
On the Impact of the Renting Rate for the Unconstrained
Nonlinear Knapsack Problem

Junhua Wu Sergey Polyakovskiy Frank Neumann
Optimisation and Logistics, School of Computer Science

The University of Adelaide, Australia

ABSTRACT
Multi-component problems combine several combinatorial
optimisation problems that occur frequently in real-word
applications such as supply chain management. In order
to study the impact of the combination of such problems,
the traveling thief problem [4] which combines the traveling
salesman problem and the knapsack problem has been in-
troduced. Recently, it has been shown that the non-linear
knapsack problem constituting the packing component of
the traveling thief problem is already NP-hard without hav-
ing the capacity constraint imposed. We investigate the
renting rate R which is an important parameter in com-
bining the packing profit and the associated traveling costs
in this non-linear knapsack problem. Our theoretical and
experimental investigations show how the renting rates in-
fluence the difficulty of a given problem instance in terms of
how items can be excluded by a simple but very effective pre-
processing approach. Furthermore, we carry out theoretical
and experimental investigations to create instances that are
hard to be solved by simple evolutionary algorithms.

Keywords
Traveling thief problem; Non-linear knapsack problem; Trans-
portation; Combinatorial optimisation

1. INTRODUCTION
Metaheuristic approaches have been applied to a wide

range of combinatorial optimisation problems [2, 3]. Apart
from classical NP-hard combinatorial problems, multi-compo-
nent problems have gained special interest in recent years [5,
16]. Such problems combine different combinatorial prob-
lems into an overall problem and are well motivated by com-
plexities arising in the area of supply chain management.

Considering multi-component problems, the main ques-
tion is what makes the combination of the underlying prob-
lems harder than solving the different problem separately.
Recently the traveling thief problem (TTP) [4] has been in-
troduced as a problem which allows to study the interaction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’16, July 20–24, 2016, Denver, Colorado, USA.
c© 2016 ACM. ISBN 978-1-4503-4206-3/16/07. . . $15.00

DOI: http://dx.doi.org/XXXX.XXXX

of two well-known combinatorial optimisation problems in a
systematic way. The TTP combines two of the most promi-
nent combinatorial optimisation problems, namely the trav-
eling salesperson problem (TSP) and the knapsack problem
(KP).

Different approaches have been proposed during the last
few years for solving the TTP and a benchmark set based
on TSP and KP instances has been presented in [13]. Ap-
proaches for dealing with the TTP include various meta-
heuristics such as randomised local search, evolutionary al-
gorithms, and co-evolutionary approaches [7–10]. It has
been shown in [7] that good solvers for the TTP instances
of the benchmark set can be obtained by choosing a close to
optimal TSP tour of the underlying TSP part and deciding
on the selection of items by a simple (1+1) EA. This might
suggest that the packing problem is easy once the route is
fixed.

However, Polyakovskiy and Neumann [14] have shown that
the underlying non-linear knapsack problem (NKP) is al-
ready NP-hard without imposing the usual capacity con-
straint for the knapsack. In this paper, we carry out ad-
ditional studies for NKP. We pay special attention to an
important parameter (R) called the renting rate which con-
nects the profit and the cost part of a packing. Based on
the input of the other parameters of the problem, such as
the profit and weight of the given items, we derive upper
and lower bounds on the interval for R where simple pre-
processing approaches presented in [14] is not able to reduce
the problem instances. Furthermore, we use an evolution-
ary algorithm to produce instances that allow to remove
as few items as possible for a fixed renting rate R. These
studies give additional insights into the importance of R and
show the range where difficult instances for given algorithms
might be found.

Motivated by the success of simple evolutionary algorithms
such as the (1+1) EA for the packing component of the TTP,
we investigate how difficult instances of NKP for the (1+1)
EA look like afterwards. We do this in two ways. First we
construct an instance based on the insights from rigorous
runtime analysis for the classical knapsack problem where
the (1+1) EA fails with a constant probability to obtain
an optimal solution. Afterwards, we evolve an instance for
NKP by an evolutionary algorithm where the empirical fail-
ure rate of the instance is maximised.

The remainder of this paper explains our investigation in
detail. In Section 2, we state the nonlinear knapsack prob-
lem (NKP) formally. The investigation on the impact of the
renting rate is in Section 3. Section 4 illustrates the ap-

proach of building a pre-processor that can efficiently elim-
inate easy instances. The theory and the evolutionary algo-
rithm (EA) for finding hard NKP instances are elaborated
in Section 5. A final conclusion is drawn in Section 6.

2. PROBLEM STATEMENT
We consider the non-linear knapsack problem, which is

obtained from the TTP when the route that corresponds to
the TSP part of the problem is fixed. The problem has been
introduced in [14] and it has been shown that this non-linear
knapsack problem is already NP-hard without imposing the
usual capacity constraint on the knapsack.

The NKP can be formally defined as the follows. Given
n + 1 cities, each city i, 1 ≤ i ≤ n, contains a set of items,
denoted by Mi, having mi items. Therefore the whole set

of items M contains m =
n∑
i=1

mi items in total.

