

Link to the Current Version

The current version is available at:

https://researchers.adelaide.edu.au/profile/aneta.neumann

Images and videos are available at: https://vimeo.com/anetaneumann

Introduction and Motivation

Motivation

- Evolutionary Computation (EC) techniques have been frequently used in the context of computational creativity.
- Various techniques have been used in the context of music and art (see EvoMusArt conference and DETA track at GECCO).

Motivation

- Evolutionary algorithms have been frequently used to optimize complex objective functions.
- This makes them well suitable for generative art where fitness functions are often hard to optimize.
- Furthermore, objective functions are often subjective to the user.

This Tutorial

- · Summary of results in the areas of
 - 2D and 3D artifacts
 - Animations
- Overview on our recent work to create unique generative art using evolutionary computation to carry out
 - Image transition and animation
 - Image composition
 - Diversity optimization for images

Motivation

- In terms of novel design, evolutionary computation techniques can be used to explore new solutions in terms of different characteristics.
- Evolutionary algorithms are able to adapt to changing environments.
- This makes them well suited to be used in the context of artistic work where the desired characteristics may change over time.

Outline

- · Introduction and Motivation
- · Evolving 2D and 3D Artifacts
- · Aesthetic Features
- Evolutionary Image Transition
- Evolutionary Painting Using Random Walks
- · Quasi-random Image Animation
- Evolutionary Image Composition
- Evolutionary Image Diversity Optimization
- Discrepancy-Based Evolutionary Diversity Optimization for Images
- Indicator-Based Evolutionary Diversity Optimization for Images
- Conclusions

Evolving 2D and 3D Artifacts

Evolving 2D and 3D Artifacts

- *Blind Watchmaker* (Dawkins, 1986) evolved 2D biomorph graphical objects from sets of genetic parameters (combined with Darwinism theory).
- Latham (1985) created *Black Form Synth*. These are hand-drawn "evolutionary trees of complex *forms*" using a set of transformation rules.

Evolving 2D and 3D Artifacts

- In 1991, Sims published his seminal SIGGRAPH paper.
- He introduced the expression-based approach of evolving images.
- He created images, solid textures, and animations using mutations of symbolic lisp expressions.

Evolving 2D and 3D Artifacts

- The mathematical expression is represented as a tree graph structure and used as the genotype.
- The tree graph consists of mathematical functions and operators at the nodes, and constants/variables at the leaves (similar to genetic programming).
- The resulting image is the phenotype.
- To evolve sets of images, it uses crossover and mutation.

Evolving 2D and 3D Artifacts (Sims, 1997)

- *In Galápagos* (Sims, 1997) created an interactive evolution of virtual "organisms" based on Darwinian theory.
- Several computers simulate the growth and characteristic behaviours of a population of abstract organisms.
- The results are displayed on computer screens.

EC System (Sims, 1997)

- The EC system allows users to express their preferences by selecting their preferred display by standing on step sensors in front of those displays.
- The selected display is used for reproduction using mutation/crossover. The other solutions are removed when the new offspring is created.

Evolutionary Process (Sims, 1997)

- The offspring are copies and combinations of their parents.
- In addition, their genes are altered by random mutations.
- During evolutionary cycle of reproduction and selection, new organisms are created.

Evolving 2D and 3D Artifacts (Latham, Todd, 1992)

- Latham, Todd (1992) introduced *Mutator* to generate art and evolve new biomorphic forms.
- The Mutator creates complex branching organic forms through the process of "surreal" evolution.
- At each iteration the artist selects phenotypes that are "breed and grow", and the solutions co-interact.

Other Selected Contributions

- Unemi (1999) developed *SBART*. This is a design support tool to create 2-D images based on user selection.
- Takagi (2001) describes in the survey research on interactive evolutionary computation (IEC) which categorises different application areas.
- Machado and Cardoso (2002) introduced *NEvAr*. *This* is an evolutionary art tool, using genetic programming and automatic fitness assignment.

Image Morphing (Banzhaf, Graf 1995)

- Banzhaf and Graf (1995) used interactive evolution to help determine parameters for image morphing.
- They combine IEC with the concepts of warping and morphing from computer graphics to evolve images.
- They used recombination of two bitmap images through image interpolation.

Other Selective Contributions

- Draves (2005) introduced *Electric Sheep. The* system allows a user to approve or disapprove phenotypes.
- Hart (2009) evolved different expression-based images with a focus on colours and forms.
- Kowaliw, Dorin, McCormack (2012) explore a definition of creative novelty for generative art.

