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Abstract. It is widely assumed that evolutionary algorithms for multi-objective
optimization problems should use certain mechanisms to achieve a geadispr
over the Pareto front. In this paper, we examine such mechanismsafitbep-
retical point of view and analyze simple algorithms incorporating the quirafe
fairness introduced by Laumanns et al [7]. This mechanism tries todalte
number of descendants of all individuals of the current populatiorrig@éeously
analyze the runtime behavior of different fairness mechanism arseprehow-
case examples to point out situations where the right mechanism cahugpte
optimization process significantly.

1 Introduction

Evolutionary algorithms (EASs) evolve a set of solutiondexhthe population during the
optimization process. As in multi-objective optimizatiome usually does not search for
a single optimal solution but a set of solutions represerttie possible trade-offs when
dealing with conflicting objective functions, multi-objee evolutionary algorithms
(MOEASs) seem to be in a natural way well suited for dealindhwlitese problems.

Many MOEAs give priority to regions in the decision or objeetspace that have
been rarely explored. This leads to the use of fairness itugenary multi-objective
optimization. The idea behind using fairness is that the memof descendants gener-
ated by individuals with certain properties should be bedah Different mechanisms
for spreading the individuals of a population over the Rafieint have been proposed.
In NSGA-II [1] a uniform spread over the Pareto front shoudrhieved by using
a crowded comparison operator that gives decision veatolsss crowded regions a
higher priority. SPEA2 [10] uses a density estimator suett tie fithess of an individ-
ual is given by its objective vector and a density value whilepends on the other in-
dividuals in the population. The goal of the density estoné also to give individuals
in less crowded regions a higher priority. Our aim is to gdientetical understanding
how such fairness mechanisms influence the optimizatiocgss

The theoretical understanding of the runtime behavior o ®AQis far behind their
practical success. The first rigorous runtime analysesuoh slgorithms have been
carried out by Laumanns et al. [7]. They have investigatedrgple mutation-based
MOEA called SEMO that searches locally by flipping in each ation step a single
bit. In addition, they have considered a fair MOEA called FEMInd shown that this
algorithm outperforms SEMO on a particular pseudo Boolesnttion called LOTZ.



Giel [5] has investigated SEMO with a mutation operator gedrches globally and
called the algorithm Global SEMO. Global SEMO has also bestsiclered for some
well-known combinatorial optimization problems [3, 8, 9].

In this paper we want to put forward the runtime analysis of 843 and consider
how the use of fairness can influence the runtime behaviorinwéstigate the model
of fairness introduced by Laumanns et al. [7]. The algorghhmt are subject to our
analyses count the number of descendants that have beemtgeniey the individuals
in the population. The first idea is to count the number of dedants with respect to
the decision space, i.e., a separate counter is dedicateaictodecision vector. The
descendants are generated by individuals that have notigeddnany descendants in
order to discover new regions of the decision space. Thigepts individuals that have
achieved less progress towards other non-dominated deacisctors from producing
additional descendants. The other idea we examine is tige w$a counter with respect
to the objective space. This implies that many decisionoregbotentially depend on
the same counter. Our goal is to compare the runtime behaftbese two variants.

The outline of this paper is as follows. A short introductinto multi-objective op-
timization and the algorithms that are subject of our aredyse presented in Section 2.
The differences between the two variants of fairness ar&eabout in Sections 3 and 4.
Finally, we finish with some concluding remarks.

2 Algorithms

We start with some basic notations and definitions that wéllused throughout the
paper. We denote the set of all Boolean value®tgnd the set of all real numbers by
R and investigate the maximization of functiofis B — R™. We call f objective
function B™ decision spaceandR™ objective spaceThe elements oB™ are called
decision vectorand the elements dk™ objective vectorsLety = (y1,...,ym) €
R™ andy’ = (v1,...,v,,) € R™ be two objective vectors. We define thatveakly
dominates/’, denoted by > ¢/, if and only ify; > ¢/ foralli € {1,...,m}, andy
dominateg//, denoted by, - 4/, if and only ify = ¢y’ andy’ # v.