Each item eik is attributed to its integer profit pik and
weight wik, which are bounded as

∀(eik) : pik ∈ [PL, PU]

∀(eik) : wik ∈ [WL,WU]

PU > PL > 0,WU > WL > 0

Provided a predefined tour, such as N = (1, 2, ..., n + 1),
a thief is travelling by a vehicle with velocity within a range
of [vmax, vmin]. The benefit of collecting and carrying a set
of items S ⊆M is denoted by BS ,

BS = PS −R× TS (1)

PS =

n∑
i=1

mi∑
k=1

pikxik (2)

TS =

n∑
i=1

di

vmax − v
i∑

j=1

mj∑
k=1

wjkxjk

(3)

Here PS represents the total profit of carrying the set of
items and TS is the corresponding total travel time. As
the velocity is influenced by the weight of carried items, the
total travel time is increased along with carrying more items.
Given a renting rate R ∈ (0,∞), R× TS is the total cost of
carrying item set S.

The xik ∈ {0, 1} indicates whether or not this item is in
S. Therefore the item set S can be represented as a decision
vector X = (x11, x12, ..., x1k, x21, ..., xmk), and the objective
of this problem is to maximise the overall benefit BX . In
addition, v = vmax−vmin

W
is the factor that indicates how

the carried weight influences the velocity, where W is the
capacity of the vehicle. In our investigation, W is always
set to be mWU in order to be unconstrained.

3. IMPACT OF THE RENTING RATE
Observably from equation (1), the renting rate R has sig-

nificant influence on the overall benefit. If the R is small
enough (i.e. R → 0), then R × T → 0, which implies the
total cost of carrying any set of items is ignorable. The op-
timal solution of the problem therefore is to carry all items.
We denote this optimal solution as XOPT = {1}m. We as-
sume there is a boundary RL so that when R ∈ (0, RL],

XOPT = {1}m always holds, which makes the problem triv-
ial. Similarly, if R→∞, then the optimal solution is tended
not to carry any item, denoted as XOPT = {0}m. We also
assume that a boundary RU exists, so that XOPT = {0}m
always holds if R ∈ [RU ,∞), which makes the problem triv-
ial as well.

Apparently if RL and RU exist, hard instances of NKP
can only be found when R ∈ (RL, RU). We therefore name
(RL, RU) as the non-trivial range of the renting rate. Our
work tend to prove that 1) Hard NKP instances cannot be
found when its R is out of the non-trivial range; 2) for the
instances with their R being in the range, there is an index
related to R, named non-trivial item ratio, being able to
indicate the hardness of the instances individually as well.

3.1 Theoretical Bounds for Non-Trivial Items
The optimal solution XOPT = {1}m being always tenable

is equivalent to the situation that the profit of any item
eθk ∈ M always covers the cost of its traveling within any
set of items I ⊆ M . It can be formalised as ∀eθk∀I : pθk ≥
R(TI−TI\{eθk}). In order to find the lower boundary RL, we
can define a new problem in which R need to be maximised
subject to XOPT = {1}m holding, denoted as:

maxR

s.t. ∀eθk∀I : pθk ≥ R(TI − TI\{eθk}) (4)

eθk ∈ I, I ⊆M

As in equation (3) the denominators depend linearly on the
weight of collected items and the travel cost depends on
the denominators in inverse proportion along each path of
two cities, we have (TM − TM\{eθk}) ≥ (TI − TI\{eθk}) [14].
Therefore the inequality in (4) can be strained to pθk ≥
R(TM − TM\{eθk}), which is equivalent to:

R ≤ pθk
TM − TM\{eθk}

(5)

TM =

n∑
i=θ

di
1

vmax − v
i∑

j=1

mj∑
k=1

wjk

TM\{eθk} =

n∑
i=θ

di
1

vmax − v
i∑

j=1

mj∑
k=1

wjk + vwθk

As the right end of the inequality (5) has its minimum when
θ = 1, pθk = PL and all weights is WU , we can set RL as:

RL = PL

/ n∑
i=1

divWU

(vmax − vmWU)(vmax − v(m− 1)WU)

(6)
Similar to RL, if R → ∞, then the optimal solution is

not tended to carry any item, denoted as XOPT = {0}m,
implying that ∀eθk∀I : pθk ≤ R(TI − TI\{eθk}). By setting
J = M \ I, we have:

minR

s.t. ∀eθk∀J : pθk ≤ R(TJ∪{eθk} − TJ) (7)

Route# From To Distance Route# From To Distance

1 1 22 7 26 42 19 9
2 22 8 12 27 19 40 11
3 8 26 7 28 40 41 12
4 26 31 10 29 41 13 9
5 31 28 6 30 13 25 13
6 28 3 9 31 25 14 6
7 3 36 12 32 14 24 11
8 36 35 6 33 24 43 12
9 35 20 7 34 43 7 12
10 20 2 12 35 7 23 6
11 2 29 9 36 23 48 9
12 29 21 7 37 48 6 9
13 21 16 10 38 6 27 9
14 16 50 6 39 27 51 8
15 50 34 6 40 51 46 2
16 34 30 7 41 46 12 7
17 30 9 8 42 12 47 6
18 9 49 6 43 47 18 8
19 49 10 8 44 18 4 8
20 10 39 10 45 4 17 8
21 39 33 14 46 17 37 5
22 33 45 7 47 37 5 11
23 45 15 7 48 5 38 7
24 15 44 6 49 38 11 7
25 44 42 10 50 11 32 6

