
Benjamin Doerr and Frank Neumann (Editors)

Theory of Evolutionary
Computation – Recent
Developments in Discrete
Optimization

Springer

Preface

The theory of evolutionary computation, or, more generally, randomized
search heuristics, is aimed at understanding how these methods work and
why they are so successful in many applications. While there has always
been theoretical work in this field, and even more since Ingo Wegener (1950–
2008) pushed for a mathematical approach inspired by the classical field of
randomized algorithms, this research area remains young and many astonish-
ing advances have only been made in the last five to ten years. These include
new and more powerful methods, the solution of long-standing open prob-
lems, and the analysis of heuristics that could not be analyzed before. Not
only have the topics changed and become closer to what is the state of the
art in applications, but also the field has progressed from only analyzing ex-
isting methods to finding unexpected and more powerful parameter choices,
designing new building blocks such as mutation operators, selection opera-
tors, and mechanisms that adjust parameters on the fly, and even proposing
completely new heuristics.

In this edited book, we report on some of these recent developments. Our
aim is to give a concise summary of the state of the art to experts in the field
and to make this exciting area more accessible to students and researchers in
related fields.

The book starts with two chapters on mathematical methods that are of-
ten used in the analysis of randomized search heuristic. These are followed
by three chapters on how to measure the complexity of a search heuristic: we
discuss black-box complexity, a counterpart of classical complexity theory
in black-box optimization, parameterized complexity, aimed at a more fine-
grained view of the difficulty of problems, and the fixed-budget perspective,
which answers the question of how good a solution will be after investing a
certain computational budget. We then describe theoretical results on three
important questions in evolutionary computation, namely how to profit from
changing the parameters during the run of an algorithm, how evolutionary
algorithms are able to cope with dynamically changing or stochastic environ-
ments, and how population diversity influences performance. Finally, we look

v

vi Preface

at three algorithm classes that have only recently become the focus of theo-
retical work, namely estimation-of-distribution algorithms, artificial immune
systems, and genetic programming.

We hope that this book will help students and researchers in the field
and around it to access these topics, to deepen their understanding, and
possibly to join this young and exciting area, in which many very fundamental
questions are still wide open.

We thank all authors for accepting the time-consuming task of writing a
book chapter and for completing this task to perfection. We are very grateful
to the reviewers of each chapter, whose careful reading is a guarantee of
the high quality we aim at. Our final thanks go to the publisher, and, in
particular, Ronan Nugent, for all their help and responsiveness.

Palaiseau, Adelaide, Benjamin Doerr
Mai 2019 Frank Neumann

Contents

1 Probabilistic Tools for the Analysis of Randomized
Optimization Heuristics . 1
Benjamin Doerr
1.1 Introduction . 1
1.2 Notation . 3
1.3 Elementary Probability Theory . 3
1.4 Useful Inequalities . 5
1.5 Union Bound . 11
1.6 Expectation and Variance . 15
1.7 Conditioning . 22
1.8 Stochastic Domination and Coupling . 25
1.9 The Coupon Collector Process . 35
1.10 Large-Deviation Bounds . 38
References . 80

2 Drift Analysis . 89
Johannes Lengler
2.1 Introduction . 89
2.2 Basics of Drift Analysis . 90
2.3 Elementary Introduction to Drift Analysis 94
2.4 Advanced Drift Theorems . 112
2.5 Finding the Potential Function . 123
2.6 Conclusion . 125
References . 126

3 Complexity Theory for Discrete Black-Box Optimization
Heuristics . 133
Carola Doerr
3.1 Introduction and Historical Remarks . 134
3.2 The Unrestricted Black-Box Model . 138
3.3 Known Black-Box Complexities in the Unrestricted Model . . 148

vii

viii Contents

3.4 Memory-Restricted Black-Box Complexity 162
3.5 Comparison- and Ranking-Based Black-Box Complexity 166
3.6 Unbiased Black-Box Complexity . 170
3.7 Combined Black-Box Complexity Models 188
3.8 Summary of Known Black-Box Complexities for OneMax

and LeadingOnes . 196
3.9 From Black-Box Complexity to Algorithm Design 197
3.10 From Black-Box Complexity to Mastermind 201
3.11 Conclusion and Selected Open Problems 203
References . 206

4 Parameterized Complexity Analysis of Randomized
Search Heuristics . 213
Frank Neumann and Andrew M. Sutton
4.1 Introduction . 213
4.2 Parameterized Complexity Analysis . 216
4.3 Maximum-Leaf Spanning Trees . 217
4.4 Minimum Vertex Cover . 221
4.5 Submodular Functions with Constraints 226
4.6 Euclidean TSP . 230
4.7 Conclusion . 243
References . 244

5 Analysing Stochastic Search Heuristics Operating on a
Fixed Budget . 249
Thomas Jansen
5.1 Introduction . 249
5.2 Analytical Perspective and Basic Results 251
5.3 Reusing Known Runtime Results . 255
5.4 Advanced Methods . 257
5.5 Results Obtained by Using the Fixed-Budget Perspective . . . 261
5.6 Summary . 266
References . 268

6 Theory of Parameter Control for Discrete Black-Box
Optimization: Provable Performance Gains Through
Dynamic Parameter Choices . 271
Benjamin Doerr and Carola Doerr
6.1 Introduction . 271
6.2 A Motivating Example: (1+1) EA and RLS on LeadingOnes273
6.3 Classification of Parameter Control Mechanisms 275
6.4 State-Dependent Parameter Control . 278
6.5 Success-Based Parameter Control . 287
6.6 Learning-Inspired Parameter Control . 295
6.7 Self-Adaptation: Endogenous Parameter Control 299
6.8 Hyper-Heuristics . 303

Contents ix

6.9 Conclusion and Outlook . 312
References . 315

7 Analysis of Evolutionary Algorithms in Dynamic and
Stochastic Environments . 323
Frank Neumann, Mojgan Pourhassan and Vahid Roostapour
7.1 Introduction . 323
7.2 Preliminaries . 325
7.3 Analysis of Evolutionary Algorithms on Dynamic Problems . 330
7.4 Analysis of Evolutionary Algorithms on Stochastic Problems 342
7.5 Ant Colony Optimization . 351
7.6 Conclusions . 353
References . 354

8 The Benefits of Population Diversity in Evolutionary
Algorithms: A Survey of Rigorous Runtime Analyses 359
Dirk Sudholt
8.1 Introduction . 359
8.2 Preliminaries . 362
8.3 How Diversity Benefits Global Exploration 363
8.4 How Diversity Benefits Crossover . 381
8.5 How Diversity Benefits Dynamic Optimization 392
8.6 Diversity-Based Parent Selection . 396
8.7 Conclusions . 399
References . 400

9 Theory of Estimation-of-Distribution Algorithms 405
Martin S. Krejca and Carsten Witt
9.1 Introduction . 405
9.2 Estimation-of-Distribution Algorithms 407
9.3 Common Fitness Functions . 418
9.4 Convergence Analyses . 419
9.5 Runtime Analyses . 422
9.6 Conclusions and Open Problems . 437
References . 438

10 Theoretical Foundations of Immune-Inspired Randomized
Search Heuristics for Optimization . 443
Christine Zarges
10.1 Introduction . 443
10.2 Theoretical Analyses of Hypermutations 445
10.3 Theoretical Analyses of Aging Operators 457
10.4 Theoretical Analyses of Complete AIS 462
10.5 Summary . 469
References . 470

x Contents

11 Computational Complexity Analysis of Genetic
Programming . 475
Andrei Lissovoi and Pietro S. Oliveto
11.1 Introduction . 476
11.2 Preliminaries . 478
11.3 Evolving Tree Structures . 482
11.4 Evolving Programs of Fixed Size . 494
11.5 Evolving Proper Programs: Boolean Functions 498
11.6 Other GP Algorithms . 509
11.7 Conclusion . 513
References . 514

List of Contributors

Benjamin Doerr
LIX – UMR 7161, 1 rue Honoré d’Estienne d’Orves, Bâtiment Alan
Turing, Campus de l’École Polytechnique, 91120 Palaiseau, France, e-mail:
doerr@lix.polytechnique.fr

Carola Doerr
Sorbonne Université, CNRS, Laboratoire d’informatique de Paris 6 (LIP6),
75252 Paris, France, e-mail: Carola.Doerr@lip6.fr

Thomas Jansen
Department of Computer Science, Llandinam Building, Aberystwyth
University, Aberystwyth SY23 3DB, Ceredigion, United Kingdom, e-mail:
t.jansen@aber.ac.uk

Martin S. Krejca
Hasso-Plattner-Institut, Prof.-Dr.-Helmert-Str. 2–3, 14482 Potsdam,
Germany, e-mail: martin.krejca@hpi.de

Johannes Lengler
ETH Zürich, Department of Computer Science, Universitätstrasse 6, 8092
Zürich, Switzerland, e-mail: johannes.lengler@inf.ethz.ch

Andrei Lissovoi
Rigorous Research, Department of Computer Science, University of Sheffield,
211 Portobello, Sheffield S1 4DP, UK, e-mail: a.lissovoi@sheffield.ac.uk

Frank Neumann
Optimisation and Logistics, School of Computer Science, The University of
Adelaide, SA 5005, Australia, e-mail: frank.neumann@adelaide.edu.au

Pietro S. Oliveto
Rigorous Research, Department of Computer Science, University of Sheffield,
211 Portobello, Sheffield S1 4DP, UK, e-mail: p.oliveto@sheffield.ac.uk

xi

doerr@lix.polytechnique.fr
Carola.Doerr@lip6.fr
t.jansen@aber.ac.uk
martin.krejca@hpi.de
johannes.lengler@inf.ethz.ch
a.lissovoi@sheffield.ac.uk
frank.neumann@adelaide.edu.au
p.oliveto@sheffield.ac.uk

xii List of Contributors

Mojgan Pourhassan
Optimisation and Logistics, School of Computer Science, The University of
Adelaide, SA 5005, Australia, e-mail: mojgan.pourhassan@adelaide.edu.au

Vahid Roostapour
Optimisation and Logistics, School of Computer Science, The University of
Adelaide, SA 5005, Australia, e-mail: vahid.roostapour@adelaide.edu.au

Dirk Sudholt
Department of Computer Science, University of Sheffield, 211 Portobello,
Sheffield S1 4DP, United Kingdom, e-mail: d.sudholt@sheffield.ac.uk

Andrew M. Sutton
Department of Computer Science, University of Minnesota Duluth, 1049
University Drive, Duluth, MN 55812, USA, e-mail: amsutton@umn.edu

Carsten Witt
DTU Compute, Technical University of Denmark, Richard Petersens Plads,
Building 322, 2800 Kgs. Lyngby, Denmark, e-mail: cawi@dtu.dk

Christine Zarges
Department of Computer Science, Llandinam Building, Aberystwyth
University, Aberystwyth SY23 3DB, Ceredigion, United Kingdom, e-mail:
c.zarges@aber.ac.uk

mojgan.pourhassan@adelaide.edu.au
vahid.roostapour@adelaide.edu.au
d.sudholt@sheffield.ac.uk
amsutton@umn.edu
cawi@dtu.dk
c.zarges@aber.ac.uk

Chapter 1
Probabilistic Tools for the Analysis of
Randomized Optimization Heuristics

Benjamin Doerr

Abstract This chapter collects several probabilistic tools that have proven to
be useful in the analysis of randomized search heuristics. This includes classic
material such as the Markov, Chebyshev, and Chernoff inequalities, but also
lesser-known topics such as stochastic domination and coupling, and Chernoff
bounds for geometrically distributed random variables and for negatively
correlated random variables. Most of the results presented here have appeared
previously, but some only in recent conference publications. While the focus is
on presenting tools for the analysis of randomized search heuristics, many of
these may be useful as well for the analysis of classic randomized algorithms
or discrete random structures.

1.1 Introduction

Unlike in the field of classic randomized algorithms for discrete optimization
problems, where theory has always supported (and, in fact, often led) the
development and understanding of new algorithms, the theoretical analysis
of nature-inspired search heuristics is much younger than the use of these
heuristics. The use of nature-inspired heuristics can easily be traced back to
the 1960s; their rigorous analysis with proven performance guarantees only
started in the late 1990s. Propelled by impressive results, most notably from
the German computer scientist Ingo Wegener (1950–2008) and his students,
theoretical studies became quickly accepted in the field of nature-inspired
algorithms and now form an integral part of it. They help to understand
these algorithms, guide the choice of their parameters, and even (as in the
field of classic algorithms) suggest new promising algorithms. It is safe to
say that Wegener’s vision that nature-inspired heuristics are nothing more

Benjamin Doerr
École Polytechnique, CNRS, Laboratoire d’Informatique (LIX), Palaiseau, France

1

2 Benjamin Doerr

than a particular class of randomized algorithms, which therefore should be
analyzed with the same rigor as other randomized algorithms, has come true.

After around 20 years of theoretical analysis of nature-inspired algorithms,
however, we have to note that the methods used here are different from those
used in the analysis of classic randomized algorithms. This is most visible
for particular methods such as the fitness level method or drift analysis, but
applies even to the elementary probabilistic tools employed throughout the
field.

The aim of this chapter is to collect those elementary tools which have
often been used over the past 20 years. This includes classic material such
as expectations, variances, the coupon collector process, Markov’s inequal-
ity, Chebyshev’s inequality and Chernoff–Hoeffding bounds for sums of inde-
pendent random variables, but also topics that are used rarely outside the
analysis of nature-inspired heuristics such as stochastic domination, Chernoff–
Hoeffding bounds for sums of independent geometrically distributed random
variables, and Chernoff–Hoeffding bounds for sums of random variables which
are not fully independent. For many results, we also sketch a typical applica-
tion or refer to applications in the literature.

The large majority of the results and applications presented in this chapter
have appeared previously, some in textbooks, some in recent conference pub-
lications. The following results, while not necessarily very deep, are original
to the best of our knowledge.

• The result that all known Chernoff bounds, when applied to binary random
variables, hold as well for negatively correlated random variables. More
precisely, for bounds on the upper tail, we need only 1-negative correla-
tion, and for bounds on the lower tail, we need only 0-negative correlation
(Section 1.10.2.2).

• The insight that all commonly known Chernoff bounds can be deduced
from only two bounds (Section 1.10.1.5).

• A version of the method of bounded differences which requires only that
the t-th random variable has a bounded influence on the expected result
stemming from variables t + 1 to n. This appears to be an interesting
compromise between the classic method of bounded differences, which is
hard to use for iterative algorithms, and martingale methods, which require
familiarity with martingales (Theorem 1.10.28).

• Via an elementary two-stage rounding trick, we give simple proofs of
the facts that (i) a sum X of independent binary random variables with
Var[X] ≥ 1 exceeds its expectation with constant probability by at least
Ω(
√

Var[X]) and (ii) it attains a particular value at most with probabil-
ity 2/

√
Var[X] (Lemmas 1.10.16 and 1.10.17). Both results were proven

earlier by deeper methods, for example, an approximation via the normal
distribution.

This chapter is intended to serve both as an introduction for newcomers
to the field and as a reference book for regular users of these methods. With

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 3

both addressees in mind, we have not shied away from also stating elementary
reformulations of results or explicitly formulating statements that rely only
on elementary mathematics, such as:

• how to choose the deviation parameter δ in the strong multiplicative Cher-
noff bound so that the tail probability (e/δ)δ is below a desired value
(Lemma 1.10.2), and

• how to translate a tail bound into an expectation (Corollary 1.6.2).

We hope that this will save all users of this chapter some time, which can be
better spent on understanding the challenging random processes that arise
in the analysis of nature-inspired heuristics.

1.2 Notation

All notation in this chapter is standard and should not need much additional
explanation. We use N := {1,2, . . .} to denote the positive integers. We write
N0 := N∪{0}. For intervals of integers, we write [a..b] := {x ∈ Z | a≤ x≤ b}.
We use the standard definition 00 := 1 (and not 00 = 0).

1.3 Elementary Probability Theory

We shall assume that the reader has some basic understanding of the concepts
of probability spaces, events, and random variables. As is usual in probability
theory and is very convenient in the analysis of algorithms, we shall almost
never explicitly state the probability space we are working in. Hence an intu-
itive understanding of the notion of a random variable should be enough to
follow this exposition.

While many results presented in the following naturally extend to con-
tinuous probability spaces, in the interests of simplicity and accessibility to
a discrete-optimization audience, we shall assume that all random variables
in this book are discrete, that is, they take at most a countable number of
values. As a simple example, consider the random experiment of indepen-
dently rolling two distinguishable dice. Let X1 denote the outcome of the
first roll, that is, the number between 1 and 6 which the first die displays.
Likewise, let X2 denote the outcome of the second roll. These are already
two random variables. We formalize the statement that with probability 1

6
the first die shows a one by saying Pr[X1 = 1] = 1

6 . Also, the probability
that both dice show the same number is Pr[X1 = X2] = 1

6 . The complemen-
tary event that they show different numbers naturally has a probability of
Pr[X1 ̸= X2] = 1−Pr[X1 = X2] = 5

6 .

4 Benjamin Doerr

We can add random variables (defined over the same probability space),
e.g., X := X1 + X2 is the sum of the numbers shown by the two dice, and
we can multiply a random variable by a number, e.g., X := 2X1 is twice the
number shown by the first die.

The most common type of random variable we shall encounter in this
book is an extremely simple one called a binary random variable or Bernoulli
random variable. It takes the values 0 and 1 only. In consequence, the prob-
ability distribution of a binary random variable X is fully described by its
probability Pr[X = 1] of being one, since Pr[X = 0] = 1−Pr[X = 1].

Binary random variables often show up as indicator random variables for
random events. For example, if the random experiment is a simple roll of a
die, we may define a random variable X by setting X = 1 if the die shows a
six, and X = 0 otherwise. We say that X is the indicator random variable for
the event “die shows a six.”

Indicator random variables are useful for counting. If we roll a die n times
and X1, . . . ,Xn are the indicator random variables for the events that the
corresponding roll showed a 6 (considered as a success), then

∑n
i=1 Xi is a

random variable describing the number of times we saw a 6 in these n rolls. In
general, a random variable X that is the sum of n independent binary random
variables that all are one with equal probabilities p is called a binomial random
variable (with success probability p). We denote this distribution by Bin(n,p)
and write X ∼ Bin(n,p) to denote that X has this distribution. We have

Pr[X = k] =
(

n

k

)
pk(1−p)n−k

for all k ∈ [0..n]. See Section 1.4.3 for the definition of the binomial coefficient.
A different question is how long we have to wait until we roll a 6. Assume

that we have an infinite sequence of die rolls and X1,X2, . . . are the indicator
random variables for the event that the corresponding roll shows a six (suc-
cess). Then we are interested in the random variable Y = min{k ∈N |Xk = 1}.
Again for the general case of all Xi being one independently with proba-
bility p > 0, this random variable Y is called a geometric random variable
(with success probability p). We denote this distribution by Geom(p) and
write Y ∼ Geom(p) to indicate that Y is geometrically distributed (with
parameter p). We have

Pr[Y = k] = (1−p)k−1p

for all k ∈ N. We note that an equally established definition is to count only
the failures, that is, to consider the random variable Y −1. So, some care is
necessary when comparing results from different sources.

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 5

1.4 Useful Inequalities

Before starting our presentation of probabilistic tools useful in the analysis
of randomized search heuristics, let us briefly mention a few inequalities that
are often needed to estimate probabilities arising naturally in this area.

1.4.1 Switching Between Exponential and Polynomial
Terms

When dealing with events occurring with a small probability ε > 0, we of-
ten encounter expressions such as (1−ε)n. Such a mix of a polynomial term
(1−ε) with an exponentiation is often hard to work with. It is therefore very
convenient that 1− ε ≈ e−ε, so that the above expression becomes approx-
imately the purely exponential term e−εn. In this section, we collect a few
estimates of this flavor. With the exception of the second inequality in (1.4.9),
a sharper version of a Weierstrass product inequality, all are well known and
can be derived via elementary arguments.

Lemma 1.4.1. For all x ∈ R,

1+x≤ ex.

We give a canonical proof as an example of a proof method that is often
useful for such estimates.

Proof. Define a function f : R→ R by f(x) = ex− 1−x for all x ∈ R. Since
f ′(x) = ex− 1, we have f ′(x) = 0 if and only if x = 0. Since f ′′(x) = ex > 0
for all x, we see that x = 0 is the unique minimum of f . Since f(0) = 0, we
have f(x)≥ 0 for all x, which is equivalent to the claim of the lemma. ⊓⊔

Applying Lemma 1.4.1 to −x and taking reciprocals, we immediately de-
rive the first of the following two upper bounds on the exponential function.
The second bound again follows from elementary calculus. Obviously, the
first estimate is better for x < 0, and the second is better for x > 0.

Lemma 1.4.2. (a) For all x < 1,

ex ≤ 1
1−x

= 1+ x

1−x
= 1+x+ x2

1−x
. (1.4.1)

In particular, for 0≤ x≤ 1, we have e−x ≤ 1− x
2 .

(b) For all x < 1.79,
ex ≤ 1+x+x2. (1.4.2)

6 Benjamin Doerr

−1 −0.5 0 0.5 1

0

1

2

3

x

f
(x

)

f(x) = 1 + x + x2

f(x) = 1 + x + x2

1−x

f(x) = ex

f(x) = 1 + x

Fig. 1.1 Plot of the estimates of Lemmas 1.4.1 and 1.4.2.

As is visible also from Figure 1.1, these estimates are strongest for x close
to zero. By combining Lemmas 1.4.1 and 1.4.2, the following useful estimate
was obtained in [87, Lemma 8].

Corollary 1.4.3. For all x ∈ [0,1] and y > 0, (1−x)y ≤ 1
1+xy .

Replacing x with x
1+x in the first inequality of Lemma 1.4.2 gives the

following bounds.

Corollary 1.4.4. For all x >−1, we have

e
x

1+x ≤ 1+x≤ ex. (1.4.3)

For all x,y > 0,
e

xy
x+y ≤ (1+ x

y)y ≤ ex. (1.4.4)

The first bound in (1.4.3) can, with different arguments and for a smaller
range of x, be sharpened to the following estimate [28, Lemma 8(c)].

Lemma 1.4.5. For all x ∈ [0, 2
3], e−x−x2 ≤ 1−x.

A reformulation of (1.4.3) often useful in the context of standard bit mu-
tation (mutating a bit string by flipping each bit independently with a small
probability such as 1

n) is the following (see Figure 1.2 for some related plots).
Note that the first bound holds for all r ≥ 1, while it is often only stated for
r ∈ N. For the (not so interesting) boundary case r = 1, recall that we use
the common convention 00 := 1.

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 7

2 4 6 8 10

0.2

0.4

0.6

0.8

x

f
(x

)

f(x) = (1−1/x)x

f(x) = (1−1/x)x−0.5

f(x) = (1−1/x)x−1

f(x) = ((1−1/x)x−1 + (1−1/x)x)/2

Fig. 1.2 Plots related to Corollary 1.4.6.

Corollary 1.4.6. For all r ≥ 1 and 0≤ s≤ r,

(1− 1
r)r ≤ 1

e ≤ (1− 1
r)r−1, (1.4.5)

(1− s
r)r ≤ e−s ≤ (1− s

r)r−s. (1.4.6)

Occasionally, it is useful to know that (1− 1
r)r is monotonically increasing

and that (1− 1
r)r−1 is monotonically decreasing in r (and thus both converge

to 1
e).

Lemma 1.4.7. For all 1≤ s≤ r, we have

(1− 1
s)s ≤ (1− 1

r)r, (1.4.7)
(1− 1

s)s−1 ≥ (1− 1
r)r−1. (1.4.8)

Finally, we mention Bernoulli’s inequality and a related result.
Lemma 1.4.8(b) below will be proven at the end of Section 1.5.2, both to
show how probabilistic arguments can be used to prove non-probabilistic re-
sults and because we have not found a proof for the upper bound in the
literature.

Lemma 1.4.8. (a) Bernoulli’s inequality. Let x ≥ −1 and r ∈ {0}∪ [1,∞).
Then (1+x)r ≥ 1+ rx.

(b) Weierstrass product inequalities. Let p1, . . . ,pn ∈ [0,1]. Let P :=
∑n

i=1 pi.
Then

1−P ≤
n∏

i=1
(1−pi)≤ 1−P +

∑
i<j

pipj ≤ 1−P + 1
2P 2. (1.4.9)

If in addition P < 1, then

8 Benjamin Doerr

1+P ≤
n∏

i=1
(1+pi)≤

1
1−P

. (1.4.10)

The term “Weierstrass product inequality” is sometimes applied only to
the lower bounds in Lemma 1.4.8(b). For the upper bound in (1.4.9), the
estimate

n∏
i=1

(1−pi)≤
1

1+P
(1.4.11)

is well known. It is stronger than our bound if and only if P > 1. Since for
P ≥ 1 the lower bound is trivial, this might be the less interesting case.

1.4.2 Harmonic Number

Quite frequently in the analysis of randomized search heuristics, we will en-
counter the harmonic number Hn. For all n∈N, it is defined by Hn =

∑n
k=1

1
k .

Approximating this sum via integrals, namely by∫ n+1

1

1
x

dx≤Hn ≤ 1+
∫ n

1

1
x

dx,

we obtain the estimate
lnn < Hn ≤ 1+ lnn, (1.4.12)

valid for all n≥ 1. Sharper estimates involving the Euler–Mascheroni constant
γ ≈ 0.5772156649 are known, e.g.,

Hn = lnn+γ±O(1
n),

Hn = lnn+γ + 1
2n ±O(1

n2).

For non-asymptotic statements, it is helpful to know that Hn− lnn is mono-
tonically decreasing (with limit γ, obviously). In most cases, however, the
simple estimate (1.4.12) will be sufficient.

1.4.3 Binomial Coefficients and Stirling’s Formula

Since discrete probability is strongly related to counting, we often encounter
the binomial coefficients, defined by(

n

k

)
:= n!

k! (n−k)!

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 9

for all n ∈N0, k ∈ [0..n]. The binomial coefficient
(n

k

)
equals the number of k-

element subsets of a given n-element set. For this reason, the above definition
is often extended to

(n
k

)
:= 0 for k > n.

In this section, we give several useful estimates for binomial coefficients.
We start by remarking that, while very precise estimates are available, in the
analysis of randomized search heuristics crude estimates are often sufficient.

The following lemma lists some estimates which all can be proven by
elementary means. To prove the second inequality of (1.4.16), note that
ek =

∑∞
i=0

ki

i! ≥
kk

k! gives the elementary estimate(
k

e

)k

≤ k!≤ kk. (1.4.13)

To prove (1.4.17), note that for even n we have
(n

n/2
)

= n!
(n/2)!(n/2)! =∏n/2

i=1
2i(2i−1)

i2 = 2n
∏n/2

i=1(1− 1
2i) ≤ 2n exp(−1

2
∑n/2

i=1
1
i) ≤ 2n exp(−1

2 ln n
2) =

2n
√

2
n (see Lemma 1.4.1 and (1.4.12)), while for odd n we have

(n
⌊n/2⌋

)
=

1
2
(n+1

(n+1)/2
)
≤ 2n

√
2

n+1 .

Lemma 1.4.9. For all n ∈ N and k ∈ [1..n], we have(
n

k

)
≤ 2n, (1.4.14)(

n

k

)k

≤
(

n

k

)
≤ nk, (1.4.15)(

n

k

)
≤ nk

k!
≤
(

ne

k

)k

, (1.4.16)(
n

k

)
≤
(

n

⌊n/2⌋

)
≤ 2n

√
2
n

. (1.4.17)

Stronger estimates, giving also the well-known version(
n

k

)
≤
(

n

⌊n/2⌋

)
≤ 2n

√
2

πn
(1.4.18)

of (1.4.17), can be obtained from the following estimate, known as Stirling’s
formula.

Theorem 1.4.10 (Robbins [86]). For all n ∈ N,

n! =
√

2πn(n
e)nRn,

where 1 < exp(1
12n+1) < Rn < exp(1

12n) < 1.08690405.

10 Benjamin Doerr

Corollary 1.4.11. For all n ∈ N and k ∈ [1..n−1],(
n

k

)
= 1√

2π

√
n

k(n−k)

(
n

k

)k(
n

n−k

)n−k

Rnk,

where 0.88102729 . . . = exp(−1
6 + 1

25)≤ exp(− 1
12k −

1
12(n−k) + 1

12n+1) < Rnk <

exp(− 1
12k+1 −

1
12(n−k)+1 + 1

12n) < 1.

We refer to [55] for an analysis of randomized search heuristics which
clearly requires Stirling’s formula. Stirling’s formula was also used in [43,
proof of Lemma 8] to compute another useful fact, namely that all bino-
mial coefficients that are O(

√
n) away from the middle one have the same

asymptotic order of magnitude of Θ(2nn−1/2). Here the upper bound is
simply (1.4.17).

Corollary 1.4.12. Let γ ≥ 0. Let n ∈ N and ℓ = n
2 ±γ

√
n. Then

(n
ℓ

)
≥ (1−

o(1)) 2n

2
√

πn
e−4γ2 .

When working with mutation rates different from the classical choice of 1
n ,

the following estimates can be useful.

Lemma 1.4.13. Let n ∈ N, k ∈ [0..n], and p ∈ [0,1]. Let X ∼ Bin(n,p).
(a) Let Y ∼ Bin(n, k

n). Then Pr[X = k]≤ Pr[Y = k]. This inequality is strict
except for the trivial case p = k

n .
(b) For k ∈ [1..n−1], Pr[X = k]≤ 1√

2π

√
n

k(n−k) .

Proof. The first part follows from Pr[X = k] =
(n

k

)
pk(1− p)n−k and noting

that p 7→ pk(1−p)n−k has a unique maximum in the interval [0,1], namely at
p = k

n . The second part follows from the first and from using Corollary 1.4.11
to estimate the binomial coefficient in the expression Pr[Y = k] =

(n
k

)
(1

k)k(1−
n
k)n−k. ⊓⊔

For the special case where np = k, the second part of the lemma above
was shown in [94, Lemma 10 of the arXiv version]. For k ∈ {⌊np⌋,⌈np⌉} but
np ̸= k, a bound larger than ours by a factor of e was shown there as well.

Finally, we note that to estimate sums of binomial coefficients, large-
deviation bounds (to be discussed in Section 1.10) can be an elegant tool.
Imagine we need an upper bound on S =

∑n
k=a

(n
k

)
, where a > n

2 . Let X

be a random variable with distribution Bin(n, 1
2). Then Pr[X ≥ a] = 2−nS.

Using the additive Chernoff bound of Theorem 1.10.7, we also see that
Pr[X ≥ a] = Pr[X ≥ E[X] + (a− n

2)] ≤ exp(−2(a− n
2)2

n). Consequently, S ≤

2n exp(−2(a− n
2)2

n).
The same argument can even be used to estimate single binomial coef-

ficients, in particular, those not to close to the middle one. Note that by

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 11

Lemma 1.10.38, S =
∑n

k=a

(n
k

)
and

(n
a

)
are quite close when a is not too

close to n
2 . Hence (

n

a

)
≤ 2n exp

(
−

2(a− n
2)2

n

)
(1.4.19)

is a good estimate in this case.

1.5 Union Bound

The union bound, sometimes called Boole’s inequality, is a very elemen-
tary consequence of the axioms of a probability space, in particular, the
σ-additivity of the probability measure.

Lemma 1.5.1 (union bound). Let E1, . . . ,En be arbitrary events in some
probability space. Then

Pr
[n∪

i=1
Ei

]
≤

n∑
i=1

Pr[Ei].

Despite its simplicity, the union bound is a surprisingly powerful tool in
the analysis of randomized algorithms. It draws its strength from the fact that
it does not need any additional assumptions. In particular, the events Ei are
not required to be independent. Here is an example of such an application of
the union bound.

1.5.1 Example: The (1+1) EA Solving the Needle
Problem

The needle function is the fitness function f : {0,1}n→Z defined by f(x) = 0
for all x ∈ {0,1}n \ {(1, . . . ,1)} and f((1, . . . ,1)) = 1. It is neither surprising
nor difficult to prove that all reasonable randomized search heuristics need
time exponential in n to find the maximum of the needle function. To give a
simple example of the use of the simplified drift theorem, it was shown in [79]
that the classic (1+1) EA, within a sufficiently small exponential time, does
not even get close to the optimum of the needle function (see Theorem 1.5.2
below). We now show that the same result (and in fact a stronger one) can
be shown via the union bound.

The (1+1) EA, described in Algorithm 1.1, is a simple randomized search
heuristic that starts with a random search point x ∈ {0,1}n. Then, in each
iteration, it generates from x a new search point y by copying x into y and
flipping each bit independently with probability 1

n . If the new search point
(“offspring”) y is at least as good as the parent x, that is, if f(y)≥ f(x) for

12 Benjamin Doerr

an objective function to be maximized, then x is replaced by y; that is, we
set x := y. Otherwise, y is discarded.

Algorithm 1.1: The (1+1) EA for maximizing f : {0,1}n→ R
1 Choose x ∈ {0,1}n uniformly at random;
2 for t = 1,2,3, . . . do
3 y← x;
4 for i ∈ [1..n] do
5 with probability 1

n do yi← 1−yi;
6 if f(y)≥ f(x) then x← y;

The precise result of [79, Theorem 5] is the following.

Theorem 1.5.2. For all η > 0 there are c1, c2 > 0 such that with probability
1−2c1n the first 2c2n search points generated in a run of the (1+1) EA on
the needle function all have a Hamming distance of more than (1

2 −η)n from
the optimum.

The proof of this theorem in [79] argues as follows. Denote by x(0),x(1), . . .
the search points generated in a run of the (1+1) EA. Denote by x∗ the
optimum of the needle function. For all i ≥ 0, let Xi := H(x(i),x∗) := |{j ∈
[1..n] | x(i)

j ̸= x∗
j}| be the Hamming distance of x(i) from the optimum. The

random initial search point x(0) has an expected Hamming distance of n
2 from

the optimum. By a simple Chernoff bound argument (Theorem 1.10.7), we see
that, with probability 1− exp(−2η2n), we have X0 = H(x(0),x∗) > (1

2 −η)n.
Now a careful analysis of the random process (Xi)i≥0 via a new “simplified
drift theorem” gives the claim.

We now show that the Chernoff bound argument plus a simple union
bound is sufficient to prove the theorem. We show the following more explicit
bound, which also applies to all other unbiased algorithms in the sense of
Lehre and Witt [66] (roughly speaking, all algorithms which treat the bit
positions [1..n] and the bit values {0,1} in a symmetric fashion).

Theorem 1.5.3. For all η > 0 and c > 0 we have that with probability at least
1− 2(c−2ln(2)η2)n the first L := 2cn search points generated in a run of the
(1+1) EA (or any other unbiased black-box optimization algorithm) on the
needle function all have a Hamming distance of more than (1

2 −η)n from the
optimum.

Proof. The key observation is that as long as the (1+1) EA has not found
the optimum, any search point x generated by the (1+1) EA is uniformly
distributed in {0,1}n. Hence Pr[H(x,x∗)≤ (1

2 −η)n]≤ exp(−2η2n) by Theo-
rem 1.10.7. By the union bound, the probability that one of the first L := 2cn

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 13

search points generated by the (1+1) EA has a distance H(x,x∗) of at most
(1

2 −η)n is at most Lexp(−2η2n) = 2(c−2ln(2)η2)n.
To be more formal, let x(0),x(1), . . . be the search points generated in a

run of the (1+1) EA. Let T = min{t ∈ N0 | x(t) = x∗}. Define a sequence
y(0),y(1), . . . of search points by setting y(t) := x(t) for all t ≤ T . For all
t > T , let y(t) be obtained from y(t−1) by flipping each bit independently
with probability 1

n . With this definition, and since x(t) = x∗ for all t≥ T , we
have

{x(t) | t ∈ [0..L−1]}= {x(t) | t ∈ [0..min{T,L−1}]}

= {y(t) | t ∈ [0..min{T,L−1}]} ⊆ {y(t) | t ∈ [0..L−1]}.

Consequently,

Pr[∃t ∈[0..L−1] : H(x(t),x∗)≤ (1
2 −η)n]

≤ Pr[∃t ∈ [0..L−1] : H(y(t),x∗)≤ (1
2 −η)n].

By the union bound,

Pr[∃t ∈ [0..L−1] : H(y(t),x∗)≤ (1
2 −η)n]≤

L−1∑
t=0

Pr[H(y(t),x∗)≤ (1
2 −η)n].

Note that when y(t) is a search point uniformly distributed in {0,1}n, then
so is y(t+1). Since y(0) is uniformly distributed, all y(t) are. Hence, by The-
orem 1.10.7, we have Pr[H(y(t),x∗) ≤ (1

2 − η)n] ≤ exp(−2η2n) for all t and
thus

L−1∑
t=0

Pr[H(y(t),x∗)≤ (1
2 −η)n]≤ Lexp(−2η2n) = 2(c−2ln(2)η2)n.

This proof immediately extends to all algorithms which, when optimizing
the needle function, generate uniformly distributed search points until the
optimum is found. These are, in particular, all unbiased algorithms in the
sense of Lehre and Witt [66]. ⊓⊔

Note that the yt in the proof above are heavily correlated. For all t, the
search points yt and yt+1 have an expected Hamming distance of exactly one.
Nevertheless, we could apply the union bound to the events “H(yt,x

∗) <
(1

2 −η)n” and from this obtain a very elementary proof of Theorem 1.5.3.

14 Benjamin Doerr

1.5.2 Lower Bounds, Bonferroni Inequalities

The union bound is tight, that is, it holds with equality, when the events Ei

are disjoint. In this case, the union bound simply reverts to the σ-additivity
of the probability measure. The second Bonferroni inequality gives a lower
bound on the probability of a union of events also when they are not disjoint.

