
Runtime Analyses for Using Fairness in Evolutionary
Multi-Objective Optimization

Tobias Friedrich1, Christian Horoba2, and Frank Neumann1

1 Max-Planck-Institut f̈ur Informatik, Saarbr̈ucken, Germany
2 Fakulẗat für Informatik, LS 2, TU Dortmund, Dortmund, Germany

Abstract. It is widely assumed that evolutionary algorithms for multi-objective
optimization problems should use certain mechanisms to achieve a good spread
over the Pareto front. In this paper, we examine such mechanisms froma theo-
retical point of view and analyze simple algorithms incorporating the concept of
fairness introduced by Laumanns et al [7]. This mechanism tries to balance the
number of descendants of all individuals of the current population. Werigorously
analyze the runtime behavior of different fairness mechanism and present show-
case examples to point out situations where the right mechanism can speed up the
optimization process significantly.

1 Introduction

Evolutionary algorithms (EAs) evolve a set of solutions called the population during the
optimization process. As in multi-objective optimizationone usually does not search for
a single optimal solution but a set of solutions representing the possible trade-offs when
dealing with conflicting objective functions, multi-objective evolutionary algorithms
(MOEAs) seem to be in a natural way well suited for dealing with these problems.

Many MOEAs give priority to regions in the decision or objective space that have
been rarely explored. This leads to the use of fairness in evolutionary multi-objective
optimization. The idea behind using fairness is that the number of descendants gener-
ated by individuals with certain properties should be balanced. Different mechanisms
for spreading the individuals of a population over the Pareto front have been proposed.
In NSGA-II [1] a uniform spread over the Pareto front should be achieved by using
a crowded comparison operator that gives decision vectors in less crowded regions a
higher priority. SPEA2 [10] uses a density estimator such that the fitness of an individ-
ual is given by its objective vector and a density value whichdepends on the other in-
dividuals in the population. The goal of the density estimator is also to give individuals
in less crowded regions a higher priority. Our aim is to get a theoretical understanding
how such fairness mechanisms influence the optimization process.

The theoretical understanding of the runtime behavior of MOEAs is far behind their
practical success. The first rigorous runtime analyses for such algorithms have been
carried out by Laumanns et al. [7]. They have investigated a simple mutation-based
MOEA called SEMO that searches locally by flipping in each mutation step a single
bit. In addition, they have considered a fair MOEA called FEMO and shown that this
algorithm outperforms SEMO on a particular pseudo Boolean function called LOTZ.

Giel [5] has investigated SEMO with a mutation operator thatsearches globally and
called the algorithm Global SEMO. Global SEMO has also been considered for some
well-known combinatorial optimization problems [3, 8, 9].

In this paper we want to put forward the runtime analysis of MOEAs and consider
how the use of fairness can influence the runtime behavior. Weinvestigate the model
of fairness introduced by Laumanns et al. [7]. The algorithms that are subject to our
analyses count the number of descendants that have been generated by the individuals
in the population. The first idea is to count the number of descendants with respect to
the decision space, i. e., a separate counter is dedicated toeach decision vector. The
descendants are generated by individuals that have not produced many descendants in
order to discover new regions of the decision space. This prevents individuals that have
achieved less progress towards other non-dominated decision vectors from producing
additional descendants. The other idea we examine is the usage of a counter with respect
to the objective space. This implies that many decision vectors potentially depend on
the same counter. Our goal is to compare the runtime behaviorof these two variants.

The outline of this paper is as follows. A short introductioninto multi-objective op-
timization and the algorithms that are subject of our analyses are presented in Section 2.
The differences between the two variants of fairness are worked out in Sections 3 and 4.
Finally, we finish with some concluding remarks.