Table 1: A Tour Generated by Lin-Kernighan TSP Heuristic
for the Eil51 Instance of TSPLIB

eθk /∈ J, eθk ∈M,J ∪ {eθk} ⊆M

Given (T{eθk} − T∅) ≤ (TJ∪{eθk} − TJ) [14], we set pθk ≤
R(T{eθk} − T∅), which is equivalent to:

R ≥ pθk
/ n∑

i=θ

di

(
1

vmax − vwθk
− 1

vmax

)
(8)

We have RU when θ = n, pθk = PU and wθk = WL:

RU =
PUvmax(vmax − vWL)

vWLdn
(9)

As an example, we assume that there are 51 cities located
identically as in the eil51 instance of TSPLIB [15]. Each ex-
cept the last city contains 5 items respectively with bounds
as PL = WL = 1 and PU = WU = 1000. We also set
vmax = 1 and vmin = 0.1 to be the maximal and minimal
velocities of travelling, additionally capacity W = 250, 000
so that all the items can be contained in any case. Given a
tour as shown in Table 1, we can calculate the bounds to be
RL = 6.85e−2 and RU = 4.63e+7 according to equations
(6) and (9). With being a finite range, it however is still
tremendous and it is also not clear whether the instance is
easy or not when R is in the range.

We further investigate whether and how the renting rate
R influences the hardness of the problem when R is in the
non-trivial range. Instead of focusing on the range of R on
instances generally, we investigate whether a specific item
eθk in an instance has a particular non-trivial range similar
to the general non-trivial range. If such particular ranges
exist for each of the items in an instance, we use the ratio of
the number of items with the R in their ranges on the overall
number of items as an index. More specifically an item being
trivial means it must be either selected or discarded (i.e.
compulsory or unprofitable [14]) when R is out of its own
non-trivial range (RLθk, RUθk). We name an item with R in
its range (RLθk, RUθk) as a non-trivial item, if its range exists.
Generally we can define non-trivial item ratio as:

Definition Non-trivial Item Ratio is the ratio of the num-

26.11	

69.58	

539.97	

1944.42	

201.20	

29.17	

287.41	

2.69	

166.29	

3.83	

781.71	

41.57	

80.71	

68.99	

20.50	

18.90	

3527.93	

287.55	

108.47	

210.32	

117.42	

284.00	

65.40	

4.71	

22.26	

43.60	

211.51	

151.67	

52.78	

145.98	

31.39	

55.13	

107.40	

97.24	

88.56	

45.03	

64688.53	

51.85	

337.22	

83.60	

91.01	

74.08	

278.52	

109.88	

23758.14	

100.39	

189.86	

39.14	

68.95	

77.12	

46.33	

135.17	

1034.78	

5772.58	

603.06	

77.89	

745.80	

4.86	

354.00	

8.03	

2398.00	

116.24	

194.49	

170.58	

46.44	

38.45	

10569.59	

820.63	

250.13	

412.11	

236.56	

517.17	

170.13	

11.86	

53.65	

80.55	

582.18	

286.29	

104.52	

303.69	

58.54	

120.63	

220.02	

186.11	

168.15	

132.13	

201133.38	

109.88	

795.23	

196.65	

203.89	

189.41	

633.92	

245.25	

67639.02	

284.06	

501.65	

81.93	

138.22	

213.79	

1.
0E
+0
0	

1.
0E
+0
1	

1.
0E
+0
2	

1.
0E
+0
3	

1.
0E
+0
4	

1.
0E
+0
5	

1.
0E
+0
6	

1	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 	
 222	
 	
 	
 	
 618	

2	
 	
 	
 	
 	
 	
 2	
 	
 	
 	
 	
 	
 676	
 	
 	
 	
 810	

3	
 	
 	
 	
 	
 	
 3	
 	
 	
 	
 	
 	
 847	
 	
 	
 	
 121	

4	
 	
 	
 	
 	
 	
 4	
 	
 	
 	
 	
 	
 260	
 	
 	
 	
 50	
 	
 	

5	
 	
 	
 	
 	
 	
 5	
 	
 	
 	
 	
 	
 181	
 	
 	
 	
 634	

6	
 	
 	
 	
 	
 	
 6	
 	
 	
 	
 	
 	
 96	
 	
 	
 	
 	
 	
 690	

7	
 	
 	
 	
 	
 	
 7	
 	
 	
 	
 	
 	
 758	
 	
 	
 	
 459	

8	
 	
 	
 	
 	
 	
 8	
 	
 	
 	
 	
 23	
 	
 	
 	
 	
 	
 	
 639	

9	
 	
 	
 	
 	
 	
 9	
 	
 	
 	
 	
 	
 370	
 	
 	
 	
 203	

10	
 	
 	
 	
 10	
 	
 	
 	
 37	
 	
 	
 	
 	
 	
 929	

11	
 	
 	
 	
 11	
 	
 	
 	
