Theoretical Analysis of Rank-

based Mutation - Combining

Exploration and Exploitation

Pietro S. Oliveto, Per Kristian Lehre, Frank Neumann

Abstract— Parameter setting is an important issue in the
design of evolutionary algorithms. Recently, experimental work
has pointed out that it is often not useful to work with a fixed
mutation rate. Therefore it was proposed that the population
be ranked according to fithess and the mutation rate of an
individual should depend on its rank. The claim is that this
allows the algorithm to explore new regions in the search
space as well as progress quickly towards optimal solutions.
Complementing the experimental investigations, we examine
the proposed approach by presenting rigorous theoretical anal-
yses which point out the differences of rank-based mutation
compared to a standard approach using a fixed mutation
rate. To this end we theoretically explain the behaviour of
rank-based mutation on various fitness landscapes proposed
in the experimental work and present new significant classes of
functions where the use of rank-based mutation may be both
beneficial or detrimental compared to fixed mutation strategies.

I. INTRODUCTION

different mutation probabilities at different time steps[4]

the effect of bit-wise neutrality with respect to the mutati
rates has been examined and it has been shown that it may
be helpful to use different mutation rates for each gene in
the genotype. Recently, in [13] an immune inspired mutation
operator has been analysed for theeEM Ax function where

the mutation rate of an individual is inversely proportibna
to its fitness.

Instead of focusing on algorithms that work with a single
solution, we examine population-based algorithms whege th
different individuals have different mutation rates aserdty
proposed in [1]. The individuals in the current population
are ranked with respect to their fitness and the mutation rate
increases with the rank of an individual. The idea behind thi
is that good individuals should produce offspring that are
close whereas bad individuals should explore regions of the
search space that are very different. The use of this approac

Determining the optimal parameters for an evolutionarjias been examined experimentally in [1]. In particularghbas

algorithm is a challenging task that has been widely studiesh their experiments, the authors claim that using rank-
in the field of evolutionary computation [8]. There are manyased mutation allows the algorithm to have a good balance
parameters in an evolutionary algorithm and many studidsetween exploration and exploitation. In this paper, wetwan
have focused on how parameters such as representation, pepshow the impact that rank based mutation has on the
ulation size or variation operator rates affect the alonis optimization process in a rigorous manner.
performance. After having defined the algorithms considered throughout
In this paper, we focus on the mutation rate used in aghe paper in Section I, we start our theoretical analysis
evolutionary algorithm. The optimal mutation rate is knowrin Section Il by pointing out some general results of the
only for very simple problems such asm@MAx [2]. Often mentioned approach. These relate it to the use of random
it is useful to work not only with one fixed mutation rate butsearch by proving a general upper bound on the expected
to adapt it during the optimization process. This is usuallgptimization time on any pseudo-Boolean function. This
done in continuous optimization where the mutation stiengbound will be proved to be tight further on in the paper
depends on the progress that the algorithm has achiev@@. Section V).
during the last iterations. On the other hand, in combinalttor ~ After that we analyse the use of rank-based mutation on
optimization it is less common to adapt the mutation rattandscapes with different difficulties that have alreadgrbe
during the optimization process. In fact most computationaxamined experimentally in [1]. Our analyses point out the
complexity analyses of evolutionary algorithms for conabin different effects that the use of rank-based mutation has
torial optimization consider algorithms with fixed mutatio on simple unimodal functions (Section 1V) as well as on
rates (see [10] for a review of results). difficult deceptive trap functions (Section V). In Section |
Nevertheless, the use of different mutation rates witthrough an analysis for the \EMAX function, we show
respect to the runtime behaviour of evolutionary algorghmthat the rank-based mutation strategy is effective in dingb
has already been studied in literature. Jansen and Weggnerip slopes. In Section V we give theoretical evidence of the
have examined the choice of the mutation probability imetter performance of rank-based mutation rates compared t
the (1+1) EA and proposed a dynamic (1+1) EA that usefixed mutation rates for the trap functions considered in [1]
However, we also show that there exist classes of functions
Excellence for Research in Computational Intelligence amgplidations which are deceptive for rank-based mutation leading to
(CERCIA), University of Birmingham, Edgbaston, Birmingham,32TT, exponential runtime while fixed-mutation rate algorithme a
UK (email:{P.S.Oliveto,P.K.Lehfe@cs.bham.ac.uk). Frank Neumann is efficient with high probability. In any case, when rank-hse
with the Department 1: Algorithms and Complexity, Max-Plarog&titut . . .
fur Informatik, Saarkiicken, Germany (email: firstname.Iastname@mpi-mmatlon has a better performance, the runtime required by
inf.mpg.de). both strategies to solve the trap functions is exponential i