2 Algorithms

We start with some basic notations and definitions that will be used throughout the
paper. We denote the set of all Boolean values byB and the set of all real numbers by
R and investigate the maximization of functionsf : B

n → R
m. We call f objective

function, B
n decision spaceandR

m objective space. The elements ofBn are called
decision vectorsand the elements ofRm objective vectors. Let y = (y1, . . . , ym) ∈
R

m andy′ = (y′

1, . . . , y
′

m) ∈ R
m be two objective vectors. We define thaty weakly

dominatesy′, denoted byy � y′, if and only if yi ≥ y′

i for all i ∈ {1, . . . ,m}, andy
dominatesy′, denoted byy ≻ y′, if and only if y � y′ andy′ 6� y.

The setPF(f) := {y ∈ f(Bn) | ∀y′ ∈ f(Bn) : y′ 6≻ y} is called thePareto front
of f and the setP(f) := f−1(PF(f)) = {x ∈ B

n | ∀x′ ∈ B
n : f(x′) 6≻ f(x)}

Pareto set off . The set{(x, f(x)) | x ∈ P(f)} constitutes the canonical solution
of an optimization problem of the considered kind. In the literature a set of the form
{(x, f(x)) | x ∈ X} with X ⊆ P(f) is also considered as a valid solution iff(X) =
PF(f). This means that it is sufficient to determine for all non-dominated objective
vectorsy ∈ PF(f) at least one decision vectorx ∈ B

n with f(x) = y.
Laumanns et al. [7] al. argue that it can be beneficial when allindividuals in the

population have created roughly the same number of descendants and therefore intro-
duced the algorithm FEMO. This algorithm works with a local mutation operator and
uses a counter for each individual in the population to measures the number of descen-
dants the corresponding individual has created. We investigate generalized variants of
FEMO. Our algorithms apply a global mutation operator and additionally accept indi-
viduals with the same objective vector as an individual in the population. The use of
a global mutation operator is more common as the ability to flip two or more bits in a

single mutation step tends to improve the optimization process. The relaxed acceptance
rule also tends to improve the optimization since it allows the exploration of plateaus,
i. e., regions in the decision space whose decision vectors are mapped to the same ob-
jective vector. We distinguish two kinds of fairness depending on whether the fairness is
ensured in the decision or objective space. The following Global FEMOds uses fairness
in the decision space.

Algorithm 1 Global FEMOds

1. Choosex ∈ B
n uniformly at random.

2. Setc(x) := 0.

3. SetP := {x}.

4. Repeat
– Choosex ∈ {y ∈ P | c(z) ≥ c(y) for all z ∈ P} uniformly at random.

– Setc(x) := c(x) + 1.

– Create a descendantx′ by flipping each bit ofx with probability1/n.

– If there is noy ∈ P with f(y) ≻ f(x′) then
• If x′ 6∈ P then setc(x′) := 0.

• SetP := (P \ {y ∈ P | f(x′) � f(y)}) ∪ {x′}.

Note that the algorithm resets the counter to0 depending on the individuals in the
current population. This implies that it forgets about counter values for decision vectors
that have been seen during the optimization process but are not part of the current popu-
lation. However, we think that this is a natural way of implementing this idea of fairness
as EAs are usually limited to the knowledge of the individuals that are contained in the
current population. Global FEMOds collapses to the Global SEMO algorithm [3, 9] in
the case that the counter value does not influence the search process, i. e.,c(x) = 0
holds for each search point at each time step.

The goal in multi-objective optimization is to explore the objective space. Therefore,
the question arises whether it might be more beneficial to associate each counter with
an objective vector rather than a decision vector. The following algorithm implements
fairness in the objective space.

Algorithm 2 Global FEMOos

1. Choosex ∈ B
n uniformly at random.

2. Setc(f(x)) := 0.

3. SetP := {x}.

4. Repeat
– Choosex ∈ {y ∈ P | c(f(z)) ≥ c(f(y)) for all z ∈ P} uniformly at random.

– Setc(f(x)) := c(f(x)) + 1.

– Create a descendantx′ by flipping each bit ofx with probability1/n.

– If there is noy ∈ P with f(y) ≻ f(x′) then
• If f(x′) 6∈ f(P) then setc(f(x′)) := 0.