 274	
 	
 	
 	
 524	

12	
 	
 	
 	
 12	
 	
 	
 	
 98	
 	
 	
 	
 	
 	
 643	

13	
 	
 	
 	
 13	
 	
 	
 	
 232	
 	
 	
 	
 374	

14	
 	
 	
 	
 14	
 	
 	
 	
 182	
 	
 	
 	
 375	

15	
 	
 	
 	
 15	
 	
 	
 	
 34	
 	
 	
 	
 	
 	
 174	

16	
 	
 	
 	
 16	
 	
 	
 	
 105	
 	
 	
 	
 482	

17	
 	
 	
 	
 17	
 	
 	
 	
 977	
 	
 	
 	
 122	

18	
 	
 	
 	
 18	
 	
 	
 	
 574	
 	
 	
 	
 662	

19	
 	
 	
 	
 19	
 	
 	
 	
 422	
 	
 	
 	
 447	

20	
 	
 	
 	
 20	
 	
 	
 	
 749	
 	
 	
 	
 287	

21	
 	
 	
 	
 21	
 	
 	
 	
 590	
 	
 	
 	
 427	

22	
 	
 	
 	
 22	
 	
 	
 	
 724	
 	
 	
 	
 185	

23	
 	
 	
 	
 23	
 	
 	
 	
 222	
 	
 	
 	
 618	

24	
 	
 	
 	
 24	
 	
 	
 	
 10	
 	
 	
 	
 	
 	
 319	

25	
 	
 	
 	
 25	
 	
 	
 	
 120	
 	
 	
 	
 752	

26	
 	
 	
 	
 26	
 	
 	
 	
 189	
 	
 	
 	
 324	

27	
 	
 	
 	
 27	
 	
 	
 	
 337	
 	
 	
 	
 359	

28	
 	
 	
 	
 28	
 	
 	
 	
 465	
 	
 	
 	
 234	

29	
 	
 	
 	
 29	
 	
 	
 	
 390	
 	
 	
 	
 623	

30	
 	
 	
 	
 30	
 	
 	
 	
 813	
 	
 	
 	
 503	

31	
 	
 	
 	
 31	
 	
 	
 	
 146	
 	
 	
 	
 353	

32	
 	
 	
 	
 33	
 	
 	
 	
 316	
 	
 	
 	
 583	

33	
 	
 	
 	
 34	
 	
 	
 	
 796	
 	
 	
 	
 662	

34	
 	
 	
 	
 35	
 	
 	
 	
 767	
 	
 	
 	
 634	

35	
 	
 	
 	
 36	
 	
 	
 	
 726	
 	
 	
 	
 653	

36	
 	
 	
 	
 37	
 	
 	
 	
 66	
 	
 	
 	
 	
 	
 740	

37	
 	
 	
 	
 38	
 	
 	
 	
 688	
 	
 	
 	
 10	
 	
 	

38	
 	
 	
 	
 39	
 	
 	
 	
 492	
 	
 	
 	
 937	

39	
 	
 	
 	
 40	
 	
 	
 	
 711	
 	
 	
 	
 251	

40	
 	
 	
 	
 41	
 	
 	
 	
 428	
 	
 	
 	
 646	

41	
 	
 	
 	
 42	
 	
 	
 	
 685	
 	
 	
 	
 847	

42	
 	
 	
 	
 43	
 	
 	
 	
 166	
 	
 	
 	
 361	

43	
 	
 	
 	
 44	
 	
 	
 	
 593	
 	
 	
 	
 228	

44	
 	
 	
 	
 45	
 	
 	
 	
 341	
 	
 	
 	
 320	

45	
 	
 	
 	
 46	
 	
 	
 	
 962	
 	
 	
 	
 10	
 	
 	

46	
 	
 	
 	
 47	
 	
 	
 	
 204	
 	
 	
 	
 598	

47	
 	
 	
 	
 48	
 	
 	
 	
 589	
 	
 	
 	
 603	

48	
 	
 	
 	
 49	
 	
 	
 	
 309	
 	
 	
 	
 741	

49	
 	
 	
 	
 50	
 	
 	
 	
 765	
 	
 	
 	
 987	

50	
 	
 	
 	
 51	
 	
 	
 	
 156	
 	
 	
 	
 496	

Ite
m
#	

Pr
ofi

t	

W
ei
gh
t	

Ci
ty
#	

Figure 1: Non-trivial Range of Items with the Instance with
50 Items

ber of non-trivial item within an instance, denoted by

λ =
No. of non-trivial items

No. of all items

In terms of calculating the range (RLθk, RUθk), we set the
followed equations according to Proposition 1 and 2 in [14].

RLθk = pθk/(TM − TM\{eθk}) (10)

RUθk = pθk/(T{eθk} − T∅) (11)

Figure 1 shows a particular example of the non-trivial
item ranges of an instance according to the equation (10)
and (11). This instance contains 50 cities located identically
to the eil51 instance in TSPLIB, in which each city except
the last one respectively contains one item with arbitrary
profit and weight. We set the tour of this instance is identical
to the one in Table 1. The ranges of items are represented
as the bars in the figure. Here an interesting observation in
the figure is that the bars are distributed logarithmically.

