘wg (d,x) = Min(Sigma, Ry)

Subject to
Sigma, = Min(,u‘q',ld_\,/a_,\,},:d_\‘,) >0
x»jLJ S X S xlllx'p‘d{l_]l S d S dlil;'p
where
Sigma; = Min(oy,,(ax)/f(ax))

x»jLJ E x < xﬂl’b‘d{Ll S d < dles'n (6)

*ATGFSSR: Ability to generate tradeoff solutions with various levels of robustness in a single run. The values of R, and R are considered 6 to meet the
six sigma quality.

Sigmag and Slgmaf are Sigma Level Confidence Interval (CI) Defects per million
robustness measures iég gﬁig gg;‘s‘gg
denoting the number of +30 99.73 66807
standard deviations between | teversee UnperSpec | | i 09 69993 P

the mean and spec limit +60 ikttt 2

60 —50—40 ~30 20 10 [L +10 420 +30 +40 150 +60 [Asafuddoula et a/, IEEE TEVC 2015]



Search method

Decomposition based Evolutionary Algorithm (DBEA) for robust optimization

, — POF
Algorithm 1 DBEA-rg / %cﬁf ,  d2=length(AP)
Input: Genmge (maximum number of gcncration§), W (nun]lb{?r of re.fcrencc points), pe (prob- o /O J;fp //' d1 = length(OP)
ability of crossover), p, (probability of mutation), 1. (distribution index for crossover), / / / /

Nm (distribution index for mutation)

cgen=1.CS=0;

: Generate the reference points using Normal Boundary Intersection (NBI) method.

: Initialize the population P consisting of W individuals. Randomly assign each individual of
P to an unique reference direction.

4: Assign a random binary vector BV of size n to each solution, where n denotes the number of
variables of the problem.

: Repair the individuals of the population based on its BV and the base design.

: Evaluate the initial population using prescribed robust formulation.

O e
F2 {minimize)

: Normalize the individuals of the population

5
6
7: Compute the ideal point and the extreme point.
8
9

: Use corner-sort to identify 2M corner solutions and assign them to Corner Set (CS).

10: while (gen < Geny,, ) do

11:  Select/; =1: W as the base parents / w POF

12:  h=Generate a shuffled list of individuals in the population / /

13:  Create offspring solutions C via recombination of /; and I»

14:  Create offspring BV ’s via recombination of /; and />

15:  Repair the offspring solutions using their BV ’s and the base design.

16:  Evaluate the offspring solutions C

17:  Update the corner set CS, ideal and extreme points

18:  Normalize the individuals of P and C

19:  Compute the distances (d; and d;) for all members of P in their respective reference
directions.

20:  Compute the distances (d and d>) for all members of C in all reference directions.

21:  Update the parent solutions in the shuffled order of W with C; using single-first encounter
strategy satisfying replacement condition.

22:  gen=gen+1

23: end while o F1 (minimize)

F2 {minimize)

(Other methods suitable for MaOPs can also be used) [Ray et al, JMD 2015]



Results
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Fig. 6. Solutions obtains using Form-4 robust formulation. The solutions are

labeled as (x, f, sigma,, sigmay) i.e., A = (0.1000, —1.000, 0.0012, 0.3952 ),

B = (0.1136, —0.8715, 0.3948, 0.3937), C” = (0.4892, —0.7151, 6, 3.3624 ), Test problem: bi-objective
D = (0.8169, —1.057e-4, 6, 5.4359), and E = (0.9832, —5.89%¢-5, 6, 6).

Test problem: single-objective
Applications studied:
 Welded beam design, Coil compression spring design, Car side impact design

problem, Aircraft design, Water resource management, etc.
 The problems span one to ten objectives.

[Asafuddoula et al, IEEE TEVC 2015; Ray et al, IMD 2015]



Robust re-design

Re-Design for Robustness (RDR) represents a Minimize 1, (x),d = 1,2, correreree M
practical class of problem_s, where a limited set ‘\[a;;‘;limﬁ‘m(x) _ Min(sigma,, R.)
of components of an existing product are re- (x)

designed to improve the overall robustness of Maximize fy+2(x) = Min(sigmay, Ry)
the product. ",

This avoids the need to design the product from
scratch and enables the use of existing inventory
of some of the components. i
The central question is given an existing baseline CExsx
design, which components can be changed to i
improve the robustness of the product? ‘
The number of changed components relative to R
the existing design can be added as an objective

while solving the previous (FPR) formulation

The resulting formulation is referred to as FPRR

‘\Iil'lin'lich;\]%—S == Fnc(x~ Xb)
(x)

subject to

sigmag = Min(pg,(x)/04,(x)) = 0

sigmays = Min(o ¢, ,(x)/0 .(x))

[Singh et al, EMO 2015]



Robust re-desigh example

Example: Car side impact design problem

* 1 objective, 7 Variables, 10 constraints

* Baseline design available is infeasible (hence sigma level 0)

 The re-design enables it to get to nearly 6-sigma design by changing only 2 of the
variables