• SetP := (P \ {y ∈ P | f(x′) � f(y)}) ∪ {x′}.

For our theoretical investigations carried out in the following sections, we count the
number of iterations until a desired goal has been achieved.Since we are interested in
the discovery of all non-dominated objective vectors, we count the number of iterations
until an individual for each objective vector ofPF(f) has been included into the pop-
ulation and call it the optimization time of the algorithm. The expectation of this value
is called the expected optimization time.

3 Advantages of fairness in the decision space

The goal of the next two sections is to point out the differences that the use of different
fairness mechanisms might have. Therefore, we examine situations where the runtime
behavior of the two variants differs significantly. To ease the notation in the following
sections we will refer to the number of0- and
1-bits in a decision vectorx ∈ B

n as |x|0 and
|x|1, respectively. We start by examining situ-
ations where Global FEMOds is efficient while
Global FEMOos is inefficient. For this, we de-
fine a bi-objective functionPL which is similar
to the well-known single-objective functionSPC
[6] and has been introduced in [4]. It is illustrated
in the right figure and defined as follows:

PL(x) :=











(|x|0, 1) x /∈ {1i0n−i | 1 ≤ i ≤ n},

(n + 1, 0) x ∈ {1i0n−i | 1 ≤ i < n},

(n + 2, 0) x = 1n.

The function features the following properties. The decision space is partitioned into
a short pathSP := {1i0n−i | 1 ≤ i ≤ n} and its complementBn \ SP. The second
objective of the function ensures that decision vectors from one of the mentioned sets
are comparable while decision vectors from different sets are incomparable. The Pareto
front of PL is PF(PL) = {(n, 1), (n + 2, 0)} and the Pareto set ofPL is P(PL) =
{0n, 1n}. SP\ {1n} constitutes a plateau, since all decision vectors are mapped to
the objective vector(n + 1, 0) while B

n \ SPfeatures a richer neighborhood structure
that gives hints directing to the non-dominated decision vector 0n. This function has
already been considered by Friedrich et al. [4] who have shown that Global SEMO is
inefficient onPL. The next theorem shows that Global FEMOos is also not efficient on
this function.

Theorem 1. The optimization time of Global FEMOos on PL is lower bounded by
2Ω(n1/2−ε) with probability1 − 2−Ω(n1/2−ε) for all constantsε > 0.

Proof. We show that the decision vector1n is not produced within a phase of length
2n1/2−ε

with high probability. As the initial individualx ∈ B
n is chosen uniformly

at random, it does not belong toSPwith probability 1 − |SP|/2n = 1 − 2−Ω(n). In

addition,|x|1 ≤ 3n/4 holds with probability1 − 2−Ω(n) using Chernoff bounds. The
probability that a mutation flips at leasti bits is upper bounded by

(

n

i

)

·

(

1

n

)i

≤
(en

i

)i

·

(

1

n

)i

=
(e

i

)i

.

Therefore, the probability that it flips more thann1/2−ε bits is upper bounded by
(e/n1/2−ε)n1/2−ε

= 2−Ω(n1/2−ε log n). This implies that none of the first2n1/2−ε

mu-
tations flips more thann1/2−ε bits with probability1 − 2n1/2−ε

· 2−Ω(n1/2−ε log n) =

1 − 2−Ω(n1/2−ε log n).
We show that the decision vector1n is not found while the decision vector0n is

found within a phase of length4en3/2(ln n + 2) with high probability. The probabil-
ity to produce and accept a decision vectorx′ ∈ B

n with |x′|1 > maxy∈P |y|1 is
upper bounded by1/n, since this event requiresx′ ∈ SP. Hence, we expect this to
happen at most4en1/2(lnn + 2) times. Due to Chernoff bounds this happens at most
6en1/2(lnn + 2) times with probability1 − 2−Ω(n1/2 log n). At mostn1/2−ε bits flip
per mutation. Hence,