Lemma 1.5.4. Let E1, . . . ,En be arbitrary events in some probability space.
Then

Pr
[n∪

i=1
Ei

]
≥

n∑
i=1

Pr[Ei]−
n−1∑
i=1

n∑
j=i+1

Pr[Ei∩Ej].

As an illustration, let us consider the performance of blind random search
on the needle function; that is, we let x(1),x(2), . . . be independent random
search points from {0,1}n and ask ourselves what is the first hitting time
T = min{t∈N | x(t) = (1, . . . ,1)} of the maximum x∗ = (1, . . . ,1) of the needle
function (any other function f : {0,1}n→ R with a unique global optimum
would do as well). This is easy to compute directly. We see that T has a
geometric distribution with success probability 2−n, so the probability that
L iterations do not suffice to find the optimum is Pr[T > L] = (1−2−n)L.

Let us nevertheless see what we can derive from the union bound and the
second Bonferroni inequality. Let Et be the event x(t) = x∗. Then the union
bound gives

Pr[T ≤ L] = Pr
[L∪

t=1
Et

]
≤ L2−n,

and the second Bonferroni inequality yields

Pr[T ≤ L] = Pr
[L∪

t=1
Et

]
≥ L2−n− L(L−1)

2
2−2n.

Hence, if L = o(2n), that is, L is of smaller asymptotic order than 2n, then
Pr[T ≤ L] = (1−o(1))L2−n; that is, the union bound estimate is asymptoti-
cally tight.

For the sake of completeness, we now state the full set of Bonferroni in-
equalities. Note that the case k = 1 is the union bound and the case k = 2 is
the lemma above.

Lemma 1.5.5. Let E1, . . . ,En be arbitrary events in some probability space.
For all k ∈ [1..n], let

Sk :=
∑

1≤i1<···<ik≤n

Pr[Ai1 ∩·· ·∩Aik
].

Then, for all k ∈ [1..n], we have

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 15

• Pr
[n∪

i=1
Ei

]
≤

k∑
j=1

(−1)j−1Sj for k ∈ [1..n] odd,

• Pr
[n∪

i=1
Ei

]
≥

k∑
j=1

(−1)j−1Sj for k ∈ [1..n] even.

In simple terms, the Bonferroni inequalities state that when we omit the
terms for j > k in the inclusion–exclusion formula

Pr
[n∪

i=1
Ei

]
=

n∑
j=1

(−1)j−1Sj ,

then the first of the omitted terms (that is, the one for j = k +1) dominates
the error. So, if k is odd and thus the first omitted term is negative, then we
obtain a “≤” inequality, and the reverse for k even.

We now use the Bonferroni inequalities to prove two of the inequalities
given in Lemma 1.4.8(b).

Proof (of (1.4.9)). Consider some probability space with independent events
E1, . . . ,En having Pr[Ei] = pi. Due to the independence,

n∏
i=1

(1−pi) = Pr[∀i ∈ [1..n] : ¬Ei] = 1−Pr[∃i ∈ [1..n] : Ei]. (1.5.1)

By the union bound, the right-hand side of (1.5.1) is at least 1−
∑n

i=1 pi =
1−P . By the Bonferroni inequality for k = 2 and again the independence,
the right-hand side of (1.5.1) is at most

1−P +
∑
i<j

Pr[Ei∩Ej] = 1−P +
∑
i<j

pipj ≤ 1−P + 1
2

n∑
i=1

n∑
j=1

pipj

= 1−P + 1
2P 2.

⊓⊔

Note that the slack in the last inequality is only the term 1
2
∑n

i=1 p2
i , so there

is not much reason to prefer the stronger upper bound 1−P +
∑

i<j pipj over
the bound 1−P + 1

2P 2.

1.6 Expectation and Variance

The expectation and variance are two key characteristic numbers of a random
variable.

16 Benjamin Doerr

1.6.1 Expectation

The expectation (or mean) of a random variable X taking values in some set
Ω⊆R is defined by E[X] =

∑
ω∈Ω ω Pr[X = ω], where we shall always assume

that the sum exists and is finite. As a trivial example, we immediately see
that if X is a binary random variable, then E[X] = Pr[X = 1].

For non-negative integral random variables, the expectation can also be
computed by the following formula (which is valid also when E[X] is not
finite).

Lemma 1.6.1. Let X be a random variable taking values in the non-negative
integers. Then

E[X] =
∞∑

i=1
Pr[X ≥ i].

If X takes values in (−∞,0]∪N, then E[X]≤
∑∞

i=1 Pr[X ≥ i] still holds.

This lemma, among others, allows one to conveniently transform informa-
tion about the tail bound of a distribution into a bound on its expectation.
This was done, for example, in [47, proof of Lemma 10] for lower bounds,
in [42, proof of Theorem 2] in a classic runtime analysis, and in [29, proof of
Theorem 5] in the simplified proof of the multiplicative drift theorem.

Lemma 1.6.1 can also be employed to conveniently derive from information
about the upper tail of a random variable an estimate of its expectation, as
is done in the following elementary result.

Corollary 1.6.2 (expectations from exponential tail bounds). Let
α,β > 0 and T ≥ 0. Let X be an integer random variable and Y be a non-
negative integer random variable.

(a) If Pr[X ≥ T +λ]≤ αexp(−λ
β) for all λ ∈ N, then E[X]≤ T +αβ.

(b) If Pr[Y ≤ T −λ]≤ αexp(−λ
β) for all λ ∈ [1..T], then E[Y]≥ T −αβ.

(c) If Pr[X ≥ (1+ε)T]≤ αexp(− ε
β) for all ε > 0, then E[X]≤ (1+αβ)T .

(d) If Pr[X ≤ (1−ε)T]≤ αexp(− ε
β) for all ε ∈ (0,1], then E[X]≥ (1−αβ)T .

Proof. By Lemma 1.6.1, we compute

E[X]≤
∞∑

i=1
Pr[X ≥ i]≤ T +

∞∑
i=T +1

αexp
(
− i−T

β

)
= T −α +α

1
1− exp(−1/β)

≤ T +αβ,

where the last estimate uses (1.4.1).
Similarly, we compute

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 17

E[Y] =
T∑

i=1
Pr[Y ≥ i]≥

T∑
i=1

(1−Pr[Y ≤ i−1])

≥
T∑

λ=1
(1−αexp(−λ

β))≥ T −
∞∑

λ=1
αexp(−λ

β)≥ T −αβ.

The last two claims are simple reformulations of the first two. ⊓⊔

In a similar vein, Lemma 1.6.1 yields an elegant analysis of the expecta-
tion of a geometric random variable. Let X be a geometric random variable
with success probability p. Intuitively, we feel that the expected waiting time
for a success should be 1

p . This intuition is guided by the fact that after 1
p

repetitions of the underlying binary random experiment, the expected num-
ber of successes is exactly one. This intuition leads to the right result; the
“proof”, however, is not correct. The correct proof uses either standard re-
sults in Markov chain theory, elementary but non-trivial calculations, or (as
done below) the same reasoning as in the lemma above.

Lemma 1.6.3 (waiting-time argument). Let X be a geometric random
variable with success probability p > 0. Then E[X] = 1

p .

Proof. We have Pr[X ≥ i] = (1−p)i−1, since X ≥ i is the event of having no
success in the first i−1 rounds of the random experiment. Now Lemma 1.6.1
gives

E[X] =
∞∑

i=1
Pr[X ≥ i] =

∞∑
i=1

(1−p)i−1 = 1
1− (1−p)

= 1
p

.

⊓⊔

An elementary, but very useful property is that the expectation is linear.

Lemma 1.6.4 (linearity of expectation). Let X1, . . . ,Xn be arbitrary ran-
dom variables and a1, . . . ,an ∈ R. Then

E

[n∑
i=1

aiXi

]
=

n∑
i=1

aiE[Xi].

This fact is very convenient when we can write a complicated random
variable as sum of simpler ones. For example, let X be a binomial random
variable with parameters n and p, that is, we have Pr[X = k] =

(n
k

)
pk(1−

p)n−k. Since X counts the number of successes in n (independent) trials, we
can write X =

∑n
i=1 Xi as the sum of (independent) binary random variables

X1, . . . ,Xn, each with Pr[Xi = 1] = p. Here Xi is the indicator random variable
for the event that the i-th trial is a success. Using linearity of expectation,
we compute

E[X] = E

[n∑
i=1

Xi

]
=

n∑
i=1

E[Xi] = np.

18 Benjamin Doerr

We have just proved the following.

Lemma 1.6.5 (expectation of binomial random variables). Let X be
a binomial random variable with parameters n and p. Then E[X] = pn.

In the same fashion, we can compute the following elementary facts.

Lemma 1.6.6. Let x,y,x∗ ∈ {0,1}n. Denote by H(x,y) := |{i ∈ [1..n] | xi ̸=
yi}| the Hamming distance between x and y.
(a) Let z be obtained from x via standard bit mutation with rate p ∈ [0,1],

that is, by flipping each bit of x independently with probability p. Then
E[H(x,z)] = pn and E[H(z,x∗)] = H(x,x∗)+p(n−2H(x,x∗)).

(b) Let z be obtained from x and y via uniform crossover, that is, for each
i ∈ [1..n] independently, we set zi = xi or zi = yi each with probability 1

2 .
Then E[H(x,z)] = 1

2H(x,y) and E[H(z,x∗)] = 1
2 (H(x,x∗)+H(y,x∗)).

(c) Let z be obtained from the unordered pair {x,y} via 1-point crossover; that
is, we choose r uniformly at random from [0..n] and then, with probability
1
2 each,

• define z by zi = xi for i≤ r and zi = yi for i > r, or
• define z by zi = yi for i≤ r and zi = xi for i > r.

Then E[H(x,z)] = 1
2H(x,y) and E[H(z,x∗)] = 1

2 (H(x,x∗)+H(y,x∗)).

The fact that the results for the two crossover operators are identical shows
again that linearity of expectation does not care about possible dependencies.
We have Pr[zi = xi] = 1

2 in both cases, and this is what is important for the
result, whereas the fact that the events “zi = xi” are independent for uniform
crossover and strongly dependent for 1-point crossover has no influence on
the result.

1.6.2 Markov’s Inequality

Markov’s inequality is an elementary large-deviation bound valid for all non-
negative random variables.

Lemma 1.6.7 (Markov’s inequality). Let X be a non-negative random
variable with E[X] > 0. Then, for all λ > 0,

Pr[X ≥ λE[X]]≤ 1
λ , (1.6.1)

Pr[X ≥ λ]≤ E[X]
λ . (1.6.2)

Proof. We have

E[X] =
∑

ω

ω Pr[X = ω]≥
∑
ω≥λ

λPr[X = ω] = λPr[X ≥ λ],

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 19

proving (1.6.2). ⊓⊔

We note that (1.6.2) also holds without the assumption E[X] > 0. More
interestingly, the proof above shows that Markov’s inequality is always strict
(that is, it holds with “<” instead of “≤”) when X takes at least three different
values with positive probability.

It is important to note that Markov’s inequality, without further assump-
tions, only gives information about deviations above the expectation. If X
is a (not necessarily non-negative) random variable taking only values not
larger than some u ∈R, then the random variable u−X is non-negative and
Markov’s inequality gives the bound

Pr[X ≤ λ]≤ u−E[X]
u−λ

, (1.6.3)

which is sometimes called the reverse Markov’s inequality. An equivalent
formulation of this bound is

Pr[X > λ]≥ E[X]−λ

u−λ
. (1.6.4)

Markov’s inequality is useful if not much information is available about
the random variable under consideration. Also, when the expectation of X
is very small, the following elementary corollary is convenient and, in fact,
often quite tight.

Corollary 1.6.8 (first moment method). If X is a non-negative random
variable, then Pr[X ≥ 1]≤ E[X].

Corollary 1.6.8 together with linearity of expectation often gives the same
results as the union bound. For an example, recall that in Section 1.5.2 we
observed that in a run of the blind random search heuristic, the probability
that the t-th search point xt is the unique optimum of a given function
f : {0,1}n→ R is 2−n. Denote this event by Et and let Xt be the indicator
random variable for this event. Then the probability that one of the first L
search points is the optimum can be estimated equally well via the union
bound or via the above corollary and linearity of expectation:

Pr
[L∪

t=1
Et

]
≤

L∑
t=1

Pr[Et] = L2−n,

Pr
[L∑

t=1
Xt ≥ 1

]
≤ E

[L∑
t=1

Xt

]
=

L∑
t=1

E[Xt] = L2−n.

20 Benjamin Doerr

1.6.3 Chebyshev’s Inequality

The second elementary large-deviation bound is Chebyshev’s inequality,
sometimes called the Bienaymé–Chebyshev inequality as it was first stated
by Bienaymé [7] and later proven by Chebyshev [95]. It seems less often used
in the theory of randomized search heuristics (exceptions being [35, 74]).

Recall that the variance of a discrete random variable X is

Var[X] = E[(X−E[X])2] = E[X2]−E[X]2. (1.6.5)

Just by definition, the variance is a measure of how well X is concentrated
around its mean.

From the variance, we also obtain a bound on the expected (absolute)
deviation from the mean. Applying the well-known estimate E[X]2 ≤E[X2],
which follows from the second equality in (1.6.5), to the random variable
|X−E[X]|, we obtain

E[|X−E[X]|]≤
√

E[(X−E[X])2] =
√

Var[X]. (1.6.6)

More often, we use the variance to bound the probability of deviating from
the expectation by a certain amount. Applying Markov’s inequality to the
random variable (X−E[X])2 easily yields the following very useful inequality.

Lemma 1.6.9 (Chebyshev’s inequality). Let X be a random variable with
Var[X] > 0. Then, for all λ > 0,

Pr
[
|X−E[X]| ≥ λ

√
Var[X]

]
≤ 1

λ2 , (1.6.7)

Pr
[
|X−E[X]| ≥ λ

]
≤ Var[X]

λ2 . (1.6.8)

Similarly to Markov’s inequality, the second estimate is valid also without
the assumption Var[X] > 0. Note that Chebyshev’s inequality automatically
yields a two-sided tail bound (that is, a bound for |X−E[X]|), as opposed to
Markov’s inequality (which just gives a bound for exceeding the expectation).
There is a one-sided version of Chebyshev’s inequality that is often attributed
to Cantelli, though Hoeffding [54] sees Chebyshev [96] as its inventor.

Lemma 1.6.10 (Cantelli’s inequality). Let X be a random variable with
Var[X] > 0. Then for all λ > 0,

Pr
[
X ≥ E[X]+λ

√
Var[X]

]
≤ 1

λ2+1 , (1.6.9)

Pr
[
X ≤ E[X]−λ

√
Var[X]

]
≤ 1

λ2+1 . (1.6.10)

In many applications, the slightly better bound of Cantelli’s inequality is
not very interesting. Cantelli’s inequality has, however, the charm that the

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 21

right-hand side is always less than one, and hence one can also obtain non-
trivial probabilities for deviations smaller than

√
Var[X]. We shall exploit

this in the proof of Lemma 1.10.16.
While Markov’s inequality can be used to show that a non-negative random

variable X rarely is positive (first moment method), Chebyshev’s inequality
can serve the opposite purpose, namely showing that X is positive with good
probability. By taking λ = E[X] in (1.6.8), we obtain the first estimate of the
following lemma. Using the Cauchy–Schwarz inequality and computing

E[X]2 = E[X1X ̸=0]2 ≤ E[X2]E[1X ̸=0] = E[X2]Pr[X ̸= 0],

we obtain the second estimate, which has the nice equivalent formulation

Pr[X ̸= 0]≥ E[X]2

E[X2]
. (1.6.11)

Since E[X2] ≥ E[X]2, the second estimate gives a stronger bound on
Pr[X = 0] than the first. While the lemma below does not require that X
is non-negative, the typical application of showing that X is positive requires
that X is non-negative in the second bound, so that Pr[X ̸= 0] = Pr[X > 0].

Lemma 1.6.11 (second moment method). For a random variable X with
E[X] ̸= 0,

Pr[X = 0]≤ Pr[X ≤ 0]≤ Var[X]
E[X]2

, (1.6.12)

Pr[X = 0]≤ Var[X]
E[X2]

. (1.6.13)

In the (purely academic) example of finding a unique global optimum
via blind random search (see Section 1.5.2), let Xt be the indicator random
variable for the event that the t-th search point is the optimum. Let X =∑L

t=1 Xt. Then the probability that the optimum is found within the first L
iterations is

Pr[X > 0] = 1−Pr[X = 0]≥ 1− Var[X]
E[X]2

.

The variance of a sum of binary random variables is

Var[X] =
L∑

t=1
Var[Xt]+

∑
s<t

Cov[Xs,Xt]≤ E[X]+
∑
s<t

Cov[Xs,Xt],

where we recall the definition of the covariance,

Cov[U,V] := E[UV]−E[U]E[V],

22 Benjamin Doerr

of two arbitrary random variables U and V . Here we have Cov[Xs,Xt] = 0,
since the Xt are independent. Consequently,

Pr[X > 0]≥ 1− 1
E[X]

.

Hence the probability of finding the optimum within L iterations is Pr[T ≤
L] = Pr[X > 0] ≥ 1− 1

L2−n . Note that this estimate is, for the interesting
case where E[X] is large, much better than the bound Pr[T ≤ L] ≥ L2−n−
L(L−1)

2 2−2n which we obtained from the second Bonferroni inequality.

1.7 Conditioning

In the analysis of randomized heuristics, we often want to argue that a certain
desired event C already holds, and then continue arguing under this condition.
Formally, this gives rise to a new probability space where each of the original
events A now has a probability of

Pr[A | C] := Pr[A∩C]
Pr[C]

.

Obviously, this only makes sense for events C with Pr[C] > 0. In an analogous
fashion, we define the expectation of a random variable X conditional on C by
E[X |C] =

∑
ω∈C X(ω)Pr[ω |C]. The random variable behind this definition,

which takes a value x with probability Pr[X = x]/Pr[C], is sometimes denoted
by (X | C).

While we shall not use this notation, we still feel the need to warn the
reader that there is a related notion of the conditional expectation with re-
spect to a random variable, which sometimes creates confusion. If X and
Y are two random variables defined on the same probability space, then
E[X | Y] is a function (that is, a random variable) defined on the range of Y
by E[X | Y](y) = E[X | Y = y].

Conditioning as a proof technique has many faces, among them the follow-
ing.

1.7.1 Decomposing Events

If we can write some event A as the intersection of two events A1 and A2,
then it can be useful to compute first the probability of A1 and then the
probability of A2 conditional on A1. Directly from the definition, we have
Pr[A1∩A2] = Pr[A1]Pr[A2 | A1]. Of course, this requires that we have some
direct way of computing Pr[A1 |A2].

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 23

1.7.2 Case Distinctions

Let C1, . . . ,Ck be a partition of our probability space. If it is easy to analyze
our problem conditional on each of these events (“in the that case Ci holds”),
then the following law of total probability and law of total expectation are
useful.

Lemma 1.7.1 (laws of total probability and total expectation). Let
C1, . . . ,Ck be a partition of our probability space. Let A be some event and X
be some random variable. Then

Pr[A] =
k∑

i=1
Pr[A | Ci] Pr[Ci],

E[X] =
k∑

i=1
E[X | Ci] Pr[Ci].

1.7.3 Excluding Rare Events

Quite often, in the analysis of nature-inspired search heuristics, we would
like to exclude some rare unwanted event. For example, assume that we are
analyzing an evolutionary algorithm using standard bit mutation with muta-
tion rate 1

n . Then it is very unlikely that in an application of this mutation
operator more than n1/4 bits are flipped. So it could be convenient to ex-
clude this rare event, say by stating that “with probability 1−2−Ω(n1/4), in
none of the first n2 applications of the mutation operator more than n1/4

bits are flipped; let us condition on this event in the following.” The proofs
of Theorems 7 and 8 in [47] are examples of the use of such reasoning.

What could be a problem with this approach is that as soon as we condition
on such an event, we change the probability space and thus arguments that
are valid in the unconditional setting are not valid anymore. As a simple
example, note that once we condition on the event that we flip at most n1/4

bits, the events Ei that the i-th bit is flipped are not independent anymore.
Fortunately, we can safely ignore this in most cases (and many authors do so
without saying a word on this matter). The reason is that when we condition
on an almost sure event, then the probabilities of all events change only very
little (see the lemma below for this statement made precise). Hence, in our
example, we can compute the probability of some event assuming that the bit
flips are independent and then correct this probability by a minor amount.

Lemma 1.7.2. Let C be some event with probability 1−p. Let A be any event.
Then

Pr[A]−p

1−p
≤ Pr[A | C]≤ Pr[A]

1−p
.

24 Benjamin Doerr

In particular, for p≤ 1
2 , we have Pr[A]−p≤ Pr[A | C]≤ Pr[A]+2p.

The proof of this lemma follows directly from the definition of conditional
probabilities and the elementary estimate Pr[A]−p≤Pr[A\C] = Pr[A∩C]≤
Pr[A], where C denotes the complement of C. From this, we also observe
the natural fact that when A ⊆ C, that is, the event A implies C, then
conditioning on C does not decrease the probability of A:

Pr[A | C] = Pr[A∩C]
Pr[C]

= Pr[A]
Pr[C]

≥ Pr[A]. (1.7.1)

Likewise, when A⊇ C, then

Pr[A | C] = Pr[A\C]
Pr[C]

= Pr[A]−p

1−p
≤ Pr[A]. (1.7.2)

For example, if X is the number of bits flipped in an application of standard
bit mutation, then

Pr[X ≤ 10 |X ≤ n
2]≥ Pr[X ≤ 10],

Pr[X ≥ 10 |X ≤ n
2]≤ Pr[X ≥ 10].

1.7.4 Conditional Binomial Random Variables

We occasionally need to know the expected value of a binomially distributed
random variable X ∼ Bin(n,p) conditional on the variable having at least
a certain value k. An intuitive (but wrong) argument is that E[X | X ≥ k]
should be around k + p(n− k), because we know already that k of the n
independent trials are successes and the remaining (n− k) trials still have
their independent success probability of p. While this argument is wrong (as
we might need more than k trials to have k successes), the result is correct
as an upper bound, as shown in this lemma from [23, Lemma 1].

Lemma 1.7.3. Let X be a random variable that is binomially distributed
with parameters n and p ∈ [0,1]. Let k ∈ [0..n]. Then

E[X |X ≥ k]≤ k +(n−k)p≤ k +E[X].

Proof. Let X =
∑n

i=1 Xi with X1, . . . ,Xn being independent binary random
variables with Pr[Xi = 1] = p for all i ∈ [1..n]. Conditioning on X ≥ k, let
ℓ := min{i ∈ [1..n] |

∑i
j=1 Xj = k}. Then

E[X |X ≥ k] =
n∑

i=1
Pr[ℓ = i |X ≥ k]E[X | ℓ = i].

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 25

Note that ℓ≥ k by definition. Note also that (X | ℓ = i) = k+
∑n

j=i+1 Xj with
unconditioned Xj . In particular, E[X | ℓ = i] = k +(n− i)p. Consequently,

E[X |X ≥ k] =
n∑

i=1
Pr[ℓ = i |X ≥ k]E[X | ℓ = i]

≤
n∑

i=k

Pr[ℓ = i |X ≥ k](k +(n−k)p) = k +(n−k)p.

⊓⊔

We note that, in the language introduced in the following section, we
have actually shown the stronger statement that (X | X ≥ k) is dominated
by k + Bin(n− k,p). This stronger version can be useful for obtaining tail
bounds for (X |X ≥ k).

1.8 Stochastic Domination and Coupling

In this section, we discuss two concepts that are not too often used explicitly,
but where we feel that mastering them can greatly help in the analysis of ran-
domized search heuristics. The first of these is stochastic domination, which
is a very strong way of saying that one random variable is better than another
even when they are not defined on the same probability space. The second
concept is coupling, which means defining two random variables suitably over
the same probability space to facilitate comparing them. These two concepts
are strongly related: if a random variable Y dominates X, then X and Y can
be coupled in such a way that Y is pointwise not smaller than X, and vice
versa. The results of this section and some related ones have appeared, in a
more condensed form, in [20].

1.8.1 The Notion of Stochastic Domination

Possibly the first to use the notion of stochastic domination in the rigorous
analysis of an evolutionary algorithm was Droste, who employed it in [45, 46]
to make precise an argument often used in an informal manner, namely that
some artificial random process is not faster than the process describing a run
of the algorithm under investigation.

Definition 1.8.1 (stochastic domination). Let X and Y be two random
variables not necessarily defined on the same probability space. We say that
Y stochastically dominates X, written as X ⪯ Y , if for all λ ∈ R we have
Pr[X ≤ λ]≥ Pr[Y ≤ λ].

26 Benjamin Doerr

If Y dominates X, then the cumulative distribution function of Y is point-
wise not larger than that of X. The definition of domination is equivalent
to

∀λ ∈ R : Pr[X ≥ λ]≤ Pr[Y ≥ λ],

which is maybe a formulation that makes it more visible why we feel that Y
is at least as large as X.

Concerning nomenclature, we remark that some research communities re-
quire in addition that the inequality is strict for at least one value of λ. Hence,
intuitively speaking, Y is strictly larger than X. From the mathematical per-
spective, this appears not to be very practical. Consequently, our definition
above is more common in computer science. We also note that stochastic dom-
ination is sometimes called first-order stochastic domination. For an extensive
treatment of various forms of stochastic orders, we refer to [72].

The usual way of explaining stochastic domination is via games. Let us
consider the following three games.

Game A. With probability 1
2 in each case, you win 500 or 1500.

Game B. With probability 1
3 , you win 500, with probability 1

6 , you win 800,
and with probability 1

2 , you win 1500.
Game C. With probability 1

1000 , you win 2,000,000. Otherwise, you win
nothing.

Which of these games is best to play? It is intuitively clear that you would
prefer Game B over Game A. However, it is not clear whether you should pre-
fer Game C over Game B. Clearly, the expected win in Game C is 2000, com-
pared with only 1050 in Game B. However, the chance of winning anything
at all is really small in Game C. If you do not like to go home empty-handed,
you might prefer Game B.

The mathematical take on these games is that the random variable XB
describing the win in Game B stochastically dominates the variable XA for
Game A. This captures our intuitive feeling that it cannot be wrong to prefer
Game B over Game A. For Games B and C, neither of XB and XC dominates
the other. Consequently, it depends on the precise utility function of the
player which game the player prefers. This statement is made precise in the
following lemma.

Lemma 1.8.2. The following two conditions are equivalent.

(a) X ⪯ Y .
(b) For all monotonically non-decreasing functions f : R→ R, we have

E[f(X)]≤ E[f(Y)].

As a simple corollary, we note the following.

Corollary 1.8.3. If X ⪯ Y , then E[X]≤ E[Y].

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 27

We note another simple, but useful property.

Lemma 1.8.4. Let X1, . . . ,Xn be independent random variables defined over
some common probability space. Let Y1, . . . ,Yn be independent random vari-
ables defined over a possibly different probability space. If Xi ⪯ Yi for all
i ∈ [1..n], then

n∑
i=1

Xi ⪯
n∑

i=1
Yi.

For discrete random variables, this result is a special case of Lemma 1.8.8
stated further below.

Finally, we note two trivial facts.

Lemma 1.8.5. Let X and Y be random variables.
(a) If X and Y are defined on the same probability space and X ≤ Y , then

X ⪯ Y .
(b) If X and Y are identically distributed, then X ⪯ Y .

1.8.2 Stochastic Domination in Runtime Analysis

From the perspective of algorithm analysis, stochastic domination allows one
to state very clearly that one algorithm is better than another. If the runtime
distribution XA of algorithm A dominates the distribution XB of algorithm B,
then from the runtime perspective algorithm B is always preferable to algo-
rithm A.

In a similar vein, we can also use domination to give more detailed descrip-
tions of the runtime of an algorithm. For almost all algorithms, we will not be
able to determine precisely the runtime distribution. However, via stochastic
domination, we can give a lot of useful information beyond, say, just the
expectation. We demonstrate this via an extension of the classic fitness level
method, which is implicit in the work of Zhou, Luo, Lu, and Han [104].

Theorem 1.8.6 (domination version of the fitness level method).
Consider an iterative randomized search heuristic A maximizing a function
f : Ω→R. Let A1, . . . ,Am be a partition of Ω such that for all i, j ∈ [1..m] with
i < j and all x ∈ Ai, y ∈ Aj , we have f(x) < f(y). Set A≥i := Ai∪ ·· ·∪Am.
Let p1, . . . ,pm−1 be such that for all i ∈ [1..m−1] we have that if the best-so-
far search point is in Ai, then, regardless of the past, A has a probability of
at least pi of generating a search point in A≥i+1 in the next iteration.

Denote by T the (random) number of iterations A takes to generate a
search point in Am. Then

T ⪯
m−1∑
i=1

Geom(pi),

28 Benjamin Doerr

where this sum is to be understood as a sum of independent geometric distri-
butions.

To prove this theorem, we need a technical lemma, which we defer to the
next subsection to ease reading this part.

Proof. Consider a run of the algorithm A. For all i ∈ [1..m], let Ti be the
first time (iteration) when A has generated a search point in A≥i. Then
T = Tm =

∑m−1
i=1 (Ti+1−Ti). By assumption, Ti+1−Ti is dominated by a

geometric random variable with parameter pi regardless of what happened
before time Ti. Consequently, Lemma 1.8.8 gives the claim. ⊓⊔

Note that a result such as Theorem 1.8.6 implies various statements
about the runtime. By Corollary 1.8.3, the expected runtime satisfies E[T]≤∑m−1

i=1
1
pi
, which is the common version of the fitness level theorem [97]. By

using tail bounds for sums of independent geometric random variables (see
Section 1.10.4), we also obtain runtime bounds that hold with high proba-
bility. This was first proposed in [104]. We defer a list of examples where
previous results can profitably be turned into a domination statement to Sec-
tion 1.10.4, where we will also have the large-deviation bounds needed to
exploit such statements.

1.8.3 Domination by Independent Random Variables

A situation often encountered in the analysis of algorithms is that a sequence
of random variables is not independent, but that each member of the sequence
has a good chance of having a desired property no matter what the outcome
of its predecessors was. In this case, the random variables in some sense can
be treated as if they were independent.

Lemma 1.8.7. Let X1, . . . ,Xn be arbitrary binary random variables and let
X∗

1 , . . . ,X∗
n be independent binary random variables.

(a) If we have

Pr[Xi = 1 |X1 = x1, . . . ,Xi−1 = xi−1]≤ Pr[X∗
i = 1]

for all i ∈ [1..n] and all x1, . . . ,xi−1 ∈ {0,1} with Pr[X1 = x1, . . . ,Xi−1 =
xi−1] > 0, then

n∑
i=1

Xi ⪯
n∑

i=1
X∗

i .

(b) If we have

Pr[Xi = 1 |X1 = x1, . . . ,Xi−1 = xi−1]≥ Pr[X∗
i = 1]

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 29

for all i ∈ [1..n] and all x1, . . . ,xi−1 ∈ {0,1} with Pr[X1 = x1, . . . ,Xi−1 =
xi−1] > 0, then

n∑
i=1

X∗
i ⪯

n∑
i=1

Xi.

Note that here and in the following, we view “X1 = x1, . . . ,Xi−1 = xi−1”
for i = 1 as an empty intersection of events, that is, an intersection over
an empty index set. As in most textbooks, we define this to be the whole
probability space.

Both parts of the lemma are simple corollaries of the following, slightly
technical, general result, which might be of independent interest.

For two sequences (X1, . . . ,Xn) and (X∗
1 , . . . ,X∗

n) of random variables, we
say that (X∗

1 , . . . ,X∗
n) unconditionally sequentially dominates (X1, . . . ,Xn) if

for all i∈ [1..n] and all x1, . . . ,xi−1 ∈R with Pr[X1 = x1, . . . ,Xi−1 = xi−1] > 0,
we have (Xi | X1 = x1, . . . ,Xi−1 = xi−1) ⪯ X∗

i . Analogously, we speak of
unconditional sequential subdomination if the last condition is replaced by
X∗

i ⪯ (Xi |X1 = x1, . . . ,Xi−1 = xi−1).
The following lemma shows that unconditional sequential (sub)domination

and independence of the X∗
i imply (sub)domination for the sums of these ran-

dom variables. Note that unconditional sequential (sub)domination is inher-
ited by subsequences, so the following lemma immediately extends to sums
over arbitrary subsets I of the index set [1..n].

Lemma 1.8.8. Let X1, . . . ,Xn be arbitrary discrete random variables. Let
X∗

1 , . . . ,X∗
n be independent discrete random variables.

(a) If (X∗
1 , . . . ,X∗

n) unconditionally sequentially dominates (X1, . . . ,Xn), then∑n
i=1 Xi ⪯

∑n
i=1 X∗

i .
(b) If (X∗

1 , . . . ,X∗
n) unconditionally sequentially subdominates (X1, . . . ,Xn),

then
∑n

i=1 X∗
i ⪯

∑n
i=1 Xi.

Proof. The two parts of the lemma imply each other (as can be seen by
multiplying the random variables by −1), so it suffices to prove the first
statement.

Since the statement of the theorem is independent of the correlation be-
tween the Xi and the X∗

i , we may assume that they are independent. Let
λ ∈ R. Define

Pj := Pr

 j∑
i=1

Xi +
n∑

i=j+1
X∗

i ≥ λ


for j ∈ [0..n]. We show Pj+1 ≤ Pj for all j ∈ [0..n−1].

For m ∈ R, let Ωm denote the set of all (x1, . . . ,xj ,xj+2, . . . ,xn) ∈ Rn−1

such that Pr[X1 = x1, . . . ,Xj = xj] > 0 and
∑

i∈[1..n]\{j+1} xi = λ−m. Let
M := {m ∈ R |Ωm ̸= ∅}. Then

30 Benjamin Doerr

Pj+1 = Pr

j+1∑
i=1

Xi +
n∑

i=j+2
X∗

i ≥ λ


=
∑

m∈M

Pr

 j∑
i=1

Xi +
n∑

i=j+2
X∗

i = λ−m∧Xj+1 ≥m


=
∑

m∈M

∑
(x1,...,xj ,xj+2,...,xn)∈Ωm

Pr[X1 = x1, . . . ,Xj = xj] ·

Pr
[
Xj+1 ≥m

∣∣X1 = x1, . . . ,Xj = xj

]
·

n∏
i=j+2

Pr[X∗
i = xi]

≤
∑

m∈M

Pr

 j∑
i=1

Xi +
n∑

i=j+2
X∗

i = λ−m

 ·Pr
[
X∗

j+1 ≥m
]

= Pr

 j∑
i=1

Xi +
n∑

i=j+1
X∗

i ≥ λ


= Pj .

Thus, we have

Pr

[
n∑

i=1
Xi ≥ λ

]
= Pn ≤ Pn−1 ≤ ·· · ≤ P1 ≤ P0 = Pr

[
n∑

i=1
X∗

i ≥ λ

]
.

⊓⊔

1.8.4 Coupling

Coupling is an analysis technique that consists of defining two unrelated
random variables over the same probability space to ease comparing them.
As an example, let us consider standard bit mutation with rate p and with
rate q, where p < q. Intuitively, it seems obvious that we will flip more bits
when using the higher rate q. We could make this precise by looking at the
distributions of the random variables Xp and Xq describing the numbers of
bits that flip and computing that Xp ⪯Xq. For that, we would need to show
that for all k ∈ [0..n], we have

k∑
i=0

(
n

i

)
pi(1−p)n−i ≥

k∑
i=0

(
n

i

)
qi(1− q)n−i.

Coupling is a way to get the same result in a more natural manner.

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 31

Consider the following random experiment. For each i ∈ [1..n], let ri be
a random number chosen independently and uniformly distributed in [0,1].
Let X̃p be the number of the ri that are less than p and let Xq be the
number of the ri that are less than q. We immediately see that X̃p ∼Bin(n,p)
and X̃q ∼ Bin(n,q). However, we know more. We have defined X̃p and X̃q

over a common probability space in such a way that we have X̃p ≤ X̃q with
probability one: Xp and Xq, viewed as functions on the (hidden) probability
space Ω = {(r1, . . . , rn) | r1, . . . , rn ∈ [0,1]}, satisfy X̃p(ω)≤ X̃q(ω) for all ω ∈Ω.
Consequently, by the trivial Lemma 1.8.5, we have Xp ⪯ X̃p ⪯ X̃q ⪯Xq and
hence Xp ⪯Xq.

The same argument works for geometric distributions. We summarize these
findings (and two more) in the following lemma. Part (b) follows from the
obvious embedding (which is a coupling as well) of the Bin(n,p) probability
space into that of Bin(m,p). The first inequality of part (c) is easily computed
directly from the definition of domination (and holds in fact for all random
variables); the second part was proven in [63, Lemma 1].

Lemma 1.8.9. Let X and Y be two random variables. Let p,q ∈ [0,1] with
p≤ q.

(a) If X ∼ Bin(n,p) and Y ∼ Bin(n,q), then X ⪯ Y .
(b) If n≤m, X ∼ Bin(n,p), and Y ∼ Bin(m,p), then X ⪯ Y .
(c) If X ∼ Bin(n,p) and x ∈ [0..n], then X ⪯ (X |X ≥ x)⪯ (X +x).
(d) If p > 0, X ∼Geom(p), and Y ∼Geom(q), then X ⪯ Y .

Let us now formally define what we mean by coupling. Let X and Y
be two random variables, not necessarily defined over the same probability
space. We say that (X̃, Ỹ) is a coupling of (X,Y) if X̃ and Ỹ are defined
over a common probability space and if X and X ′ as well as Y and Y ′ are
identically distributed.