Per Kristian Lehre and Pietro S. Oliveto are with the Centfe o

the problem size. the effects of the rank-based mutation rates, we feel that it
To this end, in the last part of the paper (Section VI)js easier to understand how mutation is operating if good
we present a class of functions where we can point ogblutions generated by mutation are not removed from the
that rank-based mutation significantly helps to speed up tip@pulation by the selection operator. In other words, the
optimization process. These functions include sub-proble mutation operator may create a good solution but at the
with different difficulties (i.e. a deceptive and a unimodakame time the selection operator may not consider it for the
part). next generation. This may happen commonly with fitness-
proportional selection as shown in [6, 9]. When this effect
happens the mutation operator could be “blamed” for an
We study a simple (+1) EA using rank-based mutation. action for which the selection operator is responsiblechen
The algorithm produces in each iteration one offspring bthe wrong conclusions could be derived about the effects of
choosing an individual of the current parent populatiomank-based mutation rates. These are the reasons for using
uniformly at random. To this individual the mutation operat an elitist-strategy in our algorithm.
is applied which flips each bit with the probability given by If the mutation rate does not depend on the rank but is the
its rank in the population. Afterwards an individual witreth same for all individuals, then the algorithm generalisethio
lowest fitness among the + 1 individuals is deleted such (u+1) EA. Here each bit is mutated with a fixed probability

Il. ALGORITHMS

that a new parent population of sigeis obtained. p that is independent of the rank of the individual. In the
Algorithm 1: (u+1) EAR literature, this algorithm has been examined for the choice
1) Lett =0 and initialize P, with 1 individuals chosen Of p = 1/n by Witt [12] for pseudo-Boolean functions and
uniformly at random. for combinatorial optimization problems having practiegh
2) Repeat plications such as Vertex Cover in [11]. If only one mutation
a) Rank the individuals{z; ...z} st f(z;) > rate is used throughout the optimizat!on process suc_h a rate
F(@is)- ~ seems to be reasonable. In fact, also in practical appitsiti

when only one mutation rate is used it is usually low. The
(u+1) EA is obtained from Algorithm 1 by replacing line
with the following one:

b) Chooser; € P; uniformly at random.
c) Createy by mutating each bit in;; with proba-
bility p;.

d) If f(y) > f(z,) thenPryy = P\ {z,,} U {y}; Algorithm 2: Mutation operator for the;(+1) EA
elseP.y = P;. ¢’) Createy by mutating each bit inc; with probability p.

As in [1], the mutation rate of an individual at positidin We examine the algorithms with respect to their runtime
the ranked population is assigned according to the follgwinbehaviour on functions with different properties to point o
formula: the effects of using rank-based mutation. We will consider

) some functions used in [1] to explain theoretically the
Pi = Pmin + (Pmaz = Pmin) - (1 = 1)/(m — 1) results obtained from the experiments. Furthermore we will
wherem is the number of different mutation rates used by th@nalyse other functions of interest and generalise ouiltsesu
algorithm. In [1] the following parameters were uspgl;, — (© greater function classes. The measure of interest is the

0, pmax = 1 andm was set as the size of the population”umber of fitness function evaluations until the algorithm

plus one. Since an elitist selection strategy is used by S Produced an optimal search point for the first time. Since
algorithm, there is no advantage in having a mutation raf@ndomised algorithms are of stochastic nature, this nambe
of p = 0. In fact, not allowing the best individual to mutate Varies from run to run. We are interested in the expectatfon o

would probably slow down the optimization process at leadf'® random variable representing the number of fitness eval-
when the algorithm is hill-climbing. Given the elitist siegy, Uations. We call this expectation thezpected optimization
we believe that unless the global optimum has already bedff® Of the algorithm on the examined function. Sometimes,

found it is always preferable to mutate the best individudf’® €xpected optimization time is not a sufficiently acaairat
even if with a very small mutation rate. So we ggf;,, — neasure to understand the performance of the algorithm for

1/n, pmaz = 1 andm = u wherey is the population size. a given function. In fact, it may happen that the expected

This way the mutation rates are linearly distributed betweePPtimization time is exponential but at the same time the
Pmin = 1/n andppae = 1. probability that in each run the algorithm finds the optimum

We want to point out the different effects of usingbe high, for example a constant. In those cases we will also
rank based mutation. The algorithm in [1] uses fitnesOnsider thesuccess probability of the algorithm, which is

proportional selection. However, on one hand it has pediffined as the probability that the optimization time is with

proved in [6, 9] that simple evolutionary algorithms using® 9/ven time bound.
fitness-proportional selection are not able to optimizeneve
simple linear pseudo-Boolean functions such aseMAx

in polynomial time. In fact in Section IV it will be proved It is well known that the expected time until the (1+1) EA
that the (1+1) EAR algorithm is efficient for ®EMAX. On finds the global optimum of any fithess function is at most
the other hand, since the goal of the paper is to understand steps [3]. Droste et al. have also proved that the bound