max
y∈P

|y|1 ≤ 3n/4 + 6en1/2(ln n + 2) · n1/2−ε = 3n/4 + 6en1−ε(ln n + 2) < n

holds at the end of the phase implying that the decision vector 1n has not been found.
Since at most2en3/2(lnn + 2) mutation trials are allocated toc((n + 1, 0)), the in-
dividuals fromB

n \ SPare chosen at least2en3/2(lnn + 2) times for mutation. The
probability that a descendantx′ of an individualx ∈ B

n \ SPcontains less1-bits than
x and does not belong toSPis lower bounded by(|x|1 − 1)/en if |x|1 ≥ 2 and1/en if
|x|1 = 1. Therefore, we expect that the decision vector0n has been found having

en +
n−1
∑

i=2

en

i − 1
≤ en(ln n + 2)

mutation trials allocated to individuals fromBn \ SP. Using Markov’s inequality the
probability to discover the decision vector0n within 2en(ln n+2) steps is at least1/2.
Considering2en3/2(lnn + 2) steps organized inton1/2 phases of length2en(ln n + 2)

the decision vector0n is reached with probability at least1 − 2n1/2

.
We are now in the situation right after the individual0n has been added to the

population. If the population contains an individual ofSP, we wait until c((n, 1)) =
c((n + 1, 0)). Otherwise we wait until such an individual is added to the population.
This happens inen3/2 steps with probability1−2n1/2

. Afterwards we wait untilc((n+
1, 0)) = c((n, 1)). Note, that in this waiting phase of length at mosten3/2 the individual
1n is not produced with probability1−2−Ω(n1/2) using to same argumentation as above.

In this situation we examine a phase of length2en3/2 and conclude that the random
walk on SPdoes not reach the decision vector1n with probability 1 − 2−Ω(n1/2) re-
sorting once again to above arguments. We can be sure that thedecision vector0n is
selecteden3/2 times for mutation, since the mutation trials are equally divided between
c((n, 1)) andc((n+1, 0)). Hence, within such a phase the decision vector0n produces

the decision vector10n−1 with probability1 − 2−n1/2

which implies that the random
walk onSPhas to start again. Dividing a phase of length2n1/2−ε

into 2n1/2−ε

/(2en3/2)
such sub-phases gives that Global FEMOos does not produce the decision vector1n

with probability1 − 2−Ω(n1/2) which completes the proof.

We will see that Global FEMOds performs much better onPL than its counterpart
Global FEMOos. The main reason for this is that after a while the Pareto optimal de-
cision vector0n is prevented from generating additional descendants that can stop the
random walk on the plateau.

Theorem 2. The expected optimization time of Global FEMOds on PL isO(n3 log n).

Proof. Before showing that Global FEMOds quickly creates the decision vectors0n and
1n we summarize some results concerningPL. On the one hand, the decision vector0n

is created with probability at least1/2 if at leastcn log n individuals not fromSPare
chosen for mutation, wherec > 0 is a constant (see proof of Theorem 1). On the
other hand, the decision vector1n is created with probability at least1/2 if at least
c′n3 individuals fromSPare chosen for mutation and all descendants of individuals not
contained inSPdo not belong toSP, wherec′ > 0 is an appropriate constant (see [6]).

We show that the expected time until the decision vector0n or 1n is introduced into
the population inO(n3 log n) steps. We observe a phase of length

ℓ := (2c log n + 1) · (c′n3 + cn log n)

and distinguish two cases. If at leastcn log n individuals not fromSPare chosen for mu-
tation, the probability to find the decision vector0n is lower bounded by1/2 according
to the first statement. Otherwise at most2c log n descendants of individuals not fromSP
lead to individuals ofSPwith probability at least1/2 according to Markov’s inequality,
since the probability that a descendant of an individual notfrom SPbelongs toSP is
upper bounded by1/n. Assuming that this has happened and applying the pigeonhole
principle we can be sure that the phase contains a sub-phase of length

c′n3 + cn log n,

where no descendants of individuals not contained inSPbelong toSP. The mentioned
sub-phase fulfills the second statement, since at leastc′n3 individuals fromSPare se-
lected for mutation. Hence, the decision vector1n is created with probability at least
1/4. Since the probability to create the decision vector0n or 1n in a phase of lengthℓ is
lower bounded by1/4, an expected number of at most4ℓ = O(n3 log n) steps suffices.