This definition itself is very weak. (X,Y) have many couplings and most of
them are not interesting. So, the art of using coupling as a proof and analysis
technique is to find a coupling of (X,Y) that allows one to derive some useful
information.

It is not a coincidence that we could use coupling to prove stochastic
domination. The following theorem is well known.

Theorem 1.8.10. Let X and Y be two random variables. Then the following
two statements are equivalent.

(a) X ⪯ Y .
(b) There is a coupling (X̃, Ỹ) of (X,Y) such that X̃ ≤ Ỹ .

We remark, without giving much detail, that coupling as a proof technique
has found numerous powerful applications beyond its connection to stochastic
domination. In the analysis of population-based evolutionary algorithms, a
powerful strategy to prove lower bounds is to couple the true population of
the algorithm with the population of an artificial process without selection,

32 Benjamin Doerr

and by this overcome the difficult dependencies introduced by the variation–
selection cycle of the algorithm. This was first done in [99, 100] for the analysis
of the (µ+1) EA and an elitist steady-state genetic algorithm. This technique
then found applications for memetic algorithms [91], aging mechanisms [59],
non-elitist algorithms [68], multi-objective evolutionary algorithms [39], and
the (µ+λ) EA [1].

1.8.5 Domination in Fitness or Distance

So far, we have used stochastic domination to compare runtime distributions.
We now show that stochastic domination is a powerful proof tool also when
applied to other distributions. To do so, we give a short and elegant proof of a
result of Witt [101] that compares the runtimes of mutation-based algorithms.
The main reason why our proof is significantly shorter than that of Witt is
that we use the notion of stochastic domination for the distance from the
optimum also. This will also be an example where we exploit heavily the
connection between coupling and stochastic domination (Theorem 1.8.10).

To state this result, we need the notion of a (µ,p) mutation-based algo-
rithm introduced in [92]. This class of algorithms is called only mutation-based
in [92], but since (i) it does not include all adaptive algorithms using muta-
tion only, for example, those considered in [3, 10, 17, 28, 44, 58, 78], (ii) it
does not include all algorithms using a different mutation operator than stan-
dard bit mutation, for example, those in [24, 25, 41, 69], and (iii) this notion
collides with the notion of unary unbiased black-box complexity algorithms
(see [66]), which without greater justification could also be called the class of
mutation-based algorithms, we feel that a notion making these restrictions
precise is more appropriate.

The class of (µ,p) mutation-based algorithms comprises all algorithms
which first generate a set of µ search points uniformly and independently at
random from {0,1}n and then repeat generating new search points from any
of the previous ones via standard bit mutation with probability p. This class
includes all (µ+λ) and (µ,λ) EAs which use only standard bit mutation with
static mutation rate p.

We denote by (1+1) EAµ the following algorithm in this class. It first
generates µ random search points. From these, it selects uniformly at random
one with highest fitness and then continues from this search point like the
(1+1) EA, that is, it repeatedly generates a new search point from the current
one via standard bit mutation with rate p and replaces the previous search
point with the new one if the new one is not worse (in terms of fitness). This
algorithm was called “(1+1) EA with BestOf(µ) initialization” in [64].

For any algorithm A from the class of (µ,p) mutation-based algorithms
and any fitness function f : {0,1}n→R, let us denote by T (A,f) the runtime
of the algorithm A on the fitness function f , that is, the number of the first

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 33

individual generated that is an optimal solution. Usually, this will be µ plus
the number of the iteration in which the optimum was generated. To cover
also the case where one of the random initial individuals is optimal, let us
assume that these initial individuals are generated sequentially. As a final
technicality, for reasons of convenience, let us assume that the (1+1) EAµ,
in iteration µ+1, does not choose as parent a random previous search point
with maximal fitness, but the last one with maximal fitness. Since the initial
µ individuals are generated independently, this modification does not change
the distribution of this parent.

In this language, Witt [101, Theorem 6.2] showed the following remarkable
result.
Theorem 1.8.11. For any (µ,p) mutation-based algorithm A and any f :
{0,1}n→ R with unique global optimum,

T ((1+1) EAµ,OneMax)⪯ T (A,f).

This result significantly extends results of a similar flavor in [9, 38, 92].
The importance of such types of result is that they allow one to prove lower
bounds for the performance of many algorithms on essentially arbitrary fit-
ness functions by considering just the performance of the (1+1) EAµ on
OneMax.

Let us denote by |x|1 the number of ones in the bit string x ∈ {0,1}n.
In other words, |x|1 = ∥x∥1, but the former is nicer to read. Witt [101,
Lemma 6.1] has shown the following natural domination relation between
offspring generated via standard bit mutation.
Lemma 1.8.12. Let x,y ∈ {0,1}n. Let p ∈ [0, 1

2]. Let x′,y′ be obtained from
x,y via standard bit mutation with rate p. If |x|1 ≤ |y|1, then |x′|1 ⪯ |y′|1.

We are now ready to give our alternate proof of Theorem 1.8.11. While
it is clearly shorter than the original one in [101], we also feel that it
is more natural. In very simple words, it shows that T (A,f) dominates
T ((1+1) EAµ,OneMax) because the search points generated in a run of
the (1+1) EAµ on OneMax are always at least as close to the optimum (in
the domination or coupling sense) as those in a run of A on f .

Proof. Since A treats bit positions and bit values in a symmetric fashion,
we may assume without loss of generality that the unique optimum of f is
(1, . . . ,1).

Let x(1),x(2), . . . be the sequence of search points generated in a run of
A on the fitness function f . Hence x(1), . . . ,x(µ) are independently and uni-
formly distributed in {0,1}n and all subsequent search points are generated
from suitably chosen previous ones via standard bit mutation with rate p.
Let y(1),y(2), . . . be the sequence of search points generated in a run of the
(1+1) EAµ on the fitness function OneMax.

We now show how to couple these random sequences of search points
in such a way that |x̃(t)|1 ≤ |ỹ(t)|1 for all t ∈ N. We take as the common

34 Benjamin Doerr

probability space Ω simply the space that (x(t))t∈N is defined on and let
x̃(t) = x(t) for all t ∈ N.

We define the ỹ(t) inductively as follows. For t∈ [1..µ], let ỹ(t) = x(t). Note
that this trivially implies |x̃(t)|1 ≤ |ỹ(t)|1 for these search points. Let t > µ

and assume that |x̃(t′)|1 ≤ |ỹ(t′)|1 for all t′ < t. Let s ∈ [1..t−1] be maximal
such that ỹ(s) has the maximal OneMax-fitness among ỹ(1), . . . , ỹ(t−1). Let
r ∈ [1..t−1] be such that x(t) was generated from x(r) in the run of A on f . By
induction, we have |x(r)|1≤ |ỹ(r)|1. By the choice of s, we have |ỹ(r)|1≤ |ỹ(s)|1.
Consequently, we have |x(r)|1≤ |ỹ(s)|1. By Lemma 1.8.12 and Theorem 1.8.10,
there is a random ỹ(t) (defined on Ω) such that ỹ(t) has the distribution of
being obtained from ỹ(s) via standard bit mutation with rate p and such that
|x(t)|1 ≤ |ỹ(t)|1.

With this construction, the sequence (ỹ(t))t∈N has the same distribution
as (y(t))t∈N. This is because the first µ elements are random and then each
subsequent one is generated via standard bit mutation from the current best
one, which is just the way the (1+1) EAµ is defined. At the same time, we
have |x̃(t)|1 ≤ |ỹ(t)|1 for all t ∈N. Consequently, we have min{t ∈N | |ỹ(t)|1 =
n} ≤ min{t ∈ N | |x(t)|1 = n}. Since T ((1+1) EAµ,OneMax) and min{t ∈
N | |ỹ(t)|1 = n} are identically distributed and also T (A,f) and min{t ∈ N |
|x(t)|1 = n} are identically distributed, we have T ((1+1) EAµ,OneMax)⪯
T (A,f). ⊓⊔

While not explicitly using the notion of stochastic domination, the result
and proof in [9] bear some similarity to those above. In very simple words and
omitting many details, the result [9, Theorem 1] states the following. Assume
that you run the (1+1) EA and some other algorithm A (from a relatively
large class of algorithms) to maximize a function f . Denote by x(t) and y(t)

the best individuals produced by the (1+1) EA and A up to iteration t.
Assume that for all t and all possible runs of the algorithms up to iteration t
we have that f(x(t))≥ f(y(t)) implies f(x(t+1))⪰ f(y(t+1)). Assume further
that the random initial individual of the (1+1) EA is at least as good (in
terms of f) as all initial individuals of algorithm A. Then f(x(t)) ⪰ f(y(t))
for all t.

The proof of this result (like that of the fitness domination statement in our
proof of Theorem 1.8.11) uses induction over the time t. Since [9] does not use
the notion of stochastic domination explicitly, there the two processes cannot
simply be coupled, but instead the two distributions have to be compared
using an argument called Abel transform.

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 35

1.9 The Coupon Collector Process

The coupon collector process is one of the central building blocks in the ana-
lysis of randomized algorithms. It is particularly important in the theory of
randomized search heuristics, where it often appears as a subprocess.

The coupon collector process is the following simple randomized process.
Assume that there are n types of coupons available. Whenever you buy a
certain product, you get one coupon of a type chosen uniformly at random
from the n types. How long does it take until you have a coupon of each type?
In this section, we denote the random variable describing the first round after
which we have all types by Tn and call it the coupon-collecting time. In simple
words, this is the number of rounds it takes to obtain all types.

As an easy example showing how the coupon collector problem arises in the
theory of randomized search heuristics, let us regard how the randomized local
search heuristic (RLS) optimizes strictly monotonically increasing functions.
The RLS heuristic, when maximizing a given function f : {0,1}n→R, starts
with a random search point. Then, in each iteration of the process, a single
random bit is flipped in the current solution. If this gives a solution worse
than the current one (in terms of f), then the new solution is discarded.
Otherwise, the process is continued from this new solution.

Assume that f is strictly monotonically increasing, that is, flipping any
0-bit to 1 increases the function value. Then the optimization process of RLS
on f strongly resembles a coupon collector process. In each round, we flip a
random bit. If this bit was 1 in our current solution, then nothing changes
(we discard the new solution as it has a smaller f -value). If this bit was 0,
then we keep the new solution, which now has one extra 1. Hence, taking the
1-bits as coupons, we obtain a random coupon in each round. This has no
effect if we have this coupon already, but is good if we do not.

We observe that the optimization time (the number of solutions evaluated
until the optimal solution is found) of RLS on strictly monotonic functions
is exactly the coupon-collecting time when we start with an initial stake of
coupons that follows a Bin(n, 1

2) distribution. This shows that the optimiza-
tion time is at most the ordinary coupon-collector time (where we start with
no coupons). See [22] for a very precise analysis of this process.

The expectation of the coupon-collecting time is easy to determine. Recall
from Section 1.4.2 the definition of the harmonic number Hn :=

∑n
k=1

1
k .

Theorem 1.9.1 (coupon collector, expectation). The expected time to
collect all n coupons is E[Tn] = nHn = (1+o(1))n lnn.

Proof. Given that we already have k different coupons for some k ∈ [0..n−1],
the probability that the next coupon is one that we do not already have is
n−k

n . By the waiting-time argument (Lemma 1.6.3), we see that the time
Tn,k needed to obtain a new coupon, given that we have exactly k different
ones, satisfies E[Tn,k] = n

n−k . Clearly, the total time Tn needed to obtain

36 Benjamin Doerr

all coupons is
∑n−1

k=0 Tn,k. Hence, by linearity of expectation (Lemma 1.6.4),
E[Tn] =

∑n−1
k=0 E[Tn,k] = nHn. ⊓⊔

We proceed by trying to gain more information about Tn than just the
expectation. The tools discussed so far (and one to come in a later section)
lead to the following results.
• Markov’s inequality (Lemma 1.6.7) gives Pr[Tn ≥ λnHn]≤ 1

λ for all λ≥ 1.
• Chebyshev’s inequality (Lemma 1.6.9) can be used to prove Pr[|Tn −

nHn| ≥ εn] ≤ π2

6ε2 for all ε ≥ 6
π2 ≈ 0.6079. This builds on the fact (im-

plicit in the proof above) that the coupon-collecting time is the sum of
independent geometric random variables Tn =

∑n−1
k=0 Geom(n−k

n). Hence
the variance is Var[Tn] = π2n2

6 .
• Again exploiting Tn =

∑n−1
k=0 Geom(n−k

n), Witt’s Chernoff bound for geo-
metric random variables (Theorem 1.10.34) gives

Pr[Tn ≥ E[Tn]+εn]≤

{
exp(−3ε2

π2) if ε≤ π2

6 ,

exp(− ε
4) if ε > π2

6 ,

Pr[Tn ≤ E[Tn]−εn]≤ exp(−3ε2

π2)

for all ε≥ 0. See [102] for details.
Interestingly, asymptotically stronger tail bounds for Tn can be derived by

fairly elementary means. The key idea is to consider not how the number of
coupons increases over time, but instead the event that we miss a particular
coupon for some period of time. Note that the probability that a particular
coupon is not obtained in t rounds is (1− 1

n)t. By a union bound argument
(see Lemma 1.5.1), the probability that there is a coupon that is not obtained
within t rounds, and, equivalently, that Tn > t, satisfies

Pr[Tn > t]≤ n(1− 1
n)t.

Using the simple estimate of Lemma 1.4.1, we obtain the following (equiva-
lent) bounds.
Theorem 1.9.2 (coupon collector, upper tail). For all ε≥ 0,

Pr[Tn ≥ (1+ε)n lnn]≤ n−ε, (1.9.1)
Pr[Tn ≥ n lnn+εn]≤ exp(−ε). (1.9.2)

Surprisingly, prior to the following result from [18], no good lower bound
for the coupon-collecting time was published.
Theorem 1.9.3 (coupon collector, lower tail). For all ε≥ 0,

Pr[Tn ≤ (1−ε)(n−1) lnn]≤ exp(−nε), (1.9.3)
Pr[Tn ≤ (n−1) lnn−ε(n−1)]≤ exp(−eε). (1.9.4)

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 37

Theorem 1.9.3 was proven in [18] by showing that the events of having a
coupon after a certain time are 1-negatively correlated. The following proof
defers this task to Lemma 1.10.26.

Proof. Let t = (1−ε)(n−1) lnn. For i∈ [1..n], let Xi be the indicator random
variable for the event that a coupon of type i is obtained within the first t
rounds. Then Pr[Xi = 1] = 1− (1− 1

n)t ≤ 1− exp(−(1− ε) lnn) = 1−n−1+ε,
where the estimate follows from Corollary 1.4.6.

Since, in the coupon collector process, in each round j we choose a random
set Sj of cardinality 1, by Lemma 1.10.26 the Xi are 1-negatively correlated.
Consequently,

Pr[Tn ≤ (1−ε)(n−1) lnn] = Pr[∀i ∈ [1..n] : Xi = 1]

≤
n∏

i=1
Pr[Xi = 1]

≤ (1−n−1+ε)n ≤ exp(−nε)

by Lemma 1.4.1. ⊓⊔

We may remark that a good mathematical understanding of the coupon
collector process is important not only because such processes directly show
up in some randomized algorithms, but also because it might give us the
right intuitive understanding of other processes. Consider, for example, a run
of the (1+1) EA on some pseudo-Boolean function f : {0,1}n → R with a
unique global maximum.

The following intuitive consideration leads us to believe that the
(1+1) EA, with high probability, needs at least roughly n ln n

2 iterations
to find the optimum of f : By the strong concentration of the binomial dis-
tribution, the initial search point differs in at least roughly n

2 bits from the
global optimum. To find the global optimum, it is necessary (but clearly not
sufficient) that each of these missing bits is flipped at least once in some
mutation step. Now that the (1+1) EA on average flips one bit per iteration,
this looks like a coupon collector process started with an initial stake of n

2
coupons, so we expect to need at least roughly n ln n

2 iterations to perform
the n ln n

2 bit flips necessary to have each missing bit flipped at least once.
Clearly, this argument is not rigorous, but it suggests the right answer to us.

Theorem 1.9.4. The optimization time T of the (1+1) EA on any function
f : {0,1}n→ R with a unique global maximum satisfies

Pr[T ≤ (1−ε)(n−1) ln n
2]≤ exp(−nε).

Proof. By symmetry, we may assume that the unique global optimum of f is
(1, . . . ,1). Let t = (1− ε)(n−1) ln n

2 . For all i ∈ [1..n], let Yi denote the event
that the i-th bit is zero in the initial search point and is not flipped in any
application of the mutation operator in the first t iterations. Let Xi = 1−Yi.

38 Benjamin Doerr

Then Pr[Xi = 1] = 1− 1
2 (1− 1

n)t ≤ 1−n−1+ε. The events Xi are independent,
so we compute

Pr[T ≤ t]≤ Pr[∀i ∈ [1..n] : Xi = 1]

=
n∏

i=1
Pr[Xi = 1]

= (1−n−1+ε)n = exp(−nε).

⊓⊔

We have stated the above theorem to give a simple example of how un-
derstanding the coupon collector process can help also in understanding ran-
domized search heuristics that do not directly simulate a coupon collecting
process. We remark that the theorem above is not the best possible; in partic-
ular, it does not rule out an expected optimization time of n ln n

2 . In contrast,
it is known that the optimization time of the (1+1) EA on the OneMax
function is E[T] ≥ en lnn−O(n) [27], improving on the minimally weaker
bound E[T] ≥ en lnn−O(n log logn) from, independently, [26] and [92]. By
Theorem 1.8.11, this lower bound holds for the performance of the (1+1) EA
on any function f : {0,1}n→ R with a unique optimum.

1.10 Large-Deviation Bounds

Often, not only we are interested in the expectation of some random variable,
but we also need a bound that holds with high probability. We have seen
in the proof of Theorem 1.5.3 that such high-probability statements can be
very useful: if a certain bad event occurs in each iteration with a very small
probability only, then a simple union bound is enough to argue that this event
is unlikely to occur even over a large number of iterations. The better the
original high-probability statement is, the more iterations we can cover. For
this reason, the tools discussed in this chapter are among those most often
employed in the theory of randomized search heuristics.

Since computing the expectation is often easy, a very common approach
is to first compute the expectation of a random variable and then bound the
probability that the random variable deviates from this expectation by too
large an amount. The tools for this second step are called tail inequalities or
large-deviation inequalities, and this is the topic of this section. In a sense,
Markov’s and Chebyshev’s inequalities, discussed in Section 1.6, can be seen
as large-deviation inequalities as well, but usually the term is reserved for
exponential tail bounds.

A large number of large-deviation bounds have been developed in the past.
They differ in the situations they are applicable to, and also in their sharpness.
Often, the sharpest bounds give expressions for the tail probability that are

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 39

very difficult to work with. Hence some experience is needed to choose a tail
bound that is not overly complicated, but sharp enough to give the desired
result.

To give the novice to this topic some orientation, here is a short list of
results that are particularly useful and which are sufficient in many situations.

(a) The simple multiplicative Chernoff bounds (1.10.5) and (1.10.12), show-
ing that for sums of independent [0,1] random variables, a constant-factor
deviation from the expectation occurs only with a probability negatively
exponential in the expectation.

(b) The additive Chernoff bound of Theorem 1.10.7, showing that a sum of
n independent [0,1] random variables deviates from the expectation by
more than an additive term of λ only with probability exp(−2λ2/n).

(c) The fact that essentially all large-deviation bounds can be used also with a
pessimistic estimate for the expectation instead of the precise expectation
(Section 1.10.1.8).

(d) The method of bounded differences (Theorem 1.10.27), which states that
the additive Chernoff bounds remain valid if X is functionally dependent
on independent random variables each having a small influence on X.

For the experienced reader, the following results may be interesting as they
go beyond what most introductions to tail bounds cover.

(a) In Section 1.10.2.2, we show that essentially all of the large-deviation
bounds usually stated for sums of independent random variables are also
valid for negatively correlated random variables. An important applica-
tion of this result is to distributions arising from sampling without re-
placement or with partial replacement.

(b) In Section 1.10.4, we present a number of large-deviation bounds for sums
of independent geometrically distributed random variables. These seem
to be particularly useful in the analysis of randomized search heuristics,
whereas they are rarely used with classic randomized algorithms.

(c) In Theorem 1.10.28, we present a version of the bounded-differences
method which requires only that the t-th random variable has a bounded
influence on the expected outcome resulting from variables t+1 to n. This
is much weaker than the common bounded-differences assumption that
each random variable, regardless of how we condition on the remaining
variables, has a bounded influence on the result. We feel that this new
version (which is an easy consequence of known results) may be very use-
ful in the analysis of iterative improvement heuristics. In particular, it
may lead to elementary proofs for results which so far can only be proven
via tail bounds for martingales.

40 Benjamin Doerr

1.10.1 Chernoff Bounds for Sums of Independent
Bounded Random Variables

In this rather long subsection, we assume that our random variable of interest
is the sum of n independent random variables, each taking values in some
bounded range, often [0,1]. While some textbooks present these bounds for
discrete random variables, e.g., taking the values 0 and 1 only, all the results
are true without this restriction.

The bounds presented below are all known under names such as Cher-
noff or Hoeffding bounds, referring to the seminal papers by Chernoff [13]
and Hoeffding [54]. Since the first bounds of this type were proven by Bern-
stein [6] – via the so-called exponential moments method that is used in
essentially all proofs of such results (see Section 1.10.1.7) – the name “Bern-
stein inequalities” would be more appropriate. We shall not be that precise,
and instead use the most common name “Chernoff inequalities” for all such
bounds.

For the reader’s convenience, as in the remainder of this chapter, we shall
not be shy to write out minor reformulations of some results. We believe
that it helps a lot to have seen such reformulations and we think that it is
convenient, both for using the bounds and for referring to them, if all natural
versions are visible in the text.

1.10.1.1 Multiplicative Chernoff Bounds for the Upper Tail

The multiplicative Chernoff bounds presented in this and the next section
bound the probability of deviating from the expectation by at least a given
factor. Since in many algorithm analyses we are interested only in the asymp-
totic order of magnitude of some quantity, a constant-factor deviation can be
easily tolerated, and knowing that larger deviations are very unlikely is just
what we want to know. For this reason, the multiplicative Chernoff bounds
are often the right tool.

The following theorem collects a number of bounds for the upper tail, that
is, for deviations above the expectation. Some of the bounds are visualized
in Figure 1.3.

Theorem 1.10.1. Let X1, . . . ,Xn be independent random variables taking
values in [0,1]. Let X =

∑n
i=1 Xi. Let δ ≥ 0. Then

Pr[X ≥ (1+ δ)E[X]]

≤
(

1
1+ δ

)(1+δ)E[X](
n−E[X]

n− (1+ δ)E[X]

)n−(1+δ)E[X]
(1.10.1)

≤
(

eδ

(1+ δ)1+δ

)E[X]
= exp(−((1+ δ) ln(1+ δ)− δ)E[X]) (1.10.2)

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 41

≤ exp
(
− δ2E[X]

2+ 2
3δ

)
(1.10.3)

≤ exp
(
− min{δ2, δ}E[X]

3

)
, (1.10.4)

where the bound in (1.10.1) is read as 0 for δ > n−E[X]
E[X] and as (E[X]

n)n for
δ = n−E[X]

E[X] . For δ ≤ 1, (1.10.4) simplifies to

Pr[X ≥ (1+ δ)E[X]]≤ exp
(
− δ2E[X]

3

)
. (1.10.5)

The first and strongest bound (1.10.1) was first stated explicitly by
Hoeffding [54]. It improves over Chernoff’s [13] tail bounds in particular by
not requiring that the Xi are identically distributed. Hoeffding also showed
that (1.10.1) is the best bound that can be shown via the exponential mo-
ments methods under the assumptions of Theorem 1.10.1.

For E[X] small, say E[X] = o(n) when taking a view asymptotic in n→∞,
the second bound (1.10.2) is easier to use, but essentially as strong as (1.10.1).
More precisely, it is larger by only a factor of (1 + o(1))E[X], since we have
estimated(

n−E[X]
n− (1+ δ)E[X]

)n−(1+δ)E[X]
=
(

1+ δE[X]
n− (1+ δ)E[X]

)n−(1+δ)E[X]

≤ eδE[X] (1.10.6)

0.5 1 1.5 2 2.5
0

0.5

1

1.5

x

f
(x

)

f(x) = (1 + x) ln(1 + x)−x

f(x) = x2

2+2x/3
f(x) = min{x2,x}/3

Fig. 1.3 Visual comparison of the bounds (1.10.2), (1.10.3), and (1.10.4). The term
f(x) leading to the bound Pr[X ≥ (1 + x)E[X]]≤ exp(−f(x)E[X]) is depicted.

42 Benjamin Doerr

using Lemma 1.4.1.
Equation (1.10.3) is derived from (1.10.2) by noting that (1 + δ) ln(1 +

δ)− δ ≥ 3δ2

6+2δ holds for all δ ≥ 0; see Theorem 2.3 and Lemma 2.4 in
McDiarmid [70]. Equations (1.10.4) and (1.10.5) are trivial simplifications
of (1.10.3).

In general, to successfully use Chernoff bounds in one’s research, it greatly
helps to look a little behind the formulas and understand their meaning.
Very roughly speaking, we can distinguish three different regimes relative
to δ, namely that the tail probability is of order exp(−Θ(δ log(δ)E[X])),
exp(−Θ(δE[X])), and exp(−Θ(δ2E[X])). Here, in principle, the middle
regime, referring to the case of δ constant, could be seen as a subcase of either
of the other two regimes. Since this case of constant-factor deviations from
the expectation occurs very frequently, however, we discuss it separately.

Superexponential Regime

Equation (1.10.2) shows a tail bound of order δ−Θ(δE[X]) =
exp(−Θ(δ log(δ)E[X])), where the asymptotics are for δ → ∞. In this
regime, the deviation δE[X] from the expectation E[X] is much larger than
the expectation itself. It is not very often that we need to analyze such large
deviations, so this Chernoff bound is rarely used. It can be useful in the
analysis of evolutionary algorithms with larger offspring populations, where
the most extreme behavior among the offspring can deviate significantly
from the expected behavior. See [23, 40] for examples of how to use Chernoff
bounds for the large deviations occurring in the analysis of the (1+λ) EA.
Note that in [56], the first theoretical study of the (1+λ) EA, and in [51]
such Chernoff bounds could have been used as well, but the authors found
it easier to directly estimate the tail probability by estimating binomial
coefficients.

Weaker forms of (1.10.2) are

Pr[X ≥ (1+ δ)E[X]]≤
(

e

(1+ δ)

)(1+δ)E[X]
, (1.10.7)

Pr[X ≥ (1+ δ)E[X]]≤
(

e

δ

)δE[X]
, (1.10.8)

where the first one is stronger for those values of δ where the tail probability
is less than one (that is, δ > e−1).

It is not totally obvious how to find a value for δ that ensures that (e
δ)δ is

less than a desired bound. The following lemma solves this problem.

Lemma 1.10.2. Let t≥ ee1/e ≈ 4.24044349 Let

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 43

δ = ln t

ln(ln t
e ln ln t)

.

Then (e
δ)δ ≤ 1

t .

Proof. We compute δ ln δ
e = δ ln

(ln t
e ln(ln t

e ln ln t)

)
≥ δ ln(ln t

e ln ln t) = ln t. ⊓⊔

We can use this estimate to bound the number of bits flipped in an appli-
cation of the standard bit mutation operator defined in Lemma 1.6.6. By lin-
earity of expectation, it is clear that the expected Hamming distance H(x,y)
between a parent x and an offspring y is E[H(x,y)] = α when the mutation
rate is α

n ; see Lemma 1.6.6. Using Chernoff bounds, we now give an upper
bound on how far we can exceed this value. Such arguments are often useful
in the analysis of evolutionary algorithms; see, e.g., Lemma 26 in [40] for an
example.

Lemma 1.10.3. (a) Let x ∈ {0,1}n and y be obtained from x via standard
bit mutation with mutation rate α

n . Then Pr[H(x,y)≥ k]≤ (eα
k)k.

(b) Let 0 < p≤ exp(−αexp(1
e)). Let

k ≥ kp := ln(1/p)

ln
(

ln(1/p1/α)
e ln ln(1/p1/α)

) .

Then Pr[H(x,y)≥ k]≤ p.
(c) Let T ∈N and 0 < p≤ 1

T exp(−αexp(1
e)). Let y1, . . . ,yT be obtained from

x1, . . . ,xT , respectively, via standard bit mutation. Let

k ≥ ln(T/p)

ln
(

ln((T/p)1/α)
e ln ln((T/p)1/α)

) .

Then Pr[∃i ∈ [1..T] : H(xi,yi)≥ k]≤ p.

Proof. Note that H(x,y) ∼ Bin(n, α
n), and hence H(x,y) can be written as

a sum of n independent random variables X1, . . . ,Xn with Pr[Xi = 1] = α
n

and Pr[Xi = 0] = 1− α
n for all i ∈ [1..n]. Since E[H(x,y)] = α, we can apply

(1.10.7) with (δ +1) = k
α . This proves (a).

For part (b), we use part (a) and Lemma 1.10.2 and compute Pr[H(x,y)≥
k] ≤ Pr[H(x,y) ≥ kp] ≤ ((e

kp/α)kp/α)α ≤ (p1/α)α = p. Similarly, for (c) we
obtain Pr[H(xi,yi)≥ k]≤ p

T and use the union bound (Lemma 1.5.1). ⊓⊔

Observe that the bounds in Lemma 1.10.3 are independent of n. Also, the
bounds in parts (b) and (c) depend only mildly on α. By applying part (c)
with p = n−c1 and T = nc2 , we see that the probability that an evolutionary
algorithm using standard bit mutation with rate α

n , where α is a constant,
flips more than (c1 + c2 + o(1)) lnn

ln lnn bits in any of the first nc2 applications
of the mutation operator is at most n−c1 .

44 Benjamin Doerr

We gave the results above to demonstrate the use of Chernoff bounds for
sums of independent bounded random variables. Since the number of bits
that are flipped in standard bit mutation follows a binomial distribution,
similar bounds can also (and by more elementary arguments) be obtained
from analyzing the binomial distribution. See Lemma 1.10.37 for an example.

Exponential Regime

When δ = Θ(1), all bounds give a tail probability of order exp(−Θ(δE[X])).
Note that the difference between these bounds is often not very large. For
δ = 1, the bounds in (1.10.2), (1.10.3), and (1.10.4) become (0.67957 . . .)E[X],
(0.68728 . . .)E[X], and (0.71653 . . .)E[X], respectively. So there is often no rea-
son to use the unwieldy equation (1.10.2).

We remark that also for large δ, where the bound (1.10.2) gives the
better asymptotics exp(−Θ(δ log(δ)E[X])), one can, with the help of Sec-
tion 1.10.1.8, resort to the easier-to-use bounds (1.10.3) and (1.10.4) when
the additional logarithmic term is not needed. For example, when X is again
the number of bits that flip in an application of the standard bit muta-
tion operator with mutation rate p = α

n , then, for all c > 0 and n ∈ N with
c lnn≥α, equation (1.10.4) with E[X]≤ µ+ := c lnn and the argument of Sec-
tion 1.10.1.8 give Pr[X ≥ 2c lnn] = Pr[X ≥ (1+1)µ+]≤ exp(−1

3µ+) = n−c/3,
which in many applications is fully sufficient.

A different way of stating an exp(−Θ(δE[X])) tail bound, following di-
rectly from applying (1.10.7) for δ ≥ 2e−1, is the following.

Corollary 1.10.4. Under the assumptions of Theorem 1.10.1, we have

Pr[X ≥ k]≤ 2−k (1.10.9)

for all k ≥ 2eE[X].

Sub-exponential Regime

Since Chernoff bounds give very low probabilities for the tail events, we can
often work with δ = o(1) and still obtain sufficiently low probabilities for the
deviations. Therefore, this regime occurs frequently in the analysis of random-
ized search heuristics. Since the tail probability is of order exp(−Θ(δ2E[X])),
we need δ to be at least of order (E[X])−1/2 to obtain useful statements.
Note that for E[X] close to n

2 , Theorem 1.10.7 below gives slightly stronger
bounds. A typical application in this regime is showing that the random ini-
tial search points of an algorithm with high probability all have a Hamming
distance of at least n

2 (1−o(1)) from the optimum. See Lemma 1.10.8 below
for further details.

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 45

1.10.1.2 Multiplicative Chernoff Bounds for the Lower Tail

In principle, of course, there is no difference between bounds for the upper
and lower tails. If, in the situation of Theorem 1.10.1, we set Yi := 1−Xi,
then the Yi are independent random variables taking values in [0,1], and
any upper tail bound for X turns into a lower tail bound for Y :=

∑n
i=1 Yi

via Pr[Y ≤ t] = Pr[X ≥ n − t]. However, since this transformation also
changes the expectation, that is, E[Y] = n−E[X], a convenient bound
such as (1.10.5) becomes the cumbersome estimate Pr[Y ≤ (1− δ)E[Y]] ≤
exp(−1

3 (1+ δ E[Y]
n−E[Y])

2(n−E[Y])).
For this reason, usually the tail bounds for the lower tail either are proven

completely separately (but using similar ideas) or are derived by significantly
simplifying the results stemming from applying the above symmetry argu-
ment to (1.10.1). Either approach can be used to show the following bounds.
As a visible result of the asymmetry of the situation for upper and lower
bounds, note the better constant of 1

2 in the exponent of (1.10.12) as com-
pared with the 1

3 in (1.10.5). Two of the terms appearing in this result are
visualized in Figure 1.4.

Theorem 1.10.5. Let X1, . . . ,Xn be independent random variables taking
values in [0,1]. Let X =

∑n
i=1 Xi. Let δ ∈ [0,1]. Then

Pr[X ≤ (1− δ)E[X]]

≤
(

1
1− δ

)(1−δ)E[X](
n−E[X]

n− (1− δ)E[X]

)n−(1−δ)E[X]
(1.10.10)

≤
(

e−δ

(1− δ)1−δ

)E[X]
(1.10.11)

≤ exp
(
− δ2E[X]

2

)
, (1.10.12)

where the first bound reads as (1− E[X]
n)n for δ = 1.

For the not-so-interesting boundary cases, recall our definition 00 := 1.
The first bound (1.10.10) follows from (1.10.1) by regarding the random vari-
ables Yi := 1−Xi. Allowing the following easy derivation is maybe the main
strength of (1.10.1). Setting Y =

∑n
i=1 Yi and δ′ = δ E[X]

E[Y] , we compute

Pr[X ≤ (1− δ)E[X]] = Pr[Y ≥ (1+ δ′)E[Y]]

≤
(

1
1+ δ′

)(1+δ′)E[Y](
n−E[Y]

n− (1+ δ′)E[Y]

)n−(1+δ′)E[Y]

=
(

n−E[X]
n− (1− δ)E[X]

)n−(1−δ)E[X](1
1− δ

)(1−δ)E[X]
.

46 Benjamin Doerr

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

x

f
(x

)

f(x) =−x− (1−x) ln(1−x)

f(x) = x2

2

Fig. 1.4 Visual comparison of the bounds (1.10.11) and (1.10.12). The term f(x) leading
to the bound Pr[X ≤ (1−x)E[X]]≤ exp(−f(x)E[X]) is depicted.

Obviously, in an analogous fashion, (1.10.1) can be derived from (1.10.10),
so the two bounds are equivalent. Equation (1.10.11) follows from (1.10.10)
using an elementary estimate analogous to (1.10.6). Equation (1.10.12) fol-
lows from (1.10.11) using elementary calculus; see, for example, the proof of
Theorem 4.5 in [71].

Theorems 1.10.1 and 1.10.5 show in particular that constant-factor devia-
tions from the expectation appear only with exponentially small probability.

Corollary 1.10.6. Let X1, . . . ,Xn be independent random variables taking
values in [0,1]. Let X =

∑n
i=1 Xi. Let δ ∈ [0,1]. Then

Pr
[
|X−E[X]| ≥ δE[X]

]
≤ 2exp

(
− δ2E[X]

3

)
.

1.10.1.3 Additive Chernoff Bounds

We now present a few bounds for the probability that a random variable devi-
ates from its expectation by an additive term independent of the expectation.
The advantage of such bounds is that they are identical for the upper and
lower tails and that they are invariant under additive rescalings.

From (1.10.1) in Theorem 1.10.1, by careful estimates (see, e.g.,
Hoeffding [54]) and exploiting the obvious symmetry, we obtain the follow-
ing estimates. As mentioned earlier, when E[X] is close to n

2 , this additive

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 47

Chernoff bound gives (slightly) stronger results than the simplified bounds
of Theorems 1.10.1 and 1.10.5.

Theorem 1.10.7. Let X1, . . . ,Xn be independent random variables taking
values in [0,1]. Let X =

∑n
i=1 Xi. Then, for all λ≥ 0,

Pr[X ≥ E[X]+λ]≤ exp
(
− 2λ2

n

)
, (1.10.13)

Pr[X ≤ E[X]−λ]≤ exp
(
− 2λ2

n

)
. (1.10.14)

A second advantage of additive Chernoff bounds is that they are often very
easy to apply. As a typical application in evolutionary computation, let us
consider the Hamming distance H(x,x∗) of a random search point x ∈ {0,1}
from a given search point x∗. This could be, for example, the distance of a
random initial solution from the optimum.

Lemma 1.10.8. Let x∗ ∈ {0,1}n. Let x ∈ {0,1}n be chosen uniformly at
random. Then, for all λ≥ 0,

Pr
[∣∣∣H(x,x∗)− n

2

∣∣∣≥ λ
]
≤ 2exp

(
−2λ2

n

)
.