In order to obtain non-trivial item ratio, we assume there
is a predefined renting rate R in the instance shown in Fig-
ure 1 and it is a single vertical line in the figure. Obvi-
ously this line will only cross some of the bars. Assuming
R = 1.0e+2 for instance, we have 19 out of 50 items having

n: 50 m: 250
PL: 1 PU : 1,000
WL: 1 WU : 1,000
vmax: 1 vmin: 0.1
W : 250,000 v: 3.60e−06

Table 2: The Constants of NKP instances

their bars crossed by R. Those items whose bars are crossed
by renting ratio R are non-trivial. The non-trivial item ra-
tio λ therefore equals 0.38 in this case. Similarly, if we set
R = 1.0e+4, the λ will be 0.02.

With observing the Figure 1 further, we may find that a
better non-trivial item ratio λ could be obtained if we set
R to be around 2.0e+2. However it will be still below 0.5.
In fact finding a high λ, 0.8 for example, is not possible in
this instance. On the other hand, we would like to have
instances with high λ, as intuitively an instance with high λ
could be harder than one with low λ. We therefore design a
(1+1)-EA to maximising the non-trivial item ratio λ.

4. MAXIMISING NON-TRIVIAL ITEM RA-
TIO

In order to obtain NKP instances with high non-trivial
item ratio λ, we introduce a simple evolutionary algorithm
named λEA, in which each weight or profit is mutated in
1/m probability. Here m is the number of items. If the
mutated instance has a λ better than the one of existing
instance, it will be chosen to be the current instance by the
selection procedure for the next iteration. The mutation
and the selection are continued until the maximal iteration
is reached. The detailed pseudocode is listed in Algorithm 1.
We then reuse the instance type described in the previous
section and the constants of the instance type that are listed
in Table 2.

In order to understand whether and how the settings of
renting rate R within the non-trivial range influence the
non-trivial item ratio, we run each experiment on a given set
of R ∈ {1.0e−3, 1.0e−2, ..., 1.0e+8}, which covers the known
non-trivial range (6.85e−2, 4.63e+7) calculated in the previ-
ous section. We repeat the algorithm 5 times with a unified
maximal iteration 100,000 for each given R in the set re-
spectively.

4.1 Results of EA for Non-trivial Item Ratio
The results of λEA are plotted in the Figure 2 as the red

line. As a comparison, we also draw a blue line that rep-
resents the highest possible λ by purely ramdon instances.
It is obtained by generating one million random instances
for each given R and picking up the maximal λ calculated
among them.

The horizontal axis of Figure 2 represents the range of
renting rate. Each error bar on the red line and the corre-
sponding circle on the blue line indicate the R values in the
set of {1.0e−3, 1.0e−2, ..., 1.0e+8}. Additionally, the length
of the error bars illustrates the standard deviation of the
non-trivial item ratio for each result of λEA. The vertical
axis of the figure represents the non-trivial item ratio λ.

According to the Figure 2, both the results of λEA and
the random instances contain the values of λ greater than
zero when renting rate R is in {1.0e0, ..., 1.0e+7}. In ad-

Algorithm 1 λEA for High Non-trivial Item Ratio

1: procedure λEA(Maximal Iteration)
2: Initialisation
3: repeat
4: Selection
5: Mutation
6: until Reach the maximal iteration
7: Exit
8: end procedure
9: procedure Initialisation

10: Initialise an NKP instance
11: Set a fixed renting rate R
12: Randomise pik ∈ [PL, PU] uniformly for each item.
13: Randomise wik ∈ [WL,WU] uniformly for each item.
14: λ = Fitness(initial instance)
15: end procedure
16: procedure Mutation
17: for each item in the instance do
18: Randomise b ∈ [0, 1]
19: if b ≤ 1

m
then

20: Randomise wik ∈ [WL,WU]
21: end if
22: Randomise b ∈ [0, 1]
23: if b ≤ 1

m
then

24: Randomise pik ∈ [PL, PU]
25: end if
26: end for
27: end procedure
28: procedure Selection
29: λ′ = Fitness(mutated instance)
30: if λ′ > λ then
31: Choose the mutated instance
32: end if
33: end procedure
34: function Fitness(instance)
35: Calculate non-trivial item ratio λ
36: return λ
37: end function

dition, the values of λ obtained from λEA are significantly
higher than the ones of randomised instances when R is
in {1.0e0, ..., 1.0e+6}, which are also robust according to
the standard deviation. By contrast, the results of R in
{1.0e−3, 1.0e−2, 1.0e−1} and {1.0e+7, 1.0e+8} are close to
zero.

If we introduce a threshold of λ, 0.8 for example, for filter-
ing out the settings of R with λ below it, there will be only
three values of R left: 1.0e1, 1.0e2 and 1.0e3. This implies
that the instances with high λ can only be found when R is
in the range that exactly covers the three R values, and this
range is much narrower than the non-trivial range. There-
fore, if it can be confirmed that hard NKP instances can
also be only found when R is in this range, we can utilise
the threshold as a pre-processor. This pre-processor will fil-
ter out the instances with λ below a threshold, which means
eliminating easy instances.