The setPF(f) :={y € f(B™) | Yy’ € f(B"): ¢  y} is called thePareto front
of f and the seP(f) = f~YPF(f)) = {z € B" | V2’ € B": f(2') # f(z)}
Pareto set off. The set{(z, f(z)) | + € P(f)} constitutes the canonical solution
of an optimization problem of the considered kind. In therlitture a set of the form
{(z, f(x)) | € X} with X C P(f) is also considered as a valid solutiorfifX) =
PF(f). This means that it is sufficient to determine for all non-itwatted objective
vectorsy € PF(f) at least one decision vectore B™ with f(z) = y.

Laumanns et al. [7] al. argue that it can be beneficial whemdliduals in the
population have created roughly the same number of desoendad therefore intro-
duced the algorithm FEMO. This algorithm works with a localtation operator and
uses a counter for each individual in the population to messstihe number of descen-
dants the corresponding individual has created. We iryatstigeneralized variants of
FEMO. Our algorithms apply a global mutation operator anditazhally accept indi-
viduals with the same objective vector as an individual & plopulation. The use of
a global mutation operator is more common as the ability potflio or more bits in a



single mutation step tends to improve the optimization essc The relaxed acceptance
rule also tends to improve the optimization since it allotws &€xploration of plateaus,
i.e., regions in the decision space whose decision vectersapped to the same ob-
jective vector. We distinguish two kinds of fairness depreg@n whether the fairness is
ensured in the decision or objective space. The followingb@l FEMQs uses fairness
in the decision space.

Algorithm 1 Global FEMQys

1. Chooser € B™ uniformly at random.

2. Sete(x) :=0.
3. SetP := {«}.
4. Repeat

— Chooser € {y € P | c¢(z) > c(y) for all z € P} uniformly at random.
— Setc(x) := c(z) + 1.
— Create a descendant by flipping each bit of: with probability 1 /n.
— Ifthere is noy € P with f(y) > f(z) then
e If 2/ ¢ P then set(z) := 0.
o SetP:= (P\{ye P[f(2) = f(y)}) U{z'}.

Note that the algorithm resets the countef)tdepending on the individuals in the
current population. This implies that it forgets about deawalues for decision vectors
that have been seen during the optimization process bubapart of the current popu-
lation. However, we think that this is a natural way of imptarting this idea of fairness
as EAs are usually limited to the knowledge of the individualkt are contained in the
current population. Global FEM{collapses to the Global SEMO algorithm [3, 9] in
the case that the counter value does not influence the seaocesg, i.e.¢(z) = 0
holds for each search point at each time step.

The goal in multi-objective optimization is to explore tHgective space. Therefore,
the question arises whether it might be more beneficial tocét® each counter with
an objective vector rather than a decision vector. Thevioilg algorithm implements
fairness in the objective space.

Algorithm 2 Global FEMQys

1. Choose: € B™ uniformly at random.
2. Sete(f(x)) :=0.
3. SetP := {z}.
4. Repeat
— Chooser € {y € P | ¢(f(z)) > c(f(y)) forall z € P} uniformly at random.

— Sete(f(x)) := c(f(x)) + 1.
— Create a descendant by flipping each bit of: with probability 1/n.
— Ifthereis noy € P with f(y) > f(z') then

o If f(2') & f(P) then set(f(z")) := 0.

o SetP:= (P\{yeP|f(a)= f(y)})U{'}.



For our theoretical investigations carried out in the failog sections, we count the
number of iterations until a desired goal has been achi&vi@de we are interested in
the discovery of all non-dominated objective vectors, wentdhe number of iterations
until an individual for each objective vector F(f) has been included into the pop-
ulation and call it the optimization time of the algorithmh& expectation of this value
is called the expected optimization time.