IIl. GENERAL COMPUTATIONAL COMPLEXITY

is tight. A general result will be derived here for the Proof: To prove the upper bound, note that the first
(ut1l) EAg. The following theorem gives an upper boundndividual in the ranked population (i.e:;) flips each bit
for the expected runtime of the.t1) EAg for any function. with probability 1/n. We can therefore follow the ideas of
It shows that the algorithm is on any function only by ahe proof of the (1+1) EA for the ®@EMAX function used in
constant factor slower than random search whose expect@jl The best individual in the ranked population gets seléc
optimization time on any function i8". In Section V it will for mutation in each generation with probability . This
be shown that there exist functions for which the bound isnplies it is expected to be chosen onceingenerations.
tight up to a constant factor. This means that thel) EAr Since the fittest individuak; requiresO(nlogn) steps to
algorithm performs better than the (1+1) EA in the worsteach the optimum (i.e. [3]), we get an upper bound of
case. However the runtime is exponential in the functioa.sizO(un log n) for the optimum to be found. []
Theorem 1. Let p > 2 and u = poly(n). The expected In [12], Witt proves that the expected time for the
optimization time of the g+1) EAg algorithm for an arbi- (u+1) EA to optimize QNEMAX is O(un + nlogn). The

trary fitness function is at mosd(2"). (u+1) EA obtains a short runtime because at each fithess
Proof: The proof will follow the line of thought used level L (i.e. there arelL ones in the best individual of the
by Droste et al. in [3] for the (1+1)-EA. population), many copies of the best individual are obthine
An individual of ranki flips each bit with probability: (i.e. the whole population or at least/(n — L)) in time
1 1 i—1 i—1 1 i—1 O(plog(n/(n — L_))). Then any of these individuals may
pi=—+|1-=1" = —(1- reach the next fithess level, rather than only the best. It
n n p—1 pu—1 n uw—1

_ o _ _ could be that they(+1) EAr algorithm cannot always take
We consider all individuals; of the population with:/3+ advantage of these multiple copies to quickly climb up the

1<i < (1/2)p. ONEMAX function because the individuals that flip each
Using /3 +1 < i < u/2 we get bit with high probability end up turning many one-bits

1 2 into zero-bits when approaching the optimum. Hence, by

3 SPpi s D) +o(1) < 3 applying different mutation rates according to the rank of

Let2* be a global optimum of the function to be optimizedth® individuals, the algorithm may climb up slopes more
and H(z;,z*) < n be the Hamming distance between theslowly than a population of individuals that flip each bit kwit
bit-string representing; and that representing'. Hence, the probability 1/n. In any case the process needs to be analysed

probability that each individuat;, with 1¢/3 +1 <i < p/2 more carefully to understand whether the given bound is
is turned into the global optimum in one mutation step is tight or not. We leave a theorem about the lower bound on

ONEMAX as an interesting open question for future work.
(p)) (1= py) ")
! ¢ V. DECEPTIVEFUNCTIONS

> (1/3)H(@a) (1 — 2/3)%1{(@@) > (1/3)" =3™ In this section we consider the performance of the

+1) EAg algorithm on deceptive functions. Trap functions

ave been considered several times in the analysis of EAs
to show how this class of algorithms may be attracted by a
local optima which leads the population far away from the
global optimum. As a consequence the expected runtime of
the algorithms is exponential.

First we will address a question that appears from the
p/2—p/3-1 _p/6-1 p/T 1 analysis of the +1) EAr for ONEMAX presented in the

I wo i 7 previous section. Although, the.t1) EA requiresO(un +

giving an expected time of generations for this event to 210g7) expected time to optimise theNBMAx function,
happen. Multiplying, the expected time for the optimum td® O(unlogn) bound of has been proved in Theorem 2 for
be found is at most - 3" = O(2"). m the (u+1) EAg. The best individual in the ranked population
In Section VI functions will be introduced where theflips each bit with probabilityl /» and the expected time for
(u+1) EAg algorithm performs better than the (1+1) EAItto be selected for mutation js. So, it may be assumed that
and the difference in runtime is a more practical polynomid® upper bounds obtained in the analysis of the (1+1) EA

Since, the probability bound holds whatever the curre
bit-string representing the:; individuals is, 3" expected
mutation steps of these; individuals are required for the
optimum to be found. The probability that an individugl
with /3 + 1 < i < u/2 is chosen for mutation in each
generation is

versus super-polynomial. could be extended to the analysis of thet{) EAr by
multiplying the upper bounds of the former algorithm joyo
IV. ONEMAX obtain an upper bound on the runtime of the latter algorithm.

In this section we will show that the:¢1) EAr algorithm To show that this is not the case we consider a function
is efficient for the QEMAX function by proving a runtime that we call LEADINGTRAPJUMP. Theorem 3 proves that
of O(unlogn). the (u+1) EA is efficient for this class of functions with

Theorem 2: If the population size is bounded by = overwhelming probability, while the expected runtime of th
poly(n), then the expected optimization time of the(u+1l) EAg is exponential in the problem size. Hence, not
(u+1) EAR on the NEMAX function isO(unlogn). only is the upper bound of the (1+1) EA not generalisable to

the (u+1) EAg, but a class of functions is presented wherand the nex{9/10)n — 2k — 2 set to one i2 =™ which is

the former algorithm (and theuf1) EA) is efficient while exponentially small. The same asymptotic probability kold

the latter is not. for both algorithms being initialised with the firat/10 bits
After the analysis of the EADINGTRAPJUMP function set to zero. The rest of the proof of the statement regarding

we will consider the trap function used in [1] which wethe (u+1) EA follows.