On the other hand, the significant increased values of λ
by λEA, for instance when R = 1.0e+2 the λ is increased to
be 1 from 0.12, is made by an effect that we called accumu-
lation according to our observation. Such an effort accumu-
lates non-trivial ranges of the items to be around the preset
value of R via eliminating items with unsuitable profits and

Renting Rate
10

-4
10

-2
10

0
10

2
10

4
10

6
10

8

N
o

n
-t

ri
v
ia

l
It

e
m

 R
a

ti
o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

By Randomising
Instances
By Evolutionary
Algorithm

Figure 2: Non-trivial Item Ratio by λEA

weights. The effects of this process can be visualised in Fig-
ure 3, in which the Figure 3a is a random instance without
accumulation, and the Figure 3b is an instance having been
accumulated.

We believe such an effect creates the hard instances of
NKP: the more accumulation around the preset value of R,
the few items can be easily removed by the pre-processing
in [14] and the harder the instance would be, as it would
become harder to decide which items should be carried or
not.

5. HARD INSTANCES FOR THE (1+1) EA
We now carry out theoretical and experimental investi-

gations for the classical (1+1) EA on instances of the non-
linear knapsack problem. Our goal is to provide additional
insights on which instances are hard to be solved by simple
evolutionary algorithms. The (1+1) EA is a standard al-
gorithm investigated in the area of runtime analysis of evo-
lutionary computation [1, 12], and therefore well suited for
understanding of working behaviour of evolutionary com-
puting techniques for NKP. The description of the (1+1)
EA considered in this section is given in Algorithm 2. It
starts with a solution chosen uniformly at random and uses
mutation flipping each bit with probability 1/m in order
to produce an offspring. Being not worse than it’s parent
according to the fitness function, the offspring replaces it.

5.1 Theoretically Constructed Instance
In this section, we present an NKP problem instance where

(1 + 1) EA fails with a constant probability. The instance is
motivated by an instance for the classical knapsack problem
for which it has been shown that the (1+1) EA has an ex-
ponential expected optimisation time [17]. Furthermore, it
has been used for investigations of utility functions in the
area of evolutionary multi-objective optimisation [11].

Our instance consists of two cities only. The distance be-
tween the cities is set to 1. The first city contains m = r+ 1
items while the second city is a destination point free of
items. We give r items of the first city the same profit and
weight such that cost ck = p1k = w1k = 1, 1 ≤ k ≤ r.
Similarly, item m = r + 1 gets its profit and weight as cost
cm = p1m = w1m = r + 1. We call the former items simple
and the later one unique. To establish the unconstrained set-
tings, we specify W = 2r+1. Subsequently, we set υmax = 2

1.
0E
+0
0	

1.
0E
+0
1	

1.
0E
+0
2	

1.
0E
+0
3	

1.
0E
+0
4	

1.
0E
+0
5	

1.
0E
+0
6	

1	

4	

7	

10	

13	

16	

19	

22	

25	

28	

31	

34	

37	

40	

43	

46	

49	

52	

55	

58	

61	

64	

67	

70	

73	

76	

79	

82	

85	

88	

91	

94	

97	

100	

103	

106	

109	

112	

115	

118	

121	

124	

127	

130	

133	

136	

139	

142	

145	

148	

151	

154	

157	

160	

163	

166	

169	

172	

175	

178	

181	

184	

187	

190	

193	

196	

199	

202	

205	

208	

211	

214	

217	

220	

223	

226	

229	

232	

235	

238	

241	

244	

247	

250	

Ite
m
#	

(a) Initial Instance

1.
0E
+0
0	

1.
0E
+0
1	

1.
0E
+0
2	

1.
0E
+0
3	

1.
0E
+0
4	

1	

4	

7	

10	

13	

16	

19	

22	

25	

28	

31	

34	

37	

40	

43	

46	

49	

52	

55	

58	

61	

64	

67	

70	

73	

76	

79	

82	

85	

88	

91	

94	

97	

100	

103	

106	

109	

112	

115	

118	

121	

124	

127	

130	

133	

136	

139	

142	

145	

148	

151	

154	

157	

160	

163	

166	

169	

172	

175	

178	

181	

184	

187	

190	

193	

196	

199	

202	

205	

208	

211	

214	

217	

220	

223	

226	

229	

232	

235	

238	

241	

244	

247	

250	

It
em

#	

(b) Final Instance of EA

Figure 3: Comparison between Initial Instance and Accu-
mulated Instance by EA

and υmin = 1 which implies ν = 1/W . Finally, we define
R∗ = W · (2− (r + 1) /W)2.

In order to show why the (1+1) EA fails to find the opti-
mal solution in polynomial time, we use arguments similar
to ones discussed in [11, 17]. The basic idea is that with
probability 1/2 the item m+ 1 is not included into the pop-
ulation. Furthermore, the expected number of simple items
in the initial solution is r/2 and at least (1/2− ε)r, ε > 0 a

constant, with probability 1−e−Ω(m) using Chernoff bounds.
The waiting time for such a step is exponentially small in
the number of bits that have to be flipping. This implies an
exponential optimization time of the (1+1) EA when start-
ing with an initial solution that has not chosen item r + 1
and many simple items.