We now consider the situation where the decision vector0n has been found and the
decision vector1n is still missing. Observe a phase of length

ℓ′ := (2e log(2c′n3) + 1) · (c′n3 + en log(2c′n3)).

If the decision vector0n is selected at mosten log(2c′n3) times then the probability
that at most2e log(2c′n3) descendants of the decision vector0n are fromSP is lower

bounded by1/2 using Markov’s inequality. Assuming that this has happenedthe phase
contains a sub-phase of length

c′n3 + en log(2c′n3)

in which at leastc′n3 individuals fromSP are chosen for mutation and all descen-
dants of the individual0n do not belong toSP. Hence, the probability that the miss-
ing decision vector1n is found or the counter valuec(0n) exceedsen log(2c′n3) is
lower bounded by1/4. We expect that one of the mentioned events occurs after at most
4ℓ′ = O(n3 log n) steps. If the individual1n still has not been found we observe a phase
of length2en2 + c′n3. The probability to add a new individual fromSPto the popula-
tion is lower bounded by1/(en2) as at most2 specific bits have to flip. This worst case
occurs if0n is selected for mutation and10n−1 is already contained in the population.
Hence, the probability that in the first2en2 steps of the phase a new individual from
SPwith an initial counter value of0 is added to the population is lower bounded by
1/2 due to Markov’s inequality. Assuming that this has happenedthe probability that
the individual0n is selected in the followingc′n3 steps can be upper bounded as fol-
lows. The probability to reset the counter of the individualfrom SP is lower bounded
by 1/en. The probability that this does not happen inen log(2c′n3) consecutive steps
is upper bounded by

(

1 −
1

en

)en log(2c′n3)

≤
1

2c′n3
.

The probability that this does not happen in a phase of lengthc′n3 is upper bounded
by c′n3 · 1/(2c′n3) ≤ 1/2. We conclude that the counter value of the actual individual
from SPdoes not exceeden log(2c′n3) with probability at least1/2 and therefore the
individual 0n is not chosen for mutation. Assuming that this has happened the proba-
bility that the decision vector1n is found is lower bounded by1/2. Hence, the decision
vector1n is found in an expected number of8 · (2en2 + c′n3) = O(n3) steps.

We also have to examine the situation that the decision vector 1n has been found
and the decision vector0n is still missing. We wait until the population contains an
additional individual not contained inSPand the counter valuec(1n) is at least as big as
the counter value of this individual. Afterwards we observea phase of length2cn log n.
We can be sure that at leastcn log n steps are allocated to individuals not fromSPas
c(1n) is never set to0. Hence, after an expected number ofO(n log n) additional steps
the decision vector0n is added to the population.

4 Advantages of fairness in the objective space

In this section, we point out situations where the use of fairness in the objective space
favors over fairness in the decision space. We have already seen that the latter fairness
mechanism enables the ability to perform a random walk on a plateau of constant fitness
where the former fairness mechanism is not able to do so. During the random walk the
counter of the individual on the plateau is set to0 whenever a new individual on the
plateau is produced. This can also be a drawback of fairness in the decision space as it

may prevent the algorithm from improvements that are harderto obtain than finding a
new individual on the plateau.

Our function that is used to point out the mentioned behavioris similar to the func-
tion PL that has been examined in Section 3. To ease the following definition we assume
n = 8m, m ∈ N, and define

SP1 := {1i0n−i | 1 ≤ i ≤ 3n/4 − 1}

and

SP2 := {13n/4+2i0n/4−2i | 0 ≤ i ≤ n/8}.