Aesthetic Measures

Aesthetic Measures

- Computational aesthetic is a subfield of artificial intelligence dealing with the computational assessment of aesthetic forms of visual art.
- Some general image features that have been used are:
 - Hue
 - Saturation
 - Symmetry
 - Smoothness

Aesthetic Measures (den Heijer, Eiben 2014)

- den Heijer and Eiben (2014) investigated aesthetic measures for unsupervised evolutionary art.
- Their Art Habitat System uses genetic programming and evolutionary multi-objective optimization.
- They compared aesthetic measurements and gave insights into the correlation of aesthetic scores.

Aesthetic Measures

- Examples of aesthetic measurements:
 - Benford's Law
 - Global Contrast Factor
 - Information Theory
 - Reflectional Symmetry
 - Colorfulness

Evolutionary Image Transition

Evolutionary Image Transition

[A. Neumann, B. Alexander, F. Neumann, EvoMUSART 2017, ECJ 2020]

- The main idea compromises of using well-known evolutionary processes and adapting these in an artistic way to create an innovative sequence of images (video).
- The evolutionary image transition starts from given image S and evolves it towards a target image T
- · Our goal is to maximise the fitness function where we count the number of the pixels matching those of the target image.

Algorithm 1 Evolutionary algorithm for image transition

Evolutionary Image Transition

- Let S be the starting image and T be the target image.
- Set X:=S.
- Evaluate f(X,T).
- while (not termination condition)
 - Obtain image *Y* from *X* by mutation.
 - Evaluate f(Y,T)
 - If $f(Y,T) \ge f(X,T)$, set X := Y.

Fitness function:

 $f(X,T) = |\{X_{ij} \in X \mid X_{ij} = T_{ij}\}|.$

Asymmetric Mutation

- We consider a simple evolutionary algorithm that has been well studied in the area of runtime analysis, namely variants of (1+1) EA.
- We adapt an asymmetric mutation operator used in Neumann, Wegener (2007) and Jansen, Sudholt (2010).

Asymmetric Mutation

Algorithm 2 Asymmetric mutation

- Obtain Y from X by flipping each pixel X_{ij} of X independently of the others with probability $c_s/(2|X|_S)$ if $X_{ij} = S_{ij}$, and flip X_{ij} with probability $c_t/(2|X|_T)$ if $X_{ij} = T_{ij}$, where $c_s \ge 1$ and $c_t \ge 1$ are constants, we consider m = n.
- for our experiments we set $c_s = 100$ and $c_t = 50$.

Example Images

Starting image S (Yellow-Red-Blue, 1925 by Wassily Kandinsky) and target image T (Soft Hard, 1027 by Wassily Kandinsky)

Video: Asymmetric Mutation

Uniform Random Walk

- A *Uniform Random Walk* the classical random walk chooses an element $X_{kl} \in N(X_{ij})$ uniformly at random.
- We define the neighbourhood $N(X_{ij})$ of X_{ij} as

$$N(X_{ij}) = \{X_{(i-1)j}, X_{(i+1)j}, X_{i(j-1)}X_{i(j+1)}\}\$$

Uniform Random Walk

Algorithm 3 Uniform Random Walk

- Choose the starting pixel $X_{ij} \in X$ uniformly at random.
- Set $X_{ij} := T_{ij}$.
- while (not termination condition)
 - Choose $X_{kl} \in N(X_{ij})$ uniformly at random.
 - Set i := k, j := l and $X_{ij} := T_{ij}$.
- Return X.

Video – Uniform Random Walk

Biased Random Walk

• A *Biased Random Walk* - the probability of choosing the element X_{kl} is dependent on the difference in RGB-values for T_{ij} and T_{kl} .

Biased Random Walk

Algorithm 4 Biased Random Walk

- Choose the starting pixel $X_{ij} \in X$ uniformly at random.
- Set $X_{ij} := T_{ij}$.
- while (not termination condition)
 - Choose $X_{kl} \in N(X_{ij})$ according to probabilities $p(X_{kl})$.
 - Set i := k, j := l and $X_{ij} := T_{ij}$.
- Return X.