choose to calfrAP;. It will be proved in Theorem 4 thatthe We consider the following three phases:

(u+1) EAg is efficient for the function. However, this only 1) The phase lasts until a solution witt9 /10)n — 1

occurs because the global optimum is located at a Hamming |eading ones has been found by at least one individual

distance ofn from the local optimum. As it will be shown for the first time;

in the proof of Theorem 4, the position of the local optimum 2) Starting with at least one individual witf9/10)n —
gives the (i+1) EAr a rather unfair advantage over the 1 leading ones, the phase lasts until a solution with
(u+1) EA. To this end, we consider a more generic trap 2k + 1 leading zeroes has been found by at least one
function which we callrRAP,. The only difference between individual;

the two trap functions is that we place the global optimum 3) The phase lasts until the global optimum of thea-

in a generic point having lower Hamming distance from the INGTRAPJUMP function has been found.

local optimum. Theorem 5 shows that the expected runtime Now we calculate the expected runtimes for each of the
of the (u+1) EAr on theTRAP, function is©(2") which is phases conditional to the event that the trap point is natdou
exponential in the problem size. This means that, although the mean time. Then we will calculate the probability of
its expected runtime is better than that of yiel) EA (i.e. the event that the trap is found first.
Q(n™)) its performance is no better than that of Random The expected time for theu¢1) EA to find the point with
Search. Theorem 5 also shows that the generic upper boud10)p, — 1 leading ones (i.e. the end of the first phase),
given in Theorem 1 of Section Ill (i.eO(2")), which f the trap is not reached first i®(un?). This is because
holds for every pseudo-Boolean function is tight. Hence, that each time step the probability the individual with most
expected runtime of theuf1) EAx algorithm on a generic |eading ones is selected for mutationligy and it creates
pseudo-Boolean function 8(2"). the next leading one with probability/» and does not flip
Now we present the EADINGTRAPJUMP function class any other bit with probability 1 —1/n)"~1 > 1/e, giving an
to tackle the first goal proposed in this section. Treab- expected time of at mostun for each improvement. Since
INGTRAPJUMP is a class of functions designed to showg; most (9/10)n — 1 leading ones need to be created the
that whatever the popu_latipn size of thg+(l) EAr may expected time is less than= e(10/9)un? = O(un?). In fact
be (as long as polynomial in the problem size), there exis{gith slightly more sophisticated arguments an upper bound

a class of functions where the{1) EA is efficient while ¢ O(unlogn+n?) can be proved for the leading ones part
the (u+1) EAg is not. This is obtained by considering that if[lz], but is not necessary here.

the population size of theutr1) EAg is p = poly(n) = n Following arguments in Droste et al. [3], there exists a
W|th_ k a constant, then as proved m_Theorem 3 its expecte@nstantc > 0 such that the probability thatn /10 leading
runtime is exponential for the following function: ones have not been obtained withjm? iterations ise ().
The expected time to conclude the second phase is
LEADINGTRAPJUMP(z) = O(un®**1), becausel /i is the probability the individual
0 if 2 — 109/10)m, with (9/10)u — 1 leading ones is selected abg(en?**1) is
LO(zi|i > 2k +1) + 2k +1 if 2 = 02k+11(9/10)n—2k—1, @ lower bound on the probability that the figst 41 bits are
n—1 it o — on/104 mutated into zeroes. This gives an expected time.af*+!,
LO(z) otherwise. The probability that this does not happen in timyen?++2
The LEADINGTRAPJUMP function consists of a leading 'S pun?kt2 1\"
ones path incrementing the fitness by one for each leading <1 - un‘(%*l)) < <€> :

one until (9/10)n — 1 leading ones are reached. Then at

least2k leading zeroes need to be created to increment tieeaning that phase is concluded in timeO(un?*+2) with

fitness. Once these leading zeroes have been obtained grgbability 1 — e=*(") if a trap point is not found first.

an individual, it may insert the lasi/10 leading ones to Once the2k + 1 leading zeroes have been found, the last

reach the optimum. However, there is a trap having0 n/10 + 1 leading ones may be added, phaseoncluded

leading zeroes. The only better point than this one is thend the optimum found. Just like for phasehis happens

global optimum. in time O(un?) with probability 1 — e~ if a trap point
Theorem 3: Let 2 < 1 < n* andk a constant. With con- is not found first. Summing up we get a total runtime of

stant probability the {+1) EAx optimises the LTJ function O(un?*+2) with probability at least — e~*(") to reach the

in time 2%(")_ With probability 1 — 2=%(") the (u+1) EA optimum conditional to not finding the trap first.

optimises the LTJ in time) (un?*+2). Now we calculate the probability of finding the trap before

Proof: The probability that both algorithms are ini- O(un?*+2) steps. As discussed at the beginning of the
tialised with strings having the firstk 4+ 1 bits set to zero proof, a trap point is not created during initialisation hwit

probability 1 — 2=%("), We consider any individual wita: ~ zeroes will be created and only the last1l0 + 1 bits will
leading ones and the remaining/10 — x bits which are be uniformly distributed. Since the probability for thetlas
uniformly distributed. The probability that a trap point isranked individual to be selected iy this event has an
created in a step is less than expected time ofu = n*. Then, the only improvement the
. n/10—z n/10 B individual may obtain is to reach the optimum which does
(1/”) ’ (1/2) / < (1/2> 117 = 9=atm not happen by hypothesis (i.e. it is a solution on the ot si