We relate the previous ideas to our instance of NKP. Tak-
ing into account the given properties, we now specify the
objective function (1) as

fR∗ (w) = w − R∗

2− w/W , (12)

where the input w =
∑r+1
k=1 ckxk is restricted to discrete inte-

ger values respecting the decision vector X ∈ {0, 1}m. When
defined on the interval [0,W], fR∗ (w) reaches its unique

maximum in the point w∗ = W · (2 −
√
R∗/W) = r + 1.

Algorithm 2 (1+1) EA

1: procedure Initialisation
2: Randomise m bits in the decision vector X.
3: end procedure
4: repeat
5: procedure Mutation
6: for each bit in X do
7: Randomise b ∈ [0, 1]
8: if b ≤ 1

m
then

9: Flip the bit
10: end if
11: end for
12: end procedure
13: procedure Selection
14: Select the instance with better result
15: end procedure
16: until Reach the maximal iteration

In our particular settings, achieving w∗ = r + 1 is possible
when the unique item is solely selected in the packing plan
X. In other words, selecting item r + 1 only results in the
unique global optima for the given class of instances.

For a given real ε ≥ 0, we can establish that fR∗ (w) >
fR∗ (w + r + 1) holds for w ≥ (1/2− ε) r starting with a
certain value of r, r → ∞. This implies that flipping the
bit corresponding to item r + 1 is not accepted. To give a
formal proof for the (1+1) EA we would need to consider
multiple bit flips in addition. This can be done by a more
detailed analysis.

5.2 Evolving Hard Instances
We use another Evolutionary Algorithm to find hard in-

stances for given renting rates. The general setting of this
EA is identical to the λEA in Algorithm 1. However, we
need to evolve hard instances directly in this study instead
of finding instances with high non-trivial item ratio. We
therefore rewrite the fitness function of the λEA to make it
able to measure the hardness of an instance directly.

A straightforward approach of measuring hardness is to
record running time of the exact MIP solver as introduced
by Polyakovskiy et al [14]. However, such approach can only
reflect the performance of the MIP solver. As our goal is to
provide additional insights on which instances are hard to
be solved by simple evolutionary algorithms, we introduce
failing ratio δ.

The failing ratio δ is defined to measure the probability
of an approximation solver failing to obtain a result that is
better than a preset goal. In our case, the (1+1)-EA solver
listed in Algorithm 2 is considered as the approximation
solver. We run it 20 times with maximal iteration 20,000.
For each time, we count if the result is worse than the result
from the exact MIP solver. And then we calculate the failing
ratio according to the fraction of the counted number on
the total tried times. For our instances, the failing ratio is
simply calculated by δ = no. of worse results

20
.

We also run the EA based on the given values of R defined
in Section 4, so that the results of the EA and λEA on the
same settings of R can be compared. In detail, assuming
with a value of R, the result of the λEA reported that high λ
could be found and the EA indeed found the hard instances,
then our conjecture of the association of the non-trivial item
ratio λ and the hardness of instances can be confirmed, vice

Renting Rate
10

-4
10

-2
10

0
10

2
10

4
10

6
10

8
10

10

F
a

ili
n

g
 R

a
ti
o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4: Failing Ratio of (1+1)-EA

Renting Rate
10

-4
10

-2
10

0
10

2
10

4
10

6
10

8
10

10

S
o

lv
e

r
R

u
n

n
in

g
 T

im
e

 (
m

s
)

0

500

1000

1500

2000

2500

3000

3500

Figure 5: Runtime (ms) of the MIP Solver

versa. This would also confirm the feasibility of our pre-
processor of eliminating easy instances.

In practice, we run 5 times the EA for each given R val-
ues respectively with a unified maximal iteration 10,000 to
record averages and standard deviations for the failing ratio
δ and runtime of both the MIP solver and the (1+1)-EA
solver. The results are plotted in Figure 4, 5 and 6.

In the figures, the horizontal axises are identical to each
other and to the counter axis in the figure of λEA (Figure 2).
There are 12 error bars in each figure, representing 12 results
according to given values of R in {1.0e−3, ..., 1.0e+8}.

In Figure 4, we observe only 3 out of 12 R values have
failing ratio greater than zero, which are 1.0e1, 1.0e2 and
1.0e3. This exactly matches the results of λEA in Section 4,
where instances with the λ higher than a threshold 0.8 can
only be discovered when R is in such values. Moreover, for
the values of R where λ is below 0.8, no hard instance can
be found at all. Additionally in Figure 5, the time used to
solve instances are significantly increased when R is set to
the same values, which also implies that hard instances can
only be found when R is in such range. However, the running
time of the (1+1)-EA solver seems not to be influenced by
the hardness of instance.

The results of Figure 4, 5 confirm our conjecture that
with setting a threshold, the non-trivial item ratio λ could
be utilised as a pre-processor to eliminate easy instances.
In practice, we need to calculate the non-trivial range of

Renting Rate
10

-4
10

-2
10

0
10

2
10

4
10

6
10

8
10

10

E
A

 R
u

n
n

in
g

 T
im

e
 (

m
s
)

150

200

250

300

350

400

Figure 6: Runtime (ms) of the (1+1)-EA solver

R beforehand. And then we use the λEA to explore the
non-trivial range of R logarithmically to find highest λ for
each given R. At last the threshold could be obtained from
analysing the results. By calculating λ of instances and util-
ising the threshold accordingly, easy instances can be elimi-
nated efficiently.