* Expected performance is very similar to the case of enabling all variables to change
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Number of altered variables Number of altered variables

(a) Sigma level of re-designed solutions (b) Expected performance of the
re-designed solutions

[Singh et al, EMO 2015]



An alternate many-objective formulation

Consider a single-objective optimization problem with stochasticity

Some basic reformulations: optimize us + way, worst f, or multi-objective (,uf, af)

1

05F '

—f
_ /tf+40'f
------------- worst f
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« The limitations of the existing optimization formulations include, e.g.

p(f (4) < f(C)) = 88.23%; yet us + 4o, or worst f metrics will (mis-)identify
C as the better design among the two.

worst f has many indistinguishable regions and needs bilevel formulation.

considering all ( ur,0r )-ND solutions yields several designs with poor
performance and low uncertainty.

0.6

@)

[Singh and Branke, PPSN 2022]



An alternate many-objective formulation

We propose robustness based on the quantile function (QF) of the
objective computed within x,

« This function defines, for each possible probability p € [0, 1] the fitness value that is
obtained at least with that probability. More formally:

QF (x,p) = infly € R: p < G(f (x))}

« To identify all first-order stochastically non-dominated solutions, we solve:

min QF (x,p) Vp s.t. xF < xi < x',i =1,...n,.

* In this definition, a solution x, is considered better than another solution xg if QF (x,)
yields a lower or equal value than QF(xg) (for minimization) for all values of p €
[0,1]. This is equivalent to x, first-order stochastically dominatina x=.

* Inthis figure,
o Solution A stochastically
dominates B, D, E
o {A,C}and {B,C} are non-
dominated
o A, B,C,Dalldominate E
o (andso on)

p
[Singh and Branke, PPSN 2022]



Search

Customized EA for finding stochastically non-dominated
solutions:

Discretization: The quantile function is discretized
using M uniformly sampled values of p € [0 1]; leading
to M-objective problem. N, samples are used to
compute the objective values.

Environmental selection using first-order stochastic
non-domination ranking:

©)

©)

O
O

Compute d;; = max(max f, (j) — f;(i)), 0)
q
Compute dMin(i) = mind,;
JES
Remove solution with lowest dMin; recompute d;;

Repeat until all solutions are eliminated; reverse
the sequence to get the final ranks

Strategies for reducing function evaluations:

©)

reuse the neighbor solutions’ samples for QF
calculation

o Use Kriging models to approximate the QF values

in lieu of true evaluations

QF based on sampling

Objective(quantile)#

e |deal

* Available

(0 Usedasis
New samples

MC BC NC NCNC INONC BC IR0 OLIOLILNI

4849 5 515253545556575859 6 6162
X

[Singh and Branke, PPSN 2022]



Results

Our experiments thus include four variants:
« V1 = Baseline; neighboring samples OFF, surrogates OFF
« V2 = reuse neighboring samples OFF, surrogates ON
« V3 = reuse neighboring samples ON, surrogates OFF
* V4 = reuse neighboring samples ON, surrogates ON.

Table 1: Median IGD and number of evaluations (FE). The numbers in parenthesis denote the ratio relative
to the baseline (V*/V1 for IGD, V1/V* for FE). 1T and | denote higher or lower than baseline, respectively.
IGD FE

Problem V1 V2 V3 V4 V1 V2 V3 V4
TP1 0.0002 0.0006 (2.45x 1) 0.0021 (9.23x 1) 0.0054 (23.50x 1) | 1.01e 05 13020 (7.76x 1) 3721 (27.14x ) 2824 (35.76x 1)
TP2 0.0002 0.0004 (2.82x 1) 0.0006 (3.93x 1) 0.0006 (3.54x 1) |1.01e+05 13020 (7.76x 1) 3958 (25.52x 1) 2845 (35.5%x 1)
TP3 0.0012 0.0012 (1.05x 1) 0.0019 (1.62x 1) 0.0012 (1.05x 1) |1.01e+05 13020 (7.76x 1) 4000 (25.25x 1) 2845 (35.5%x 1)
TP4 0.0004 0.0004 (1.21x 1) 0.0007 (1.90x 1) 0.0004 (1.16x 1) |1.01e+05 13020 (7.76x |) 3241 (31.16x |) 2341 (43.14x 1)
TP5 0.0012 0.0022 (1.78x 1) 0.0019 (1.61x 1) 0.0023 (1.89x 1) |1.01e+05 13020 (7.76x |) 3984 (25.35x |) 2892 (34.92x 1)
TP6 0.0072 0.0065 (0.91x ) 0.0083 (1.15x 1) 0.0061 (0.85x |) |1.01e+05 13020 (7.76x |) 4869 (20.74x |) 3180 (31.76x 1)
TP7 0.1421 0.5141 (3.62x 1) 1.3860 (9.75x 1) 6.6902 (47.09x 1) | 1.01e4+05 13020 (7.76x |) 3742 (26.99x |) 2776 (36.38x 1)
TPS8 0.0384 0.0395 (1.03x 1) 0.0450 (1.17x 1) 0.0436 (1.13x 1) |[1.01e+05 13020 (7.76x 1) 5315 (19.00x J) 3217 (31.4x 1)
TP9 0.0051 0.0051 (1.01x 1) 0.0088 (1.73x 1) 0.0055 (1.08x 1) |1.01e4+05 13020 (7.76x 1) 3927 (25.72x 1) 2949 (34.25x 1)
TP10 0.0117 0.0124 (1.06x 1) 0.0137 (1.17x 1) 0.0124 (1.06x 1) | 1.001e4+06 31020 (32.27x |) 30849 (32.45x |) 21031 (47.6x 1)