Proof. Note that if x ∈ {0,1}n is uniformly distributed, then the xi are inde-
pendent random variables uniformly distributed in {0,1}. Hence, regardless
of x∗, the indicator random variables Xi for the event that xi ̸= x∗

i are also in-
dependent random variables uniformly distributed in {0,1}. Since H(x,x∗) =∑n

i=1 Xi, the claim follows immediately from applying Theorem 1.10.7 to the
events “H(x,x∗)≥ E[H(x,x∗)]+λ” and “H(x,x∗)≤ E[H(x,x∗)]−λ”. ⊓⊔

This lemma implies that even among a polynomial number of initial search
points there is none which is closer to the optimum than n

2 −O(
√

n logn).
This argument has been used numerous times in lower-bound proofs. This
argument is also the reason why the best-known black-box algorithm for the
optimization of OneMax, namely repeatedly sampling random search points
until the fitness values observed determine the optimum, also works well for
jump functions [12].

The following theorem, again due to Hoeffding [54], non-trivially extends
Theorem 1.10.7 by allowing the Xi to take values in arbitrary intervals [ai, bi].

Theorem 1.10.9. Let X1, . . . ,Xn be independent random variables. Assume
that each Xi takes values in a real interval [ai, bi] of length ci := bi−ai. Let
X =

∑n
i=1 Xi. Then, for all λ > 0,

Pr[X ≥ E[X]+λ]≤ exp
(
− 2λ2∑n

i=1 c2
i

)
, (1.10.15)

48 Benjamin Doerr

Pr[X ≤ E[X]−λ]≤ exp
(
− 2λ2∑n

i=1 c2
i

)
. (1.10.16)

For comparison, we now reformulate Theorems 1.10.1 and 1.10.5 as addi-
tive bounds. There is no greater intellectual challenge hidden here, but we
feel that it helps to have seen these bounds at least once. Note that, since
the resulting bounds depend on the expectation, we require that the Xi take
values in [0,1]. In other words, unlike the bounds presented so far in this
subsection, the following bounds are not invariant under additive rescaling
and are not symmetric for upper and lower tails.

Theorem 1.10.10 (equivalent to Theorem 1.10.1). Let X1, . . . ,Xn be
independent random variables taking values in [0,1]. Let X =

∑n
i=1 Xi. Let

λ≥ 0. Then

Pr(X ≥ E[X]+λ)

≤
(

E[X]
E[X]+λ

)E[X]+λ(
n−E[X]

n−E[X]−λ

)n−E[X]−λ

(1.10.17)

≤ eλ

(
E[X]

E[X]+λ

)E[X]+λ

= exp
(
− (E[X]+λ) ln

(
1+ λ

E[X]

)
+λ

)
(1.10.18)

≤ exp
(
− λ2

2E[X]+ 2
3λ

)
(1.10.19)

≤ exp
(
− 1

3
min

{
λ2

E[X]
,λ

})
, (1.10.20)

where the bound in (1.10.17) is read as 0 for λ > n−E[X] and as (E[X]
n)n

for λ = n−E[X]. For λ≤ E[X], equation (1.10.20) simplifies to

Pr[X ≥ E[X]+λ]≤ exp
(
− λ2

3E[X]

)
. (1.10.21)

Theorem 1.10.11 (equivalent to Theorem 1.10.5). Let X1, . . . ,Xn be
independent random variables taking values in [0,1]. Let X =

∑n
i=1 Xi. Let

λ≥ 0. Then

Pr[X ≤ E[X]−λ]≤
(

E[X]
E[X]−λ

)E[X]−λ(
n−E[X]

n−E[X]+λ

)n−E[X]+λ

(1.10.22)

≤ e−λ

(
E[X]

E[X]−λ

)E[X]−λ

(1.10.23)

≤ exp
(
− λ2

2E[X]

)
. (1.10.24)

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 49

1.10.1.4 Chernoff Bounds Using the Variance

There are several versions of Chernoff bounds that take into account the
variance. In certain situations, they can give significantly stronger bounds
than the estimates discussed so far. Hoeffding [54] proved essentially the
following result.

Theorem 1.10.12. Let X1, . . . ,Xn be independent random variables such
that Xi ≤ E[Xi] + 1 for all i = 1, . . . ,n. Let X =

∑n
i=1 Xi. Let σ2 =∑n

i=1 Var[Xi] = Var[X]. Then, for all λ≥ 0,

Pr[X ≥ E[X]+λ]

≤
((

1+ λ

σ2

)−
(

1+ λ
σ2
)

σ2
n+σ2

(
1− λ

n

)−(1− λ
n) n

n+σ2
)n

(1.10.25)

≤ exp
(
−λ

((
1+ σ2

λ

)
ln
(

1+ λ

σ2

)
−1
))

= exp
(
−σ2

((
1+ λ

σ2

)
ln
(

1+ λ

σ2

)
− λ

σ2

)) (1.10.26)

≤ exp
(
− λ2

2σ2 + 2
3λ

)
(1.10.27)

≤ exp
(
− 1

3
min

{
λ2

σ2 ,λ

})
, (1.10.28)

where (1.10.25) is understood to mean 0 when λ > n and (σ2

n+σ2)n when λ = n.

Obtaining (1.10.26) from (1.10.25) is non-trivial. This estimate can be
found, for example, in Hoeffding [54]. From (1.10.26), we derive (1.10.27) in
the same way as we derived (1.10.3) from (1.10.2).

By replacing Xi with −Xi, we obtain the analogous bounds for the lower
tail.

Corollary 1.10.13. If the condition Xi ≤ E[Xi] + 1 in Theorem 1.10.12 is
replaced by Xi ≥ E[Xi]− 1, then Pr[X ≤ E[X]− λ] satisfies the estimates
(1.10.25) to (1.10.28).

As discussed in Hoeffding [54], the bound (1.10.26) is the same as the in-
equality (8b) in Bennett [5], which is stronger than the bound (1.10.27) due to
Bernstein [6] and the bound of exp(−1

2λarcsinh(λ
2σ2)) due to Prokhorov [84].

In comparison with the additive version of the usual Chernoff bounds for
the upper tail (Theorem 1.10.10), very roughly speaking, we see that the
Chernoff bounds working with the variance allow us to replace the expecta-
tion of X by its variance. When the Xi are binary random variables with
Pr[Xi = 1] small, then E[X] ≈ Var[X] and there is not much value in using
Theorem 1.10.12. For this reason, Chernoff bounds taking into account the

50 Benjamin Doerr

variance have not been used a lot in the theory of randomized search heuris-
tics. They can, however, be convenient when we have random variables with
Pr[Xi = 1] close to 1.

For example, assume that a search point y ∈ {0,1}n is obtained from a
given x∈ {0,1}n via standard bit mutation with mutation rate p. Assume for
simplicity that we are interested in estimating the number of ones in y (the
same argument would hold for the Hamming distance of y from some other
search point z ∈ {0,1}n, e.g., a unique optimum). Now, the number of ones in
y is simply X =

∑n
i=1 yi and thus X is a sum of independent binary random

variables. However, differently from, e.g., the situation in Lemma 1.10.3, the
expectation of X may be big. If xi = 1, then E[yi] = 1−p. Hence, if x has many
ones, then E[Y] is large. However, since Var[yi] = p(1−p) regardless of xi, the
variance Var[X] = np(1−p) is small (assuming that p is small). Consequently,
here the Chernoff bounds in this subsection give better estimates than, e.g.,
Theorem 1.10.10. See, e.g., [28] for an example where this problem appeared
in a recent research paper.

When not too precise bounds are needed, looking separately at the num-
ber of zeros and ones of x that flip (and bounding these via simple Chernoff
bounds) is a way to circumvent the use of Chernoff bounds taking into ac-
count the variance. Several research studies follow this approach despite the
computations often being more technical.

Chernoff bounds using the variance can also be useful in ant colony al-
gorithms and estimation-of-distribution algorithms, where again pheromone
values or frequencies close to 0 or 1 can lead to a small variance. See [76, 103]
for examples.

The bounds of Theorem 1.10.12 can be written in a multiplicative form,
for example,

Pr[X ≥ (1+ δ)E[X]]

≤
((

1+ δE[X]
σ2

)−
(

1+ δE[X]
σ2
)

σ2
n+σ2

(
1− δE[X]

n

)−
(

1− δE[X]
n

)
n

n+σ2
)n

(1.10.29)

≤ exp
(
− δ2E[X]2

2σ2 + 2
3δE[X]

)
. (1.10.30)

This is useful when working with relative errors, however, it seems that unlike
for some previous bounds (compare, e.g., (1.10.2) and (1.10.18)) the multi-
plicative forms are not much simpler here.

Obviously, the case where all Xi satisfy Xi ≤E[Xi]+b for some number b
(instead of 1) can be reduced to the case b = 1 by dividing all random variables
by b. For the reader’s convenience, we state the resulting Chernoff bounds
here.

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 51

Theorem 1.10.14 (equivalent to Theorem 1.10.12 and Corol-
lary 1.10.13). Let X1, . . . ,Xn be independent random variables. Let b
be such that Xi ≤ E[Xi] + b for all i = 1, . . . ,n. Let X =

∑n
i=1 Xi. Let

σ2 =
∑n

i=1 Var[Xi] = Var[X]. Then, for all λ≥ 0,

Pr[X ≥ E[X]+λ]

≤
((

1+ bλ

σ2

)−
(

1+ bλ
σ2
)

σ2
nb2+σ2

(
1− λ

nb

)−(1− λ
nb) nb2

nb2+σ2
)n

(1.10.31)

≤ exp
(
− λ

b

((
1+ σ2

bλ

)
ln
(

1+ bλ

σ2

)
−1
))

(1.10.32)

≤ exp
(
− λ2

σ2(2+ 2
3

bλ
σ2)

)
(1.10.33)

≤ exp
(
− 1

3
min

{
λ2

σ2 ,
λ

b

})
, (1.10.34)

where (1.10.31) is understood to mean 0 when λ > nb and (σ2

nb2+σ2)n when
λ = nb.

When we have Xi ≥E[Xi]−b instead of Xi ≤E[Xi]+b for all i = 1, . . . ,n,
then the above estimates hold for Pr[X ≤ E[X]−λ].

1.10.1.5 Relation Between the Different Chernoff Bounds

We proceed by discussing how the bounds presented so far are related. The
main finding will be that the Chernoff bounds depending on the variance im-
ply all other bounds discussed so far with the exception of the additive Cher-
noff bound for random variables having different ranges (Theorem 1.10.9).

Surprisingly, this fact is not stated in Hoeffding’s paper [54]. More pre-
cisely, in [54] the analogue of Theorems 1.10.12 and 1.10.14 uses the addi-
tional assumption that all Xi have the same expectation. Since this assump-
tion is not made for the theorems not involving the variance, Hoeffding ex-
plicitly states that the latter are stronger in this respect (see the penultimate
paragraph of Section 3 of [54]).

It is, however, quite obvious that the common-expectation assumption can
be easily removed. From random variables with arbitrary means we can obtain
random variables all having mean zero by subtracting their expectation. This
operation does not change the variance and does not change the distribution
of X −E[X]. Consequently, Hoeffding’s result for variables with identical
expectations immediately yields our version of this result (Theorems 1.10.12
and 1.10.14). Theorem 1.10.12 implies Theorem 1.10.1 via the equivalent
version of Theorem 1.10.10 (see again the penultimate paragraph of Section 3
of [54]).

52 Benjamin Doerr

Consequently, the first (strongest) bound in Theorem 1.10.12 (or, equiva-
lently the first bound in Theorem 1.10.14) implies the first (strongest) bound
in Theorem 1.10.1, which is equivalent to the first (strongest) bound in Theo-
rem 1.10.5. Essentially all of the other bounds presented so far can be derived
from these main theorems via simple, sometimes tedious, estimates. The sole
exception is Theorem 1.10.9, which can lead to significantly stronger esti-
mates when the random variables have ranges of different size.

As an example, let X1, . . . ,Xn be independent random variables such that
X1, . . . ,Xn−1 take the values 0 and (n− 1)−1/2 with equal probability 1

2
and such that Xn takes the values 0 and 1 with equal probability 1

2 . Let
X =

∑n
i=1 Xi. Then E[X] = 1

2 (
√

n−1+1). Theorem 1.10.9, taking ci = (n−
1)−1/2 for i ∈ [1..n−1] and cn = 1, yields the estimate

Pr[X ≥ E[X]+λ]≤ exp
(
− 2λ2∑n

i=1 c2
i

)
= exp(−λ2). (1.10.35)

Note that Var[X] = 1
2 =: σ2. Consequently, the strongest Chernoff bound

of Theorem 1.10.12, equation (1.10.25), gives an estimate larger than

(1 + λ
σ2)−(1+ λ

σ2) nσ2
n+σ = exp(−Θ(λ logλ)). Consequently, in this case Theo-

rem 1.10.9 gives a significantly stronger estimate than Theorem 1.10.12.

1.10.1.6 Tightness of Chernoff Bounds, Lower Bounds for
Deviations (Anti-Concentration)

As a very general and not at all precise rule of thumb, we can say that often
the sharpest Chernoff bounds presented so far give an estimate of the tail
probability that is near-tight. This is good to know from the perspective
of proof design, since it indicates that failing to prove a desired statement
usually cannot be overcome by trying to invent sharper Chernoff bounds. We
shall not try to make this statement precise.

However, occasionally we also need lower bounds for the deviation from
the expectation as a crucial argument in our analysis. For example, when
generating several offspring independently in parallel, as, e.g., in a (1+λ) EA,
we expect the best of these to be significantly better than the expectation,
and the efficiency of the algorithm relies on such desired deviations from the
expectation.

Lower bounds for deviations from the expectation, occasionally called anti-
concentration results, seem to be harder to work with. For this reason, we only
briefly give some indications of how to handle them, and refer the reader to
the literature. We note that there is a substantial body of mathematical liter-
ature on this topic (see, e.g., [73] and the references therein), which, however,
is not always easy to use for algorithmic problems. We also note that for bi-

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 53

nomially distributed random variables, also the estimates in Theorem 1.10.39
can be used to derive lower bounds for tail probabilities.

Estimating Binomial Coefficients

For binomial distributions, estimating the (weighted) sum of binomial co-
efficients arising in the expression for the tail probability often works well
(though the calculations may become tedious). In the theory of randomized
search heuristics, this approach was used, among others, in the analysis of
the (1+λ) EA in [28, 40, 44, 51, 56] and the (1+(λ,λ)) GA in [23]. The
following elementary bound was shown in [19, Lemma 3].

Lemma 1.10.15. Let n ∈ N and X ∼ Bin(n, 1
2). Then

Pr
[
X ≥ E[X]+ 1

2
√

E[X]
]
≥ 1

8 , (1.10.36)

Pr
[
X ≤ E[X]− 1

2
√

E[X]
]
≥ 1

8 . (1.10.37)

Two-Stage Rounding Trick

Estimating binomial coefficients works well for binomial distributions. How-
ever, a neat trick allows us to extend such results to sums of independent,
non-identically distributed binary random variables. The rough idea is that
we can sample a binary random variable X with Pr[X = 1] = p by first sam-
pling the unique random variable Y which takes values in {1

2 ,⌊p + 1
2⌋} and

satisfies E[Y] = E[X] = p, and then, if Y = 1
2 , replacing Y with a uniform

choice in {0,1}. If we view sampling X as rounding p randomly to 0 or 1 in
such a way that the expectation is p, then this two-stage procedure consists of
first rounding p to {0, 1

2} or {
1
2 ,1} with expectation p and then (if necessary)

rounding the result to {0,1} without changing the expectation.
We use this trick below to show by elementary means two results which

previously had been shown only via deeper methods. We first extend
Lemma 1.10.15 above from fair coin flips to sums of independent binary
random variables having different distributions. A similar result was shown
in [81, first item of Lemma 6] for X ∼ Bin(n,p), that is, for sums of iden-
tically distributed binary random variables (the result is stated without a
lower bound on the variance, but by regarding, e.g., Bin(n,n−2), it becomes
clear that a restriction such as p∈ [1

n ,1− 1
n] is necessary). We have not found

the general result of Lemma 1.10.16 in the literature, even though it is clear
that such results can be shown via a normal approximation.

Lemma 1.10.16. Let v0 > 0. There are constants c,C > 0 such that the
following is true. Let n ∈N. Let p1, . . . ,pn ∈ [0,1]. For all i ∈ [1..n], let Xi be
a binary random variable with Pr[Xi = 1] = pi. Assume that X1, . . . ,Xn are

54 Benjamin Doerr

independent. Let X =
∑n

i=1 Xi. Assume that Var[X] =
∑n

i=1 pi(1−pi) ≥ v0.
Then

Pr
[
X ≥ E[X]+ c

√
Var[X]

]
≥ C, (1.10.38)

Pr
[
X ≤ E[X]− c

√
Var[X]

]
≥ C. (1.10.39)

Proof. Let us first assume that pi ≤ 1
2 for all i ∈ [1..n] and show the claim

under the weaker assumption Var[X]≥ 1
2v0. We define independent random

variables Yi such that

Pr[Yi = 1
2] = 2pi,

Pr[Yi = 0] = 1−2pi.

Let Y =
∑n

i=1 Yi and note that E[Y] = E[X].
Based on the Yi, we define independent binary random variables Zi as

follows. If Yi = 0, then Zi := 0. Otherwise, that is, if Yi = 1
2 , then we let

Zi be uniformly distributed in {0,1}. An elementary calculation shows that
Pr[Zi = 1] = pi, that is, the Zi have the same distribution as the Xi. Hence
it suffices to show our claim for Z :=

∑n
i=1 Zi.

Let c be a sufficiently small constant. Our main argument for the lower
bound on the upper tail (1.10.38) will be that with constant probability we
have the event

A := “Y ≥ E[Y]− 1
2c
√

Var[X]”.

In this case, again with constant probability, we have Z ≥ E[Z | A] +
c
√

Var[X], which implies Z ≥ E[Y] − 1
2c
√

Var[X] + c
√

Var[X] = E[X] +
1
2c
√

Var[X]. In other words, we have

Pr
[
X ≥ E[X]+ 1

2c
√

Var[X]
]
≥ Pr[A] ·Pr

[
(Z |A)≥ E[Z |A]+ c

√
Var[X]

]
and we shall argue that both factors are at least constant.

For the first factor, we note that for all i ∈ [1..n], we have E[Yi] = pi.
An elementary calculation thus shows that Var[Yi] = 1

2pi(1−2pi) ≤ 1
2pi(1−

pi) = 1
2 Var[Xi] and hence Var[Y] ≤ 1

2 Var[X]. With Cantelli’s inequality
(Lemma 1.6.10), we compute

Pr[A] = Pr
[
Y ≥ E[Y]− 1

2
c
√

Var[X]
]

≥ Pr
[
Y ≥ E[Y]− 1√

2
c
√

Var[Y]
]

≥ 1−Pr
[
Y ≤ E[Y]− 1√

2
c
√

Var[Y]
]

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 55

≥ 1− 1
1+ c2/2

= c2

2+ c2 .

For the second factor, we note that once Y is determined, Z ∼ Bin(2Y, 1
2).

We estimate

E[Y]− 1
2c
√

Var[X]≥ E[Y]− c√
2v0

Var[X]

≥ E[Y]− c√
2v0

E[X]≥ (1− c√
2v0

)E[X] =: q,

where we use the fact that Var[X] ≥ 1
2v0 implies

√
Var[X] ≤

√
2/v0 Var[X].

Hence, conditional on A, we have Z ∼ Bin(2q̃, 1
2) for some q̃ ≥ q, and thus

Pr
[
(Z |A)≥ E[Z |A]+ c

√
Var[X]

]
≥ 1

8

by Lemma 1.10.15 and c
√

Var[X] ≤ c
√

E[X] ≤ 1
2

√
(1− c√

2v0
)E[X] ≤

1
2
√

E[Z |A], where the middle inequality assumes that c is sufficiently small.
To prove (1.10.39), we argue as follows. Let K = E[X]+ 1

2c
√

Var[X]. Then

Pr
[
X ≤ E[X]− 1

2c
√

Var[X]
]

≥
2K∑
k=0

Pr[Y = k
2] ·Pr

[
(Z | Y = k

2)≤ E[X]− 1
2c
√

Var[X]
]
.

Now (Z | Y = k
2) ∼ Bin(k, 1

2), and hence Lemma 1.8.9(b) implies that the
second factor is smallest for k = 2K. Consequently,

Pr
[
X ≤ E[X]−1

2c
√

Var[X]
]

≥ Pr[Y ≤K] ·Pr
[
(Z | Y = K)≤ E[X]− 1

2c
√

Var[X]
]
.

We estimate the two factors separately. For the first one, in an analogous
fashion to that before, we obtain Pr[Y ≤K] = Pr[Y ≤E[Y]+ 1

2c
√

Var[X]]≥
c2

2+c2 . For the second factor, we compute

Pr
[
(Z | Y = K)≤ E[X]− 1

2c
√

Var[X]
]

= Pr
[

Bin(2K, 1
2)≤ E[Bin(2K, 1

2)]−K +E[X]− 1
2c
√

Var[X]
]

= Pr
[

Bin(2K, 1
2)≤ E[Bin(2K, 1

2)]− c
√

Var[X]
]
.

56 Benjamin Doerr

For c ≤ 1
2 , we have c

√
Var[X] ≤ 1

2
√

E[X] ≤ 1
2

√
E[Bin(2K, 1

2)] and

Lemma 1.10.15 yields Pr
[
(Z | Y = K)≤ E[X]− 1

2c
√

Var[X]
]
≥ 1

8 .
Now assume that the pi are not all in [0, 1

2]. Let I ′ = {i ∈ [1..n] | pi ≤ 1
2}

and I ′′ = [1..n]\ I ′. Let X ′ =
∑

i∈I′ Xi and X ′′ =
∑

i∈I′′ Xi. Since Var[X] =
Var[X ′]+Var[X ′′], by symmetry (possibly replacing the pi by 1−pi), we can
assume that Var[X ′]≥ 1

2 Var[X]. Now Var[X]≥ v0 implies Var[X ′]≥ 1
2v0, and

by the above we have X ′ ≥ E[X ′] + 1
2c
√

Var[X ′] ≥ E[X ′] + 1
2

√
2c
√

Var[X]
with constant probability. By Cantelli’s inequality again, we have X ′′ ≥
E[X ′′] − c

4
√

Var[X ′′] ≥ E[X ′′] − c
4

√
2

√
Var[X] with constant probability.

Hence X = X ′ +X ′′≥E[X ′]+E[X ′′]+ c
4

√
2 Var[X] = E[X]+ c

4
√

2 Var[X] with
constant probability. The proof that X ≤ E[X]− c

4
√

2 Var[X] with constant
probability is analogous. By replacing our original c by 4

√
2c, we obtain the

precise formulation of the claim. ⊓⊔

We now use the two-stage rounding trick to give an elementary proof of
the following result.

Lemma 1.10.17. Let n∈N and p1, . . . ,pn ∈ [0,1]. For all i∈ [1..n], let Xi be
a binary random variable with Pr[Xi = 1] = pi. Assume that X1, . . . ,Xn are
independent. Let X =

∑n
i=1 Xi. If Var[X]≥ 1, then, for all k ∈ [0..n],

Pr[X = k]≤ 2√
Var[X]

.

This result (without making the leading constant precise) was proven for
the special case where all pi are between 1

6 and 5
6 in [94, Lemma 9, arXiv ver-

sion]. This proof uses several deep arguments from probability theory. In [63,
Lemma 3], the result stated in [94] was minimally extended to the case where
only a linear number of the pi are between 1

6 and 5
6 .

Proof (of Lemma 1.10.17). In a similar fashion to the proof of Lemma 1.10.16,
we define independent random variables Yi such that

Pr[Yi = 1
2] = 2pi,

Pr[Yi = 0] = 1−2pi

when pi ≤ 1
2 and

Pr[Yi = 1] = 2(pi− 1
2) = 2pi−1,

Pr[Yi = 1
2] = 1−2(pi− 1

2) = 2−2pi

for pi > 1
2 . If Yi ∈ {0,1}, then Zi := Yi; otherwise (that is, when Yi = 1

2), we let
Zi be uniformly distributed on {0,1}. As before, the Zi are just an alternative
definition of the Xi. Hence Z =

∑n
i=1 Zi has the same distribution as X.

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 57

For ℓ ∈ {0, 1
2 ,1}, let Iℓ := |{i ∈ [1..n] | Yi = ℓ}|. Since

Pr[Yi = 1
2] = 2min{pi,1−pi} ≥ 2Var[Xi],

we have E[I 1
2
] ≥ 2Var[X]. Since the Yi are independent, we have Pr[I 1

2
≤

2(1− δ)Var[X]]≤ exp(−δ2 Var[X]) for all δ ∈ [0,1], by (1.10.12).
Finally, note that by (1.4.18) we have Pr[Bin(a, 1

2) = k]≤
√

2
πa for all a∈N

and k ∈ N0.
Writing a0 = ⌊2(1−δ)Var[X]⌋ and combining these arguments, we obtain

Pr[X = k] =Pr[Z = k]

=
n∑

a=0
Pr[I 1

2
= a]

k∑
b=0

Pr[I1 = b]Pr[Z = k | I 1
2

= a∧ I1 = b]

=
n∑

a=0
Pr[I 1

2
= a]

k∑
b=0

Pr[I1 = b]Pr[Bin(a, 1
2) = k− b]

≤Pr[I 1
2
≤ a0]

+
n∑

a=a0+1
Pr[I 1

2
= a]

k∑
b=0

Pr[I1 = b]Pr[Bin(a, 1
2) = k− b]

≤exp(−δ2 Var[X])+
n∑

a=a0+1
Pr[I 1

2
= a]

k∑
b=0

Pr[I1 = b]

√
2

π(a0 +1)

≤exp(−δ2 Var[X])+

√
1

(1− δ)π Var[X]
.

For Var[X] ≥ 1, by taking δ = 0.75 and estimating exp(−δ2 Var[X]) ≤
1

eδ2 Var[X] ≤
1

eδ2
√

Var[X]
, where we have used the estimate ex ≥ ex, an al-

ternative version of Lemma 1.4.1, we obtain the bound 2Var[X]−1/2. ⊓⊔

We did not aim to optimize the implicit constants in the result above.
We note that if we take δ = Var[X]−1/4, the claimed probability becomes
(1+o(1)) 1√

π Var[X]
for Var[X]→∞.

Approximation via the Normal Distribution

The generic approach of approximating binomial distributions via normal
distributions is not often used in the theory of randomized search. In [81],
the Berry–Esseen inequality was employed to prove a result similar to
Lemma 1.10.16 for the special case of binomial distributions. Unlike many

58 Benjamin Doerr

other proofs relying on the normal approximation, this proof is quite short
and elegant.

In [64], the normal approximation was used to show that the best of
k ∈ ω(1)∩ o(

√
n) independent random initial search points in {0,1}n has

with probability 1−o(1) a distance of n
2 −

√
n
2 (lnk− 1

2 ln lnk± ck) from the
optimum, where ck is an arbitrary sequence tending to infinity.

In [94, Lemma 7, arXiv version], a very general result on how a sum of
independent random variables with bounded expectation and variance can be
approximated by a normal distribution was used to analyze the performance
of an estimation-of-distribution algorithm. This analysis is highly technical.

Order Statistics

The result about the best of k independent initial individuals in [64] actually
says something about the maximum order statistic of k independent Bin(n, 1

2)
random variables. In general, the maximum order statistic is strongly related
to lower bounds for tail probabilities, as the following elementary argument
(more or less explicit in all work on the (1+λ) EA) shows: Let X1, . . . ,Xλ be
independent random variables following the same distribution. Let Xmax =
max{Xi | i ∈ [1..λ]}. Then

Pr[X∗ ≥D]≤ λPr[X1 ≥D],
Pr[X∗ ≥D] = 1− (1−Pr[X1 ≥D])λ ≥ 1− exp(λPr[X1 ≥D]).

Consequently, Pr[X∗ ≥D] is constant if and only if Pr[X1 ≥D] = Θ(1
λ).

For the maximum order statistics of binomially distributed random vari-
ables with small success probability, Gießen and Witt [51, Lemma 4(3)]
proved the following result and used it in the analysis of the (1+λ) EA.

Lemma 1.10.18. Let α≥ 0 and c > 0 be constants. Let n ∈N, and let all of
the following asymptotics be for n→∞. Let k = n(lnn)−α and λ = ω(1). Let
Xmax be the maximum of λ independent random variables with distribution
Bin(k, c

n). Then E[Xmax] = (1±o(1)) 1
1+α

lnλ
ln lnλ .

Extremal Situations

Occasionally, it is desirable to understand which situation gives the smallest
or the largest deviations. For example, let X1, . . . ,Xn be independent binary
random variables with expectations E[Xi] = pi. Then it could be useful to
know that X =

∑n
i=1 Xi deviates most (in some suitable sense) from its

expectation when all pi are 1
2 . Such statements can be made formal and can

be proven with the notions of majorization and Schur-convexity. We refer

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 59

to [89] for a nice treatment of this topic. Such arguments have been used to
analyze estimation-of-distribution algorithms in [94].

Staying on One Side of the Expectation, and Feige’s Inequality

When it suffices to know that with reasonable probability we will stay (more
or less) on one side of the expectation, then the following results can be
useful.

A very general bound is Feige’s inequality [48, Theorem 1], which has
found applications in the analysis of randomized search heuristics, among
others, in [15, 16, 65, 93].

Lemma 1.10.19 (Feige’s inequality). Let X1, . . . ,Xn be independent non-
negative random variables with expectations µi := E[Xi] satisfying µi ≤ 1. Let
X =

∑n
i=1 Xi. Then

Pr[X ≤ E[X]+ δ]≥min{ 1
13 , δ

δ+1}.

For binomial distributions, we have stronger guarantees. Besides bounds
comparing the binomial distribution with its normal approximation [90], the
following specific bounds are known.

Lemma 1.10.20. Let n ∈ N, p ∈ [0,1], and k = ⌊np⌋. Let X ∼ Bin(n,p).

(a) If 1
n < p, then Pr[X ≥ E[X]] > 1

4 .
(b) If 0.29/n≤ p < 1, then Pr[X > E[X]]≥ 1

4 .

(c) If 1
n ≤ p≤ 1− 1

n , then Pr[X ≥ E[X]]≥ 1
2

√
2

√
np(1−p)√

np(1−p)+1+1
.

(d) If 1
n ≤ p < 1, then Pr[X > E[X]] > 1

2 −
√

n
2πk(n−k) .

(e) If 1
n ≤ p < 1− 1

n , then Pr[X > E[X]+1]≥ 0.037.

Surprisingly, all these results are quite recent. The bound (a), from [52],
appears to be the first general result of this type at all.1 It was followed up
by estimate (c), from [83], which gives stronger estimates when np(1−p) > 8.
The result (d), from [21], is the only one to give a bound tending to 1

2 for
both np and n(1−p) tending to infinity. The estimates (b) and (e) are also
from [21]. A lower bound on the probability of exceeding the expectation by
more than one, such as (e), was needed in an analysis of an evolutionary
algorithm with self-adjusting mutation rate [28, Lemma 9].

1 For p ∈ [1
n , 1

2], this result follows from the proof of Lemma 6.4 in [85]. The lemma
itself only states the bound Pr[X ≥E[X]]≤min{p, 1

4} for p≤ 1
2 . The assumption p≤ 1

2
appears to be crucial for the proof.

60 Benjamin Doerr

1.10.1.7 Proofs of the Chernoff Bounds

As discussed in Section 1.10.1.5, all Chernoff bounds stated so far can be
derived from the strongest bounds of Theorem 1.10.9 or 1.10.12 via elemen-
tary estimates that have nothing to do with probability theory. We shall
not detail these estimates – the reader can find them all in the literature,
for example, in [54]. We shall, however, sketch how to prove the two central
inequalities (1.10.15) and (1.10.25). One reason for this is that we can then
argue in Section 1.10.2.2 that these proofs (and thus also all Chernoff bounds
presented so far) hold not only for independent random variables, but also
for negatively correlated ones.

A second reason is that, occasionally, it can be profitable to have this
central argument ready to prove Chernoff bounds for particular distributions
for which the classical bounds are not applicable or do not give sufficient
results. This has been done, e.g., in [3, 27, 35, 67, 79, 80, 102].

The central step in almost all proofs of Chernoff bounds, going back to
Bernstein [6], is the following one-line argument. Let h > 0. Then

Pr[X ≥ t] = Pr[ehX ≥ eht]≤ E[ehX]
eht

= e−ht
n∏

i=1
E[ehXi]. (1.10.40)

Here, the first equality stems simply from the fact that the function x 7→ ehx

is monotonically increasing. The inequality in (1.10.40) is Markov’s inequality
(Lemma 1.6.7) applied to the (non-negative) random variable ehX . The last
equality exploits the independence of the Xi, which carries over to the ehXi .

It now remains to estimate E[ehXi] and to choose h so as to minimize the
resulting expression. We do this as an example for the case where all Xi take
values in [0,1] and E[X] < t < n. Since the exponential function is convex,
E[ehXi] is maximized (which is the worst case for our estimate) when Xi is
concentrated on the values 0 and 1, that is, we have Pr[Xi = 1] = E[Xi] and
Pr[Xi = 0] = 1−E[Xi]. In this case, E[ehXi] = (1−E[Xi])e0 + E[Xi]eh. By
the inequality of arithmetic and geometric means, we compute

n∏
i=1

E[ehXi]≤
n∏

i=1
(1−E[Xi]+E[Xi]eh)

≤
(

1
n

n∑
i=1

(1−E[Xi]+E[Xi]eh)
)n

≤
(

1
n

(n−E[X]+E[X]eh)
)n

.

This gives the tail estimate Pr[X ≥ t]≤ e−ht(1
n (n−E[X]+E[X]eh))n, which

is minimized by taking

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 61

h = ln
(

(n−E[X])t
(n− t)E[X]

)
,

which then gives the strongest multiplicative Chernoff bound (1.10.1) if we
rewrite it using t = (1+ δ)E[X].

Since it may help reading the literature, we add that E[eX] is called the
exponential moment of X and h 7→ E[ehX] is called the moment-generating
function of X.

From the above proof sketch together with the remark on the tightness of
Markov’s inequality following Lemma 1.6.7, we see that in almost all cases,
our Chernoff bounds are not absolutely tight, that is, they hold with “<”
instead of “≤.” The sole exceptions are (i) when X takes only two values
with positive probability, (ii) when the tail event consists of a single point,
for example, when X ≥ n or X ≤ 0 if X is a sum of n binary random variables,
or (iii) when the tail event is empty, for example, when X ≥ n + 1 if X is a
sum of n binary random variables. Having a “<” in a Chernoff bound will not
drastically change things, but can occasionally be nice for cosmetic reasons.

1.10.1.8 Chernoff Bounds with Estimates for the Expectation

Often we do not know the precise value of the expectation or it is tedious to
compute it. In such cases, we can exploit the fact that all Chernoff bounds
discussed in this chapter are also valid when the expectation is replaced by an
upper or lower bound on it. This is obvious for many bounds; for example,
from (1.10.13), (1.10.14), and (1.10.12) we immediately derive the estimates

Pr[X ≥ µ+ +λ]≤ Pr[X ≥ µ+λ]≤ exp
(
− 2λ2

n

)
,

Pr[X ≤ µ−−λ]≤ Pr[X ≤ µ−λ]≤ exp
(
− 2λ2

n

)
,

Pr[X ≤ (1− δ)µ−]≤ Pr[X ≤ (1− δ)µ]≤ exp
(
− δ2µ

2

)
≤ exp

(
− δ2µ−

2

)
for all µ+ ≥ E[X] =: µ and µ− ≤ E[X].

This is less obvious for a bound such as Pr[X ≥ (1+δ)µ+]≤ exp(−1
3δ2µ+),

since now also the probability of the tail event decreases for increasing µ+.
However, for such bounds also we can replace E[X] by an estimate, as the
following argument shows.

Theorem 1.10.21. (a) Upper tail: Let X1, . . . ,Xn be independent random
variables taking values in [0,1]. Let X =

∑n
i=1 Xi. Let µ+ ≥E[X]. Then,

for all δ ≥ 0,

62 Benjamin Doerr

Pr[X ≥ (1+ δ)µ+]≤
(

1
1+ δ

)(1+δ)µ+(
n−µ+

n− (1+ δ)µ+

)n−(1+δ)µ+

,

(1.10.41)
where this bound is read as 0 for δ > n−µ+

µ+ and as (µ+

n)n for δ = n−µ+

µ+ .
Consequently, all Chernoff bounds of Theorem 1.10.1 (including (1.10.7)
and (1.10.8) and Corollary 1.10.4) and those of Theorem 1.10.10 are
valid when all occurrences of E[X] are replaced by µ+. The additive
bounds (1.10.13) and (1.10.15) and those of Theorem 1.10.12 and 1.10.14
are trivially valid with the expectation replaced by an upper bound on it.

(b) Lower tail: All Chernoff bounds of Theorems 1.10.5 and 1.10.11, the ones
in (1.10.14) and (1.10.16), and those of Corollary 1.10.13 are valid when
all occurrences of E[X] are replaced by µ− ≤ E[X].

Proof. We first show (1.10.41). There is nothing to do when (1+δ)µ+ > n, so
let us assume that (1 + δ)µ+ ≤ n. Let γ = µ+−E[X]

n−E[X] . For all i ∈ [1..n], define
Yi by Yi = Xi + γ(1−Xi). Since γ ≤ 1, Yi ≤ 1. By definition, Yi ≥ Xi, and
thus also Y ≥X for Y :=

∑n
i=1 Yi. Also, µ+ = E[Y]. Hence

Pr[X ≥ (1+ δ)µ+]≤ Pr[Y ≥ (1+ δ)µ+] = Pr[Y ≥ (1+ δ)E[Y]].