6. CONCLUSION
With this paper, we contributed to the understanding of

multi-component combinatorial optimisation problems that
arise frequently in real-world applications such as supply
chain management. We investigated the non-linear knap-
sack problem motivated by the recently introduced Traveling
Thief Problem and studied the impact on the renting rate
which connects the profit and the cost part of the problem.
We have shown by theoretical and experimental investiga-
tions how the renting rate affects the number of items that
can be tackled by simple pre-processing algorithms. Fur-
thermore, we have constructed instances in a theoretical and
experimental way where a simple baseline (1+1) EA fails to
obtain an optimal solution.

Acknowledgements
The authors were supported by Australian Research Council
grants DP130104395 and DP140103400.

References
[1] A. Auger and B. Doerr. Theory of Randomized Search

Heuristics: Foundations and Recent Developments.
World Scientific Publishing Co., Inc., 2011.

[2] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli. Hybrid
metaheuristics in combinatorial optimization: A survey.
Appl. Soft Comput., 11(6):4135–4151, 2011.

[3] C. Blum and A. Roli. Metaheuristics in combinato-
rial optimization: Overview and conceptual compari-
son. ACM Comput. Surv., 35(3):268–308, 2003.

[4] M. Bonyadi, Z. Michalewicz, and L. Barone. The travel-
ling thief problem: The first step in the transition from
theoretical problems to realistic problems. In Evolu-
tionary Computation (CEC), 2013 IEEE Congress on,
pages 1037–1044, June 2013.

[5] M. R. Bonyadi and Z. Michalewicz. Evolutionary com-
putation for real-world problems. In S. Matwin and
J. Mielniczuk, editors, Challenges in Computational
Statistics and Data Mining, volume 605 of Studies in
Computational Intelligence, pages 1–24. Springer, 2016.

[6] G. Dick, W. N. Browne, P. A. Whigham, M. Zhang,
L. T. Bui, H. Ishibuchi, Y. Jin, X. Li, Y. Shi, P. Singh,
K. C. Tan, and K. Tang, editors. Simulated Evolution
and Learning - 10th International Conference, SEAL
2014, Dunedin, New Zealand, December 15-18, 2014.
Proceedings, volume 8886 of Lecture Notes in Computer
Science. Springer, 2014.

[7] H. Faulkner, S. Polyakovskiy, T. Schultz, and M. Wag-
ner. Approximate approaches to the traveling thief
problem. In Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, GECCO
’15, pages 385–392, New York, NY, USA, 2015. ACM.

[8] Y. Mei, X. Li, F. Salim, and X. Yao. Heuristic evolution
with genetic programming for traveling thief problem.
In IEEE Congress on Evolutionary Computation, CEC
2015, Sendai, Japan, May 25-28, 2015, pages 2753–
2760. IEEE, 2015.

[9] Y. Mei, X. Li, and X. Yao. Improving efficiency of
heuristics for the large scale traveling thief problem. In
Dick et al. [6], pages 631–643.

[10] Y. Mei, X. Li, and X. Yao. On investigation of interde-
pendence between sub-problems of the travelling thief
problem. Soft Comput., 20(1):157–172, 2016.

[11] F. Neumann and A. Q. Nguyen. On the impact of util-
ity functions in interactive evolutionary multi-objective
optimization. In Dick et al. [6], pages 419–430.

[12] F. Neumann and C. Witt. Bioinspired Computation
in Combinatorial Optimization:Algorithms and Their
Computational Complexity. Springer-Verlag New York,
Inc., New York, NY, USA, 1st edition, 2010.

[13] S. Polyakovskiy, M. R. Bonyadi, M. Wagner,
Z. Michalewicz, and F. Neumann. A comprehensive
benchmark set and heuristics for the traveling thief
problem. In Proceedings of the 2014 Annual Conference
on Genetic and Evolutionary Computation, GECCO
’14, pages 477–484, New York, NY, USA, 2014. ACM.

[14] S. Polyakovskiy and F. Neumann. Packing while travel-
ing: Mixed integer programming for a class of nonlinear
knapsack problems. In L. Michel, editor, Integration of
AI and OR Techniques in Constraint Programming, vol-
ume 9075 of Lecture Notes in Computer Science, pages
332–346. Springer International Publishing, 2015.

[15] G. Reinelt. TSPLIB- a traveling salesman problem
library. ORSA Journal of Computing, 3(4):376–384,
1991.

[16] J. Stolk, I. Mann, A. Mohais, and Z. Michalewicz. Com-
bining vehicle routing and packing for optimal delivery
schedules of water tanks. OR Insight, 26(3):167–190,
2013.

[17] Y. Zhou and J. He. A runtime analysis of evolution-
ary algorithms for constrained optimization problems.
IEEE Trans. Evolutionary Computation, 11(5):608–
619, 2007.