3 Advantages of fairness in the decision space

The goal of the next two sections is to point out the diffeesnihat the use of different
fairness mechanisms might have. Therefore, we examinatisins where the runtime
behavior of the two variants differs significantly. To edse hotation in the following
sections we will refer to the number 0f and S

1-bits in a decision vector € B" as|z|, and (
|z|1, respectively. We start by examining situ- o
ations where Global FEMQ is efficient while '
Global FEMQy is inefficient. For this, we de- | 1o : g1t o, 1)
fine a bi-objective functioPL which is similar
to the well-known single-objective functiddPC

o (

(a)

(=
[6] and has been introduced in [4]. Itis illustrated -
in the right figure and defined as follows: ) decision space (b) objective space

(|zo,1) ¢ {1P0"|1<i<n},
PL(z) =< (n+1,0) z€ {19077 |1<i<n},
(n+2,0) z=1"

The function features the following properties. The decisspace is partitioned into
a short pattSP := {1°0"~* | 1 < i < n} and its complemerB™ \ SP. The second
objective of the function ensures that decision vectorsifome of the mentioned sets
are comparable while decision vectors from different segsrecomparable. The Pareto
front of PL is PF(PL) = {(n,1),(n + 2,0)} and the Pareto set &fL is P(PL) =
{0™,1™}. SP\ {1} constitutes a plateau, since all decision vectors are niafipe
the objective vecto(n + 1, 0) while B \ SPfeatures a richer neighborhood structure
that gives hints directing to the non-dominated decisioctare)™. This function has
already been considered by Friedrich et al. [4] who have shivat Global SEMO is
inefficient onPL. The next theorem shows that Global FEM® also not efficient on
this function.

Theorem 1. The optimization time of Global FEM@on PL is lower bounded by
292(n'"*%) with probability 1 — 2=2™"*~%) for all constants: > 0.

Proof. We show that the decision vectd¥ is not produced within a phase of length
2"~ with high probability. As the initial individuak: € B" is chosen uniformly
at random, it does not belong &P with probability 1 — [SP/2" = 1 — 2= In



addition,|z|; < 3n/4 holds with probabilityl — 2-(") using Chernoff bounds. The
probability that a mutation flips at leasbits is upper bounded by

<n> <1)Z en\i [(1\' e\’

)G) =) =6

1 n (3 n (3

Therefore, the probability that it flips more thari/2—< bits is upper bounded by
(e/nt/2=5)n'/*7% = 9=@n'*~“logn) This implies that none of the firgt”*~" mu-
tations flips more than'/2= bits with probabilityl — 27'/*™" . 2= 2(n'/* “logn) _
1— 2—Q(n1/275 logn)_

We show that the decision vectdt is not found while the decision vectof is
found within a phase of lengtihen?/?(Inn + 2) with high probability. The probabil-
ity to produce and accept a decision vectére B"™ with |2'|; > maxycp |y|i iS
upper bounded by /n, since this event requires € SP. Hence, we expect this to
happen at mosten'/?(Inn + 2) times. Due to Chernoff bounds this happens at most
6en'/2(Inn + 2) times with probabilityl — 2-2("/*logn) - At mostn!/2—¢ bits flip
per mutation. Hence,

m€a1>3<|y|1 < 3n/4+6en'?(Inn+2)-n'/?7° = 3n/4+ 6en' *(Inn+2) <n
y

holds at the end of the phase implying that the decision vdétdias not been found.
Since at mosRen?®/?(Inn + 2) mutation trials are allocated t(n + 1,0)), the in-
dividuals fromB™ \ SPare chosen at leagtn?/?(Inn + 2) times for mutation. The
probability that a descendaant of an individualx € B™ \ SPcontains lesg-bits than
x and does not belong ®Pis lower bounded by|z|; — 1)/en if |z|; > 2 andl/en if
|z|1 = 1. Therefore, we expect that the decision ve@dhas been found having

n—1
en
— < 1 2
en—l—;_2 1 <en(lnn+2)

mutation trials allocated to individuals froi® \ SP. Using Markov’s inequality the
probability to discover the decision vect@t within 2en(Inn + 2) steps is at leadt/2.
Considerin@en/2(Inn + 2) steps organized inte'/? phases of lengtBen (In n + 2)
the decision vectad™ is reached with probability at least— on'’?,