Biased Random Walk

We denote by T_{ij}^r , $1 \le r \le 3$, the rth RGB value of T_{ij} and define

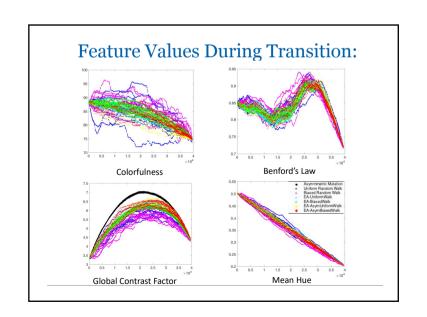
$$\gamma(X_{kl}) = \max \left\{ \sum_{r=1}^{3} |T_{kl}^r - T_{ij}^r|, 1 \right\}$$

$$p(X_{kl}) = \frac{(1/\gamma(X_{kl}))}{\sum_{X_{st} \in N(X_{ij})} (1/\gamma(X_{st}))}.$$

Mutation Based on Random Walks

- We use the random walk algorithms as part of our mutation operators.
- Each mutation picks a random pixel and runs the (biased) random walk for t_{max} steps.
- For our experiments we use 200x200 images and set $t_{\text{max}} \!\!=\!\! 100.$

Random Walk Mutation and Biased Random Walk Mutation



Evolutionary Image Transition and Painting Using Random Walks

Evolutionary Image Painting

[A. Neumann, B. Alexander, F. Neumann, ECJ 2020]

- We now introduce evolutionary image painting based on biased random walks.
- The key idea is to make use of the biased random walk and use its behaviour of favouring similar colours.
- The mutation operator uses the biased random walk for a given starting pixel and paints each visited pixel with the colour of the starting pixel.

Evolutionary Image Painting

Algorithm 5 Evolutionary image painting

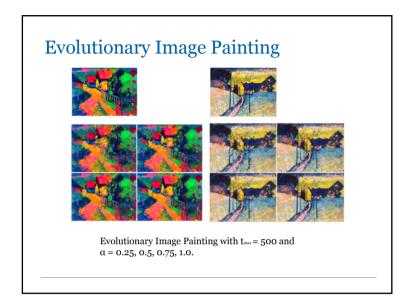
- ullet Let S be the starting image and T be the target image.
- Set X := S.
- · while (not termination condition)
 - Y := X.
 - For each $Y_{ij} \in Y$ with $(Y_{ij} == S_{ij})$.
 - * Do Y:=PaintMutation($Y_{ij}, Y, S, T, \alpha, t_{max}$) with probability $\min \{c_s/(2|X|_S), 1\}$.
 - Set X := Y.

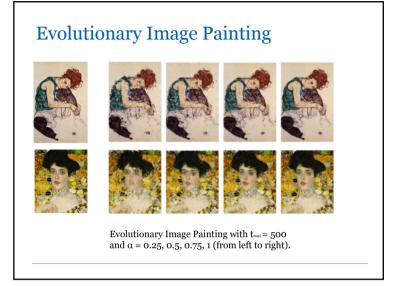
Fitness function: $f(X,T) = |\{X_{ij} \in X \mid X_{ij} = T_{ij}\}|$.

Painting Mutation Operator

Algorithm 6 PaintMutation $(X_{ij}, X, S, T, \alpha, t_{max})$

- Set C := T_{ij}.
- Set X_{ij} := C.
- c := 0.
- while $(c \le t_{\text{max}})$
 - -c := c + 1
 - Choose $X_{kl} \in N(X_{ij})$ according to probabilities $p(X_{kl}, \alpha)$.
 - Set i := k, j := l.
 - If $(X_{ij} == S_{ij})$ then $X_{ij} := C$.
- Return X.





Quasi-random Transition and Animation

Quasi-random Walks

[A. Neumann, F. Neumann, Friedrich, AJIIPS Journal 2019]

- So far: Random walks as main operators for mutation and transition process
- Quasi-random walks give a (deterministic) alternative which is easy to control by a user.

Quasi-random Transition and Animation

General setting:

- There are k agents each of them painting their own image I^k through a quasi random walk. Quasi-random walk is determined by the sequence that the agent uses.
- Process starts with a common image X.
- All agents paint on this image overriding X and previous painting of other agents.
- This leads to complex animation processes.
- Image transition is a special case where all agents paint the same image I.

Agent Moves

Move of an agent:

- Each pixel has a sequence of directions out of from {left, right, up, down}.
- At each iteration, the agent moves from its current pixel p to the neighbor pixel p' determined by the current position in the sequence at p.
- It paints pixel p' with the current pixel in its sequence and increases the position counter at p by 1 (modulo sequence length).