Now (1.10.41) follows immediately from Theorem 1.10.1, equation (1.10.1).
Since (1.10.41) implies all other Chernoff bounds of Theorem 1.10.1 (includ-
ing (1.10.7) and (1.10.8) and Corollary 1.10.4) via elementary estimates, all
these bounds are valid with E[X] replaced by µ+ as well. This extends to
Theorem 1.10.10, since that is just a reformulation of Theorem 1.10.1. For
the remaining (additive) bounds, replacing E[X] by an upper bound only
decreases the probability of the tail event, so clearly these remain valid.

To prove our claim about lower tail bounds, it suffices to note that all
bounds in Theorem 1.10.5 are monotonically decreasing in E[X]. So, replacing
E[X] by some µ− < E[X] makes the tail event less likely and increases the
probability in the statement. Similarly, the additive bounds are not affected
when E[X] is replaced by µ−. ⊓⊔

We note without proof that the variance of the random variable Y con-
structed above is at most that of X. Since the tail bound in Theorem 1.10.12
is increasing in σ2, the same argument as above also shows that multiplicative
versions of Theorem 1.10.12 such as (1.10.29) remain valid when all occur-
rences of E[X] are replaced by an upper bound µ+ ≥ E[X].

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 63

1.10.2 Chernoff Bounds for Sums of Dependent
Random Variables

In the previous subsection, we discussed large-deviation bounds for the clas-
sical setting of sums of independent random variables. In the analysis of al-
gorithms, often we cannot fully satisfy the assumption of independence. The
dependencies may appear minor, maybe even in our favor in some sense, so
we could hope for some good large-deviation bounds.

In this section, we discuss three such situations which all lead to (essen-
tially) the known Chernoff bounds being applicable despite the absence of
perfect independence. The first of these was already discussed in Section 1.8.3,
so we just note here how it also implies the usual Chernoff bounds.

1.10.2.1 Unconditional Sequential Domination

In the analysis of sequential random processes such as iterative randomized
algorithms, we rarely encounter situations where the events in different iter-
ations are independent, simply because the actions of our algorithm depend
on the results of the previous iterations. However, owing to the independent
randomness used in each iteration, we can often say that, independent of
what happened in iterations 1, . . . , t− 1, in iteration t we have a particular
event with at least some probability p.

This property was made precise in the definition of unconditional sequential
domination before Lemma 1.8.8. The lemma then showed that unconditional
sequential domination leads to domination by a sum of independent random
variables. Any upper tail bound for this sum is naturally valid also for the sum
of the original random variables. We make this elementary insight precise in
the following lemma. This type of argument has been used in, among others,
analyses of evolutionary algorithms for shortest-path problems [32, 33, 37].
There, one can show that, in each iteration, independent of the past, with at
least a certain probability an extra edge of a desired path is found. This type
of argument was also used in [34] to construct a monotonic function that is
difficult to optimize.

Lemma 1.10.22. Let (X1, . . . ,Xn) and (X∗
1 , . . . ,X∗

n) be finite sequences of
discrete random variables. Assume that X∗

1 , . . . ,X∗
n are independent.

(a) If (X∗
1 , . . . ,X∗

n) unconditionally sequentially dominates (X1, . . . ,Xn), then
for all λ ∈ R, we have Pr[

∑n
i=1 Xi ≥ λ] ≤ Pr[

∑n
i=1 X∗

i ≥ λ] and the lat-
ter expression can be bounded by Chernoff bounds for the upper tail of
independent random variables.

(b) If (X∗
1 , . . . ,X∗

n) unconditionally sequentially subdominates (X1, . . . ,Xn),
then for all λ ∈ R, we have Pr[

∑n
i=1 Xi ≤ λ]≤ Pr[

∑n
i=1 X∗

i ≤ λ] and the
latter expression can be bounded by Chernoff bounds for the lower tail of
independent random variables.

64 Benjamin Doerr

1.10.2.2 Negative Correlation

Occasionally, we encounter random variables that are not independent, but
that display an intuitively even better negative-correlation behavior. Take as
an example the situation where we do not flip bits independently with proba-
bility k

n , but we flip a set of exactly k bits chosen uniformly at random from
all sets of k out of n bits. Let X1, . . . ,Xn be the indicator random variables
for the events that bit 1, . . . ,n flips. Clearly, the Xi are not independent. If
X1 = 1, then Pr[X2 = 1] = k−1

n−1 , which is different from the unconditional
probability k

n . However, things feel even better than independent: knowing
that X1 = 1 actually reduces the probability that X2 = 1. This intuition is
made precise in the following notion of negative correlation.

Let X1, . . . ,Xn be binary random variables. We say that X1, . . . ,Xn are
1-negatively correlated if, for all I ⊆ [1..n], we have

Pr[∀i ∈ I : Xi = 1]≤
∏
i∈I

Pr[Xi = 1].

We say that X1, . . . ,Xn are 0-negatively correlated if, for all I ⊆ [1..n], we
have

Pr[∀i ∈ I : Xi = 0]≤
∏
i∈I

Pr[Xi = 0].

Finally, we call X1, . . . ,Xn negatively correlated if they are both 0-negatively
correlated and 1-negatively correlated.

In simple words, these conditions require that the event that a set of vari-
ables is all zero or all one is at most as likely as in the case of independent
random variables. It seems natural that sums of such random variables are at
least as strongly concentrated as independent random variables, and, in fact,
Panconesi and Srinivasan [82] were able to prove that negatively correlated
random variables admit Chernoff bounds. To be precise, they only proved
that 1-negative correlation implies Chernoff bounds for the upper tail, but
it is not too difficult to show (see below) that their main argument works
for all bounds proven via Bernstein’s exponential moments method. In par-
ticular, for sums of 1-negatively correlated random variables we obtain all
Chernoff bounds for the upper tail that have been presented in this chapter
for independent random variables (as far as they can be applied to binary
random variables). We prove a slightly more general result, as this helps in
arguing that we can also work with upper bounds for the expectation instead
of the precise expectation. We then use a symmetry argument to argue that
0-negative correlation implies all lower tail bounds presented so far.

Theorem 1.10.23 (1-negative correlation implies upper tail bounds).
Let X1, . . . ,Xn be 1-negatively correlated binary random variables. Let
a1, . . . ,an, b1, . . . , bn ∈ R with ai ≤ bi for all i ∈ [1..n]. Let Y1, . . . ,Yn be ran-

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 65

dom variables with Pr[Yi = ai] = Pr[Xi = 0] and Pr[Yi = bi] = Pr[Xi = 1]. Let
Y =

∑n
i=1 Yi.

(a) If a1, . . . ,an, b1, . . . , bn ∈ [0,1], then Y satisfies the Chernoff bounds
given in (1.10.1) to (1.10.5), (1.10.7) to (1.10.9), (1.10.13), (1.10.17)
to (1.10.21), and (1.10.25) to (1.10.30), where in the latter we use
σ2 :=

∑n
i=1 Var[Yi].

(b) Without the restriction to [0,1] specified in (a), Y satisfies the Cher-
noff bound of (1.10.15) with ci := bi− ai and the bounds of (1.10.31)
to (1.10.34) with σ2 :=

∑n
i=1 Var[Yi].

Each of these results also holds when all occurrences of E[Y] are replaced by
µ+ for some µ+ ≥ E[Y].

Proof. Let X ′
1, . . . ,X ′

n be independent binary random variables such that for
each i ∈ [1..n], the random variables Xi and X ′

i are identically distributed.
Let ci := bi−ai for all i ∈ [1..n]. Note that Yi = ai +ciXi for all i ∈ [1..n]. Let
Y ′

i = ai + ciX
′
i. Let Y ′ =

∑n
i=1 Y ′

i .
We first show that the 1-negative correlation of the Xi implies

E[Y ℓ] ≤ E[(Y ′)ℓ] for all ℓ ∈ N0. There is nothing to show for ℓ = 0 and
ℓ = 1, so let ℓ ≥ 2. Since Y = (

∑n
i=1 ai) + (

∑n
i=1 ciXi), we have Y ℓ =∑ℓ

k=0
(ℓ

k

)
(
∑n

i=1 ai)ℓ−k(
∑n

i=1 ciXi)k. By linearity of expectation, it suffices
to show that E[(

∑n
i=1 ciXi)k] ≤ E[(

∑n
i=1 ciX

′
i)k]. We have (

∑n
i=1 ciXi)k =∑

(i1,...,ik)∈[1..n]k
∏k

j=1 cij Xij . Applying the definition of 1-negative correla-
tion to the set I = {i1, . . . , ik}, we compute

E

[k∏
j=1

cij Xij

]
=
(k∏

j=1
cij

)
Pr[∀j ∈ [1..k] : Xij = 1]

≤
(k∏

j=1
cij

)(∏
i∈I

Pr[Xi = 1]
)

=
(k∏

j=1
cij

)(∏
i∈I

Pr[X ′
i = 1]

)
= E

[k∏
j=1

cij X ′
ij

]
.

Consequently, by linearity of expectation, E[(
∑n

i=1 ciXi)k] ≤
E[(
∑n

i=1 ciX
′
i)k] for all k ∈ N, and thus E[Y ℓ]≤ E[(Y ′)ℓ].

We recall from Section 1.10.1.7 that essentially all large-deviation bounds
are proven via upper bounds on the exponential moment E[ehY] of the ran-
dom variable hY , where h > 0 is suitably chosen. Since the random variable
Y is bounded, by Fubini’s theorem we have

E[ehY] = E

[∞∑
ℓ=0

hℓY ℓ

ℓ!

]
=

∞∑
ℓ=0

hℓE[Y ℓ]
ℓ!

. (1.10.42)

66 Benjamin Doerr

Since E[Y ℓ]≤ E[(Y ′)ℓ], we have E[ehY]≤ E[ehY ′]. Consequently, we obtain
for Y all Chernoff bounds which we could prove with the classical methods
for Y ′.

It remains to show that we can also work with an upper bound µ+ ≥E[Y].
For this, note that when we apply the construction of Theorem 1.10.21 to
our random variables Yi, that is, we define Zi = Yi + γ(1−Yi) for a suitable
γ ∈ [0,1], then the resulting random variables Zi have the same properties as
the Yi, that is, there are a′

i and c′
i such that Zi = a′

i + c′
iXi. Consequently,

we have Pr[Y ≥ (1+δ)µ+]≤ Pr[Z ≥ (1+δ)µ+] = Pr[Z ≥ (1+δ)E[Z]] for the
sum Z =

∑n
i=1 Zi, and the last expression can bounded via the results we

have just proved. ⊓⊔

Theorem 1.10.24 (0-negative correlation implies lower tail bounds).
Let X1, . . . ,Xn be 0-negatively correlated binary random variables. Let
a1, . . . ,an, b1, . . . , bn ∈ R with ai ≤ bi for all i ∈ [1..n]. Let Y1, . . . ,Yn be ran-
dom variables with Pr[Yi = ai] = Pr[Xi = 0] and Pr[Yi = bi] = Pr[Xi = 1]. Let
Y =

∑n
i=1 Yi.

(a) If a1, . . . ,an, b1, . . . , bn ∈ [0,1], then Y satisfies the Chernoff bounds given
in (1.10.10) to (1.10.12), (1.10.14), (1.10.22) to (1.10.24), and those in
Corollary 1.10.13 with σ2 :=

∑n
i=1 Var[Yi].

(b) Without the restriction to [0,1] specified in (a), Y satisfies the Chernoff
bound of (1.10.16) with ci := bi− ai and those of the last paragraph of
Theorem 1.10.14 with σ2 :=

∑n
i=1 Var[Yi].

Each of these results also holds when all occurrences of E[Y] are replaced by
µ− for some µ− ≤ E[Y].

Proof. Let Ỹi := 1 − Yi. Then the Ỹi satisfy the assumptions of Theo-
rem 1.10.23 (with ãi = 1− bi, b̃i = 1− ai, and X̃i = 1−Xi; note that the
latter are 1-negatively correlated, since the Xi are 0-negatively correlated;
note further that ãi, b̃i ∈ [0,1] if ai, bi ∈ [0,1]). Hence Theorem 1.10.23 gives
the usual Chernoff bounds for the Ỹi. As in Section 1.10.1.2, these translate
into the estimates (1.10.10) to (1.10.12) and these imply (1.10.22) to (1.10.24).
The bound (1.10.13) for the Ỹi immediately translates to (1.10.14) for the Yi.
Finally, the results of Theorem 1.10.12 imply those of Corollary 1.10.13. All
these results are obviously weaker when E[Y] is replaced by some µ− ≤E[Y].

⊓⊔

1.10.2.3 Hypergeometric Distribution

It remains to point out some situations where we encounter negatively corre-
lated random variables. One typical situation (but by far not the only one)
is sampling without replacement, which leads to the hypergeometric distribu-
tion.

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 67

Say we choose n elements randomly from a given N -element set S without
replacement. For a given m-element subset T of S, we wonder how many of
its elements we have chosen. This random variable is said to be hypergeomet-
rically distributed with parameters N , n, and m.

More formally, let S be any N -element set. Let T ⊆ S have exactly m ele-
ments. Let U be a subset of S chosen uniformly from all n-element subsets of
S. Then X = |U ∩T | is a random variable with a hypergeometric distribution
(with parameters N , n, and m). By definition,

Pr[X = k] =
(m

k

)(N−m
n−k

)(N
n

)
for all k ∈ [max{0,n+m−N}..min{n,m}].

It is easy to see that E[X] = |U ||T |
|S| = mn

N : Enumerate T = {t1, . . . , tm} in an
arbitrary manner (before choosing U). For i = 1, . . . ,m, let Xi be the indicator
random variable for the event ti ∈ U . Clearly, Pr[Xi = 1] = |U |

|S| = n
N . Since

X =
∑m

i=1 Xi, we have E[X] = mn
N by linearity of expectation (Lemma 1.6.4).

It is also obvious that the Xi are not independent. If n < m and X1 =
. . . = Xn = 1, then we necessarily have Xi = 0 for i > n. Fortunately, however,
these dependencies are of the negative-correlation type. This is intuitively
clear, but also straightforward to prove.

Let I ⊆ [1..m], W = {ti | i ∈ I}, and w = |W |= |I|. Then Pr[∀i ∈ I : Xi =
1] = Pr[W ⊆ U]. Since U is uniformly chosen, it suffices to count the number
of U that contain W , which is

(|S\W |
|U\W |

)
, and to compare them with the total

number of possible U . Hence

Pr[W ⊆ U] =
(

N −w

n−w

)/(N

n

)
= n · . . . · (n−w +1)

N · . . . · (N −w +1)
<
(n

N

)w
=
∏
i∈I

Pr[Xi = 1].

In a similar fashion, we have

Pr[∀i ∈ I : Xi = 0] = Pr[U ∩W = ∅]

=
(

N −w

n

)/(N

n

)
= (N −n) . . .(N −n−w +1)

N .. .(N −w +1)

≤
(

N −n

N

)w

=
∏
i∈I

Pr[Xi = 0],

where we read
(N−w

n

)
= 0 when n > N −w.

68 Benjamin Doerr

Together with Theorems 1.10.23 and 1.10.24, we obtain the following the-
orem.

Theorem 1.10.25. Let N ∈N. Let S be some set of cardinality N ; for conve-
nience, let S = [1..N]. Let n≤N , and let U be a subset of S having cardinality
n uniformly chosen from all such subsets. For i ∈ [1..N], let Xi be the indi-
cator random variable for the event i ∈ U . Then X1, . . . ,XN are negatively
correlated.

Consequently, if X is a random variable having a hypergeometric distri-
bution with parameters N , n, and m, then the usual Chernoff bounds for
sums of n independent binary random variables (listed in Theorems 1.10.23
and 1.10.24) hold.

Note that for hypergeometric distributions we have symmetry in n and
m, that is, the hypergeometric distribution with parameters N , n, and m is
the same as the hypergeometric distribution with parameters N , m, and n.
Hence, for Chernoff bounds depending on the number of random variables,
for example those in Theorem 1.10.7, we can make this number min{n,m}
by interpreting the random experiment in the right fashion.

That the hypergeometric distribution satisfies the Chernoff bounds of The-
orem 1.10.7 has been attributed to Chvátal [14] in some recent publications,
but this is not correct. As Chvátal writes, the aim of his note was solely to
give an elementary proof of the fact that the hypergeometric distribution
satisfies the strongest Chernoff bound of Theorem 1.10.1 (which implies the
bounds of Theorem 1.10.7), whereas the result itself is from Hoeffding [54].

For a hypergeometric random variable X with parameters N , n, and m,
[3, Lemma 2] showed that if m < N

2e and z ≥ n
2 , then Pr[X = z] ≤ (2em

N)z.
With Theorem 1.10.25, we can use the usual Chernoff bound (1.10.18) and
obtain the stronger bound

Pr[X ≥ z]≤ ez−E[X]
(

E[X]
z

)z

≤
(

eE[X]
z

)z

=
(enm

zN

)z
, (1.10.43)

which is at most (2em
N)z for z ≥ n/2.

Theorem 1.10.25 can be extended to pointwise maxima of several families
such as (Xi) in Theorem 1.10.25 if these are independent. This result was
used in the analysis of a population-based genetic algorithm in [23], but might
be useful also in other areas of discrete algorithmics.

Lemma 1.10.26. Let k,N ∈ N. For all j ∈ [1..k], let nj ∈ [1..N]. Let S be
some set of cardinality N ; for convenience, let S = [1..N]. For all j ∈ [1..k],
let Uj be a subset of S having cardinality nj uniformly chosen from all such
subsets. Let the Uj be stochastically independent. For all i ∈ S, let Xi be the
indicator random variable for the event that i ∈ Uj for some j ∈ [1..k]. Then
the random variables X1, . . . ,XN are negatively correlated.

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 69

Note that the situation in the lemma above can be seen as sampling with
partial replacement. We sample a total of

∑
j nj elements, but we replace

the elements chosen after rounds n1,n1 + n2, . . . only. We expect that other
partial replacement scenarios will also lead to negatively correlated random
variables, and thus to the usual Chernoff bounds.

We recall that negative correlation can also be useful without Chernoff
bounds. For example, in Section 1.9 we used the lemma above to prove a
lower bound on the coupon collector time (or, equivalently, on the runtime
of the randomized local search heuristic on monotonic functions).

1.10.3 Chernoff Bounds for Functions of Independent
Variables, Martingales, and Bounds for
Maxima

So far, we have discussed tail bounds for random variables which can be writ-
ten as a sum of (more or less) independent random variables. Sometimes, the
random variable we are interested in is determined by the outcomes of many
independent random variables, but not simply as a sum of these. Neverthe-
less, if each of the independent random variables has only a limited influence
on the result, then bounds similar to those of Theorem 1.10.9 can be proven.
Such bounds can be found under the names of Azuma’s inequality, martingale
inequalities, and the method of bounded differences.

As far as possible, we shall try to avoid the use of martingales. The follow-
ing two bounds due to McDiarmid [70] need martingales in their proof, but
not in their statement.

Theorem 1.10.27 (method of bounded differences). Let X1, . . . ,Xn be
independent random variables taking values in the sets Ω1, . . . ,Ωn, respectively.
Let Ω := Ω1× . . .×Ωn. Let f : Ω→R. For all i ∈ [1..n] let ci > 0 be such that
for all ω,ω̄ ∈Ω we have that if for all j ̸= i, ωj = ω̄j , then |f(ω)−f(ω̄)| ≤ ci.

Let X = f(X1, . . . ,Xn). Then, for all λ≥ 0,

Pr[X ≥ E[X]+λ]≤ exp
(
− 2λ2∑n

i=1 c2
i

)
,

Pr[X ≤ E[X]−λ]≤ exp
(
− 2λ2∑n

i=1 c2
i

)
.

The version of Azuma’s inequality given above is due to McDiarmid [70]
and is stronger than the bound exp(−λ2/2

∑n
i=1 c2

i) given by several other
authors.

Theorem 1.10.27 has found numerous applications in discrete mathematics
and computer science, but only a few in the analysis of randomized search
heuristics (the only one we are aware of is [11]). All other analyses of random-

70 Benjamin Doerr

ized search heuristics that need Chernoff-type bounds for random variables
that are determined by independent random variables, but in a way other
than as a simple sum, have resorted to the use of martingales.

One reason for this might be that the bounded-differences assumption is
easily proven in discrete mathematics problems such as the analysis of random
graphs, whereas in algorithms the sequential nature of the use of randomness
makes it hard to argue that a particular random variable sampled now has
a bounded influence on the final result regardless of how we condition on all
future random variables. A more natural condition might be that the outcome
of the current random variable has only a limited influence on the expected
result determined by the future random variables. For this reason, we are
optimistic that the following result might become useful in the analysis of
randomized search heuristics. This result is a weak version of Theorem 3.7
in [70].

Theorem 1.10.28 (method of bounded conditional expectations).
Let X1, . . . ,Xn be independent random variables taking values in the sets
Ω1, . . . ,Ωn, respectively. Let Ω := Ω1× . . .×Ωn. Let f : Ω→R. For all i∈ [1..n]
let ci > 0 be such that for all ω1 ∈Ω1, . . . ,ωi−1 ∈Ωi−1 and all ωi, ω̄i ∈Ωi we
have

|E[f(ω1, . . . ,ωi−1,ωi,Xi+1, . . . ,Xn)]−E[f(ω1, . . . ,ωi−1, ω̄i,Xi+1, . . . ,Xn)]|
≤ ci.

Let X = f(X1, . . . ,Xn). Then, for all λ≥ 0,

Pr[X ≥ E[X]+λ]≤ exp
(
− 2λ2∑n

i=1 c2
i

)
,

Pr[X ≤ E[X]−λ]≤ exp
(
− 2λ2∑n

i=1 c2
i

)
.

Here is an example of how the new theorem can be helpful. The compact
genetic algorithm (cGA) without frequency boundaries maximizes a function
f : {0,1}n→ R as follows. There is a (hypothetical) population size K ∈ N,
which we assume to be an even integer. The cGA sets the initial frequency
vector τ (0) ∈ [0,1]n to τ (0) = (1

2 , . . . , 1
2). Then, in each iteration t = 1,2, . . .

it generates two search points x(t,1),x(t,2) ∈ {0,1}n randomly such that, in-
dependently for all j ∈ {1,2} and i ∈ [1..n], we have Pr[x(t,j)

i = 1] = τ
(t)
i .

If f(x(t,1)) < f(x(t,2)), then we swap the two variables, that is, we set
(x(t,1),x(t,2))← (x(t,2),x(t,1)). Finally, in this iteration, we update the fre-
quency vector by setting τ (t+1)← τ (t) + 1

K (x(t,1)−x(t,2)).
Let us analyze the behavior of the frequency τ

(t)
i of a neutral bit i ∈ [1..n],

that is, one that has property that f(x) = f(y) for all x and y which differ
only in the i-th bit.

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 71

Lemma 1.10.29. Let K be an even integer. Consider a run of the cGA with
hypothetical population size K on an objective function f : {0,1}n→R having
a neutral bit i. For all T ∈N, the probability that within the first T iterations
the frequency of the i-th bit has converged to one of the absorbing states 0
or 1 is at most 2exp

(
− K2

32T

)
.

Proof. To ease reading, let Xt := τ
(t)
i . We have X0 = 1

2 with probability one.
Once Xt is determined, we have

Pr[Xt+1 = Xt + 1
K] = Xt(1−Xt),

Pr[Xt+1 = Xt− 1
K] = Xt(1−Xt),

Pr[Xt+1 = Xt] = 1−2Xt(1−Xt).

In particular, we have E[Xt+1 |X0, . . . ,Xt] = E[Xt+1 |Xt] = Xt. By induction,
we have E[XT |Xt] = Xt for all T > t.

Our aim is to show that, with probability at least 1− 2exp
(
− K2

32T

)
,

XT has not yet reached to one of the absorbing states 0 and 1. We first
write the frequencies as results obtained from independent random variables.
For convenience, these will be continuous random variables, but it is easy
to see that we could have used discrete ones instead. For all t = 1,2, . . . , let
Rt be a random number uniformly distributed in the interval [0,1]. Define
Y0,Y1, . . . as follows. We have Y0 = 1

2 with probability one. For t ∈N0, we set

Pr[Yt+1 = Yt + 1
K] if Rt ≥ 1−Yt(1−Yt),

Pr[Yt+1 = Yt− 1
K] if Rt ≤ Yt(1−Yt),

Pr[Yt+1 = Yt] otherwise.

It is easy to see that (X0,X1, . . .) and (Y0,Y1, . . .) are identically distributed.
Note that YT is a function g of (R1, . . . ,RT). For concrete values r1, . . . , rt ∈
[0,1], we have E[g(r1, . . . , rt,Rt+1, . . . ,RT)] = E[YT | Yt] = Yt. Consequently,
for all rt ∈ [0,1], the two expectations E[g(r1, . . . , rt−1, rt,Rt+1, . . . ,RT)] and
E[g(r1, . . . , rt−1, rt,Rt+1, . . . ,RT)] are two possible outcomes of Yt given a
common value for Yt−1 (which is determined by r1, . . . , rt−1), and hence differ
by at most ct = 2

K . We can thus apply Theorem 1.10.28 as follows.

Pr[YT ∈ {0,1}] = Pr
[
|YT − 1

2 | ≥
1
2
]

= Pr
[
|g(R1, . . . ,RT)−E[g(R1, . . . ,RT)]| ≥ 1

2
]

≤ 2exp

(
−

(1
2)2

2T (2
K)2

)
= 2exp

(
− K2

32T

)
.

⊓⊔
Note that it is not obvious how to obtain this result with the clas-

sical method of bounded differences (Theorem 1.10.27). In particular,

72 Benjamin Doerr

the above construction does not satisfy the bounded-differences condition,
that is, there are values r1, . . . , rT and rt such that g(r1, . . . , rT) and
g(r1, . . . , rt−1, rt, rt+1, . . . , rT) differ by significantly more than 2

K . To see this,
consider the following example. Let ri = 1 for even i and ri = 1

4 for odd i. Then
g(r1, . . . , rT) = 1

2 for even T and g(r1, . . . , rT) = 1
2 −

1
K for odd T . However,

for all even T we have g(1
2 , r2, . . . , rT) = g(1

2 , r2, . . . , rT +1) = min{1, 1
2 + T

2 ·
1
K },

showing that a change in the first variable leads to a drastic change in the
g-values for larger T .

This example shows that our stochastic modeling of the process cannot
be analyzed via the method of bounded differences. We cannot rule out the
possibility that a different modeling might admit an analysis via the method
of bounded differences, but nevertheless this example suggests that Theo-
rem 1.10.28 is a useful tool in the theory of randomized search heuristics.

Without going into details (and, in particular, without defining the notion
of a martingale), we note that both Theorem 1.10.27 and Theorem 1.10.28 are
special cases of the following martingale result, which is often attributed to
Azuma [2] despite the fact that it had already been proposed by Hoeffding [54].
Readers familiar with martingales may find it more natural to use this result
rather than the previous two theorems in their work; however, it has to be
said that not all researchers in the theory of algorithms are familiar with
martingales.
Theorem 1.10.30 (Azuma–Hoeffding inequality). Let X0,X1, . . . ,Xn

be a martingale. Let c1, . . . , cn > 0 with |Xi −Xi−1| ≤ ci for all i ∈ [1..n].
Then, for any λ≥ 0,

Pr[Xn−X0 ≥ λ]≤ exp
(
− λ2

2
∑n

i=1 c2
i

)
.

This result has found several applications in the theory of randomized
search heuristics, for example, in [25, 40, 62].

We observe that the theorem above is a direct extension of Theorem 1.10.9
to martingales (note that the ci there are twice as large as here, which explains
the different location of the 2 in the bounds). In a similar vein, there are
martingale versions of most other Chernoff bounds presented in this chapter.
We refer to McDiarmid [70] for more details.

1.10.3.1 Tail Bounds for Maxima and Minima of Partial Sums

We end this section with a gem already contained in Hoeffding’s work. It
builds on the following elementary observation: if X0,X1, . . . ,Xn form a mar-
tingale, then Y0,Y1, . . . ,Yn defined as follows also form a martingale. Let λ∈R.
Let i ∈ [0..n] be minimal with Xi ≥ λ, if such an Xi exists, and i = n+1 oth-
erwise. Let Yj = Xj for j ≤ i and Yj = Xi for j > i. Then Yn ≥ λ if and
only if maxi∈[1..n] Xi ≥ λ. Since Y0, . . . ,Yn is a martingale with martingale

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 73

differences bounded at least as well as for X0, . . . ,Xn (and also all other vari-
ation measures at least as good as for X0, . . . ,Xn), all large-deviation bounds
provable for the martingale X0, . . . ,Xn via the Bernstein method are valid
also for Y0, . . . ,Yn, that is, for maxi∈[1..n] Xi. Since we have not introduced
martingales here, we omit the details and state only some implications of this
observation. The reader will find more details in [54, end of Section 2] and [70,
end of Section 3.5]. It seems that the authors of [54] and [70] do not see this
extension as very important (see also the comment at the end of Section 2
in [70]). We feel that this might be different for randomized search heuristics.
For example, to prove that a randomized search heuristic has at least some
optimization time T , we need to show that the distance of each of the first
T − 1 solutions from the optimum is positive, that is, that the minimum of
these differences is positive.

Theorem 1.10.31 (tail bounds for maxima and minima). Let
X1, . . . ,Xn be independent random variables. For all i ∈ [1..n], let Si =∑i

j=1 Xj . Assume that one of the results in Section 1.10.1 yields the tail
bound Pr[Sn ≥ E[Sn]+λ]≤ p. Then we also have

Pr[∃i ∈ [1..n] : Si ≥ E[Si]+λ]≤ p. (1.10.44)

In an analogous manner, each tail bound Pr[Sn ≤ E[Sn]−λ] ≤ p derivable
from Section 1.10.1 can be strengthened to Pr[∃i ∈ [1..n] : Si ≤E[Si]−λ]≤ p.

Note that if the Xi in the theorem are non-negative, then, trivially,
(1.10.44) implies the uniform bound

Pr[∃i ∈ [1..n] : Si ≥ E[Sn]+λ]≤ p. (1.10.45)

Note also that the deviation parameter λ does not scale with i. In particular,
a bound like Pr[∃i ∈ [1..n] : Si ≥ (1+ δ)E[Si]]≤ p cannot be derived.

1.10.4 Chernoff Bounds for Geometric Random
Variables

As is visible from Lemma 1.10.36 below, sums of independent geometric ran-
dom variables occur frequently in the analysis of randomized search heuris-
tics. Surprisingly, it was only in 2007 that a Chernoff-type bound was used to
analyze such sums in the theory of randomized search heuristics [31] (for sub-
sequent uses see, e.g., [4, 23, 32, 35, 104]). Even more surprisingly, Witt [102]
only recently proved good tail bounds for sums of geometric random vari-
ables having significantly different success probabilities. Note that geometric
random variables are unbounded. Hence the Chernoff bounds presented so
far cannot be applied directly.

74 Benjamin Doerr

We start this subsection with simple Chernoff bounds for sums of identi-
cally distributed geometric random variables, as these can be derived from the
Chernoff bounds for sums of independent 0,1 random variables discussed so
far. We remark that a sum X of n independent geometric distributions with
success probability p > 0 is closely related to the negative binomial distribu-
tion NB(n,1−p) with parameters n and 1−p: we have X ∼NB(n,1−p)+n.
Theorem 1.10.32. Let X1, . . . ,Xn be independent geometric random vari-
ables with common success probability p > 0. Let X :=

∑n
i=1 Xi and µ :=

E[X] = n
p .

(a) For all δ ≥ 0,

Pr[X ≥ (1+ δ)µ]≤ exp
(
−δ2

2
n−1
1+ δ

)
≤ exp

(
−1

4
min{δ2, δ}(n−1)

)
.

(1.10.46)

(b) For all 0≤ δ ≤ 1,

Pr[X ≤ (1− δ)µ]≤ (1− δ)n

(
(1− δ)(µ−n)
(1− δ)µ−n

)(1−δ)µ−n

(1.10.47)

≤ (1− δ)n exp(δn) (1.10.48)

≤ exp

(
− δ2n

2− 4
3δ

)
, (1.10.49)

where the first bound reads as pn for (1−δ)µ = n and as 0 for (1−δ)µ < n.
For 0≤ δ < 1 and λ≥ 0, we also have

Pr[X ≤ (1− δ)µ]≤ exp
(
−2δ2pn

1− δ

)
, (1.10.50)

Pr[X ≤ µ−λ]≤ exp
(
−2p3λ2

n

)
. (1.10.51)

The bounds (1.10.50) and (1.10.51) are interesting only for relatively large
values of p. Since part (a) has been proven in [4], we prove only (b). The main
idea in both cases is exploiting the natural relation between a sum of inde-
pendent identically distributed geometric random variables and a sequence
of Bernoulli events.
Proof. Let Z1,Z2, . . . be independent binary random variables with Pr[Zi =
1] = p for all i ∈ N. Let n ≤K ≤ n

p . Let YK =
∑K

i=1 Zi. Then X ≤K if and
only if YK ≥ n. Consequently, by Theorem 1.10.1,

Pr[X ≤K] = Pr[YK ≥ n]

= Pr
[
YK ≥

(
1+
(

n

Kp
−1
))

E[YK]
]

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 75

≤
(

Kp

n

)n(
K−Kp

K−n

)K−n

≤
(

Kp

n

)n

exp(n−Kp)

≤ exp

(
pλ2

2K + 2
3λ

)
,

where we have used the shorthand λ := µ−K for the absolute deviation.
From Theorem 1.10.7, we derive

Pr[X ≤K] = Pr[YK ≥ n]
= Pr[YK ≥ E[YK]+ (n−Kp)]

≤ exp
(
−2(n−Kp)2

K

)
= exp

(
−2p2λ2

µ−λ

)
≤ exp

(
−2p2λ2

µ

)
.

Replacing K by (1− δ)µ and λ by δµ in these equations gives the claim. ⊓⊔

When the geometric random variables have different success probabilities,
the following bounds can be employed.

Theorem 1.10.33. Let X1, . . . ,Xn be independent geometric random vari-
ables with success probabilities p1, . . . ,pn > 0. Let pmin := min{pi | i ∈ [1..n]}.
Let X :=

∑n
i=1 Xi and µ = E[X] =

∑n
i=1

1
pi

.

(a) For all δ ≥ 0,

Pr[X ≥ (1+ δ)µ]≤ 1
1+ δ

(1−pmin)µ(δ−ln(1+δ)) (1.10.52)

≤ exp(−pminµ(δ− ln(1+ δ))) (1.10.53)

≤
(

1+ δµpmin
n

)n

exp(−δµpmin) (1.10.54)

≤ exp

(
− (δµpmin)2

2n(1+ δµpmin
n)

)
. (1.10.55)

(b) For all 0≤ δ ≤ 1,

Pr[X ≤ (1− δ)µ]≤ (1− δ)pminµ exp(−δpminµ) (1.10.56)

≤ exp

(
−δ2µpmin

2− 4
3δ

)
(1.10.57)

≤ exp(−1
2δ2µpmin). (1.10.58)

76 Benjamin Doerr

The estimates (1.10.52) and (1.10.53) are from [60], the bound (1.10.54)
is from [89], and (1.10.55) follows from the previous bound by standard es-
timates. This last bound, when applied to identically distributed random
variables, is essentially the same as (1.10.46).

For the lower tail bounds, (1.10.56) from [60] is identical to (1.10.48) for
identically distributed variables. Hence (1.10.47) is the strongest estimate
for identically distributed geometric random variables. Equation (1.10.56)
gives (1.10.57) via the same estimate that gives (1.10.49) from (1.10.48). Es-
timate (1.10.58) appeared earlier in [89].

Overall, it remains surprising that such useful bounds have been proven
only relatively late and have not yet appeared in a scientific journal.

The bounds of Theorem 1.10.33 allow the geometric random variables
to have different success probabilities; however, the tail probability depends
only on the smallest of them. This is partially justified by the fact that
the corresponding geometric random variable has the largest variance, and
thus might be most detrimental to the desired strong concentration. If the
success probabilities vary significantly, however, then this result gives overly
pessimistic tail bounds, and the following result of Witt [102] can lead to
stronger estimates.

Theorem 1.10.34. Let X1, . . . ,Xn be independent geometric random vari-
ables with success probabilities p1, . . . ,pn > 0. Let X =

∑n
i=1 Xi, s =∑n

i=1(1
pi

)2, and pmin := min{pi | i ∈ [1..n]}. Then, for all λ≥ 0,

Pr[X ≥ E[X]+λ]≤ exp
(
−1

4
min

{
λ2

s
,λpmin

})
, (1.10.59)

Pr[X ≤ E[X]−λ]≤ exp
(
−λ2

2s

)
. (1.10.60)

In the analysis of randomized search heuristics, it appears that we often
encounter sums of independent geometrically distributed random variables
X1, . . . ,Xn with success probabilities pi proportional to i. For this case, the
following result from [23, Lemma 4] gives stronger tail bounds than the pre-
vious result. See Section 1.4.2 for the definition of the harmonic number Hn.