The functionPLG (Plateau and gaps) is illus-
trated in the figure to the right and defined by

PLG(x) :=











(|x|0, 1) x /∈ SP1 ∪ SP2,

(n + 1, 1) x ∈ SP1,

(n + 2 + i, 0) x = 13n/4+2i0n/4−2i.

Note, thatPF(PLG) = {(n + 1, 1), (9n/8 + 2, 0)} andP(PLG) = SP1 ∪ {1n}.
The short pathSPis divided into a plateau and a short path with little gaps that leads to
the second non-dominated objective vector(9n/8 + 2, 0).

The next theorem shows that Global FEMOos performs well onPLG.

Theorem 3. The expected optimization time of Global FEMOos on PLG isO(n3).

Proof. An individual of SP1 ∪ SP2 is added to the population after an expected num-
ber ofO(n log n) steps, since before having reached such a situation the population
contains at most one individual and therefore the algorithmbehaves like (1+1) EA on
ONEMAX (see [2]).

We first consider the situation where this individual belongs to SP1. After an ex-
pected number ofO(n3) steps an individual ofSP2 is introduced into the popula-
tion (see [6]). The probability to find a better individual ofSP2 under the condi-
tion that the individual ofSP2 has been selected for mutation is lower bounded by
(1/n)2(1 − 1/n)n−2 ≥ 1/(en2) as it suffices to flip its two leftmost0-bits. Hence,
in expectation at mosten2 attempts per non-optimal individual ofSP2 are needed to
improve it. The counter of the non-dominated individual ofSP1 is never reset. Hence,
the individual ofSP2 is chosen at least once in two consecutive iterations. Therefore, an
expected number of at most2 ·n/8 · en2 = O(n3) steps is needed to obtain the missing
decision vector1n.

In the case that the first individual ofSP1 ∪ SP2 belongs toSP2 an individual of
B

n \ SP2 is produced with probability at least1/e in a mutation step as it suffices to
flip a single bit. Hence, after an expected number ofe = O(1) steps the population
contains besides a solution ofSP2 an additional solution ofBn \SP2. A decision vector
of SP1 is reached by allocating an expected number ofO(n log n) mutation trials to
the individuals ofBn \ SP2. We already know thatO(n3) mutation trials allocated to
the individuals ofSP2 are enough to reach the decision vector1n which completes the
proof.

The next theorem states that Global FEMOds is inefficient onPLG. We will see that
the random walk on the plateau prevents the algorithm from following the short path to
the second non-dominated decision vector1n.

Theorem 4. The optimization time of Global FEMOds on PLG is lower bounded by
2Ω(n1/2) with probability1 − 2−Ω(n1/2).

Proof. For the initial individualx holds |x|1 > 5n/8 with probability e−Ω(n) due to
Chernoff bounds. The probability that one of the first2n1/2

mutations flips more than
n1/2 bits is upper bounded by2−Ω(n1/2 log n) (cf. proof of Theorem 1). We assume that
these events have not happened. We consider a phase of length2n1/2

and show that
Global FEMOds does not find the decision vector1n with high probability.

We wait until the algorithm has generated for the first time anindividual x ∈ SP2

with |x|1 ≥ 3n/4+n1/2−1. As at mostn1/2 bits flip per mutation, we can be sure that
|x|1 ≤ 3n/4 + 2n1/2 − 2 holds and the population contains an additional individual
of SP1. The probability to generate a better individual ofSP2 under the condition that
the individual ofSP2 has been selected for mutation is upper bounded by1/n2, since at
least the two leftmost0-bits ofx have to be flipped. The probability thatn2 − 1 trials to
find a better individual ofSP2 fail is lower bounded by(1 − 1/n2)n2

−1 ≥ 1/e. Since
at mostn1/2 bits flip per mutation, the algorithm is at least

n/4 − 2n1/2 + 2

n1/2
=

n1/2

4
− 2 +

2

n1/2
≥

n1/2

8

times in the above situation. Hence, the probability that there is at least one individual
x∗ ∈ SP2 for which the firstn2 − 1 trials to find a better individual ofSP2 fail is lower
bounded by

1 −

(

1 −
1

e

)n1/2/8

≥ 1 − 2−Ω(n1/2).