Algorithm

Algorithm 1 QUASI-RANDOM ANIMATION

2 Agents Symmetric and Asymmetric Sequences

Example Video: 4 Agents Symmetric Sequences

Example Video: 4 Agents Asymmetric Sequences

Evolutionary Image Composition

Key Idea

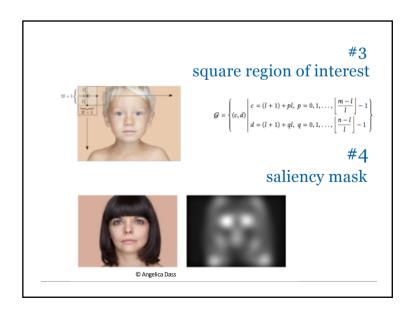
- Create a composition of two images using a region covariance descriptor.
- Incorporate region covariance descriptors into fitness function.
- Use Evolutionary algorithms to optimize the fitness such that a composition of the given two images based on the considered features is obtained.

Image Composition

Evolutionary Image Composition Using Feature Covariance Matrices

[A. Neumann, Szpak, Chojnacki, F. Neumann, GECCO 2017]

- · Evolutionary algorithms that create new images based on a fitness function that incorporates feature covariance matrices associated with different parts of the images.
- Population-based evolutionary algorithm with mutation and crossover operators based on random walks.

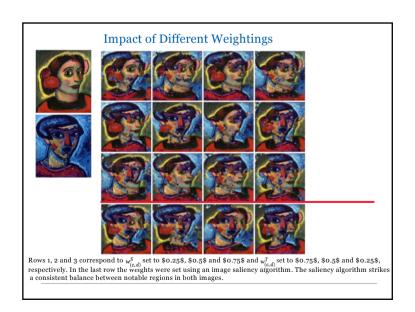


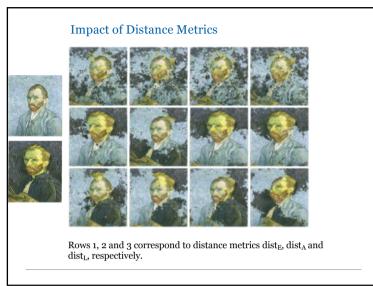
#5 set of features

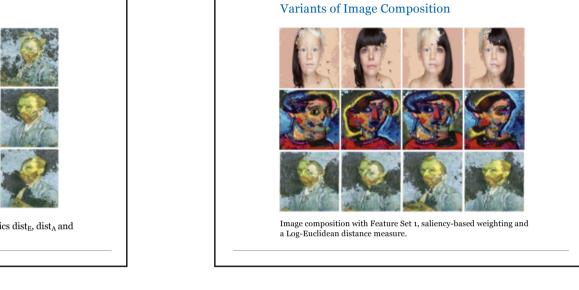
$$\begin{split} &\mathbf{Set} \ \mathbf{1}: \ \left[i,j,r,g,b,\sqrt{\left(\frac{\partial I}{\partial i}\right)^2 + \left(\frac{\partial I}{\partial j}\right)^2}, \tan^{-1}\left(\left|\frac{\partial I}{\partial i}\right|/\left|\frac{\partial I}{\partial j}\right|\right)\right]^{\mathsf{T}}; \\ &\mathbf{Set} \ 2: \ \left[i,j,h,s,v\right]^{\mathsf{T}}; \\ &\mathbf{Set} \ 3: \ \left[h,s,v,\sqrt{\left(\frac{\partial I}{\partial i}\right)^2 + \left(\frac{\partial I}{\partial j}\right)^2}, \tan^{-1}\left(\left|\frac{\partial I}{\partial i}\right|/\left|\frac{\partial I}{\partial j}\right|\right)\right]^{\mathsf{T}}. \end{split}$$

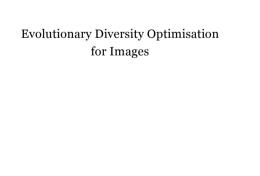
$$f(X,S,T) = \sum_{(c,d) \in \mathcal{G}} \left(w_{(c,d)}^S \operatorname{dist} \left(\Lambda_{\mathcal{R}_{(c,d)}}^X, \Lambda_{\mathcal{R}_{(c,d)}}^S \right) + w_{(c,d)}^T \operatorname{dist} \left(\Lambda_{\mathcal{R}_{(c,d)}}^X, \Lambda_{\mathcal{R}_{(c,d)}}^T \right) \right).$$
 covariance-based fitness function

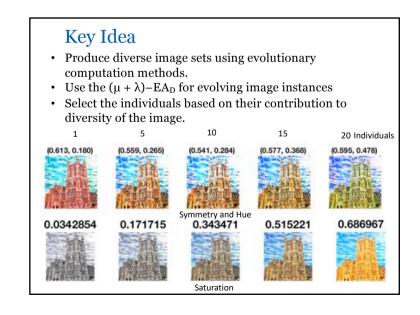
Impact of Different Features @ Angelica Dass Image composition with different features. Rows 1, 2 and 3 correspond to Feature Sets 1, 2 and 3, respectively.