We are now in the situation right after the individu#l has been added to the
population. If the population contains an individual ®®, we wait untilc¢((n, 1)) =
¢((n + 1,0)). Otherwise we wait until such an individual is added to theyation.
This happens ian®/2 steps with probability —2"'"*. Afterwards we wait untit((n +
1,0)) = ¢((n,1)). Note, that in this waiting phase of length at mest/? the individual
1™ is not produced with probability—2*9<"l/2) using to same argumentation as above.

In this situation we examine a phase of length*/? and conclude that the random
walk on SPdoes not reach the decision vecidr with probability 1 — 2-2(n"?) re-
sorting once again to above arguments. We can be sure thdetison vecton” is
selectedn®/? times for mutation, since the mutation trials are equalyddid between
¢((n,1)) andc((n+1,0)). Hence, within such a phase the decision vegtoproduces



the decision vectot0™ ! with probability 1 — 2% which implies that the random
walk onSPhas to start again. Dividing a phase of length’ " into 2%/* ™" /(2en®/2)
such sub-phases gives that Global FEM®@oes not produce the decision vectér
with probability 1 — 2~2(""*) which completes the proof. O

We will see that Global FEM@ performs much better oRL than its counterpart
Global FEMQs. The main reason for this is that after a while the Paretonugdtde-
cision vector0™ is prevented from generating additional descendants #rastop the
random walk on the plateau.

Theorem 2. The expected optimization time of Global FEMON PL isO(n? logn).

Proof. Before showing that Global FEM@quickly creates the decision vectdrsand

1" we summarize some results concerniitig On the one hand, the decision vedi6r

is created with probability at leasy'2 if at leasten logn individuals not fromSPare

chosen for mutation, where > 0 is a constant (see proof of Theorem 1). On the

other hand, the decision vectof is created with probability at least/2 if at least

¢/'n? individuals fromSPare chosen for mutation and all descendants of individuals n

contained inSPdo not belong t&P, wherec’ > 0 is an appropriate constant (see [6]).
We show that the expected time until the decision ve@toor 1" is introduced into

the population irO(n?logn) steps. We observe a phase of length

0:= (2clogn + 1) - (¢'n® 4 enlogn)

and distinguish two cases. If at leastlog » individuals not fromSPare chosen for mu-
tation, the probability to find the decision vectit is lower bounded by /2 according

to the first statement. Otherwise at mdstog n descendants of individuals not frdai®
lead to individuals oBPwith probability at least /2 according to Markov’s inequality,
since the probability that a descendant of an individualframh SP belongs toSPis
upper bounded by/n. Assuming that this has happened and applying the pigeenhol
principle we can be sure that the phase contains a sub-phisegth

dn® + enlogn,

where no descendants of individuals not containe8Rbelong toSP. The mentioned
sub-phase fulfills the second statement, since at téastindividuals fromSPare se-
lected for mutation. Hence, the decision vectdris created with probability at least
1/4. Since the probability to create the decision ve6toor 1™ in a phase of lengthis
lower bounded byt /4, an expected number of at mdsgt= O(n*log n) steps suffices.

We now consider the situation where the decision ve@tdnas been found and the
decision vectoi” is still missing. Observe a phase of length

0= (2elog(2¢n®) + 1) - (¢'n® + enlog(2¢'n?)).