Hence the probability is highest during initialisation. eTh of the gap). Furthermore, no other individual may be ranked
higher the number of leading ones the lower is the probgbilitoetter unless it reaches the trap (i.e. under the assunthion
that a trap point is created. The above discussion holds urffie gap is not overtaken). Hence, just like at the end of phase
the end of phase. 1, in expected time less tham?* all the population will have

For the individuals witiek + 1 leading zeroes (i.e. phase been copied into a trap point and phaseoncluded. This

2 has ended) the probability that they reach a trap point Eecond part holds even when at least a trap point had been
less than created before the end of phaseSumming up we get a

L@k 1 ni20 o) total expected runtime of at mostn2* + n* < 12n2’f steps
(1/n) < (1/n) sn for the two phases to end. By Markov's inequality with a

because at least/10— (2k-+1) one-bits have to flip into zero- Probability of 1/2 the phases are concluded in tiRen**.
bits. Summing up in each step the probability of reaching a NOw we consider the failure probability (i.e. the gap is
trap point is less tha2~ (™), This means that the probability Jumped over before the two phases are concluded).

that in O(un2*+1) steps the trap is found is less than: First we consider the probability if the number of leading
ones in an individual is less thary10. Then, the probability

O(un?* 1) - 2790 = O(nf+2rHT) . 70 — 970 to jump over the gap is less than

Thi mpl he proof of th n ment of th 2/10)n 2/10)n —Q(n
the(s)rgrc:]. pletes the proof of the second statement of the (pm)(/) (1—pm)(/ < (1/2) (n)
Each individual of the j+1) EAg algorithm will not be pecause more thaf6/10)n uniformly distributed bits have
initialised with a gap point with probability—22(") because to be turned into leading ones. This means that in expentatio

(8/10)71 consecutive ones are required. Like in the proof ofhere are at |ea$8/10)n zero-bits (and also at |ea$}/1())n
the first part of the theorem we consider the following phasesne-bits) and by Chernoff bounds they are at l¢agi0)n
1) The phase lasts until all the population of thewith probability 1 — e=%("),
(ut+1) EAR reaches the point witf9/10)n — 1 leading Now we assume that there are more ttfari10) leading
ones or a trap point; ones. Then the probability to jump over the gap is less than
2) The phase lasts until all the population reaches a trape following
point; 2%+1 1/10)n—(2k+1 2%+1
We will consider the time required to end each phase) (l—pm)(/ D < (1/n)
assuming that the gap is not jumped first. Afterwards, Wgecause at least tf#+1 leading ones need to be turned into
will consider the probability that an individual jumps overzerges and the remainiri@/10)n — (2k+1) ones should not
the gap before the two phases have finished. _be flipped. This implies that in each step the probabilityt tha
Since the best ranked individual mutates each bit with jump over the gap occurs is less than2*+1). Hence the
probability 1/n and it gets selected with probability's., the propapility that the gap is not jumped over2an2* steps is
ideas from the proof of the (1+1)-EA forHADINGONES o
[3] may be adapted here. This individual will maintain (1= (1/n)? 2" > 1/e
the same mutation probability unless some individual gets - _
more leading ones and gets ranked in first position. Sinddultiplying, the probability that the two phases occur in
we are assuming the gap is not jumped over, in time &d¢n°" steps without any gap-jumps i'(2e) = Q(1).
most eun? the first individual in the population reaches NOW, the only way to escape from the trap is to flip back
(9/10)n — 1 leading ones. At this point, a copy of theat least all the(8/10)n — 2k zero-bits into one-bits without
best individual of the population is created with probapili flipping any of the one-bits of the laat/10 bits of the string
(1/u)(1 = 1/n)™ > 1/(4u) and u copies are created in at which are uniformly distributed. Such a probability is uppe
most time4x2. Summing up the expected time for phase Pounded as follows:
to finish is pg/w)n] (1 _pm)n/30 < (1/2)n/30 — 9—Qn)
2 2 2k 2 2k
epn” +4p” = en™ + dn"k < T This proves the exponential runtime for thg+() EAg
Now we consider the second phase assuming that adgorithm with probability at leasf(1).]
trap points have been found yet first. Since the population Now that it has been proved that there exist functions that
has converged, the last ranked individual will mutate all itare deceptive for theuftl) EAr but not for the (+1) EA,
bits with probability 1 when selected, hence create a pointve will concentrate on the simple trap functions considered
with n/10 leading zeroes. Actuallyf9/10)n — 1 leading in [1]. The following trap function was considered.

be flipped into one bits. The probability that each individua

_Jntl if z=0" is mutated into the optimum is
TRAP1()_{ ONEMAX () otherwise.