Evolution of Artistic Image Variants Through Feature Based Diversity Optimisation

[Alexander, Kortman, A. Neumann, GECCO 2018]

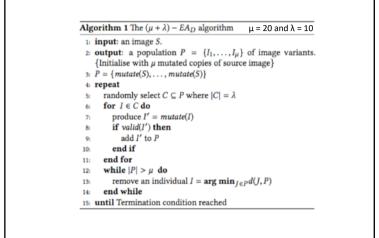
- We use $(\mu + \lambda)$ -EAD to evolve diverse image instances.
- Knowledge on how we can combine different image features to produce interesting image effects.
- Study how different combinations of image features correlate when images are evolved to maximise diversity.

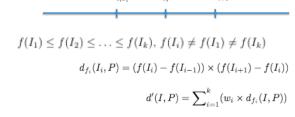
#1 starting image

pixel-based mutation

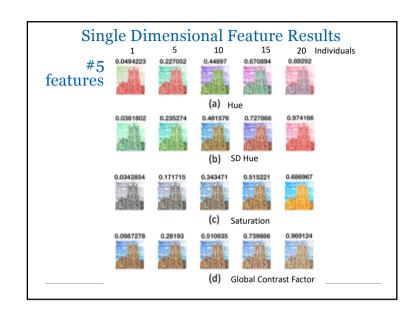
#3 image validity check

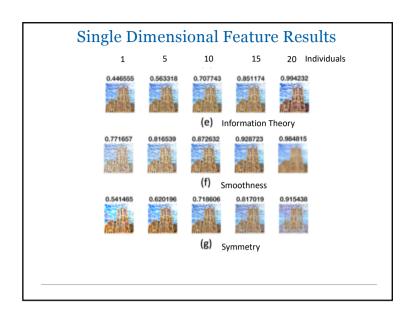
Image has mean squared error to starting image less than 10

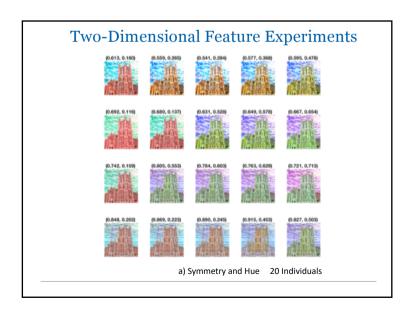




[Gao, Nallaperuma, F. Neumann, PPSN 2016, arxiv2016]





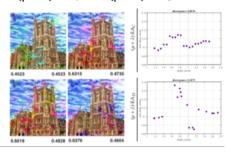


Discrepancy-Based Evolutionary Diversity Optimization for Images

Our Goal and Key Idea

- Design new approach of discrepancy-based evolutionary diversity optimization.
- Construct sets of solutions for evolved images and instances of Travel Salesman Problem.
- Compare discrepancy-based ($\mu + \lambda$)-EA_D with respect to different features to ($\mu + \lambda$)-EA_T and ($\mu + \lambda$)-EA_C.

A contribution to discrepancy-based evolutionary diversity optimization.



University of Adelaide

Discrepancy-Based Evolutionary Diversity Optimization for Images

#1

Start Image

#2

Features

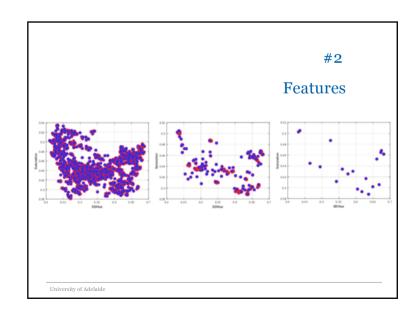
University of Adelaide

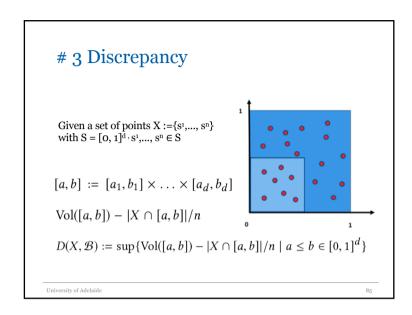
Discrepancy-Based Evolutionary Diversity Optimization