All variants achieve a low median IGD. Thus, the proposed EA is competent in
identifying stochastically ND solutions.

The IGD of V2-V4 is generally 1-4 times that obtained by V1. At the same time, the
typical reduction in FE is 8-fold for V2 and 20 to 40-fold for V3-V4 relative to V1. Thus,
large savings in FE are achieved with little compromise on solution quality.

[Singh and Branke, PPSN 2022]



Results

A visualization of the typical results obtained (similar quality for all variants)

0
AN N 7\ / o1 0

I R Vo
| | \ [ | \/ /
~ (. | [\ \ / 02 /
ozr ) [ v ) -50
[ [\ g 0
I O O I R R R Y S "
M - [V E 05 A00r ——tp7r \ H g
| “ Vo 3 + ND pop \ 2
06F | | \ 206 R ® ND(selected) » 2 4
07 '
| i —tp3r \
o8 || \l . ,\TD pop et -200 \ 200
\ \/ ——ND pop \ ——ND pop
: 09 ——ND(selected)

® ND(selected) ——ND(selected)

1
f
Objective value

¢
Obje
g

- -250
0 0.2 0.4 06 0.8 1 4 5 & 7 8 o 2 4 6 8 10 3 4 5 & 7
X Objective # X Objective #
10
z I\ ' 10 )
(- ——tpsr P 8
+ ND pop 5
® ND(selected) 5
0 S
E] =
[\ ] 3
- [\ /\ -~ L o5 - 0 2
|\ / e £ 2
\/ o 2
3 Vo ©
\/ |
1 |V
. pop Vol ND
I——ND pop Vol pop
——ND(selected) © ND(selocted) U N ——ND(selected)
-10 .
6 8 10 1 3T 4 5 & 7 8 o 10 u 0 2 4 6 8 10 T2 s 4 s s 7 8 s 0
X Objective # X Objective #

(c) TP8 (d) TP10
For each problem, left subfigure shows solutions in f space, while the
right figure shows the solutions in the QF space

0.35 0.04 — 0.1
—V1 —V1 —V1

. 0af | —v2 0.035 TN ™| ——we | :xi
The median convergence ... . . & \ = e g

plots indicate drastic B | iR |

0.015

0.1 \ | | \ ~
: 1 = \ 0.01 | i B s
S p e e - u p | \ | ‘ 0.02 ] \
0.05 L { 0.005 I i \
~— e | 1\ . by . Ty
o e L oL — \ ° e = ‘e
10? 10° 104 10° 102 10° 104 10° 102 108 104 10°
Evaluations Evaluations Evaluations

, Convergence plots for selected problems (TP1, TP2, TP3)
[Singh and Branke, PPSN 2022]



References

The contents for this (many-objective) part of the tutorial are taken from the following:

Singh, H.K. and Branke, J., “Identifying stochastically non-dominated solutions using
evolutionary computation,” in Proceedings of Parallel Problem Solving from Nature,
(Dortmund, Germany), pp. 193-206, 2022.

Asafuddoula, M., Singh, H.K., and Ray, T., “Six Sigma Robust Design Optimization using a
Many-objective Decomposition Based Evolutionary Algorithm.” IEEE Transactions on
Evolutionary Computation, vol. 19, issue 4, pp. 490-507, 2015

Ray, T., Asafuddoula, M., Singh, H.K., and Alam, K., An Approach to Identify Six Sigma Robust
Solutions of Multi/Many-objective Engineering Design Optimization Problems.” ASME Journal
of Mechanical Design, vol. 137, issue 5, pp. 051404-051404, 2015.

Singh, H.K., Asafuddoula, M., Ray, T. and Alam, K., "Re-design for robustness using many-
objective decomposition based evolutionary optimization," in Proceedings of International
Conference on Evolutionary Multi-Criteria Optimization (Guimaraes, Portugal), Lecture Notes
in Computer Science, vol. 9019, pp. 343—357, Springer, 2015.

Singh, H.K., and Ray, T., “Many-objective optimization in engineering design: Case studies
using a decomposition based evolutionary algorithm,” in Advances in Structural and
Multidisciplinary Optimization, Proceedings of the Eleventh World Congress of Structural and
Multidisciplinary Optimization,(Sydney, Australia), pp. 106-111, 2015.