. . H(xi,x™) (1 —p)"—H(Imr*)
The function consists of a KEMAX path except for the m m
optimum which is the bit string with all zeroes. < P12 (1 = pp) W12 < (1/2)7/12 = 9= (n/12)

In the experiments performed in [1] the Rank-GA us- h d ber of _ for th :
ing mutation, crossover and fitness proportional selectidifence: tbe]:axpedct.e nrm e;lg mutation steps for the opt-
required exponential time to optimise th&Ap; function. MUM to be found is at leasr'/ ™.

: . - From the proof of Theorem 4 we know that the expected
The following theorem proves that thg«1) EAy is efficient
for the funct?on. P A1) EAr time for the best ranked individual (i.e.;) to find the 1™

Theorem 4: Let 1 > 1. The expected optimization time of bitstring and then to create identical copies of itself are
the (+1) EAr on theTRAP, function isO(u? + unlogn). 'eSPectivelyO(unlogn) and O(u”). By using Markov's
Proof: The function consists of alEMAx path except neduality, we prove that with probability—o(1) the whole
for the 0" bit-string which is the global optimum. If the population consists of copies of thé bitstring in timey?n.

global optimum is not found first, from Theorem 2 we knowC"C€ this point has been reached, the probability that any
that the local optimum consisting of thé bit-string will be individual is mutated into the optimum is upper bounded as

found in time O(un logn). From this point of time, due to TOOWS-

the elitist nature of the selection mechanism this solutvdh pA (1 - pm)(g’/‘l)” < (1/2)r=2""

not be removed from the population until the global optimum)))
has been found because it has higher fitness than any ot n():e, the expected time for the optimum to be found is

point in the search space. For the same reason, any copyzo : u

the local optimum will be accepted if the optimum has nof "€ €xpected time of theuf1) EA on the trap function
been found, Is Q(n™) [3] meaning that the y((+1) EAr does require

As shown in the proof of Theorem 3, the expected timéess time to optimize the function. However, none of the
for the whole population to be a copy of thé bit-string two glgorithms perform better than R_a_ndom Search on this
conditional to no fitness improvement (i.e. the optimum ndnction, which means they are inefficient for the function.

being found) isO(;i2). Now, since individualz,, flips each In the next section a class of functions will be introduced
.) I
bit with probability (n/n) = 1, it will flip all its bits (which Were the better performance of thetl) EAr compared to

are all ones) into zero-bits with probability when it is the (+1) EA is a more practical gap between polynomial
selected for mutation. The expected timegrto be selected 2nd Super-polynomial runtimes. Thus a practical advantage
for mutation isO(x). Summing up, if the optimum is not ©f Using the (i+1) EAx rather than the,(+1) EA on that
found previously, it will be found in time)(u? + unlogn) class of functions will be proved.
u VI. COMBINING RANDOM AND GUIDED SEARCH
The above theorem proves that the-{) EAg is efficient |, s section, we want to point out where using rank-
for the TRAP, function. However, this only happens becaus%ased mutation considerably speeds up the optimization

the _fg!O*?a' loptwgum is the opposite (?f th; local ofptlmuh rocess compared to algorithms using a fixed mutation rate.
(or if it is placed at a constant Hamming distance from theyg e e will show that the different individuals using eiff

Ioppcl)sne). The following furf1c_t|on changes ”E)e Iocanonrtm‘ U ent focuses on exploration and exploitation can signifigant
ocal optimum to permit a fair comparison between the tW(P1elp to deal with landscapes that require different mutatio

algorithms. rates at different stages of the optimization process.
To exemplify where the use of rank-based mutation can
TRAPS() = { n+1 if x= {O"/41(3/4)"} make the difference between a super-polynomial and poly-
ONEMAX(x) otherwise. nomial runtime we consider the functionRAP-ONEMAX

The following theorem shows that the expected optimizdDtroduced in [5].
tion time of the (1+1) EAr on the TRAP, function is

exponential in the function size. k n k

Theorem 5: Let u = poly(n). The expected optimization TRAP-ONEMAX (z) = (Hfﬂz) (> xz‘) +> (-,
time of the (4+1) EAr on theTRAP, function is©(2"). =1 i=k+1 =1

Proof: The proof of the upper bound follows directly We call the firstk-bits the TRAP-part and the remaining

from Theorem 1. n — k bits the ONEM AX-part of a bitstring. The function has

The probability that the optimum is generated durindhe property that the @EMAX-part can only be optimized
the initialisation phase i§1/2)" for each individual. The after the optimum of the ®Rap-part has been found. Other-
expected number of zero bits for each individualnig2. wise, the function leads an algorithm to search points that
By Chernoff bounds, with overwhelming probability eachhave a large Hamming distance in th&@Ap-part from the
individual has at least/3 zero bits after initialisation. Hence set of optimal solution with respect to therApP-part which
for the optimum to be found at leas/12 zero bits have to consists of all search points having at leadeading ones.