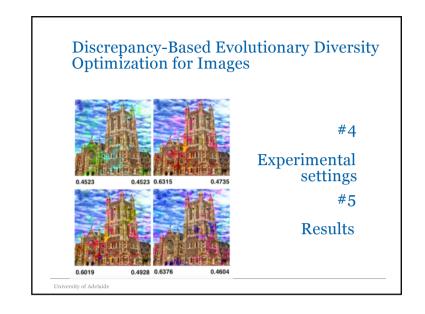
[A. Neumann, Gao, C. Doerr, F. Neumann, Wagner, GECCO 2018]

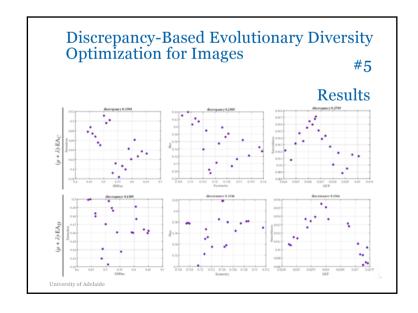
- New approach for discrepancy-based evolutionary diversity optimization
- Investigate the use of the star discrepancy measure for diversity optimization for images and TSP instances
- Introduce an adaptive random walk mutation operator based on random walks
- Compared the previously approach for images and TSP instances [Alexander, Kortman, A. Neumann, GECCO 2017]

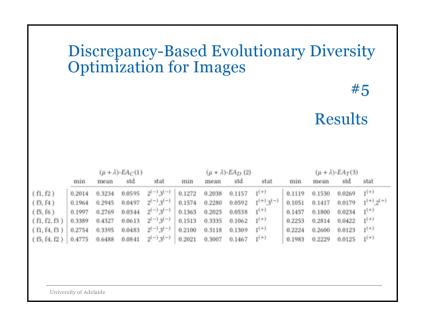
University of Adelaic











Indicator-Based Evolutionary Diversity Optimization for Images

Indicator-Based Diversity Optimisation

- Let I be a search point
 - $\ f\colon X \to R^d$ a function that assigns to each search point a feature vector
 - $\ \ q \colon X \to R$ be a function assigning a quality score to each $I \in X$
 - Require $q(I) \ge \alpha$ for all "good" solutions (constraint)
- Define $D: 2^X \to R$ which measures the diversity of a given set of search points.

Goal:

Compute set $P=\{I_1,...,I_{\mu}\}$ of μ solutions maximizing (minimizing) D among all sets of μ solutions under the condition that $q(I) \geq \alpha$ holds for all $I \in P$, where α is a given quality threshold.

University of Adelaide

Evolutionary Diversity Optimization Using Multi-Objective Indicators

[A. Neumann, Gao, Wagner, F. Neumann, GECCO 2019, nominated for the best paper in Track Genetic Algorithms]

- Let I be a search point
 - $f \colon X \to R^d$ a function that assigns to each search point I an objective vector
 - $-q: X \rightarrow R$ be a function measures constraint violations
- An indicator I: $2^X \to R$ measures the quality of a given set of search points.

University of Adelaic

Multi-Objective Indicators

Popular indicators in multi-objective optimization:

• Hypervolume (HYP)

$$HYP(S,r) = VOL\left(\bigcup_{(s_1,\ldots,s_d)\in S} [r_1,s_1] \times \cdots [r_d,s_d]\right)$$

- Inverted generational distance (IGD) (with respect to reference set R) $IGD(R,S) = \frac{1}{|R|} \sum_{r \in R} \min_{s \in S} d(r,s),$
- Additive epsilon approximation (EPS) (with respect to reference set R)

$$\alpha(R,S) := \max_{r \in R} \min_{s \in S} \max_{1 \le i \le d} (s_i - r_i).$$

University of Adelaide

How to use Multi-Objective Indicators

- Diversity optimisation aims to compute a diverse set of solutions for a given single-objective problem
- Multi-objective indicators guide the search towards a diverse set of Pareto optimal solutions.

Use of multi-objective indicators:

- Transform feature vectors of search points to make them incomparable.
- Apply multi-objective indicators after transformation has occurred.