If the decision vectof” is selected at mostn log(2¢'n?) times then the probability
that at mosRe log(2¢'n?) descendants of the decision vectrare fromSPis lower



bounded byl /2 using Markov’s inequality. Assuming that this has happethedohase
contains a sub-phase of length

dn® + enlog(2¢'n?)

in which at least’n? individuals fromSP are chosen for mutation and all descen-
dants of the individuabd™ do not belong ta&SP. Hence, the probability that the miss-
ing decision vector™ is found or the counter valug(0") exceedsen log(2¢/n?) is
lower bounded byt /4. We expect that one of the mentioned events occurs after stt mo
40" = O(n?logn) steps. If the individual ™ still has not been found we observe a phase
of length2en? + ¢'n3. The probability to add a new individual fro®Pto the popula-
tion is lower bounded by/(en?) as at mose specific bits have to flip. This worst case
occurs if0™ is selected for mutation arid” ! is already contained in the population.
Hence, the probability that in the fir8en? steps of the phase a new individual from
SPwith an initial counter value of is added to the population is lower bounded by
1/2 due to Markov’s inequality. Assuming that this has happethedprobability that
the individual0™ is selected in the following'n? steps can be upper bounded as fol-
lows. The probability to reset the counter of the individfram SPis lower bounded
by 1/en. The probability that this does not happereinlog(2¢'n®) consecutive steps

is upper bounded by
. 1\ log(2¢'n®) - 1
en ~ 2¢n3’

The probability that this does not happen in a phase of ledgthis upper bounded
by ¢'n? - 1/(2¢'n3) < 1/2. We conclude that the counter value of the actual individual
from SPdoes not exceedn log(2c¢'n?) with probability at least /2 and therefore the
individual 0™ is not chosen for mutation. Assuming that this has happemegitoba-
bility that the decision vectar” is found is lower bounded by/2. Hence, the decision
vector1™ is found in an expected number ®f (2en? + ¢'n?) = O(n?) steps.

We also have to examine the situation that the decision vé€ttnas been found
and the decision vectdr” is still missing. We wait until the population contains an
additional individual not contained BPand the counter valug1™) is at least as big as
the counter value of this individual. Afterwards we obseayghase of lengtBen log n.
We can be sure that at leastlog n steps are allocated to individuals not fr@R as
¢(1™) is never set t@. Hence, after an expected numbei®(r log n) additional steps
the decision vectad” is added to the population. O

4 Advantages of fairness in the objective space

In this section, we point out situations where the use of&s in the objective space
favors over fairness in the decision space. We have alrezely that the latter fairness
mechanism enables the ability to perform a random walk oateal of constant fithess
where the former fairness mechanism is not able to do sonBtine random walk the

counter of the individual on the plateau is settwvhenever a new individual on the
plateau is produced. This can also be a drawback of fairmebeidecision space as it



may prevent the algorithm from improvements that are haebtain than finding a
new individual on the plateau.

Our function that is used to point out the mentioned behasismilar to the func-
tion PL that has been examined in Section 3. To ease the followingitefi we assume
n = 8m, m € N, and define

" (9n/8 +2,0)

SR = {10"" |1 <i<3n/4—1} e .
and
felo| 1ign gt
SRy 1= {12/ 12107172 |0 < i < n/8}.
The functionPLG (Plateau and gapsis illus- .
trated in the figure to the right and defined by (o decsion spce O
(lzfo, 1) z ¢ SP, USR,

PLG(z) := ¢ (n+1,1) x € SRy,
(TL + 24+ L,O) T = 13n/4+2i0n/472i.

Note, thatPF(PLG) = {(n + 1,1),(9n/8 + 2,0)} andP(PLG) = SP, U {1"}.
The short patt8Pis divided into a plateau and a short path with little gap$ liads to
the second non-dominated objective vedtbr/8 + 2, 0).

The next theorem shows that Global FEM®erforms well orPLG.

Theorem 3. The expected optimization time of Global FEMON PLG isO(n?).

Proof. An individual of SP, U SR, is added to the population after an expected num-
ber of O(nlogn) steps, since before having reached such a situation theatimpu
contains at most one individual and therefore the algoritteinaves like (1+1) EA on
ONEMAX (see [2]).