Theorem 1.10.35. Let X1, . . . ,Xn be independent geometric random vari-
ables with success probabilities p1, . . . ,pn. Assume that there is a number
C ≤ 1 such that pi ≥ C i

n for all i ∈ [1..n]. Let X =
∑n

i=1 Xi. Then

E[X]≤ 1
C nHn ≤ 1

C n(1+ lnn), (1.10.61)
Pr[X ≥ (1+ δ) 1

C n lnn]≤ n−δ for all δ ≥ 0. (1.10.62)

As announced in Section 1.8.2, we now present a few examples where the
existing literature gives only an upper bound on the expected runtime, but

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 77

where a closer look at the proofs easily gives more details about the distribu-
tion, which in particular allows one to obtain tail bounds on the runtime. We
note that similar results have previously (and before [20]) only been presented
for the (1+1) EA optimizing the LeadingOnes test function [35] and for
RLS optimizing the OneMax test function [102]. Zhou et al. [104] implicitly
gave several results of this type; however, the resulting runtime guarantees
are not optimal, owing to the use of an inferior Chernoff bound for geometric
random variables.

Lemma 1.10.36. (a) The runtime T of the (1+1) EA on the OneMax func-
tion is dominated by the independent sum

∑n
i=1 Geom(i

en) [47]. Hence
E[T]≤ enHn and Pr[T ≥ (1+ δ)en lnn]≤ n−δ for all δ ≥ 0.

(b) For any function f : {0,1}n → R, the runtime T of the (1+1) EA is
dominated by Geom(n−n) [47]. Hence E[T] ≤ nn and Pr[T ≥ γnn] ≤
(1−n−n)γnn ≤ e−γ for all γ ≥ 0.

(c) The runtime T of the (1+1) EA for finding Eulerian cycles in undirected
graphs using perfect matchings in the adjacency lists as the genotype and
using the edge-based mutation operator is dominated by the independent
sum

∑m/3
i=1 Geom(i

2em) [36]. Hence E[T] ≤ 2emHm/3 and Pr[T ≥ 2(1 +
δ)em ln m

3]≤ (m
3)−δ for all δ ≥ 0.

(d) The runtime of the (1+1) EA for sorting an array of length n by min-
imizing the number of inversions is dominated by the independent sum∑(n

2)
i=1 Geom(3i

4e(n
2)) [88]. Hence E[T]≤ 4e

3
(n

2
)
H(n

2) ≤
2e
3 n2(1+2lnn) and

Pr[T ≥ (1+ δ)4e
3 n2 lnn]≤

(n
2
)−δ.

Similarly, the runtime of the (1+1) EA using a tree-based representation
for the sorting problem [30] has a runtime satisfying T ⪯

∑(n
2)

i=1 Geom(1
2e).

Hence the expected optimization time is E[T] = 2e
(n

2
)

and we have the
tail bound Pr[T ≥ (1+δ)E[T]]≤ exp(−δ2n/(2+2δ)). This example shows
that a superior representation can not only improve the expected runtime,
but also lead to significantly lighter tails (negative exponential vs. inverse
polynomial).

(e) The runtime of the multi-criteria (1+1) EA for the single-source shortest-
path problem in a graph G can be described as follows. Let ℓ be such that
there is a shortest path from the source to any vertex having at most
ℓ edges. Then there are random variables Gij , i ∈ [1..ℓ], j ∈ [1..n− 1],
such that (i) Gij ∼Geom(1

en2) for all i ∈ [1..ℓ] and j ∈ [1..n−1], (ii) for
all j ∈ [1..n− 1], the variables G1j , . . . ,Gℓj are independent, and (iii) T

is dominated by max{
∑ℓ

i=1 Gij | j ∈ [1..n− 1]} [32, 88]. Consequently,
for δ = max{4ln(n−1)

ℓ−1 ,
√

4ln(n−1)
ℓ−1 } and T0 := (1 + δ) ℓ

p , we have E[T] ≤
(1+ 1

ln(n−1))T0 and Pr[T ≥ (1+ε)T0]≤ (n−1)−ε for all ε≥ 0.

Proof. We shall not show the domination statements, as these can be easily
derived from the original analyses cited in the theorem. Given the domina-

78 Benjamin Doerr

tion result, parts (a), (c), and (d) follow immediately from Theorem 1.10.35.
Part (b) follows directly from the law of the geometric distribution.

To prove part (e), let X1, . . . ,Xℓ be independent geometrically dis-
tributed random variables with parameter p = 1

en2 . Let X =
∑ℓ

i=1 Xi. Let

δ = max{4ln(n−1)
ℓ−1 ,

√
4ln(n−1)

ℓ−1 }. Then, by (1.10.46), Pr[X ≥ (1 + δ)E[X]] ≤

exp(−1
2

δ2

1+δ (ℓ− 1)) ≤ exp(−1
4 min{δ2, δ}(ℓ− 1)) ≤ exp(−1

4
4ln(n−1)

ℓ−1 (ℓ− 1)) =
1

n−1 . For all ε > 0, again by (1.10.46), we compute

Pr[X ≥ (1+ε)(1+ δ)E[X]]≤ exp
(
−1

2
(δ +ε+ δε)2

(1+ δ)(1+ε)
(ℓ−1)

)
≤ exp

(
−1

2
δ2(1+ε)2

(1+ δ)(1+ε)
(ℓ−1)

)
≤ exp

(
−1

2
δ2

1+ δ
(ℓ−1)

)1+ε

≤ (n−1)−(1+ε).

Let Y1, . . . ,Yn−1 be random variables with a distribution equal to that of X.
We do not make any assumptions about the correlation of the Yi; in particular,
they do not need to be independent. Let Y = max{Yi | i∈ [1..n−1]}, and recall
that the runtime T is dominated by Y . Let T0 = (1+δ)E[X] = (1+δ) ℓ

p . Then
Pr[Y ≥ (1+ε)T0]≤ (n−1)Pr[X ≥ (1+ε)T0]≤ (n−1)−ε by the union bound
(Lemma 1.5.1). By Corollary 1.6.2,

E[Y]≤
(

1+ 1
ln(n−1)

)
T0.

⊓⊔

We note that not all classical proofs reveal details about the distribution.
For results obtained via random walk arguments, for example, the optimiza-
tion of the short path function SPCn [57], monotone polynomials [98], or ver-
tex covers on path-like graphs [77], as well as for results proven via additive
drift [53], the proofs often give little information about the runtime distribu-
tion (an exception is the analysis of the needle function and the OneMax
function in [50]).

For results obtained via the average weight decrease method [75] or via
multiplicative drift analysis [38], the proofs also do not give information about
the runtime distribution. However, the probabilistic runtime bound of type
Pr[T ≥ T0 + λ] ≤ (1− δ)λ obtained from the tail bound in [29] implies that
the runtime is dominated by T ⪯ T0−1+Geom(1− δ).

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 79

1.10.5 Tail Bounds for the Binomial Distribution

For binomially distributed random variables, tail bounds exist which are
slightly stronger than the bounds for general sums of independent 0,1 ran-
dom variables. The difference are small, but since they have been used in the
analysis of randomized search heuristics, we briefly describe them here.

In this section, let X always be a binomially distributed random variable
with parameters n and p, that is, X =

∑n
i=1 Xi with independent Xi satis-

fying Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p. The following estimate seems
well known (e.g., it was used in [56] without proof or reference). Gießen and
Witt [51, Lemma 3] gave an elementary proof via estimates of binomial coef-
ficients and the binomial identity. We find the proof below more intuitive.

Lemma 1.10.37. Let X ∼ Bin(n,p). Let k ∈ [0..n]. Then

Pr[X ≥ k]≤
(

n

k

)
pk.

Proof. For all T ⊆ [1..n] with |T | = k, let AT be the event that Xi = 1 for
all i ∈ T . Clearly, Pr[AT] = pk. The event “X ≥ k” is the union of the events
AT , with T as above. Hence Pr[X ≥ k] ≤

∑
T Pr[AT] =

(n
k

)
pk by the union

bound (Lemma 1.5.1). ⊓⊔

When the binomial coefficient is estimated by
(n

k

)
≤ (en

k)k, which is
often an appropriate way to derive more understandable expressions, the
above bound reverts to (1.10.7), a slightly weaker version of the classical
multiplicative bound (1.10.2). Since we are not aware of an application of
Lemma 1.10.37 that does not estimate the binomial coefficient in this way,
its main value might be its simplicity.

The following tail bound for the binomial distribution was shown by
Klar [61], again with elementary arguments. In many cases, it is significantly
stronger than Lemma 1.10.37. However, again we do not see an example
where this tail bound would have improved an existing analysis of a random-
ized search heuristic.

Lemma 1.10.38. Let X ∼ Bin(n,p) and k ∈ [np..n]. Then

Pr[X ≥ k]≤ (k +1)(1−p)
k +1− (n+1)p

Pr[X = k].

Note that, trivially, Pr[X = k]≤ Pr[X ≥ k], so it is immediately clear that
this estimate is quite tight (the gap is at most the factor (k+1)(1−p)

k+1−(n+1)p). With
elementary arguments, Lemma 1.10.38 gives the slightly weaker estimate

Pr[X ≥ k]≤ k−kp

k−np
Pr[X = k], (1.10.63)

80 Benjamin Doerr

which has appeared also in [49, equation (VI.3.4)]. For p = 1
n , the typical

mutation rate in standard bit mutation, Lemma 1.10.38 gives

Pr[X ≥ k]≤ k +1
k

Pr[X = k]. (1.10.64)

Writing Lemma 1.10.37 in the equivalent form Pr[X ≥ k]≤ (1
1−p)n−k Pr[X =

k] and noting that (1
1−p)n−k ≥ exp(p(n− k)), we see that in many cases

Lemma 1.10.38 gives substantially better estimates.
Finally, we mention the following estimates for the probability function of

the binomial distribution stemming from [8]. By summing over all values for
k′ ≥ k, upper and lower bounds for tail probabilities can be be derived.

Theorem 1.10.39. Let X ∼ Bin(n,p) with np ≥ 1. Let h > 0 such that k =
np+h ∈ N. Let q = 1−p.

(a) If hqn/3≥ 1, then

Pr[X = k] <
1√

2πpqn
exp

(
− h2

2pqn
+ h

qn
+ h3

p2n2

)
.

(b) If k < n, then

Pr[X = k]

>
1√

2πpqn
exp

(
− h2

2pqn
− h3

2q2n2 −
h4

3p3n3 −
h

2pn
− 1

12k
− 1

12(n−k)

)
.

References

[1] Antipov, D., Doerr, B., Fang, J., Hetet, T.: Runtime analysis for the (µ+
λ) EA optimizing OneMax. In: Genetic and Evolutionary Computation
Conference, GECCO 2018, pp. 1459–1466. ACM (2018)

[2] Azuma, K.: Weighted sums of certain dependent variables. Tohoku
Mathematical Journal 19, 357–367 (1967)

[3] Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity
of parallel search. In: Parallel Problem Solving from Nature, PPSN
2014, pp. 892–901. Springer (2014)

[4] Baswana, S., Biswas, S., Doerr, B., Friedrich, T., Kurur, P.P., Neumann,
F.: Computing single source shortest paths using single-objective fitness.
In: 10th Workshop on Foundations of Genetic Algorithms, FOGA 2009,
pp. 59–66. ACM (2009)

[5] Bennett, G.: Probability inequalities for the sum of independent ran-
dom variables. Journal of the American Statistical Association 57,
33–45 (1962)

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 81

[6] Bernstein, S.N.: On a modification of Chebyshev’s inequality and of the
error formula of Laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math. 1
4, 38–49 (1924)

[7] Bienaymé, I.J.: Considérations à l’appui de la découverte de Laplace.
Comptes Rendus de l’Académie des Sciences 37, 309–324 (1853)

[8] Bollobás, B.: Random Graphs. Cambridge University Press (2001)
[9] Borisovsky, P.A., Eremeev, A.V.: Comparing evolutionary algorithms

to the (1+1)-EA. Theoretical Computer Science 403, 33–41 (2008)
[10] Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mu-

tation rates for the LeadingOnes problem. In: Parallel Problem Solving
from Nature, PPSN 2010, pp. 1–10. Springer (2010)

[11] Buzdalov, M., Doerr, B.: Runtime analysis of the (1+(λ,λ)) genetic al-
gorithm on random satisfiable 3-CNF formulas. In: Genetic and Evolu-
tionary Computation Conference, GECCO 2017, pp. 1343–1350. ACM
(2017)

[12] Buzdalov, M., Doerr, B., Kever, M.: The unrestricted black-box com-
plexity of jump functions. Evolutionary Computation 24, 719–744
(2016)

[13] Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothe-
sis based on the sum of observations. Annals of Mathematical Statistics
23, 493–507 (1952)

[14] Chvátal, V.: The tail of the hypergeometric distribution. Discrete Math-
ematics 25, 285–287 (1979)

[15] Corus, D., Dang, D., Eremeev, A.V., Lehre, P.K.: Level-based analysis
of genetic algorithms and other search processes. IEEE Transactions
on Evolutionary Computation 22, 707–719 (2018)

[16] Dang, D., Lehre, P.K.: Simplified runtime analysis of estimation of
distribution algorithms. In: Genetic and Evolutionary Computation
Conference, GECCO 2015, pp. 513–518. ACM (2015)

[17] Dang, D.C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist
populations. In: Parallel Problem Solving from Nature, PPSN 2016, pp.
803–813. Springer (2016)

[18] Doerr, B.: Analyzing randomized search heuristics: Tools from prob-
ability theory. In: A. Auger, B. Doerr (eds.) Theory of Randomized
Search Heuristics, pp. 1–20. World Scientific (2011)

[19] Doerr, B.: A lower bound for the discrepancy of a random point set.
Journal of Complexity 30, 16–20 (2014)

[20] Doerr, B.: Better runtime guarantees via stochastic domination. In:
Evolutionary Computation in Combinatorial Optimization, EvoCOP
2018, pp. 1–17. Springer (2018)

[21] Doerr, B.: An elementary analysis of the probability that a binomial
random variable exceeds its expectation. Statistics and Probability
Letters 139, 67–74 (2018)

[22] Doerr, B., Doerr, C.: The impact of random initialization on the run-
time of randomized search heuristics. Algorithmica 75, 529–553 (2016)

82 Benjamin Doerr

[23] Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter
choices for the (1 + (λ,λ)) genetic algorithm. Algorithmica 80, 1658–
1709 (2018)

[24] Doerr, B., Doerr, C., Yang, J.: k-bit mutation with self-adjusting k
outperforms standard bit mutation. In: Parallel Problem Solving from
Nature, PPSN 2016, pp. 824–834. Springer (2016)

[25] Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise
black-box analysis. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2016, pp. 1123–1130. ACM (2016)

[26] Doerr, B., Fouz, M., Witt, C.: Quasirandom evolutionary algorithms.
In: Genetic and Evolutionary Computation Conference, GECCO 2010,
pp. 1457–1464. ACM (2010)

[27] Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating
functions and variable drift. In: Genetic and Evolutionary Computation
Conference, GECCO 2011, pp. 2083–2090. ACM (2011)

[28] Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1+λ) evolutionary
algorithm with self-adjusting mutation rate. Algorithmica 81, 593–631
(2019)

[29] Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65,
224–250 (2013)

[30] Doerr, B., Happ, E.: Directed trees: A powerful representation for sort-
ing and ordering problems. In: Congress on Evolutionary Computation,
CEC 2008, pp. 3606–3613. IEEE (2008)

[31] Doerr, B., Happ, E., Klein, C.: A tight bound for the (1 + 1)-EA for
the single source shortest path problem. In: Congress on Evolutionary
Computation, CEC 2007, pp. 1890–1895. IEEE (2007)

[32] Doerr, B., Happ, E., Klein, C.: Tight analysis of the (1+1)-EA for the
single source shortest path problem. Evolutionary Computation 19,
673–691 (2011)

[33] Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in
evolutionary computation. Theoretical Computer Science 425, 17–33
(2012)

[34] Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation
rate matters even when optimizing monotone functions. Evolutionary
Computation 21, 1–21 (2013)

[35] Doerr, B., Jansen, T., Witt, C., Zarges, C.: A method to derive fixed
budget results from expected optimisation times. In: Genetic and Evolu-
tionary Computation Conference, GECCO 2013, pp. 1581–1588. ACM
(2013)

[36] Doerr, B., Johannsen, D.: Adjacency list matchings: an ideal genotype
for cycle covers. In: Genetic and Evolutionary Computation Conference,
GECCO 2007, pp. 1203–1210. ACM (2007)

[37] Doerr, B., Johannsen, D.: Edge-based representation beats vertex-
based representation in shortest path problems. In: Genetic and Evo-

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 83

lutionary Computation Conference, GECCO 2010, pp. 759–766. ACM
(2010)

[38] Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Al-
gorithmica 64, 673–697 (2012)

[39] Doerr, B., Kodric, B., Voigt, M.: Lower bounds for the runtime of a
global multi-objective evolutionary algorithm. In: Congress on Evolu-
tionary Computation, CEC 2013, pp. 432–439. IEEE (2013)

[40] Doerr, B., Künnemann, M.: Optimizing linear functions with the (1+λ)
evolutionary algorithm—different asymptotic runtimes for different in-
stances. Theoretical Computer Science 561, 3–23 (2015)

[41] Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic al-
gorithms. In: Genetic and Evolutionary Computation Conference,
GECCO 2017, pp. 777–784. ACM (2017)

[42] Doerr, B., Sudholt, D., Witt, C.: When do evolutionary algorithms
optimize separable functions in parallel? In: Foundations of Genetic
Algorithms, FOGA 2013, pp. 48–59. ACM (2013)

[43] Doerr, B., Winzen, C.: Ranking-based black-box complexity. Algorith-
mica 68, 571–609 (2014)

[44] Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mu-
tation rates. In: Genetic and Evolutionary Computation Conference,
GECCO 2018, pp. 1475–1482. ACM (2018)

[45] Droste, S.: Analysis of the (1+1) EA for a dynamically bitwise chang-
ing OneMax. In: Genetic and Evolutionary Computation Conference,
GECCO 2003, pp. 909–921. Springer (2003)

[46] Droste, S.: Analysis of the (1+1) EA for a noisy OneMax. In: Genetic
and Evolutionary Computation Conference, GECCO 2004, pp. 1088–
1099. Springer (2004)

[47] Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolu-
tionary algorithm. Theoretical Computer Science 276, 51–81 (2002)

[48] Feige, U.: On sums of independent random variables with unbounded
variance and estimating the average degree in a graph. SIAM Journal
of Computing 35, 964–984 (2006)

[49] Feller, W.: An Introduction to Probability Theory and Its Applications,
vol. I, third edn. Wiley (1968)

[50] Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for bi-
nary mutations. Evolutionary Computation 7, 173–203 (1999)

[51] Gießen, C., Witt, C.: The interplay of population size and mutation
probability in the (1 + λ) EA on OneMax. Algorithmica 78, 587–609
(2017)

[52] Greenberg, S., Mohri, M.: Tight lower bound on the probability of a
binomial exceeding its expectation. Statistics and Probability Letters
86, 91–98 (2014)

[53] He, J., Yao, X.: Drift analysis and average time complexity of evolu-
tionary algorithms. Artificial Intelligence 127, 51–81 (2001)

84 Benjamin Doerr

[54] Hoeffding, W.: Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association 58, 13–30
(1963)

[55] Hwang, H., Panholzer, A., Rolin, N., Tsai, T., Chen, W.: Probabilistic
analysis of the (1+1)-evolutionary algorithm. Evolutionary Computa-
tion 26, 299–345 (2018)

[56] Jansen, T., Jong, K.A.D., Wegener, I.: On the choice of the offspring
population size in evolutionary algorithms. Evolutionary Computation
13, 413–440 (2005)

[57] Jansen, T., Wegener, I.: Evolutionary algorithms - how to cope with
plateaus of constant fitness and when to reject strings of the same
fitness. IEEE Transactions on Evolutionary Computation 5, 589–599
(2001)

[58] Jansen, T., Wegener, I.: On the analysis of a dynamic evolutionary
algorithm. Journal of Discrete Algorithms 4, 181–199 (2006)

[59] Jansen, T., Zarges, C.: On benefits and drawbacks of aging strategies
for randomized search heuristics. Theoretical Computer Science 412,
543–559 (2011)

[60] Janson, S.: Tail bounds for sums of geometric and exponential variables.
ArXiv e-prints arXiv:1709.08157 (2017)

[61] Klar, B.: Bounds on tail probabilities of discrete distributions. Proba-
bility in the Engineering and Informational Sciences 14, 161–171 (2000)

[62] Kötzing, T.: Concentration of first hitting times under additive drift.
Algorithmica 75, 490–506 (2016)

[63] Krejca, M.S., Witt, C.: Lower bounds on the run time of the univari-
ate marginal distribution algorithm on OneMax. In: Foundations of
Genetic Algorithms, FOGA 2017, pp. 65–79. ACM (2017)

[64] de Perthuis de Laillevault, A., Doerr, B., Doerr, C.: Money for nothing:
Speeding up evolutionary algorithms through better initialization. In:
Genetic and Evolutionary Computation Conference, GECCO 2015, pp.
815–822. ACM (2015)

[65] Lehre, P.K., Nguyen, P.T.H.: Improved runtime bounds for the univari-
ate marginal distribution algorithm via anti-concentration. In: Genetic
and Evolutionary Computation Conference, GECCO 2017, pp. 1383–
1390. ACM (2017)

[66] Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algo-
rithmica 64, 623–642 (2012)

[67] Lehre, P.K., Witt, C.: Concentrated hitting times of randomized search
heuristics with variable drift. In: 25th International Symposium on Al-
gorithms and Computation, ISAAC 2014, pp. 686–697. Springer (2014)

[68] Lehre, P.K., Yao, X.: On the impact of mutation-selection balance on
the runtime of evolutionary algorithms. IEEE Transactions on Evolu-
tionary Computation 16, 225–241 (2012)

[69] Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of
generalised selection hyper-heuristics for pseudo-boolean optimisation.

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 85

In: Genetic and Evolutionary Computation Conference, GECCO 2017,
pp. 849–856. ACM (2017)

[70] McDiarmid, C.: Concentration. In: Probabilistic Methods for Algorith-
mic Discrete Mathematics, vol. 16, pp. 195–248. Springer, Berlin (1998)

[71] Mitzenmacher, M., Upfal, E.: Probability and Computing—
Randomized Algorithms and Probabilistic Analysis. Cambridge
University Press (2005)

[72] Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and
Risks. Wiley (2002)

[73] Nagaev, S.V.: Lower bounds on large deviation probabilities for sums
of independent random variables. Theory of Probability and Its Appli-
cations 46, 79–102 (2001)

[74] Neumann, F., Sudholt, D., Witt, C.: A few ants are enough: ACO
with iteration-best update. In: Genetic and Evolutionary Computation
Conference, GECCO 2010, pp. 63–70. ACM (2010)

[75] Neumann, F., Wegener, I.: Randomized local search, evolutionary al-
gorithms, and the minimum spanning tree problem. Theoretical Com-
puter Science 378, 32–40 (2007)

[76] Neumann, F., Witt, C.: Runtime analysis of a simple ant colony opti-
mization algorithm. Algorithmica 54, 243–255 (2009)

[77] Oliveto, P.S., He, J., Yao, X.: Analysis of the (1+1)-EA for finding
approximate solutions to vertex cover problems. IEEE Transactions on
Evolutionary Computation 13, 1006–1029 (2009)

[78] Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-
based mutation - combining exploration and exploitation. In: Congress
on Evolutionary Computation, CEC 2009, pp. 1455–1462. IEEE (2009)

[79] Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower
bounds in evolutionary computation. Algorithmica 59, 369–386 (2011)

[80] Oliveto, P.S., Witt, C.: Erratum: Simplified drift analysis for proving
lower bounds in evolutionary computation. CoRR abs/1211.7184
(2012)

[81] Oliveto, P.S., Witt, C.: Improved time complexity analysis of the simple
genetic algorithm. Theoretical Computer Science 605, 21–41 (2015)

[82] Panconesi, A., Srinivasan, A.: Randomized distributed edge coloring
via an extension of the Chernoff–Hoeffding bounds. SIAM Journal on
Computing 26, 350–368 (1997)

[83] Pelekis, C., Ramon, J.: A lower bound on the probability that a bino-
mial random variable is exceeding its mean. Statistics and Probability
Letters 119, 305–309 (2016)

[84] Prokhorov, Y.: Convergence of random processes and limit theorems
in probability theory. Theory of Probability and Its Applications 1,
157–214 (1956)

[85] Rigollet, P., Tong, X.: Neyman-Pearson classification, convexity and
stochastic constraints. Journal of Machine Learning Research 12, 2831–
2855 (2011)

86 Benjamin Doerr

[86] Robbins, H.: A remark on Stirling’s formula. American Mathematical
Monthly 62, 26–29 (1955)

[87] Rowe, J.E., Sudholt, D.: The choice of the offspring population size in
the (1, λ) evolutionary algorithm. Theoretical Computer Science 545,
20–38 (2014)

[88] Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary
algorithms on sorting and shortest paths problems. Journal of Mathe-
matical Modelling and Algorithms 3, 349–366 (2004)

[89] Scheideler, C.: Probabilistic Methods for Coordination Problems. Uni-
versity of Paderborn (2000). Habilitation thesis. Available at http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.1319

[90] Slud, E.V.: Distribution inequalities for the binomial law. Annals of
Probability 5, 404–412 (1977)

[91] Sudholt, D.: The impact of parametrization in memetic evolutionary
algorithms. Theoretical Computer Science 410, 2511–2528 (2009)

[92] Sudholt, D.: A new method for lower bounds on the running time of
evolutionary algorithms. IEEE Transactions on Evolutionary Compu-
tation 17, 418–435 (2013)

[93] Sudholt, D., Thyssen, C.: A simple ant colony optimizer for stochastic
shortest path problems. Algorithmica 64, 643–672 (2012)

[94] Sudholt, D., Witt, C.: Update strength in EDAs and ACO: how to
avoid genetic drift. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2016, pp. 61–68. ACM (2016). Extended version CoRR
abs/1607.04063

[95] Tchebichef, P.: Des valeurs moyennes. Journal de mathématiques pures
et appliquées, série 2 12, 177–184 (1867)

[96] Tchebichef, P.: Sur les valeurs limites des intégrales. Journal de math-
ématiques pures et appliquées, série 2 19, 157–160 (1874)

[97] Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Interna-
tional Colloquium on Automata, Languages and Programming, ICALP
2001, pp. 64–78. Springer (2001)

[98] Wegener, I., Witt, C.: On the optimization of monotone polynomials
by simple randomized search heuristics. Combinatorics, Probability &
Computing 14, 225–247 (2005)

[99] Witt, C.: Runtime analysis of the (µ + 1) EA on simple pseudo-Boolean
functions. Evolutionary Computation 14, 65–86 (2006)

[100] Witt, C.: Population size versus runtime of a simple evolutionary algo-
rithm. Theoretical Computer Science 403, 104–120 (2008)

[101] Witt, C.: Tight bounds on the optimization time of a randomized search
heuristic on linear functions. Combinatorics, Probability & Computing
22, 294–318 (2013)

[102] Witt, C.: Fitness levels with tail bounds for the analysis of randomized
search heuristics. Information Processing Letters 114, 38–41 (2014)

[103] Witt, C.: Upper bounds on the running time of the univariate marginal
distribution algorithm on OneMax. Algorithmica 81, 632–667 (2019)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.1319
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.1319

1 Probabilistic Tools for the Analysis of Randomized Optimization Heuristics 87

[104] Zhou, D., Luo, D., Lu, R., Han, Z.: The use of tail inequalities on the
probable computational time of randomized search heuristics. Theoret-
ical Computer Science 436, 106–117 (2012)

Chapter 2
Drift Analysis

Johannes Lengler

Abstract Drift analysis is one of the major tools for analysing evolutionary
algorithms and nature-inspired search heuristics. In this chapter we give an
introduction to drift analysis and give some examples of how to use it for the
analysis of evolutionary algorithms.

2.1 Introduction

Drift analysis goes back to the seminal paper of Hajek [37], and has since
become ubiquitous in the analysis of evolutionary algorithms (EAs). Google
Scholar lists more than 100,000 hits for the phrases ‘Drift’ and ‘Evolutionary
Algorithm’, so a comprehensive review of all applications or even just all
existing drift theorems is far beyond the scope of this chapter. Instead, the
chapter serves two purposes.

Firstly, it provides a self-contained introduction to drift analysis (Sec-
tion 2.3), which has so far been absent in the literature.1 This introduction
is suitable for graduate students and for theory-affine researchers who have
not yet encountered drift analysis. This first part of the chapter will contain
illustrative examples, and will discuss in detail the different requirements of
the most basic drift theorems, specifically on additive drift, variable drift and
multiplicative drift. Counterexamples are given to point out when some drift
theorems are not applicable or give poor results.

Secondly, Section 2.4 provides an overview of the most important recent
developments in drift analysis, including lower and tail bounds, weak drift,
negative drift, and population drift. This section is much more concise, and
may serve also as a quick reference for the expert reader.

Johannes Lengler
Department of Computer Science, ETH Zürich, Switzerland
1 A briefer introduction can be found in [51].

89

90 Johannes Lengler

2.2 Basics of Drift Analysis

2.2.1 Motivation

To analyse the runtime of an evolutionary algorithm (or, more generally, any
randomised algorithm), one of the most common and successful approaches
consists of the following three steps.

1. Identify a quantity Xt, the potential (also called the drift function or dis-
tance function), that adequately measures the progress that the algorithm
has made after t steps.

2. For any value of Xt, understand the nature of the random variable Xt−
Xt+1, the one-step change of the potential.

3. Translate the data from step 2 into information about the runtime T of
the algorithm, i.e.the number of steps until the algorithm achieves its goal.

Drift analysis is concerned with step 3. Generally, good drift theorems
require as little information as possible about the potential Xt+1, and give
as much information as possible about T . In the basic theorems, we only
require (bounds on) the expectation E[Xt−Xt+1 |Xt = s] for all s, which is
called the drift, in order to derive (bounds on) the expectation E[T]. Drift
analysis has become a successful theory because the framework above is very
general, and good tools for step 3 exist, which apply to a multitude of situ-
ations. In contrast, steps 1 and 2 often do not generalise from one problem
to another. Frequently, step 1 is the part of a runtime analysis that carries
the key insight, and it usually requires much more ingenuity than the other
steps. On the other hand, step 2, the analysis of Xt−Xt+1, requires arguably
less insight. However, step 2 is usually the most lengthy and technical part
of a runtime analysis. Therefore, the complexity of a proof can often be sub-
stantially reduced if only some basic information such as the expectation
E[Xt−Xt+1 |Xt = x] is needed in step 2.

For evolutionary algorithms, a natural candidate for the potential Xt is
the fitness f(x(t)) of the best individual in the current population, especially
so if the population consists only of a single individual, as for example in
(1+1) EAs. In a sense, this fitness measures the ‘progress’ up to time t, since
it would correspond exactly to the quality of the output if the algorithm
terminated with this generation. However, it is not necessarily the best choice
to measure the progress that the algorithm has made towards finding a global
optimum. For example, consider the linear fitness function2 f : {0,1}n with
f(x) = (n− 1) ·x1 +

∑n
i=2 xi, which puts a very large emphasis on the first

bit. The optimum (for maximisation) is the string xOPT = (1, . . . ,1), but the
two strings x1 = (1,0,0, . . . ,0) and x2 = (0,1,1, . . . ,1) have the same fitness
f(x1) = f(x2) = n−1. However, the string x2 is much more similar to xOPT

2 We follow the standard convention that for an n-dimensional vector x, we denote its
components by x1, . . . ,xn.

2 Drift Analysis 91

than x1 is, so we should choose a potential that assigns a higher rating to
x2 than to x1. We will see later (Example 2.3.12) some good choices for the
potential in this example.

Historically, before drift analysis was fully developed in the EA community,
it was preceded by the fitness level method [74]. In retrospect this method may
be regarded as a special case of the variable drift theorem, which we will intro-
duce in Section 2.3.2. Likewise, the method of expected weight decrease [64]
may be regarded as a predecessor of the multiplicative drift theorem, pre-
sented in Section 2.3.3. It is fair to say that the development of drift analysis
has boosted our understanding of evolutionary algorithms, either by simpli-
fying existing results, by achieving greater precision, or as a means to obtain
qualitatively new results that might not have been achievable with the old
techniques. For example, the original proof by Droste, Jansen, and Wegener
that the (1+1) EA takes time O(n logn) on all linear functions needed 7
pages [26], while Doerr, Johannsen, and Winzen could reduce the proof to a
single page [18]. To obtain the leading constant with the fitness level method
would have been quite challenging and perhaps out of reach. With drift ana-
lysis, in a groundbreaking paper, Witt [75] could derive the leading constant
not only for the standard mutation rate 1/n but for any mutation rate c/n,
where c is a constant, in a proof of 2–3 pages!

2.2.2 General Set-Up

Throughout this chapter, we will assume that (Xt)t≥0 is a sequence of non-
negative random variables with a finite state space S ⊆ R+

0 such that 0 ∈ S.
We will denote the minimum positive state by smin := min(S \ {0}). The
stopping time, or hitting time of 0, of (Xt)t≥0 is defined as the smallest t such
that Xt = 0. We are generally interested in the drift ∆t(s) := E[Xt−Xt+1 |
Xt = s], where t≥ 0 and s ∈ S.

As with all conditional expectations, ∆t(s) is not well-defined if Pr[Xt =
s] = 0. So in other words, ∆t(s) is undefined for situations that never occur.
Obviously, this is not a practical issue, and it is convenient (and common in
the community) to be sloppy about such cases. So we will use phrases such
as ‘∆t(s)≤ 1 for all t≥ 0’ as a shorthand for ‘∆t(s)≤ 1 for all t≥ 0 for which
the conditional expectation ∆t(s) is well-defined’.

In Section 2.4 we will often need to work with pointwise drift and filtrations,
i.e.we need to condition on the complete history (or at least the current state)
of the algorithm, instead of just conditioning on the value of Xt. In these
cases, we will denote the filtration associated with the algorithm’s history
up to time t by Ft. Moreover, tail bounds will be formulated for a fixed
initial search point X0 = s0. For details and an explanation of the technical
terms ‘pointwise drift’ and ‘filtration’, see the corresponding paragraph in
Section 2.2.3 below.

92 Johannes Lengler

Throughout the chapter, f will denote a fitness function to be optimised,
either maximised or minimised. For a (1+λ) algorithm, we will use the con-
vention that x(t) is the search point after t generations.

2.2.3 Variants

In the literature, terminology may vary between different authors, and there
are often slightly different set-ups considered. We highlight some variants
which occur frequently. A reader who is new to drift analysis may skip this
section on first reading.
1. Signs. We consider the change Xt−Xt+1. In the literature, the difference

is sometimes considered with opposite signs, Xt+1−Xt, which is arguably
a more natural choice. However, since we consider drift towards zero, with
our choice the drift is usually positive instead of negative. Moreover, our
choice is more consistent with the established term ‘negative drift’, which
refers to a drift that points away from the target.

2. Markov chains. Instead of any sequence of random variables, the sequence
Xt is sometimes assumed to be a Markov chain, i.e. the state Xt should
completely determine the distribution of Xt+1. While this is a mathemat-
ically appealing scenario, it usually does not apply in the context of evo-
lutionary algorithms. For instance, in the example in Section 2.2.1 above,
the information Xt = n−1 would tell us that the current fitness is n−1,
but the two search points x1 and x2 differ in nature. Thus, the subsequent
trajectory of search points depends on more information than is contained
in Xt, and so do the subsequent potentials Xt+1,Xt+2, So, even in
this very simple example, we do not have a Markov chain.
There are several papers on the theory of EAs which ignore this point,

either accidentally or perhaps consciously for the sake of exposition, since
Markov chains are an easily accessible concept. These papers contain drift
theorems for a Markov chain Xt, but use them for runtime analyses in
which Xt is not a Markov chain. So, technically speaking, the proofs are
not correct. However, this is a purely technical issue: since the Markov
property is not really needed for drift theorems, the results derived are still
correct. An alternative was used in [54], where the authors assumed an
underlying Markov process Yt with arbitrary state space S, and a function
α : S → R. Then they formulated drift theorems for Xt := α(Yt). This is
a more precise description of randomised algorithms, where the internal
state (e.g., the current population) is described by Yt, and the real-valued
potential is described by Xt. It has the advantage that expressions such
as E[Xt−Xt+1 | Yt = s] are still well-defined even if Pr[Yt = s] = 0. This is
especially relevant in continuous domains. For example, assume that Y0 is
a real number drawn uniformly at random from [0,1]. Then Pr[Y0 = s] = 0
for all s ∈ [0,1].

2 Drift Analysis 93

3. Filtrations and pointwise drift. We have defined the drift as a random
variable that is conditioned on the value of Xt, i.e.∆t(x) = E[Xt−Xt+1 |
Xt = s]. Instead, it is also possible to condition on the whole history of
Xt, or even on the whole history of the algorithm. (Recall that, in general,
the potential Xt does not completely describe the state of the algorithm
at time t). In mathematical terms, the set of such histories is described by
a filtration of σ-algebras F0 ⊆ F1 ⊆ . . . , where, intuitively, the σ-algebra
Ft contains all the information that is available after the first t steps of
the algorithm.3 For example, instead of requiring that E[Xt−Xt+1 |Xt =
s]≤ 1 for all t≥ 0, we would ask that E[Xt−Xt+1 |Ft]≤ 1 for all t≥ 0 and
all histories Ft up to time t such that Xt = s in Ft.4 In this case, we also
speak of pointwise drift, and we will write5 E[Xt−Xt+1 | Ft,Xt = s] ≤ 1
to mean that, for every history F of the algorithm up to time t with the
property Xt = s, we have E[Xt−Xt+1 | F]≤ 1.
Obviously, pointwise drift is a much stronger condition, and requiring

such a strong condition in a drift theorem gives a priori a weaker theorem.
However, for most applications it does not make a big difference to con-
sider either version. Intellectually, it is arguably easier to imagine a fixed
history of the algorithm, and to think about the next step in this fixed
setting. Therefore, it is not uncommon in the EA community to formulate
drift theorems using filtrations. However, we will also see examples (Ex-
amples 2.3.2 and 2.3.12) where the weaker condition ‘Xt = s’ is beneficial.