As done in [4, 5], we consider the function for the casavheren/3+1 <14 < u/2. The probability of choosing such
k = logn and show that the use of rank-based mutatioan individual in the next iteration ig/*=£/*=1 = (1),
can considerably reduce the runtime. A similar effect haShe TRAP-part consists ofog n bits. Therefore, an expected
already been observed in [4] where the effect of usingumber of at mosg'°¢”™ = O(n) mutation steps applied to
neutrality in evolutionary algorithms has been analyzed. Isuch individuals is necessary to reach a solution congistin
this paper it has been pointed out that a variant of thef k leading ones. Such a solution is accepted if it has at
(1+1) EA has for each fixed mutation rate a super-polynomidastk + 1 1-bits in the QNEM AX-part.
expected optimization time. The arguments used in the proof As long as the RAP-part has not been optimised, the
of this lower bound can be generalized to+() EA if ONEMAXx-part does not contribute to the fitness, and the
the population size is not too large. For a sufficiently largéast n — & bits in each individual are therefore uniformly
population size, e. g = n?log n, and mutation raté/n the distributed. Hence, by a Chernoff bound, with exponentiall
expected optimization time becomes polynomial as with highigh probability, the @EMAX-part contains at least/4 —
probability at least one individual in the initial populatiis k/4 > k + 1 ones when the RAP-part has been optimised.
optimal with respect to the FAP-part. Altogether, the expected time until a solution with -bits

In [4] it has been shown that the functiomAP-ONEMAX in the TRAP-part and at least + 1 1-bits in the QNEMAX-
may also be optimized by EAs with a small population sizepart has been achieved is upper boundedijx).
Incorporating neutrality into the (1+1) EA an upper bound on To optimize the QEMAX-part, we can follow the ideas
the runtime ofO(n? log n) has been shown in this paper. Thein the proof of Theorem 2 to obtain the upper bound of
model of neutrality examined in this paper ensures that eadh(unlogn) on the expected time until an optimal solution

bit in the TRAP-part is flipped with probabilityl/2 while has been achieved.]
each bit in the @EMAX-part is flipped with probability
1/n. For the QNEMAX-part the choice of the mutation rate VIl. DiscussiON ANDCONCLUSION

is optimal. However, after having reached a solution with
leading ones and at leakt- 1 ones in the @EMAX-part it

is better to work with a smaller mutation rate in theAp-
part as a mutation rate df/2 implies that a solution wittk
leading ones is just re-sampled after an expected number
©(n) and the optimization of the KEMAX-part is slowed
down by ©(n). Using these arguments together with th
lower bound for the (1+1) EA on REMAX given in [3], itis
not to hard to prove a matching lower bound(®fn? log n)
for the algorithm using bit-wise neutrality investigated[4]

We have presented a rigorous analysis of rank-based
mutation EAs on function classes with significant struciure
We have considered thei{1) EAg, which is a rank-based
mutation steady state EA with elitism, and we have compared
invith the (1+1) EA and the (+1) EA. The experiments

erformed in [1] discussed the impact of rank-based mu-
ation rates by using an algorithm called Rank-GA with
fithess-proportional selection and a crossover operatarhwh
chooses the mating individuals according to their ranksThi
on TRAP-ONEM AX could imply that some of the effects that were seen through
' o) the experiments were caused by the selection or the crassove
We show that the /(+1) EAx optimizes the function qneraiors. Now we discuss how the results presented in this

TRAP-ONEMAX in time O(nlogn) if the population size is naner compare with those obtained experimentally in [1].
constant. The improvement compared to the use of neutrahty-l-he first result we have presented is a general bound

investigated in [4] is due to the fact that the mutation rdte Ot O(2") for the (u+1) EAr which holds for any pseudo-
the best |nd|V|du.aI isl /n which |mplles that the Opt'mlﬂm, Boolean function. This implies that the{1) EAg algorithm
of the TR_AP—_pgrt is re-sampled Wl_th a constant probablllty 'fmay only perform by a constant factor worse than Random
the _bESt individual of the_ populatlon IS chose_:n fo_r mutationge arch. This runtime reflects the one obtained experimgntal
Basically, our proof consists of the idea that individualthw by the Rank-GA (i.e. with fitness-proportional selectior an
a high mutation rate are necessary to sample the Optim%ssover) in [1] for functions such a&EDLE and TRAP,
of the TRAP-part for the first time. Later on, theM&EMAX- gih0e the number of fitness evaluations reported in the paper
part is optimized by considering the best individual in theappear like exponential in the problem sizes (il&° for
population, i.e. the individual with mutation ratgn. n = 16). This seems to imply that for these functions
Theorem 6: Choosingn > 2, the expected optimization peijther the selection or the crossover operator are of aipy he
time of the (1+1) EAg on the TRAP-ONEMAX function with pecause there seems to be no evident runtime improvement
k =logn is O(unlogn). compared to our upper bound.
Proof: To prove the theorem, we consider two phases. |n Theorem 2 we prove an upper bound@fun logn) for
The first phase ends when a search point consisting ofthe (u+1) EAr for ONEMAX meaning that the algorithm is
1-bits in the TRAP-part and at leask + 1 1-bits in the efficient for the function although it may be slower compared
ONEMAX-part has been found for the first time. After havingto the («1+1) EA. The question of whether the bound is tight
reached this intermediate goal the second phase begins agteft open for future work. In any case the algorithm does
ends when the optimal search point has been found for tia@t require more tha®(un logn) expected time. This seems
first time. in line with the experimental results regarding the Rank-GA
In the first phase we consider the individuals of rank for ONEMAX presented in [1]. The algorithm seems to be

efficient for the QUEMAX function with a bitstring length of [3] S. Droste, T. Jansen, and I. Wegener. On the analysis of

n = 100. the (1+1) evolutionary algorithmrheor. Comput. ci.,
However, this does not explain the much worse perfor- 276:51-81, 2002.