We first consider the situation where this individual belongSP,. After an ex-
pected number o®)(n?) steps an individual oSR; is introduced into the popula-
tion (see [6]). The probability to find a better individual 8P, under the condi-
tion that the individual ofSR, has been selected for mutation is lower bounded by
(1/n)%(1 — 1/n)"=2 > 1/(en?) as it suffices to flip its two leftmosi-bits. Hence,
in expectation at mostn? attempts per non-optimal individual & are needed to
improve it. The counter of the non-dominated individualS#i is never reset. Hence,
the individual of SR, is chosen at least once in two consecutive iterations. Torerean
expected number of at maatn/8 - en? = O(n?) steps is needed to obtain the missing
decision vectoi ™.

In the case that the first individual &P, U SR, belongs toSR; an individual of
B" \ SR is produced with probability at leasye in a mutation step as it suffices to
flip a single bit. Hence, after an expected number of O(1) steps the population
contains besides a solution®P; an additional solution dB™ \ SPR,. A decision vector
of SP, is reached by allocating an expected numbe©of. log n) mutation trials to
the individuals ofB™ \ SR,. We already know tha®(n?) mutation trials allocated to
the individuals ofSPR, are enough to reach the decision vedtbiwhich completes the
proof. O



The next theorem states that Global FEM® inefficient onPLG. We will see that
the random walk on the plateau prevents the algorithm frdloviing the short path to
the second non-dominated decision vedfor

Theorem 4. The optimization time of Global FEM@on PLG is lower bounded by
292(n'"*) with probability 1 — 2~ ("),

Proof. For the initial individualz holds |z|; > 5n/8 with probability e (") due to
Chernoff bounds. The probability that one of the fizat’* mutations flips more than
n'/? bits is upper bounded bg/‘”(””2 logn) (cf. proof of Theorem 1). We assume that
these events have not happened. We consider a phase of R%ﬁ{:]ztrand show that
Global FEMQs does not find the decision vectot with high probability.

We wait until the algorithm has generated for the first timeratividual z € SP,
with |z|; > 3n/4+n'/? —1. As at most'/? bits flip per mutation, we can be sure that
lz|; < 3n/4 + 2n'/2 — 2 holds and the population contains an additional individual
of SP,. The probability to generate a better individual3f, under the condition that
the individual ofSR, has been selected for mutation is upper boundety/by, since at
least the two leftmodi-bits of = have to be flipped. The probability that — 1 trials to
find a better individual oBP; fail is lower bounded by1 — 1/n2)"" =1 > 1/e. Since
at mostn!/2 bits flip per mutation, the algorithm is at least

1/2 1/2 1/2
n/4—21n/ +2 :n/ _2+izl
nl/2 4 nl/2 8
times in the above situation. Hence, the probability thatelis at least one individual
x* € SP, for which the firstn? — 1 trials to find a better individual 6P, fail is lower

bounded by
1\ o
1—(1—) > 12720,
e

We upper bound the counter value of the individualS&{ which shows that the
algorithm is not able to find an individual with motebits thanz*. Note, that there is
at least one Hamming neighbor for the individualS#®, that is mapped to the same
objective vector. Hence, the probability to reset the ceumalue of the individual of
P N SP is lower bounded by /en. Therefore, the probability that the counter value of
an individual ofSP, reaches:? is upper bounded by

1\ ! L\ en en
1-— =(1—— . <e e, =9 0n)
en en en—1 en —1

As the probability that this happens in the observed phasppsr bounded by”l/2 .
2-2(n) = 2-2(n) the statement of the theorem follows. O

5 Conclusions

Popular variants of MOEAs such as SPEA2 or NSGA-II use spatifidules to explore
the Pareto front of a given problem by favoring solutionsohging to regions in the



decision or objective space that are rarely covered. Withghper, we have taken a
first step to understand such mechanisms by rigorous rumtirakyses. We have shown
that there are simple plateau functions which cannot berigid without fairness or

with fairness in the objective space, but with a MOEA whiclpiements fairness in

the decision space (cf. Section 3). We also proved that foaice‘'perforated” plateaus

the impact of fairness can be the other way around (cf. SedfjoOur analyses point

out that a fair MOEA has a marked preference for acceptingkggrnall improvements.

This can help to find new solutions close to the current pdjmuajuicker.
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