The basic drift theorems concerned with the expected runtime E[T]
can be formulated with either form of conditioning, and in this chapter
we choose the stronger form (i.e. with weaker requirements), conditioning
on Xt = s. However, once the drift theorems include tail bounds, things
become more subtle, and it becomes essential to condition on every pos-
sible history. Therefore, we will switch to using filtrations and pointwise
drift in the last part of the chapter.

4. Infinite search spaces. We assume in this chapter that the state space S is
finite. This makes sense in the context of this book, since in discrete optimi-
sation the search spaces, and also the state spaces of the algorithms, tend
to be finite (although they may be huge). However, there are problems, es-
pecially in continuous optimisation, in which infinite state spaces are more
natural. Generally, all drift theorems mentioned in this chapter still hold
if the state space S ⊆R+

0 is infinite, but bounded.6 For unbounded search

3 Mathematically speaking, it is the coarsest σ-algebra which makes all random choices
of the algorithm up to time t measurable.
4 This is sometimes sloppily described by E[Xt−Xt+1 |X0, . . . ,Xt]. However, note that
this is not quite correct, since it conditions only on the past values of Xt, and not on
the history of the algorithm. In particular, conditioning on X0, . . . ,Xt usually does not
determine the current state of the algorithm (e.g.the current search point or population).
5 By abuse of notation, for brevity.
6 Some statements, such as Theorems 2.3.3 and 2.3.11, additionally require that the
infimum smin := inf(S \{0}) is strictly positive.

94 Johannes Lengler

spaces, things become more complicated. The upper bounds on E[T] in the
drift theorems still hold in these cases, while the lower bounds on E[T] fail
in general [54], as we will discuss briefly after Theorem 2.3.1. Collections
of drift theorems for unbounded spaces can be found in [45, 54].

5. Drift versus expected drift. Unfortunately, the meaning of the term ‘drift’
is somewhat inconsistent in the literature. We have defined it as the ex-
pected change E[Xt−Xt+1 |Xt = s]. However, some authors also use ‘drift’
to refer to the conditional random variable Xt−Xt+1 | Xt = s, and our
definition would be the ‘expected drift’ in their terminology. Some au-
thors would also call the conditional expectation E[Xt−Xt+1 | Ft] ‘drift’,
which is itself a random variable (by the randomness in the history of
the algorithm). Again, our notion of drift would be the expected drift
EFt

[
E[Xt−Xt+1 | Ft]

]
, also called the ‘average drift’ in this terminol-

ogy [40]. Yet another notion uses ‘drift’ to refer to the conditional random
variable Xt−Xt+1 | Ft. Fortunately, the heterogeneous nomenclature usu-
ally does not lead to confusion, except for some minor notational irrita-
tions.

2.3 Elementary Introduction to Drift Analysis

We start with an elementary introduction to drift analysis. We will discuss
the three main workhorses, The additive drift theorem (Theorem 2.3.1), the
variable drift theorem (Theorem 2.3.3), and the multiplicative drift theorem
(Theorem 2.3.11). All of them give upper bounds on the expected hitting
time E[T], the additive drift theorem also giving matching lower bounds.7

2.3.1 Additive Drift

The simplest possible drift is additive drift, i.e.Xt+1 differs from Xt in expec-
tation by an additive constant. The theorem in its modern form dates back to
He and Yao [38, 39], who built on work by Hajek [37],8 which they stripped

7 Note that the expectation of a random variable may not always give the full story.
There are even cases where the value of E[T] may be misleading. We will discuss such
examples in Section 2.4.2, where we consider drift theorems that give tail bounds on T .
8 They were apparently all unaware that the result had been proven even earlier by
Tweedie [73, Theorem 6], and a yet earlier proof in Russian has been attributed to
Menshikov [58, Bibliographical Notes on Section 2.6]. The aditive drift theorem has
been proven and rediscovered many times, and it is known under various names. For
example, in stability theory it is considered a special case of Dynkin’s formula [59,
Theorem 11.3.1], or a generalisation of Foster’s criterion [2, Proposition 4.5]. In these
contexts, drift analysis is often called the Lyapunov function method, e.g. [58, Theorem
2.6.2]. However, the hitting time is often only a side aspect in these areas.

2 Drift Analysis 95

of substantial technical overhead that was due to the fact that Hajek’s focus
was more on deciding whether hitting times actually exist for unbounded
state spaces. He and Yao proved their theorem using (without explicit ref-
erence) the optional stopping theorem for martingales [36]. Here we give an
elementary proof taken from [54], since this proof gives some insight into the
differences between upper and lower bounds.

Theorem 2.3.1 (Additive Drift Theorem [39]). Let (Xt)t≥0 be a se-
quence of non-negative random variables with a finite state space S ⊆ R+

0
such that 0 ∈ S. Let T := inf{t≥ 0 |Xt = 0}.

(a) If there exists δ > 0 such that for all s ∈ S \{0} and for all t≥ 0,

∆t(s) := E[Xt−Xt+1 |Xt = s]≥ δ, (2.1)

then

E[T]≤ E[X0]
δ

. (2.2)

(b) If there exists δ > 0 such that for all s ∈ S \{0} and for all t≥ 0,

∆t(s) := E[Xt−Xt+1 |Xt = s]≤ δ, (2.3)

then

E[T]≥ E[X0]
δ

. (2.4)

Proof.
(a). As we are interested only in the hitting time T of zero, we may assume
without loss of generality that XT +1 = XT +2 = . . . = 0.

We may rewrite the condition (2.1) as E[Xt+1 |Xt = s]≤E[Xt |Xt = s]−δ.
Since this holds for all s ∈ S \{0}, and since T > t if and only if Xt > 0, we
conclude

E[Xt+1 | T > t]≤ E[Xt | T > t]− δ. (2.5)

By the law of total probability, we have

E[Xt] = Pr[T > t] ·E[Xt | T > t]+Pr[T ≤ t] ·E[Xt | T ≤ t]︸ ︷︷ ︸
=0

= Pr[T > t] ·E[Xt | T > t]. (2.6)

Proceeding similarly for Xt+1, we obtain

E[Xt+1] = Pr[T > t] ·E[Xt+1 |T > t]+Pr[T ≤ t] ·E[Xt+1 | T ≤ t]︸ ︷︷ ︸
=0

(2.5)
≤ Pr[T > t] · (E[Xt | T > t]− δ)

96 Johannes Lengler

(2.6)= E[Xt]− δ ·Pr[T > t]. (2.7)

Since T is a random variable that takes values in N0, we may write E[T] =∑∞
t=0 Pr[T > t]. Thus

δ ·E[T] τ→∞←−
τ∑

t=0
δ Pr[T > t]

(2.7)
≤

τ∑
t=0

(E[Xt]−E[Xt+1])

= E[X0]−E[Xτ+1]︸ ︷︷ ︸
≥0

≤ E[X0], (2.8)

which proves (a).
(b) Analogously to (a), the calculations (2.5), (2.6), (2.7) and (2.8) hold with
reversed inequalities, except for the very last step in (2.8). So, (2.8) becomes

δ ·E[T] τ→∞←−
τ∑

t=0
δ Pr[T > t]≥ E[X0]−E[Xτ+1]. (2.9)

There are only two possible cases. The first case is that Pr[T > t], which
is a non-increasing sequence, does not converge to 0. In this case, E[T] =∑∞

t=0 Pr[T > t] =∞, in which case (b) holds trivially. The second is that
Pr[T > t]→ 0, and by (2.6) we also have

E[Xτ+1] = Pr[T > t]︸ ︷︷ ︸
→ 0

·E[Xτ+1 | T > t]︸ ︷︷ ︸
≤ maxS < ∞

→ 0. (2.10)

Now (b) follows from (2.9) and (2.10). ⊓⊔

The proof also shows what can generally go wrong for infinite search spaces.
The proof of (a) goes through unmodified. For (b), the inequality (2.9) is
generally true. Moreover, it is tight if the condition (2.3) is tight. The problem
is that E[Xτ+1] may not go to zero. For example, consider the Markov chain
where Xt+1 is either 0 or 2Xt, both with probability 1/2. Here E[T] = 2, but
E[Xt−Xt+1] = 0 for all t ≥ 0. In particular, the condition (2.3) is satisfied
with δ = 1 (or any other δ > 0), but the conclusion of (b) does not hold. On
the other hand, for the tight choice δ = 0, we see that we have equality in (2.9)
since E[Xτ+1] = E[X0].

Note that if the drift in Theorem 2.3.1 is exactly δ in each step, then
the upper and lower bounds match. In this case, Theorem 2.3.1 can be seen
as an invariance theorem, which states that the expected hitting time of
0 is independent of the exact distribution of the progress, as long as the
expectation of the progress (i.e. the drift) remains fixed. In particular, if X0
is an integer multiple of δ, this includes the deterministic case in which Xt

decreases in each step by exactly δ, with probability 1. Thus a process of
constant drift cannot be accelerated (or slowed down) by redistributing the

2 Drift Analysis 97

probability mass. We will resume this point in Section 2.3.2 when we discuss
why other drift theorems are not tight in general.

We conclude this section on additive drift with an application.

Example 2.3.2 (RLS on LeadingOnes). Consider random local search (RLS)
on the n-dimensional hypercube {0,1}n. RLS is a (1+1) algorithm (i.e. it has
population size one and generates only one offspring in each generation). The
mutation operator flips exactly one bit, which is chosen uniformly at random.
RLS has elitist selection, i.e. the offspring replaces the parent if and only if
its fitness is at least as large as the parent’s fitness. A pseudocode description
is given in Algorithm 2.1.

Algorithm 2.1: Random Local Search (RLS) maximising a fitness func-
tion f : {0,1}n→ R

1 Choose x(0) ∈ {0,1}n uniformly at random;
2 for t = 0,1,2, . . . do
3 Pick i ∈ {1, . . . ,n} uniformly at random, and create y(t) by flipping the i-th

bit in x(t);
4 if f(y(t))≥ f(x(t)) then
5 x(t+1)← y(t);
6 else
7 x(t+1)← x(t);

We study RLS on the LeadingOnes fitness function, which returns the
number of initial one-bits before the first zero bit. Formally,

LeadingOnes(x) =
n∑

k=1

k∏
i=1

xi = max{i ∈ {1, . . . ,n} | 11 . . .1︸ ︷︷ ︸
i times

is a prefix of x}.

The LeadingOnes problem is a classical benchmark problem for evolution-
ary algorithms, and RLS on LeadingOnes has been studied in much greater
detail than we can present here, with methods and results that go far beyond
drift analysis [10, 49]. We examine the bounds that we obtain from the addi-
tive drift theorem for different potential functions.
Naive potential. We first choose as the potential Xt := n−f(x(t)), the distance
in fitness from the optimum. The state space is S = {0, . . . ,n}. We need to
compute the drift ∆t(s) := E[Xt−Xt+1 |Xt = s] for every state s ∈ S \{0},
so we fix such an s. For convenience, we write k := n−s∈ {0, . . . ,n−1} for the
fitness in this case. Note that Xt = s implies that the first k bits of x(t) are
one-bits, but the k +1-st bit is a zero-bit. Obviously, the potential changes if
and only if we flip the k +1-st bit, so let us denote this event by E . Since the
flipped bit is chosen uniformly, we have Pr[E] = 1/n. Hence the drift is

98 Johannes Lengler

∆t(s) = Pr[E] ·E[Xt−Xt+1 |Xt = s and E]︸ ︷︷ ︸
=:E(s)

= 1
n
·E(s). (2.11)

So, it remains to bound the conditional expectation E(s). Such conditional
expectations occur quite frequently when a drift is computed. Assume that
Xt = s (i.e.f(x(t)) = k = n−s), and that E occurs. Obviously, E(s)≥ 1, since
we improve at least the k+1-st bit. On the other hand, we improve the fitness
by at least 2 if and only if the k + 2-nd bit happens to be a one-bit. Note
that since the algorithm is elitist and has fitness f(xt) = k, the k + 2-nd bit
has had no influence on the fitness of previous search points. Therefore, by
symmetry, it has probability 1/2 of being a one-bit9 and we obtain

Pr[Xt−Xt+1 ≥ 2 |Xt = s and E] = Pr[x(t)
k+2 = 1 |Xt = s and E] = 1

2
.

Analogously, Xt−Xt+1 ≥ i if and only if the bits with indices k +2, . . . ,k + i
are all one-bits, which happens with probability 2−i+1. Since Xt−Xt+1 is
an integer non-negative random variable, we may sandwich it as follows.

1≤ E(s) =
s∑

i=1
Pr[Xt−Xt+1 ≥ i |Xt = s and E]

= 1+
s∑

i=2
2−i+1 < 1+

∞∑
i=1

2−i = 2. (2.12)

Hence, by (2.11),

1
n
≤∆t(k)≤ 2

n
, (2.13)

and Theorem 2.3.1 implies that
n

2
E[X0]≤ E[T]≤ nE[X0]. (2.14)

To estimate E[X0] = n−E[f(x(0))], we observe that f(x(0)) ≥ i happens
if only if the first i bits are all one-bits, which happens with probability 2−i.
Hence, a similar calculation to that before shows

E[f(x(0))] =
n∑

i=1
Pr[f(x(0))≥ i] =

n∑
i=1

2−i = 1−2−n ∈ [0,1], (2.15)

and thus n−1≤E[X0]≤ n. Hence, by (2.14) we get (n−1)n/2≤E[T]≤ n2,
and thus E[T] = Θ(n2).

9 Note that such an argument would not be true if we were to condition on one particular
history of the algorithm, compare the discussion on filtrations in Section 2.2.2.

2 Drift Analysis 99

Translated potential. The analysis so far gives the asymptotics of E[T], but
it is not tight up to constant factors. The problem is, as (2.12) shows, that
the inequality E(k)≥ 1 is rather coarse except for the few exceptional cases
where k is almost n. In fact, in the border case k = n− 1 we have equality,
E(k) = 1. Hence, we do not have a perfectly constant drift, which is one
reason for the discrepancy between the upper and lower bounds. Such border
effects can often be remedied by translating the potential function. In this
case, we consider

Yt :=

{
Xt +1 if Xt ≥ 1,

0 otherwise.
(2.16)

The effect is that the drift increases when there is a substantial chance of
reaching 0 in the next step. In our case, we get an additional term for i =
n−k + 1 in (2.12), which equals the term for i = n−k. Intuitively, the term
for i = n−k counts double since in this case the potential drops from 2 to 0,
rather than from 1 to 0. Consequently, we get the following for the potential
Yt = s+1, which corresponds as before to a fitness f(x(t)) = k = n−s:

E[Yt−Yt+1 | Yt = s+1 and E] =
n−k∑
i=1

Pr[Yt−Yt+1 ≥ i | Yt = s+1 and E]

= 1+
n−k∑
i=2

2−i+1 +2n−k+1 = 2. (2.17)

Hence, the drift with respect to Yt is exactly 2/n, and Theorem 2.3.1 gives a
tight result:

E[T] = n

2
E[Y0]. (2.18)

From (2.16) it is easy to compute E[Y0] exactly as

E[Y0] = n−E[f(x(0))]+1 ·Pr[Y0 > 0] (2.15)= n− (1−2−n)+1−2−n = n.

Together with (2.18), the additive drift theorem (Theorem 2.3.1) now implies
E[T] = n2/2.

The above example illustrates how important it is for Theorem 2.3.1 that
the drift be as uniform as possible, to get matching upper and lower bounds.
The example also shows that rescaling of the potential function may be a
way to smooth out inhomogeneities. Following this approach systematically
leads to the variable drift theorem, which we will discuss in the next section.

100 Johannes Lengler

2.3.2 Variable Drift

2.3.2.1 The Variable Drift Theorem

The additive drift theorem is useful because it is tight, but it requires us to
find a potential function that has constant drift. Is this even always possible?
The perhaps surprising answer is ‘Yes’, as we will discuss in Section 2.5. Un-
fortunately, it can be rather hard to find a good potential. However, there
are helpful tools. Even if we start with a potential functions with the ‘wrong’
scaling, Mitavskiy, Rowe and Cannings [60], and Johannsen in his PhD the-
sis [42] developed a theorem which automatically rescales the drift in the right
way. A similar result was obtained independently (and earlier) by Baritompa
and Steel [1].
Theorem 2.3.3 (Variable Drift Theorem [42, 70]). Let (Xt)t≥0 be a
sequence of non-negative random variables with a finite state space S ⊆ R+

0
such that 0 ∈ S. Let smin := min(S \{0}), let T := inf{t≥ 0 |Xt = 0}, and for
t ≥ 0 and s ∈ S let ∆t(s) := E[Xt−Xt+1 |Xt = s]. If there is an increasing
function10 h : R+→ R+ such that for all s ∈ S \{0} and all t≥ 0,

∆t(s)≥ h(s), (2.19)

then

E[T]≤ smin
h(smin)

+E

[∫ X0

smin

1
h(σ)

dσ

]
, (2.20)

where the expectation in the latter term is over the random choice of X0.
We remark that the condition that h be increasing is usually satisfied, since

progress typically becomes harder as the algorithm approaches an optimum.
We will see in the proof why the condition is necessary, and an example
showing that it is necessary can be found in [45]. However, variants of the
theorem for non-decreasing drift functions do exist [16, 28].

We present a proof of the variable drift theorem, for two reasons. Firstly,
the theorem is so central that it deserves to come with a proof. Secondly,
we will gain valuable insights from the proof. In particular, it will enable
us to understand when the upper bound on E[T] is tight, and realise when
the upper bound may be misleading. A reader who is completely new to drift
analysis may first skip ahead to some examples, and return to the proof when
we discuss tightness of the variable drift theorem.

Proof (of Theorem 2.3.3, adapted from [42]). The main insight of the proof
lies in an appropriate rescaling of Xt by the function
10 Some formulations in the literature require h to be integrable. However, since we
assume S to be finite, the interval [smin,X0] is a compact interval, on which every
monotone function is integrable.

2 Drift Analysis 101

g(s) :=

{
smin

h(smin) +
∫ s

smin
1

h(σ)dσ, s≥ smin,
s

h(smin) , 0≤ s≤ smin.
(2.21)

The integral is well-defined since h is increasing. Note that g is strictly in-
creasing. We claim that for all s ∈ S \{0} and all r ≥ 0,

g(s)−g(r)≥ s− r

h(s)
. (2.22)

To prove the claim, we distinguish three cases. First, assume that s≥ r≥ smin.
Then

g(s)−g(r) =
∫ s

r

1
h(σ)

dσ ≥
∫ s

r

1
h(s)

dσ = s− r

h(s)
. (2.23)

Similarly, if r ≥ s≥ smin, then

g(r)−g(s) =
∫ r

s

1
h(σ)

dσ ≤
∫ r

s

1
h(s)

dσ = r−s

h(s)
, (2.24)

and multiplication by −1 yields the claim. The only remaining case is s ≥
smin > r ≥ 0 (since we have assumed s ∈ S \{0}), and in this case

g(s)−g(r) = smin
h(smin)

+
∫ s

smin

1
h(σ)

dσ− r

h(smin)
≥ smin− r

h(smin)
+ s−smin

h(s)

≥ s− r

h(s)
. (2.25)

Now let us consider the rescaled random variable Yt := g(Xt). This random
variable takes values of the form g(s), where s ∈ S. For all s ∈ S \{0},

E[Yt−Yt+1 | Yt = g(s)] = E[g(Xt)−g(Xt+1) | g(Xt) = g(s)]
(2.22)
≥ E

[
Xt−Xt+1

h(Xt)

∣∣∣∣Xt = s

]
= ∆t(s)

h(s)
(2.19)
≥ 1.

(2.26)

Hence Yt has at least a constant drift. The theorem follows by applying the
additive drift theorem (Theorem 2.3.1) to Yt. ⊓⊔

Example 2.3.4 (Coupon Collector, RLS on OneMax). The most classical
example of variable drift is the Coupon Collector Process (CCP): there are n
types of coupons, and a collector wants to have at least one coupon of each
type. However, the coupons are sold in opaque wrappings, so she cannot see
the type of a coupon before buying it. If each type occurs with the same
frequency 1/n, how many coupons does she need to buy before she has every
type at least once?

102 Johannes Lengler

The CCP and its variants appear in various contexts in the study of EAs.
The most basic example is the runtime of RLS (Algorithm 2.1 on page 97)
for maximising the OneMax fitness function, which counts the number of
one-bits in a bit string. Formally, for x ∈ {0,1}n,

OneMax(x) =
n∑

i=1
xi. (2.27)

The one-bits correspond to the coupons in the CCP that the collector has
already obtained. Since RLS flips exactly one bit in each round, and a one-bit
stays a one-bit forever, a round of RLS corresponds exactly to the purchase
of a coupon. Thus the number of rounds of RLS on OneMax is equivalent
to the number of purchases in the CCP.11

To analyse the CCP, we let Xt be the number of missing coupons after
t purchases, and as usual we denote by T the hitting time of 0. Then, for
Xt = s, the probability of obtaining a new type with the next purchase is
s/n. In this case Xt decreases by one, so Xt has a drift of ∆t(s) = s/n. The
minimum positive value of Xt is smin = 1. Hence, the variable drift theorem
with function h(s) = s/n gives the upper bound

E[T]≤ 1
h(1)

+E

[∫ X0

1

n

σ
dσ

]
= n(1+E[ln(X0)])≤ n lnn+n. (2.28)

The drift in Example 2.3.4 was multiplicative, i.e.∆t(s) was proportional
to s. This is by far the most important special case of the variable drift
theorem, important enough that in Section 2.3.3 we will provide it with a
theorem of its own, the multiplicative drift theorem. Any reader who is eager
to see some more cute examples of a similar type is invited to peek ahead.

The upper bound in Example 2.3.4 is remarkably tight. The expected
runtime is indeed E[T] = n lnn + Θ(n), both for the CCP [61] and for RLS
on OneMax [10]. We will discuss in the next section when we can expect
the bounds from the variable drift theorem to be tight, and see situations in
which they are rather inaccurate. Before that, we give a more serious example
coming from applications.

Example 2.3.5 (Genetic Programming). Genetic programming (GP) uses evo-
lutionary principles to automatically generate programs which match some
desired input–output scheme. The programs are typically represented as syn-
tax trees [48], where the leaves correspond to variables x1, . . . ,xn, and the
inner nodes correspond to operators such as AND, OR or NOT. Here we re-
strict ourselves to the Boolean domain, for simplicity. Then each syntax tree
11 Except for the initial conditions: for the CCP, the collector usually starts with no
coupons, while RLS starts with a random bit string and thus with a random initial
number of ones/coupons.

2 Drift Analysis 103

τ represents a Boolean term, and thus defines a pseudo-Boolean function
fτ : {0,1}n→{0,1}. Doerr, Lissovoi and Oliveto [25] studied the problem of
learning the AND function AND(x1, . . . ,xn) = x1∧ . . .∧xn, if the inner nodes
may be either AND or OR. To turn this into an optimisation problem, we as-
sign to each syntax tree τ the number F (τ) of inputs x = (x1, . . . ,xn)∈ {0,1}n
for which fτ (x1, . . . ,xn) ̸= AND(x1, . . . ,Xn). So the goal is to reduce the po-
tential F to zero. The search procedure considered in [25] uses a mutation
operator which adds, substitutes or deletes nodes, or which deletes whole sub-
trees of the current syntax tree. The actual algorithm is rather complicated,
and we refer the reader to [25] for more details.

We define Xt := F (τt), where τt is the syntax tree after t steps. The authors
of [25] showed that Xt has the following drift:

E[Xt−Xt+1 |Xt = s]≥ h(s) :=

{
δs lns
lnn if s≥ n,

δs if s < n,
(2.29)

where δ = Θ(1/n2) depends on the number of variables, but is independent
of s. Note that h is increasing and that X0 ≤ 2n. Therefore, the variable
drift theorem immediately gives the following upper bound on the expected
optimisation time T :

E[T]≤ 1
h(1)

+
∫ 2n

1

1
h(σ)

dσ = 1
h(1)

+
∫ n

1

1
δσ

dσ +
∫ 2n

n

lnn

δσ lnσ
dσ. (2.30)

To compute the integral, we note that the inverse derivative of 1/σ is lnσ,
and the inverse derivative of 1/(σ lnσ) is ln lnσ. Hence,

E[T]≤ 1
δ

+ lnn

δ
+ lnn

δ
(ln ln2n− ln lnn) = O

(
log2 n

δ

)
= O(n2 log2 n).

(2.31)

So once we have found the drift as in (2.29), the drift theorems make it an
easy task to compute the expected runtime. Of course, the main contribution
of the authors of [25] was to actually compute the drift.

2.3.2.2 Tightness of the Variable Drift Theorem.

In general, the bound in the variable drift theorem does not need to be tight,
even if we assume that h(s) is a tight lower bound on the drift (i.e. if (2.19)
is an equality). However, in many situations the bound is tight, especially if
the potential Xt does not jump around too much. Let us unravel the proof
of Theorem 2.3.3 to understand this phenomenom better.

We first note that the proof is a reduction to the additive drift theorem,
which is tight (see the discussion after Theorem 2.3.1). So, the only possible

104 Johannes Lengler

problem is the estimate (2.26) of the drift. This estimate may not be tight
if (2.22), the inequality g(s)−g(r)≥ (s−r)/h(s), is too coarse. Note that to
estimate the drift, we use (2.22) specifically for s = Xt and r = Xt+1. These
are not arbitrary values; for example, for RLS on OneMax, they differ by
at most one. We proved (2.22) by case distinction, so let us inspect one
of the cases for illustration. For convenience, we restate the argument for
s > r > smin:

g(s)−g(r) =
∫ s

r

1
h(σ)

dσ ≥
∫ s

r

1
h(s)

dσ = s− r

h(s)
. (2.23)

The crucial step is to use 1/h(σ)≥ 1/h(s) for the range r ≤ σ ≤ s. In general,
this may be a bad estimate. However, if s = Xt and r = Xt+1 are close to
each other, then σ runs through a small range, and 1/h(σ) may not vary
too much. For example, s and r differ at most by one for RLS on OneMax,
and the function 1/h(σ) = n/σ does not vary much in such a small range,
especially if r and s are large. We will see in Section 2.4.1 that large jumps are
still tolerable if they occur with sufficiently small probability. The following
artificial example from [33] illustrates how large jumps can lead to bad upper
bounds. The idea of the construction is similar to the initial example on
page 96.

Example 2.3.6 (RLS with shortcuts). Consider a (1+1) algorithm that in each
step creates the optimum with probability 1/n, and with probability 1−1/n
does an RLS step as in Algorithm 2.1. To minimise OneMax, we may naively
try the fitness as the potential, Xt := OneMax(x(t)). For Xt = s > 0, there
is a probability of 1/n of jumping directly to the optimum, thus decreasing
the potential by s. On the other hand, there is a probability of (1−1/n) · i/n
of decreasing the potential by 1 with a normal RLS step. Together, the drift
is

∆t(s) = h(s) := 1
n
·s+

(
1− 1

n

)
s

n
= 2s

n
− s

n2 = (1±o(1))2s

n
. (2.32)

Thus, the variable drift theorem (Theorem 2.3.3) yields

E[T]≤ 1
h(1)

+E

[∫ X0

1
(1±o(1)) n

2σ
dσ

]
= Θ(n logn). (2.33)

However, since in each step we have a probability of at least 1/n of jumping
directly to the optimum, the expected runtime is at most E[T]≤ n, so (2.33)
is not tight. The problem can be understood by inspecting the transformed
variable Yt := g(Xt) considered in the proof of the variable drift theorem,
see (2.21). For simplicity, we ignore the factor (1+o(1)) in (2.32) and obtain

2 Drift Analysis 105

Yt :=

{
n
2 (1+ lnXt) if Xt ≥ 1,

0 if Xt = 0.
(2.34)

Computing the drift of Yt directly, we obtain the following for Xt = s, i.e. for
Yt = n/2 · (1+ lns):

E[Yt−Yt+1 |Xt = s] = 1
n
· n

2
(1+ lns)+

(
1− 1

n

)
s

n
· n

2
(lns− ln(s−1))

= lns

2
±O(1). (2.35)

Thus, we do not have constant drift in the scaled potential. However, in the
proof of the variable drift theorem, we bound the drift by 1 (see (2.26)), which
is the reason for the additional logn factor.

Fortunately, it is quite common that there are no large jumps in the fit-
ness value. Mutation-based evolutionary algorithms tend to take small steps,
and other nature-based search heuristics such as ant colony optimisation
and estimation-of-distribution algorithms tend to make rather small updates
to reasonable functions. However, note that this is not necessarily true for
crossover operations. Also, depending on the fitness function, a small (geno-
typic) change may cause a large (phenotypic) jump in the fitness, as the next
example shows.

Example 2.3.7 (RLS on BinVal). We consider RLS (Algorithm 2.1 on page
97) for minimising the BinVal function given by

BinVal(x) =
n∑

i=1
2n−ixi. (2.36)

If we choose the potential Xt := BinVal(x(t)) to be identical to the fitness,
then we observe that each one-bit has probability 1/n of being flipped. If the
i-th bit is flipped from one to zero, this reduces the potential by 2i. Hence,
at a search point x with potential s := BinVal(x) the drift is

E[Xt−Xt+1 | x(t) = x] =
∑

1≤i≤n, x
(t)
i

=1

1
n
·2n−i = 1

n

n∑
i=1

2n−ixi = s

n
. (2.37)

In particular, since the latter term depends only on s, we can write

E[Xt−Xt+1 |Xt = s] = s

n
. (2.38)

Therefore we can apply the variable drift theorem (Theorem 2.3.3) with
h(s) = s/n and smin = 1, and obtain

106 Johannes Lengler

E[T]≤ 1
1/n

+E

[∫ X0

1

n

σ
dσ

]
= n+n ·E[lnX0] = Θ(n2), (2.39)

where the last equality follows since X0 ≤ 2n+1, and since with probability
at least 1/2 the first bit in X0 is a one-bit, which implies E[X0]≥ 2n−1.

However, the bound (2.39) is far from tight. In fact, if we use the OneMax
potential OneMax(x) :=

∑n
i=1 xi, then the drift with respect to OneMax

is still ∆OneMax
t (s) = s/n, which leads to a runtime bound of E[T] ≤ n + n ·

E[OneMax(x(0))]≤ n lnn+n.12

The reason why (2.39) is not tight is that there may be some very large
jumps in the potential (see the discussion before this example). For example,
consider the situation where only a single one-bit is left. RLS operates sym-
metrically on BinVal, so this one-bit is at a random position.13 In particular,
with probability at least 1/2, the bit is in the first half, and thus Xt ≥ 2n/2.
Therefore, in (2.25) we estimate h(σ) ≤ h(s) for values of σ that range at
least between smin = 1 and 2n/2. Thus the estimate is off by an exponential
factor. Consequently, the rescaled potential Yt = g(Xt) = n(1 + lnXt) does
not have constant drift. While the drift is always at least 1 by (2.26), if there
is only a single one-bit left in the first half of the string, the rescaled potential
decreases with probability 1/n from Yt ≥ n(1+ ln2n/2) = Ω(n2) to 0. Hence,
the drift of Yt in this situation is 1/n ·Ω(n2) = Ω(n), causing the runtime
bound to be almost a factor n too large.

2.3.2.3 When Rescaling Beats the Variable Drift Theorem

We have seen an example which illustrates why the variable drift theorem
does not always give tight results. Unfortunately, a common reason is that
the potential does not represent very well the progress the algorithm has
made, in which case a truly new insight is needed. However, sometimes the
problem can be solved by directly considering the rescaled potential. We
illustrate this by an artificial example taken from [54].

Example 2.3.8 (Random Decline). Let a > 0 be a constant, let n ∈ N+ and
consider the following Markov chain on S = {0, . . . ,N}, where N is a suffi-
ciently large integer compared with n. For this exposition, we will assume
that N is so large that the process never hits the right border. We start
with X0 = n, and for each t ≥ 0 we draw Xt+1 uniformly at random from
{0,1,2, . . . ,min{⌊aXt⌋,N}}.

If a < 2, then for S ∈ S \{0} and all t≥ 0 we have a drift of

12 Alternatively, we could observe that RLS behaves in exactly the same way on BinVal
and on OneMax, so the runtimes are the same.
13 Note that this is specific to RLS, which uses only one-bit flips. An algorithm which
flips two or more bits per step would not operate symmetrically, since it would trade a
one-bit of large weight for a zero-bit of small weight, but not vice versa.

2 Drift Analysis 107

∆t(s)≥ s− a

2
s = 2−a

2
·s. (2.40)

Therefore, by the variable drift theorem, E[T] = O(logn). However, the the-
orem does not make any statement for a ≥ 2.14 Nevertheless, let us inspect
the rescaled potential Yt := 1 + ln(Xt). We give only an estimate; the full
calculation, including error terms, can be found in [54]. For every s ∈ S \{0}
that is smaller than N/a,

E[Yt−Yt+1 | Yt = 1+lns] = 1+ ln(s)− 1
⌊as+1⌋

⌊as⌋∑
k=1

(1+ lnk)

≈ ln(s)− 1
as

(∫ as

1
lnσ dσ

)
= ln(x)− 1

as
[σ ln(σ)−σ]as

σ=1

≈ ln(s)− (ln(as)−1) = 1− lna. (2.41)

Thus we see that if a < e = 2.71 . . . is a constant, then the drift of Yt is
also constant. Hence, by the additive drift theorem (Theorem 2.3.1) we get
E[T] = O(E[Y0]) = O(lnn). So, the analysis of the rescaled random variable
applies to a wider range than the variable drift theorem does. In fact, the
condition a < e is tight for logarithmic runtime, since for a≥ e the expected
runtime is ω(lnn) [54].

We have seen that once we try out the rescaling Yt = 1 + ln(Xt), the rest
is very simple and mostly calculations. We will discuss in Section 2.5 how to
see that this particular rescaling is worth trying.

2.3.2.4 Further Applications of the Variable Drift Theorem

We conclude this section with some more applications of the variable drift
theorem. They illustrate the fact that even if the drift is a highly compli-
cated function, the variable drift theorem gives us an explicit expression for
the expected runtime, which we can evaluate by elementary calculus. The
impatient reader is free to skip this section.

Example 2.3.9 ((1+λ) EA on OneMax). In 2017, Gießen and Witt [34] anal-
ysed the (1+λ) EA (Algorithm 2.2) for minimising the OneMax function
(see (2.27)).

The potential was identical to the fitness, Xt = OneMax(x(t)). To bound
the drift ∆t(s), the authors of [34] used order statistics of the binomial dis-
tribution. They showed that ∆t(s)≥ h(s), where15

14 Worse: the statement could be applied for a non-constant a such as a = 2(1− 1/n),
and would lead to the misleading bound E[T] = O(n logn).
15 For the case λ = ω(1). The other case, λ = O(1), is similar.

108 Johannes Lengler

Algorithm 2.2: The (1+λ) EA with offspring population size λ and
mutation rate c/n, minimising a fitness function f : {0,1}n→ R

1 Choose x(0) ∈ {0,1}n uniformly at random;
2 for t = 0,1,2, . . . do
3 for i = 1, . . . ,λ do
4 Create y(t,i) by flipping each bit of x(t) independently with probability

c/n;
5 y(t)← argmin{f(y(t,i))} (breaking ties randomly);
6 if f(y(t))≤ f(x(t)) then
7 x(t+1)← y(t);
8 else
9 x(t+1)← x(t);

h(s) :=



(1−o(1)) lnλ
ln lnλ if s≥ n

(lnλ)1/(ln ln ln λ) ,

(1/2−o(1))e−c lnλ
ln lnλ if s≥ n

lnλ ,

(1−o(1))e−c min{c,1}/2 if s≥ n
λ ,

(1−o(1))e−c c√
lnn

if s≥ n
λ

√
lnn

,

(1−o(1))ce−cλ s
n if s < n

λ
√

lnn
.

(2.42)

Obviously, computing the drift is non-trivial, and this was the major contri-
bution of the paper. Despite the complexity of the formula, once we know it
we can easily obtain a runtime bound by the variable drift theorem:

E[T]≤ 1
h(1)

+E

[∫ Xmax

1

1
h(σ)

dσ

]
. (2.43)

The integral can now be computed by splitting it into six ranges, and eval-
uating it with elementary calculus. Actually, h(σ) is constant for all ranges
except for the last one, which gives one of the leading terms:∫ n/(λ

√
lnn)

1
(1+o(1)) ecn

cλσ
dσ = (1+o(1))ecn ln(n/(λ

√
lnn))

cλ
. (2.44)

Proceeding like this for all six ranges, the authors of [34] obtained the final
result

E[T]≤ (1+o(1))
(

ec

c
· n lnn

λ
+ 1

2
· n ln lnλ

lnλ

)
. (2.45)

The authors also proved a matching lower bound by the techniques discussed
in Section 2.4.1.

2 Drift Analysis 109

Example 2.3.10 (Island Model on OneMax). Doerr, Fischbeck, Frahnow,
Friedrich, Kötzing and Schirneck [13] studied island models in various topolo-
gies. For the complete graph as the migration topology, the algorithm consists
of λ independent (1+1) EAs, except that every τ rounds all individuals are
updated by the current best search point; see Algorithm 2.3.