We upper bound the counter value of the individual ofSP1 which shows that the
algorithm is not able to find an individual with more1-bits thanx∗. Note, that there is
at least one Hamming neighbor for the individual ofSP1 that is mapped to the same
objective vector. Hence, the probability to reset the counter value of the individual of
P ∩SP1 is lower bounded by1/en. Therefore, the probability that the counter value of
an individual ofSP1 reachesn2 is upper bounded by

(

1 −
1

en

)n2
−1

=

(

1 −
1

en

)en·n/e

·
en

en − 1
≤ e−n/e ·

en

en − 1
= 2−Ω(n).

As the probability that this happens in the observed phase isupper bounded by2n1/2

·
2−Ω(n) = 2−Ω(n), the statement of the theorem follows.

5 Conclusions

Popular variants of MOEAs such as SPEA2 or NSGA-II use specific modules to explore
the Pareto front of a given problem by favoring solutions belonging to regions in the

decision or objective space that are rarely covered. With this paper, we have taken a
first step to understand such mechanisms by rigorous runtimeanalyses. We have shown
that there are simple plateau functions which cannot be optimized without fairness or
with fairness in the objective space, but with a MOEA which implements fairness in
the decision space (cf. Section 3). We also proved that for certain “perforated” plateaus
the impact of fairness can be the other way around (cf. Section 4). Our analyses point
out that a fair MOEA has a marked preference for accepting quick small improvements.
This can help to find new solutions close to the current population quicker.

6 Acknowledgments

The second author was supported by the Deutsche Forschungsgemeinschaft (DFG) as
part of the Collaborative Research Center “Computational Intelligence” (SFB 531).

References

1. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A Fast Elitist Non-Dominated Sorting Ge-
netic Algorithm for Multi-Objective Optimization: NSGA-II. InProc. of PPSN VI, volume
1917 ofLNCS, pages 849–858. Springer, 2000.

2. S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1)evolutionary algorithm.
Theor. Comput. Sci., 276:51–81, 2002.

3. T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt. Approximating covering
problems by randomized search heuristics using multi-objective models.In Proc. of GECCO
’07, volume 1, pages 797–804. ACM Press, 2007.

4. T. Friedrich, N. Hebbinghaus, and F. Neumann. Plateaus can be harder in multi-objective
optimization. InProc. of CEC ’07, pages 2622–2629. IEEE Press, 2007.

5. O. Giel. Expected runtimes of a simple multi-objective evolutionary algorithm. In Proc. of
CEC ’03, IEEE Press, pages 1918–1925, 2003.

6. T. Jansen and I. Wegener. Evolutionary algorithms - how to cope with plateaus of constant
fitness and when to reject strings of the same fitness.IEEE Trans. Evolutionary Computation,
5(6):589–599, 2001.

7. M. Laumanns, L. Thiele, and E. Zitzler. Running time analysis of multiobjective evolutionary
algorithms on pseudo-boolean functions.IEEE Trans. Evolutionary Computation, 8(2):170–
182, 2004.

8. F. Neumann. Expected runtimes of a simple evolutionary algorithm for the multi-objective
minimum spanning tree problem. InProc. of PPSN ’04, volume 3242 ofLNCS, pages 80–89,
2004.

9. F. Neumann and I. Wegener. Minimum spanning trees made easier viamulti-objective opti-
mization. InProc. of GECCO ’05, pages 763–770. ACM Press, 2005.

10. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto Evolutionary
Algorithm for Multiobjective Optimization. InProc. of EUROGEN 2001, pages 95–100.
International Center for Numerical Methods in Engineering (CIMNE), 2002.