University of Adelaide

Transformations

For d features:

- Double the number of dimensions to make vectors incomparable.
- For feature value $p_i,\,use\,\,p_i$ and - p_i
- Instead of $p = (p_1, p_2, ..., p_d)$ work with

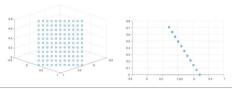
$$p' = (p_1, p_2,...,p_d,-p_1,-p_2,...,-p_d)$$

University of Adelaide

Transformation:

For 2 features (transform into 3D) as follows:

- Place the unit square with its original x/y-coordinates in the three- dimensional space using z = 0.
- We rotate it around the x and y axis by 45 degrees each time.
- Translate it such that the center point of the transformed unit square is at (sqrt(2)/4)



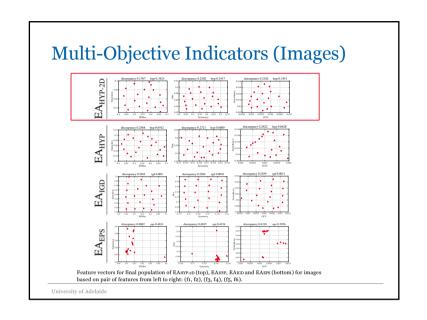
University of Adelaide

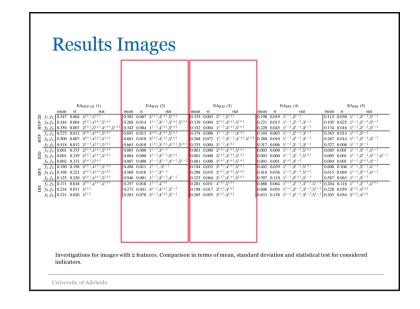
Algorithm

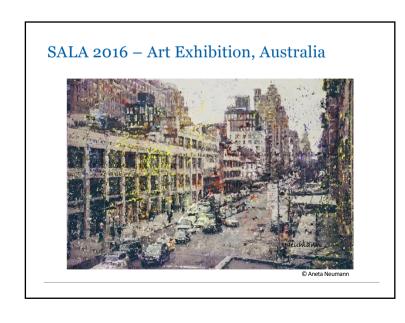
Algorithm 1: $(\mu + \lambda)$ - EA_D

- $_{\mathbf{1}}\:$ Initialize the population P with μ instances of quality at least $\alpha.$
- ² Let $C \subseteq P$ where $|C| = \lambda$.
- ³ For each $I \in C$, produce an offspring I' of I by mutation. If $q(I') \geqslant \alpha$, add I' to P.
- 4 While $|P| > \mu$, remove an individual with the smallest loss to the diversity indicator D.
- 5 Repeat step 2 to 4 until termination criterion is reached.

University of Adelaide







SALA 2018 – Art Exhibition, Australia

Literature

- R. Dawkins (1986): The Blind Watchmaker Why the Evidence of Evolution Reveals a Universe
 without Design, W. W. Norton & Company.
- W. Latham (1985): Black Form Synth. Offset lithograph, E.293-2014, Victoria and Albert Museum, London, UK. https://collections.yam.ac.uk/item/O1276894/black-form-synth-offset-lithograph-latham-william/
- K. Sims (1991): Artificial evolution for computer graphics. In Proc. Conf. Computer Graphics and Interactive Techniques (SIGGRAPH '91). ACM Computer Graphics, 25(4): pp. 319–328. https://dl.acm.org/citation.cfm?doid=122718.122752
- K. Sims (1997): Galápagos. Installation at the NTT InterCommunication Center in Tokyo, Japan. http://www.ntticc.or.ip/en/archive/works/galapagos/_
- · S. Todd and W. Latham (1992): Evolutionary Art and Computers. Academic Press, London.
- T. Unemi (1999): SBART2.4: Breeding 2D CG Images and Movies, and Creating a type of Collage.
 In: The International Conference on Knowledge- based Intelligent Information Engineering Systems, pp. 288 291. https://ecexplore.icee.org/document/820180/

Conclusions

- Evolutionary algorithms provide a flexible approach to the creation of artistic work.
- A lot of algorithmic approaches have been shown to be able to create artistic work.
- Evolutionary process itself can be used to create artistic digital work.
- Random processes exhibit in interesting sources of inspiration.
- Evolutionary diversity optimization can be used to create a diverse set of designs that vary with respect to given features.

Thank you!