mance of the Rank-GA for therAP; function. In Theorem [4] T. Friedrich and F. Neumann. When to use bit-wise

4 of Section V we prove that theutl) EAg is efficient neutrality. Natural Computing, 2009. To appear. A

for the TrRAP; function. This happens because, once all preliminary version appeared in Proc. of CEC 2008.

the individuals in the population reach the local optimum [5] W. J. Gutjahr and G. Sebastiani. Runtime analysis of

by climbing up the QEEMAX path of the function, the ant colony optimization with best-so-far reinforcement.
individuals ranked badly flip many bits and end up on the = Methodology and Computing in Applied Probability, 10
global optimum which has Hamming distaneefrom the (3):409-433, 2008.

local optimum. In fact the last ranked individual will end up [6] E. Happ, D. Johannsen, C. Klein, and F. Neumann.
on the optimum with probabilityi, once selected, because Rigorous analyses of fithess-proportional selection for
it flips all its bits. If the Rank-GA is really efficient for optimizing linear functions. IrProc. of GECCO '08,

the ONEMAX function as claimed in [1], then it would pages 953-960. ACM Press, 2008.
be expected that once the top of thenEMAax function [7] T. Jansen and I. Wegener. On the choice of the mutation
is reached then the algorithm should be able to jump to probability for the (1+1) EA. InProc. of PPSN '00,

the global optimum of therraP; function. However, this pages 89-98. Springer, 2008.

does not seem to be the case. One answer could be tha8] F. G. Lobo, C. F. Lima, and Z. Michalewicz, editofa-
although the optimum of the KEMAXx part is found by the rameter Setting in Evolutionary Algorithms, volume 54
algorithm, the population of the Rank-GA algorithm does of Sudies in Computational Intelligence. Springer,
not converge to the top of the BMAX part. Hence the 2007. ISBN 978-3-540-69431-1.

individuals with low rank and high mutation rate do not have [9] P. S. Oliveto and C. Witt. Simplified drift analysis for
a chance of jumping to the optimum in polynomial time. proving lower bounds in evolutionary computation. In

From the experimental results of [1] the answer is not clear. In Proceedings of the 10th International Conference on
For the functions discussed above, when the rank-based Parallel Problem Solving From Nature (PPSN X), pages

mutation performs better than fixed-mutation the runtime is ~ 82-91, 2008.

exponential in the problem size and not better than Randof®0] P. S. Oliveto, J. He, and X. Yao. Computational com-

Search. These results do not justify any practical advantag plexity analysis of evolutionary algorithms for combi-

of using rank-based mutation rather than fixed mutation with ~ natorial optimization: A decade of resultsiternational

a sensible mutation probability such ps= 1/n. For this Journal of Automation and Computing, 4(3):281-293,

reason in Section VI we have presented functions where we 2007.

highlight that the optimization time of rank-based mutatio [11] P. S. Oliveto, J. He, and X. Yao. Analysis of population-

is polynomial with good probability while algorithms with based evolutionary algorithms for the vertex cover
fixed-mutation rates are inefficient. problem. InlIn proceedings of the 2008 IEEE world
For fairness in the comparison, in Section V we have also ~ congress on computational intelligence (WCCI2008),
proved the existence of functions where the-{) EAy is pages 1563-1570. IEEE, 2008.
inefficient while the (i+1) EA is efficient with a success [12] C. Witt. Runtime analysis of theu(+ 1) EA on simple
probability converging fast ta. pseudo-boolean functiong=volutionary Computation,
14(1):65-86, 2006.
ACKNOWLEDGEMENT [13] C. Zarges. Rigorous runtime analysis of inversely fit-

ness proportional mutation rates. Pnoc. of PPSN ' 08,
Pietro S. Oliveto was supported by an EPSRC grant pages 112-122. Springer, 2008.
(EP/C520696/1). Per Kristian Lehre was supported by an
EPSRC grant (EP/D052785/1).
The authors are grateful to Jonathan E. Rowe for an
interesting discussion on the use of rank-based variation
operators.

REFERENCES

[1] J. Cervantes and C. R. Stephens. Rank based vari-
ation operators for genetic algorithms. Rroc. of
GECCO ’'08, pages 905-912. ACM Press, 2008.

[2] S. Droste, T. Jansen, and |. Wegener. A rigorous com-
plexity analysis of the (1 + 1) evolutionary algorithm for
separable functions with boolean inputvolutionary
Computation, 6(2):185-196, 1998.