Literature

- H. Takagi (2001): Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), pp. 1275–1296. https://iceexplore.ieec.org/document/040485/.
- P. Machado and A. Cardoso (2002): All the truth about NEvAr. Appl. Intell. 16, 2, pp. 101–118. https://doi.org/10.1023/A:1013662402341
- S. Draves (2005): The electric sheep screen-saver: A case study in aesthetic evolution. EvoMUSART. Vol. 3449 of Lecture Notes in Computer Science. Springer, pp. 458–467. https://doi.org/10.1007/978-3-464-32003-6 46
- D. Hart (2007): Toward greater artistic control for interactive evolution of images and animation.
 In Applications of Evolutionary Computing, EvoWorkshops 2007, volume 4448 of Lecture Notes in Computer Science, Springer, pp. 527–536. https://doi.org/10.1007/98-2-540-71805-5-58
- T. Kowaliw, A. Dorin, and J. McCormack (2012): Promoting Creative Design in Interactive Evolutionary Computation. IEEE Trans. Evolutionary Computation 16(4), pp. 523–536. https://iceexplore.jeec.org/document/6/51082
- J. Graf and W. Banzhaf (1995): Interactive evolution of images. In Proc. Conference on Evolutionary Programming, pp. 53–65. http://citeseerx.ist.psu.edu/vjewdoc/summary?doi=10.1.1.31.5051

25

Literature

- J.-M. Jolion (2001): Images and Benford's law. Journal of Mathematical Imaging and Vision, 14(1):73-81. https://doi.org/10.1023/A:1008363415314
- K. Matkovic, L. Neumann, A. Neumann, T. Psik, W. Purgathofer (2005): Global Contrast Factora new approach to image contrast. Computational Aesthetics, 2005;159–168. https://doi.org/10.2212/COMPAESTH/COMPAESTHOS/156-167
- Jaume Rigau, Miquel Feixas, Mateu Sbert, "Informational aesthetics measures", IEEE Computer Graphics and Applications, vol. 28, no. 2, pp. 24-24, 2008. https://ieeexplore.gee.org/document/a45086
- · Reflectionary Symmetry
- D. Hasler, S.E. Suesstrunk (2003): Measuring colorfulness in natural images. In Electronic Imaging 2003, pages 87–95. International Society for Optics and Photonics. https://doi.org/10.1171/2.477738
- E. den Heijer and A. E. Eiben (2014): Investigating aesthetic measures for unsupervised evolutionary art. Swarm and Evolutionary Computation 16, pp. 52-68. https://doi.org/10.1016/i.sweps.2014.01.002

Literature

- A. Neumann, W. Gao, C. Doerr, F. Neumann, M. Wagner (2018): Discrepancy-Based Evolutionary Diversity Optimization. In: Genetic and Evolutionary Computation Conference, GECCO 2018, ACM Press, 991-998. https://doi.org/10.1145/3205455.3205532, https://arxiv.org/pdf/1802.05448.bdf
- A. Neumann, W. Gao, M. Wagner, F. Neumann (2019): Evolutionary diversity optimization using multi-objective indicators. GECCO 2018, ACM Press, 837-845. https://doi.org/10.1145/3321707.3321706, https://arxiv.org/ndf/1811.06804.pdf
- A. Neumann, B. Alexander, F. Neumann (2020): Evolutionary Image Transition and Painting Using Random Walks. In: Evolutionary Computation Journal, ECJ 2020, MIT Press. https://doi.org/10.1162/evoo a 00270, https://arxiv.org/pdf/2003.01517.ndf

Literature

- A. Neumann, B. Alexander, and F. Neumann (2017): Evolutionary Image Transition Using Random Walks. In: Computational Intelligence in Music, Sound, Art and Design, EvoMUSART 2017, Lecture Notes in Computer Science, 230-245.
- A. Neumann, B. Alexander, and F. Neumann (2016): The Evolutionary Process of Image Transition in Conjunction with Box and Strip Mutation. In: Neural Information Processing, ICONIP 2016, https://doi.org/10.1007/078-3-310-46675-0_29, https://arxiv.org/ndf/1608.01783.pdf
- A. Neumann, F. Neumann, and T. Friedrich (2019): Quasi-random Agents for Image Transition and Animation. In Aust. J. Intell. Inf. Process. Syst. 16(1): 10-18. http://ailins.com.au/papers/Vio.1/vion1 14-22.udf
- A. Neumann, Z. L. Szpak, W. Chojnacki, and F. Neumann (2017): Evolutionary Image Composition Using Feature Covariance Matrices. In: Genetic and Evolutionary Computation Conference, GECCO 2017, ACM Press, 817-824. https://doi.org/nc.1185/3071198.3071260.
- https://arxiv.org/pdf/1703.03773.pdf
- B. Alexander, J. Kortman, and A. Neumann (2017): Evolution of Artistic Image Variants Through Feature Based Diversity Optimisation. In: Genetic and Evolutionary Computation Conference, GECCO 2017, ACM Press, 171-178. https://doi.org/10.1145/3071178.3071342

26