Algorithm 2.3: Island model with λ islands and migration interval τ
for minimising f : {0,1}n→ R

1 Choose x(0,1), . . . ,x(0,λ) ∈ {0,1}n uniformly at random;
2 for t = 0,1,2, . . . do
3 for i = 1, . . . ,λ do
4 Create y(t,i) by flipping each bit of x(t,i) independently with probability

1/n;
5 if f(y(t,i))≤ f(x(t,i)) then
6 x(t+1,i)← y(t,i);
7 else
8 x(t+1,i)← x(t,i);

9 if (t + 1 mod τ) = 0 then
10 for i = 1, . . . ,λ do
11 y← argmin{f(y(t+1,i))} (breaking ties randomly);
12 x(t+1,i)← y;

For minimising the OneMax function, the most interesting phase16 turns
out to be the phase when the current best search point has its fitness in
some interval [s0,s1], where s0 = min{n,n lnλ/(2τ)} and s1 = n/(τ lnλ).
The authors of [13] defined Xt to be the fitness after t migrations, i.e.
Xt = OneMax(x(tτ,i)) holds for every 1 ≤ i ≤ λ. To identify the end of the
phase, we truncate Xt, i.e. we define Xt := 0 if OneMax(x(tτ,i)) < s0. Note
that the minimum non-zero value of Xt is thus smin = s0. The drift of Xt for
all t≥ 0 and all s ∈ [s0,s1] turns out to be

∆t(s)≥ h(s) := c lnλ

ln(n lnλ/(τs))
, (2.46)

for some constant c > 0. Note that the function h(s) is increasing. Thus,
by the variable drift theorem (Theorem 2.3.3), we may bound the expected
number of migrations T0 before a fitness of less than s0 is achieved by

E[T0]≤ s0
h(s0)

+ 1
c lnλ

∫ s1

s0

ln
(

n lnλ

τσ

)
dσ, (2.47)

16 For some parameter regimes.

110 Johannes Lengler

where we have used X0 ≤ s1. The latter integral can now be evaluated by
elementary analysis, and yields∫ s1

s0

ln
(

n lnλ

τσ

)
dσ = τ

n lnλ

[
σ(1− lnσ)

]τs1/(n lnλ)

τs0/(n lnλ)
, (2.48)

from which the authors of [13] computed their runtime bounds. We refrain
from stating the final result, since it involves several case distinctions with
respect to τ and λ.

2.3.3 Multiplicative Drift

A very important special case of variable drift is multiplicative drift, where
the drift is proportional to the potential. Introduced in [15, 19, 20], it has
become the most widely used variant of drift analysis in the field of evolu-
tionary algorithms. In fact, all of Examples 2.3.4, 2.3.6, 2.3.7 and 2.3.8 had
multiplicative drift. In particular, Examples 2.3.6, 2.3.7 and 2.3.8 show that
the same limitations as for variable drift apply.
Theorem 2.3.11 (Multiplicative Drift [20], special case of Theo-
rem 2.3.3). Let (Xt)t≥0 be a sequence of non-negative random variables
with a finite state space S ⊆R+

0 such that 0 ∈ S. Let smin := min(S \{0}), let
T := inf{t≥ 0 |Xt = 0} and, for t≥ 0 and s ∈ S, let ∆t(s) := E[Xt−Xt+1 |
Xt = s]. Suppose there exists δ > 0 such that for all s ∈ S \{0} and all t≥ 0
the drift is

∆t(s)≥ δs. (2.49)

Then

E[T]≤ 1+E[ln(X0/smin)]
δ

. (2.50)

We conclude this section by giving some applications of the multiplicative
drift theorem.
Example 2.3.12 ((1+1) EA on Linear Functions). One of the cornerstones in
the theory of evolutionary algorithms is the analysis of linear pseudo-Boolean
functions f : {0,1}n→ R, i.e. functions of the form f(x) =

∑n
i=1 wixi, where

the wi are constants. To avoid trivialities, we assume that the weights are
non-zero, and by the symmetry of the search space we may assume that they
are non-negative and sorted, w1 ≥ w2 ≥ . . . ≥ wn > 0. We have already seen
two examples of such functions: OneMax in Example 2.3.4 and BinVal in
Example 2.3.7.

To analyse how the (1+1) EA with mutation rate c = 1/n (Algorithm 2.2
with offspring population size λ = 1) minimises a linear function, a naive

2 Drift Analysis 111

approach would be to use the fitness as the potential, Xt := f(x(t)). Similarly
to the analysis of RLS on BinVal, this yields a multiplicative drift of at least

∆t(s)≥Ω(s/n), (2.51)

since the (1+1) EA has at least a constant probability of performing an
RLS step, i.e. of flipping exactly one bit. Therefore, the multiplicative drift
theorem gives the bound

E[T]≤O

(
1+E[ln(X0/wn)]

δ

)
. (2.52)

For OneMax-like functions where all weights are similar, this bound is
O(n lnn), which turns out to be tight. However, for other linear functions
such as BinVal, the bound is not tight, for the same reason as for RLS on
BinVal (Example 2.3.7). Rather, the expected runtime is Θ(n lnn), as was
first shown by Droste, Jansen and Wegener [26].

For the OneMax potential OMt := OneMax(x(t)), the situation is rather
interesting. For functions such as BinVal, there are search points (e.g.
the search point (1,0, . . . ,0), where only the highest-valued bit has not yet
been optimised) for which the drift is negative, i.e.E[OMt−OMt+1 | x(t) =
(1,0, . . . ,0)] < 0. Nevertheless, Jägersküpper [41] showed by a coupling argu-
ment that bits of larger weight are more likely to be optimised, so that we
still have a multiplicative drift [18] for all t≥ 0 and all s ∈ {1, . . . ,n},

∆t(s) = E[OMt−OMt+1 |OMt = s] = Ω(s/n), (2.53)

from which a runtime bound E[T] = O(n lnn) follows. So this is one of the
cases where it is beneficial to avoid filtrations and pointwise drift, see also
the paragraph ‘Drift versus expected drift’ in Section 2.2.3.

The results can be tightened if one considers more carefully crafted poten-
tials. Doerr, Johannsen and Winzen showed [19], building on ideas from [39],
that the drift function φ(x) :=

∑⌊n/2⌋
i=1

5
4xi +

∑n
i=⌊n/2⌋+1 xi even has point-

wise multiplicative drift, i.e. for all t≥ 0 and all search points x ∈ {0,1}n,

E[φ(x(t))−φ(x(t+1)) | x(t) = x] = Ω(φ(x)/n). (2.54)

This yields again the runtime bound E[T] = O(n lnn). Pointwise multiplica-
tive drift giving similar runtime bounds can also be achieved by other poten-
tial functions [20].

Similar techniques can also be used to show that the (1+1) EA still has
runtime Θ(n lnn) on every linear function if the mutation rate is c/n for
an arbitrary constant c [15, 54, 75]. However, this requires a considerably
more complicated potential function which must necessarily depend on the
mutation rate [21].

112 Johannes Lengler

Example 2.3.13 (Minimum Spanning Trees). Consider the following mini-
mum spanning tree (MST) problem proposed in [64]. Let G = (V,E) be a
connected graph with n vertices, m edges e1, . . . ,em and positive integer edge
weights w1, . . . ,wm. We denote by wmax := maxi wi the maximum weight. A
bit string x∈ {0,1}m represents a subgraph of G with vertex set V , where the
edge ei is present if and only if xi = 1. The fitness of a bit string is given by
f(x) =

∑n
i=1 wixi +p(x), where p(x) is a punishment term for non-trees that

ensures we find a spanning tree quickly, and stay within the set of spanning
trees afterwards.

We consider the performance of the (1+1) EA on this problem. In [64]
it was shown that the algorithm quickly finds a spanning tree, so we assume
for simplicity that the initial search point x(0) represents such a tree. We
consider the potential function Xt :=

∑n
i=1 wix

(t)
i −wopt, where wopt is the

weight of a minimum spanning tree. Then, relying on results from [64], it was
shown in [20] that the potential function has a multiplicative drift of

∆t(s) = E[Xt−Xt+1 |Xt = s]≥ s

em2 . (2.55)

Hence, by the multiplicative drift theorem (Theorem 2.3.11) the expected
runtime (starting from a spanning tree) is at most

E[T]≤ em2(1+ ln(mwmax)), (2.56)

since the minimum potential of a non-optimal search point is at least smin≥ 1,
and since mwmax is an upper bound on X0. It is an open question whether
(2.56) is tight, since the best lower bound is Ω(m2 lnm) [64], which is a tight
bound for RLS [69].

There are numerous other applications of the multiplicative drift theorem,
including in evolutionary algorithms on other problems [17, 20, 24, 32], ant
colony optimisation [30], island models [57], genetic programming [23] and
estimation-of-distribution algorithms [31].

2.4 Advanced Drift Theorems

In this section we review the most important developments in drift analysis
in recent years, in particular lower and tail bounds, weak drift, negative drift,
and population drift. Note that unlike those in the previous section, many
advanced theorems, especially about tail bounds, make assumptions about
the pointwise drift (see Section 2.2.2).

2 Drift Analysis 113

2.4.1 Lower Bounds

As discussed in Section 2.3.2, the variable drift theorem and the multiplicative
drift theorem only have a chance to give tight results if we have some restric-
tion on the probability of making large jumps. From the earlier discussion on
pages 103ff, we know that the critical estimates in the proof of the variable
drift theorem are (2.23), (2.24) and (2.25). If h(Xt+1)/h(Xt) is always close
to one, then these estimates are tight. For example, (2.23) tells us that, for the
potential function g from the proof, g(Xt)−g(Xt+1)≥ (Xt−Xt+1)/h(Xt) if
Xt≥Xt+1≥ smin. But the same argument also shows that g(Xt)−g(Xt+1)≤
(Xt−Xt+1)/h(Xt+1) in this case. If h(Xt) and h(Xt+1) differ at most by a
factor c > 1, then the upper and lower bound also differ at most by a factor c.
Following this idea, we get the following lower bound.
Theorem 2.4.1 (Variable Drift Theorem, Lower Bound 1). Let
(Xt)t≥0 be a sequence of non-negative random variables with a finite state
space S ⊆ R+

0 such that 0 ∈ S. Let smin := min(S \{0}), let T := inf{t ≥ 0 |
Xt = 0} and, for t≥ 0 and s ∈ S, let ∆t(s) := E[Xt−Xt+1 |Xt = s]. Suppose
there is an increasing function h : R+→ R+ and a constant c ≥ 1 such that
for all s ∈ S \{0} and all t≥ 0 the following conditions hold:

Xt+1 ≤Xt, (2.1)

∆t(s)≤ h(s), (2.2)

h(max{Xt+1,smin})
h(Xt)

≥ 1
c

. (2.3)

Then

E[T]≥ 1
c
·

(
smin

h(smin)
+E

[∫ X0

smin

1
h(σ)

dσ

])
, (2.4)

where the expectation on the latter term is over the random choice of X0.
Note that the theorem has the rather strong assumption that the sequence

Xt is non-increasing, see also the discussion after Theorem 2.4.3. This is
necessary because otherwise, even if positive and negative contributions to
the drift are known up to constant factors, the relative error may increase due
to cancellation effects. However, for non-increasing Xt, the upper bound of
Theorem 2.3.1 and the lower bound of Theorem 2.4.1 are directly comparable:
they differ exactly by a factor c.

Despite its arguably natural form, it seems that Theorem 2.4.1 has never
been formulated in this version in the literature,17 perhaps because it usually
17 Although Feldmann and Kötzing [28] gave bounds following the same ideas.

114 Johannes Lengler

does not give tight leading constants. For example, consider RLS on OneMax
as in Example 2.3.4. There Xt is given by the fitness, and h(s) = s/n.
The largest jump occurs when Xt decreases from 2 to 1, in which case
h(Xt+1)/h(Xt) = 1/2. Thus the lower bound is a factor 2 from the upper
bound.

Doerr, Fouz andWitt [14] have given a variant which usually gives a tighter
lower bound. In fact, it gives a matching lower bound in many applications.

Theorem 2.4.2 (Variable Drift Theorem, Lower Bound 2 [14]). Let
(Xt)t≥0 be a sequence of non-negative random variables with a finite state
space S ⊆ R+

0 such that 0 ∈ S, and with associated filtration Ft. Let smin :=
min(S \{0}), and let T := inf{t≥ 0 |Xt = 0}. Suppose there are two functions
ξ,h : R+

0 → R+ such that h is monotone increasing, and such that for all
s ∈ S \{0} and for all t≥ 0 the following three conditions hold:

Xt+1 ≤Xt, (2.5)

Xt+1 ≥ ξ(Xt), (2.6)

E[Xt−Xt+1 | Ft,Xt = s]≤ h(ξ(s)). (2.7)

Then

E[T]≥ smin
h(smin)

+E

[∫ X0

smin

1
h(σ)

dσ

]
, (2.8)

where the expectation in the latter term is over the random choice of X0.

To apply Theorem 2.4.2, one should first choose ξ such that (2.6) is satis-
fied, and afterwards choose h in such a way that the composition h◦ ξ is the
drift, cf.Example 2.4.4 below. In particular, the function h in Theorem 2.4.2
is not identical to the function h in the upper-bound version, Theorem 2.3.3.
A formulation of Theorem 2.4.3 in which the function h corresponds directly
to the same function as in Theorem 2.3.3 can be found in [12].

We remark that Gießen and Witt [33] have developed a version in which
the deterministic condition (2.6) is replaced by a probabilistic condition. The
exact formulation is rather technical. For the special case where (2.6) holds
with some fixed probability p independent of Xt, a simplified version was
developed by Doerr, Doerr and Yang [12]. Moreover, the theorem in [33] sim-
plifies for multiplicative drift [75]. We give here the version in [52], which
assumes bounds on the probability that Xt drops by more than a multiplica-
tive factor. A version in which an additive bound on |Xt−Xt+1| is assumed
can be found in [23].

Theorem 2.4.3 (Multiplicative Drift Theorem, Lower Bound [52,
75]). Let (Xt)t≥0 be a sequence of non-negative random variables with a

2 Drift Analysis 115

finite state space S ⊆ R+
0 such that 0 ∈ S, and with associated filtration Ft.

Let smin := min(S \{0}), and let T := inf{t≥ 0 |Xt = 0}. Suppose there are
two constants 0 < β,δ ≤ 1 such that for all s ∈ S \ {0} and all t ≥ 0 the
following conditions hold:

Xt+1 ≤Xt, (2.9)

Pr[Xt−Xt+1 ≥ βXt | Ft,Xt = s]≤ βδ

1+ ln(s/smin)
, (2.10)

E[Xt−Xt+1 | Ft,Xt = s]≤ δs. (2.11)

Then

E[T]≥ 1−β

1+β
· 1+E[ln(X0/smin)]

δ
. (2.12)

Recently, Doerr, Doerr and Kötzing [11] showed that the monotonicity con-
dition (2.9) can be completely removed if (2.11) is replaced by the condition
that, for all s,s′ ∈ S \{0} with s′ ≤ s,

E[max{s′−Xt+1,0} | Ft,Xt = s]≤ δs′. (2.13)

The authors of [11] showed that this condition is satisfied for very natu-
ral processes. In particular, it is satisfied for processes with multiplicative
drift if the jump probability p(s) := Pr[Xt+1 ≤ s′ | Ft,Xt = s] is a decreas-
ing function of s, whenever s′ ≤ s.18 This modification extends the scope
of Theorem 2.4.3 considerably, since many evolutionary algorithms are non-
monotone processes. Moreover, it seems likely that the proof in [11] can be
extended to generalise related lower bounds, in particular the lower bounds
for variable drift in Theorems 2.4.1 and 2.4.2.

We conclude the discussion of lower bounds with an easy example to
demonstrate how to apply Theorem 2.4.2 and 2.4.3.

Example 2.4.4 (RLS on OneMax, Lower Bound). Consider once more RLS
on OneMax as in Example 2.3.4. We want to apply Theorem 2.4.2. Since Xt

decreases by at most one, we choose ξ(s) := s−1 to satisfy (2.6) as tightly as
possible. Since the drift is ∆t(s) = s/n, we choose h(s) := (s + 1)/n so that
h(ξ(s)) = ∆t(s). Thus we obtain the lower bound

E[T]≥ smin
h(smin)

+E

[∫ X0

smin

1
h(σ)

dσ

]
= 1

2/n
+E

[∫ X0

1

n

σ +1
dσ

]

18 In other words, it should more likely to jump into the interval [0,s′] if you start closer
to it.

116 Johannes Lengler

= n

2
+n ·E[ln(X0 +1)− ln2], (2.14)

which is easily seen to be at least n lnn−O(n).
Note that Theorem 2.4.3 would give a less tight bound if naively applied.

To satisfy (2.10) for s = 2, it would be necessary to choose β ≥ 1/2, and for
s = 1 we even need β ≥ 1, which renders the bound useless. However, this
problem can be overcome by truncating the search space; see [11] for details.

2.4.2 Tail Bounds

In some cases, we would also like to understand T beyond its expectation.
In particular, we may wantT to be concentrated, i.e. we want bounds on the
probability that T deviates substantially from its expectation. This is desir-
able for at least two reasons. Firstly, it gives more concrete guarantees about
T , for example that the algorithm will converge in a certain number of steps
with 99% probability. Secondly, it might also happen that the expectation is
misleading. For example, consider the following variant of the gambler’s ruin
problem. A gambler starts with $1, and with each game she either wins or
loses $1, but the probability of losing is 1/2+1/n, so slightly larger than the
probability 1/2−1/n of winning. Let T be the time until she is broke, i.e. the
number of games until she has no money left. Then the drift towards 0 is 2/n,
and therefore E[T] = n/2 by the additive drift theorem. However, it can be
computed that Pr[T ≤ 27] ≥ 70%, which holds even for the fair game where
winning and losing are equally likely. Therefore, for large n the expectation
n/2 is rather misleading, since typical values of T are very different. Such
discrepancies can be ruled out by concentration results.

For the standard drift theorems, we need additional assumptions about
Xt for such concentration results to hold, with one notable exception. The
following upper tail bound for multiplicative drift holds without any further
requirements, as pointed out by Doerr and Goldberg [15]. We give the sim-
plified formulation presented in [20]. We also present the proof of Doerr and
Goldberg, which is remarkably short and elegant.

Theorem 2.4.5 (Multiplicative Drift, Upper Tail Bound [15, 20]).
Let (Xt)t≥0 be a sequence of non-negative random variables with a finite
state space S ⊆ R+

0 such that 0 ∈ S. Let smin := min(S \{0}), and let T :=
inf{t ≥ 0 | Xt = 0}. Suppose that X0 = s0, and that there exists δ > 0 such
that, for all s ∈ S \{0} and all t≥ 0,

E[Xt−Xt+1 |Xt = s]≥ δs. (2.15)

Then, for all r ≥ 0,

2 Drift Analysis 117

Pr
[
T >

⌈
r +ln(s0/smin)

δ

⌉]
≤ e−r. (2.16)

Proof. For every fixed ρ = ⌈(r +ln(s0/smin))/δ⌉ ∈N, by Markov’s inequality,

Pr[T > ρ] = Pr[Xρ > 0]≤ E[Xρ]
smin

(∗)
≤ (1− δ)ρ s0

smin
, (2.17)

where (*) comes from applying (2.15) and linearity of expectation ρ times.
Since (1−x)≤ e−x for all x ∈ R, we obtain Pr[T > ρ]≤ e−ρδs0/smin ≤ e−r.

⊓⊔

For all of the other main drift theorems, including additive drift, variable
drift and lower tails for multiplicative drift, we need assumptions on the
probability of large jumps. For example, consider the process on S = {0,n} in
which Xt = n has probability 1/n of jumping to zero, and stays at n otherwise.
Then Xt has drift one towards 0, but the hitting time T is geometrically
distributed. In particular, T is not concentrated.19 So, we need to make some
assumption about the distribution of |Xt−Xt+1|.

The easiest assumption is that large jumps do not occur at all, i.e. |Xt+1−
Xt| < c for some parameter c. This case occurs in various situations, for
example for RLS, for some ant colony optimisation algorithms such as the
max–min ant system (MMAS) and for the compact genetic algorithm (cGA).
We refer the reader to Kötzing [43] for a large collection of additive drift
theorems with this assumption.

While there are situations without large jumps, there are even more cases
in which large jumps may occur, but are unlikely. Thus research has focused
on drift theorems with assumptions about the jump probability, usually some
type of exponentially falling bounds, i.e.Pr[|Xt+1−Xt|> j]≤ c ·(1+η)−j for
some parameters c,η > 0. In this chapter we stick with this type of condi-
tion, although generalisations are possible. Kötzing has made the point that
exponentially falling jump probabilities imply a sub-Gaussian distribution of
Xt− εt, which is sufficient to derive most known tail bounds [44].20 Lehre
and Witt have given a very general framework for drift theorems [52, 53], in
which only weak conditions on the exponential probability-generating func-
tion eλ(Xt−Xt+1) are needed.21 Most major drift theorems, including con-
centration bounds, can be derived from this framework, so that it arguably
renders the other drift theorems unnecessary [52]. However, researchers have
continued to use specialised drift theorems, possibly because the framework
of Lehre and Witt comes with a substantial technical overhead. We give their
main theorem at the end of the section for quick reference, but discussing its
relation to the other drift theorems is beyond the scope of this chapter, and
we refer the reader to the very nice exposition in [52].
19 For example, Pr[T > 2E[T]] = (1−1/n)2n ≈ e−2.
20 And arguably more natural, using the Azuma–Hoeffding inequality.
21 More precisely, only the expectation of this function needs to be bounded.

118 Johannes Lengler

Even with bounds on the probability of making jumps, lower tail bounds
remain rather delicate. Unfortunately, it is not true in general that the run-
time is concentrated around the expectation. This problem occurs when the
drift is too weak, as the following counterexample shows.

Example 2.4.6 (Runtime is Not Concentrated Around Mean for Weak Drift).
We consider the following artificial random walk on the set {0,1, . . . ,N} for
some (very large) constant N . We start at X0 = n, where n is much smaller
than N . For Xt = s, with probability 1/n4 we take a step to the left, Xt+1 :=
Xt−1, and otherwise we flip an unbiased coin to see whether we take a step
to the left or to the right. We say that we take a biased step in the first
case, and an unbiased step in the second.22 Effectively, this process can be
summarised as

Xt+1 =

{
Xt−1 with probability 1

2 (1+1/n4),
Xt +1 with probability 1

2 (1−1/n4).
(2.18)

Then the drift is easily seen to be

∆t(s) = 1
n4 , (2.19)

so that by the additive drift theorem (Theorem 2.3.1) we obtain

E[T] = n4. (2.20)

So, in terms of expectation, drift analysis can handle the problem quite well.
However, it turns out that the expectation is completely misleading. Consider
the first n3 steps of the algorithm. By a union bound, with probability 1−
O(1/n) all of these steps are unbiased. Hence, with high probability the first
n3 steps are given by an unbiased random walk, also known as a gambler’s
ruin process. This process is well studied, and it is known that the probability
of walking from n to 0 in at most αn2 steps is 1−O(α−1/2) for all α > 1 [36].
In particular, with α = n, the probability that an unbiased random walk
starting at n hits 0 in at most n3 steps is 1−O(n−1/2). Thus, with high
probability the stopping time T of our process satisfies T = O(n3).23 Hence,
with high probability, T is asymptotically much smaller than its expectation
E[T] = n4.

22 We have neglected the border case Xt = N in the description. However, if N is large
enough, e.g.N = en, then we cannot hit the right border in o(N) steps, so the arguments
are unaffected by the right border. For (2.20) we require that the drift is also 1/n4 at
the border.
23 In fact, if we are mathematically sloppy, the ‘typical case’ is T = Θ(n2).

2 Drift Analysis 119

This example is rather prototypical for situations with weak drift. In fact,
it was shown in [22] that in general24 for weak additive drift the value of E[T]
is not dominated by ‘typical’ cases, but at least a constant proportion of E[T]
comes from exceptional cases in which T is much larger than E[T]. We also
remark that Example 2.4.6 above can easily be adapted to multiplicative drift,
for example by making the probability of an unbiased step Xt/n10. Since Xt

changes in each step by at most one, by Theorem 2.4.3 the bound E[T] =
O(n10 logn) given by the multiplicative drift theorem is tight up to constant
factors. However, as before, the runtime is O(n3) with high probability, so
that with high probability the runtime is much smaller than the expected
runtime.

Despite this problem, good tail bounds for additive drift have been devel-
oped. The following theorem follows from combining Theorems 10, 12 and 13
in [44].25

Theorem 2.4.7 (Additive Drift, Tail Bounds, following [44]). Let
(Xt)t≥0 be a sequence of non-negative random variables with a finite state
space S ⊆ R+

0 such that 0 ∈ S, and with associated filtration Ft. Let smin :=
min(S \{0}), and let T := inf{t≥ 0 |Xt = 0}. Suppose that X0 = s0, and that
there exist δ,η,r > 0 such that for all s ∈ S \{0}, all j ∈ N0 and all t≥ 0 the
following conditions hold:

Pr[|Xt+1−Xt|> j | Ft]≤
r

(1+η)j
, (2.21)

E[Xt−Xt+1 | Ft,Xt = s]≤ δ. (2.22)

Then, for all x≥ 0,

Pr
[
T ≤ s0−x

δ

]
≤ exp

{
−ηx

8
·min

{
1,

η2δx

32rs0

}}
. (2.23)

If, instead of (2.22), we have

E[Xt−Xt+1 | Ft,Xt = s]≥ δ, (2.24)

then

Pr
[
T ≥ s0 +x

δ

]
≤ exp

{
−ηx

8
·min

{
1,

η2δx

32rs0

}}
. (2.25)

24 Under some weak assumptions, in particular assuming that large step sizes are unlikely
as in (2.21) below.
25 Actually, the statement in [44] is stronger, since it states that at no point during the
whole process does Xt deviate substantially from its expectation, whereas we consider
only values of Xt that are relevant for the runtime.

120 Johannes Lengler

Note that the bounds in (2.23) and (2.25) give concentration only if the
right hand side is of the form exp{−Φ} for a large term Φ. In particular,
consider the case where δ and r are constants and x = Θ(s0). Then Φ = ω(1)
if and only if the bound s0/δ on the expected runtime satisfies s0/δ = o(x2) =
o(s2

0). On the other hand, for s0/δ = ω(s2
0) the runtime bound from the drift

is larger than the time that an unbiased random walk would need to hit 0;
see also Example 2.4.6. So, it is not surprising that Theorem 2.4.7 does not
give concentration in this regime. Tight concentration bounds for the regime
of weak drift can be found in [44].

We conclude the section with a consideration of the tail bounds in the gen-
eral framework of Lehre and Witt [52, 53]. Note that [52, 53] both contain
also several corollaries that correspond to simplified special cases, in partic-
ular some cases which resemble more closely our variant of the variable drift
theorem.

Theorem 2.4.8 (General Drift Theorem, Tail Bounds [53]). Let a≥ 0,
and let (Xt)t≥0 be a sequence of random variables with a finite state space
S ⊆ R+

0 such that the interval [0,a]∩ S is absorbing, and with associated
filtration Ft. Let Ta := inf{t ≥ 0 | Xt ≤ a}, and assume that X0 = s0 > a.
Moreover, let λ > 0, let g : R+

0 → R+
0 be a function such that g(0) = 0 and

g(s)≥ g(a) for all s > a, and let β : N→ R+.

(a) If, for all t≥ 0,

E[e−λ(g(Xt)−g(Xt+1)) | Ft,Xt > 0]≤ β(t), (2.26)

then for all t≥ 0,

Pr[Ta > t] <

(
t−1∏
r=0

β(r)

)
eλ(g(s0)−g(a)). (2.27)

(b) If, for all t≥ 0,

E[eλ(g(Xt)−g(Xt+1)) | Ft,Xt > 0]≥ β(t), (2.28)

then for all t≥ 0,

Pr[Ta < t]≤

(
t−1∏
r=0

β(r)

)
e−λ(g(s0)−g(a)). (2.29)

In general, in order to obtain tail bounds for variable drift, we can either
apply Theorem 2.4.8; or we can rescale Xt, as discussed in Section 2.3.2, to
turn variable drift into additive drift, and then apply Theorem 2.4.7. Unfor-
tunately, both approaches tend to be very technical. The most important
case is obtaining tight lower tail bounds for multiplicative drift. Even with
the framework of Lehre and Witt, in order to derive lower tail bounds for the

2 Drift Analysis 121

(1+1) EA on OneMax, it is still necessary to split the process into phases
of relatively constant drift [52]. An easy and comprehensive lower tail bound
for multiplicative drift is still absent in the literature.

2.4.3 Negative Drift

If the drift does not point towards zero, but instead points with a constant
rate away from zero, then it takes exponential time to cross an interval. The
first theorem of this type was proven by Oliveto and Witt [65, 66], following
Hajek’s classical work [37]. We give a formulation close to [54, 71] because
it avoids o-notation for the length of the interval. Explicit constants can be
found in [44, 67, 76].

Theorem 2.4.9 (Negative Drift, following [54, 65, 66, 71]). For all
a,b,δ,η,r > 0, with a < b, there is a c > 0,n0 ∈ N such that the following
holds for all n≥ n0. Suppose (Xt)t≥0 is a sequence of random variables with
a finite state space S ⊆ R+

0 , and with associated filtration Ft. Assume that
X0 ≥ bn, and let Ta := min{t≥ 0 |Xt ≤ an} be the hitting time of S ∩ [0,an].
Assume further that for all s ∈ S with s > an, for all j ∈N0 and for all t≥ 0
the following conditions hold:

E[Xt−Xt+1 | Ft,Xt = s]≤−δ, (2.30)

Pr[|Xt−Xt+1| ≥ j | Ft,Xt = s]≤ r

(1+η)j
. (2.31)

Then

Pr[Ta ≤ ecn]≤ e−cn. (2.32)

Negative drift is helpful for proving lower bounds [54, 67, 71], but not
only so. It may also be used to show that an algorithm stays in a desired
parameter regime. For example, Neumann, Sudholt and Witt used it to show
that an ant colony optimisation (ACO) algorithm has good runtime because
all pheromone values stay in a desirable range [63]. Similarly, Kötzing and
Molter [47], as well as subsequent authors [30, 55, 56], used negative drift to
show that ACO algorithms tend to stay close to the optimum, thus enabling
the algorithm to follow the optimum in a dynamically changing environment.
In a different setting, Sudholt and Witt [72] showed that the compact ge-
netic algorithm (cGA) is efficient on OneMax26 because, for each position,
the probability of sampling a one-bit never becomes too low. Similar ideas

26 In some parameter regimes.

122 Johannes Lengler

have been applied for population-based non-elitist algorithms in the strong-
selection weak-mutation (SSWM) regime [68].

2.4.4 Populations

If the algorithm uses population sizes larger than one, or if it does not work
at all with populations, as in the case of ant colony optimisation (ACO) or
estimation-of-distribution algorithms (EDAs),27 then it is often challenging
to find a single potential Xt which captures well the quality of the current
population. As before, if such a potential can be found, then drift analysis
can take care of the rest. In some cases, it suffices to consider the current best
optimum as the potential (see Example 2.3.10 and [13]), or some average qual-
ity [29, 72]. A systematic approach was developed by Corus, Dang, Eremeev
and Lehre [3, 4], who gave the so-called level-based theorem for population-
based algorithms. With this theorem, they identified a generic situation in
which a good potential can be found automatically. A population-based algo-
rithm in their sense28 is any algorithm of the following form. In each round
it maintains a population of size λ, and from this population it generates
some probability distribution D. For the next round, it produces λ samples
independently from D, which form the next generation.

This framework of population-based algorithms applies to many situations,
often with a twist to the usual algorithm description. Firstly, it does include
all (µ,λ) evolutionary or genetic algorithms if the λ offspring are generated
independently of each other. In this case, let Pi be the i-th offspring pop-
ulation.29 Then, from Pi, a complex process determines some probability
distribution D from which the next offspring is sampled. This process sub-
sumes selection and mutation/crossover. Other population-based algorithms
include simulated annealing, and, surprisingly, EDAs [7]. While these latter
algorithms conceptually maintain a probability distribution rather than a
population, they do produce a sample population in each round, from which
the next distribution is computed. This offspring population makes them fit
into the framework of population-based algorithms.

The level-based theorem assumes a partitioning of the search space into
fitness levels that need to be climbed by the population. It gives an upper
bound on the expected runtime if certain conditions are satisfied. The exact
formulation is rather technical, so we refer the reader to [4]. Qualitatively,
three ingredients are required:

27 ACO algorithms maintain pheromone values; EDAs maintain a probability distribu-
tion, rather than a population of search points.
28 Conflicting terminology exists.
29 Not the parent population, since the next parents are not sampled independently
from these. Rather, the parents of the next generation need to compete with each other
in the selection step.

2 Drift Analysis 123

1. If part of the population has at least fitness level i, then the probability
of sampling an offspring at level i+1 is sufficiently large.

2. The fraction of the population which has fitness level at least i increases
in expectation.

3. The population size is large enough.
Although it has only recently been developed, the level-based theorem has
already found quite a number of applications, including the analysis of ge-
netic algorithms with a multitude of selection mechanisms and benchmark
functions [4], of EDAs [7, 50], of self-adaptive algorithms [9] and of algo-
rithms in situations that are dynamic [5] or noisy [6], or provide only partial
information [8].

2.5 Finding the Potential Function

At the very beginning of the chapter, we listed three ingredients for runtime
analysis via drift theory: finding a good potential function, computing the
drift and transferring the knowledge about the drift into information about
the runtime. In this chapter, we have discussed the third point, because it is
based on a universal technique that applies to many settings. In contrast, the
first two points are highly problem-dependent, and cannot be generalised well.
As mentioned before, the second point is usually not the hardest part, though
it is often the most technical part and sometimes tedious. On the other hand,
the first task – finding a good potential function – is often the hardest part,
and it requires a lot of insight into the problem. Unfortunately, it is difficult
to give general advice on how to find an appropriate fitness function for a
given problem. Nevertheless, we will try to give some approaches which may
be helpful.

A first question may be whether drift analysis is always applicable, or
whether there are cases where the method fails completely. More concretely,
is there always a good potential function, ideally one with constant drift? The
answer is pleasantly clear: ‘Yes’. In theory, there is even a surprisingly simple
answer to the question of what this potential may look like. We may always
choose the canonical potential Xt := E[T | Ft]− t, where Ft is the history
of the algorithm up to time t. Note that T is, as usual, the total number
of steps in the process; it is not just the number of steps remaining. For
the canonical potential, we always get a drift of exactly 1, for rather trivial
reasons [20, 39]. The canonical potential does not look very helpful, since it
seemingly only helps in finding the runtime if we already know the runtime.
However, the canonical potential gives us a natural candidate for the right
potential function if we have any guess as to what the runtime might be.
The guess may come from heuristic considerations or from simulations. The
situation resembles induction, where finding the right induction hypothesis
is sometimes much harder than actually proving the inductive step. With

124 Johannes Lengler

the random decline in Example 2.3.8 we have already seen a case where the
situation was obscure, but after the right scaling, Yt = 1 + ln(Xt), it was
rather easy to check that the drift was constant. How do we get to such a
scaling? Reinspecting the example, we find that it is very natural to guess
that the runtime is logarithmic, so a scaling of the form Yt = c1 + c2 log(Xt)
is a natural candidate. Indeed, any scaling of this form would have been
sufficient. Choosing c1 = c2 = 1 was just the most convenient choice, owing to
the fact that then Yt = 1 if and only if Xt = 1. We have seen other examples
of the rescaling technique in Example 2.3.2 and in the variable drift theorem.

Note that the canonical potential is more than ‘just’ a rescaling technique,
since it defines Xt from scratch. In particular, we can theoretically compute
the expected runtime for every random process30 by drift analysis, by using
the canonical potential. In practice, the main problem is that the history Ft

(or even the current state) is too complicated to work with, and likewise the
canonical potential is often too complex too handle. Therefore, the art of
drift analysis lies in finding a potential which is simple and manageable, but
which still resembles the canonical potential.

Let us consider next the (quite realistic) scenario where we already have
some candidate for a potential function, but this candidate is still not good
enough. Let us first discuss what it means that a potential function is ‘not
good’. If we want additive drift, it means that there are different states s1,s2
of the algorithm with very different drift. If we want multiplicative drift, it
means that the ratio between the drift and the potential is very different
for some states s1,s2, because we want the drift to be proportional to the
potential. So, the first task is to look for states with such discrepancies. Then
we can try to repair this defect: if the drift at s1 is too large (compared
with the drift at s2) then we must try to decrease the difference between the
potential of s1 and the potentials of typical successor states of s1. We can do
this either by decreasing the potential of s1 or by increasing the potentials
of successor states. Hopefully, this will improve the accuracy of the potential
function. We may iterate this procedure until we arrive at a good potential
function.

For concreteness, let us study this approach with an example. Consider the
(1+1) EA with standard mutation rate 1/n for minimising BinVal, where
BinVal(x) =

∑n
i=1 2n−ixi. Our first guess is to use the fitness function as

the potential, Xt := BinVal(x(t)). Our hope is that we will get multiplicative
drift, as we got for RLS in Example 2.3.7. However, with this potential we
have two problems. Firstly, the potential may make huge jumps (e.g.decrease
from 2n−1 to 0), so we need to be careful when applying the multiplicative
drift theorem, as we saw in Examples 2.3.6 and 2.3.7. Secondly, the drift
is not very close to multiplicative. For example, consider the search points
s1 := (0, . . . ,0,1) and s2 := (1,0, . . . ,0). The potentials are x1 := 1 and x2 :=

30 If the expected runtime is finite. However, the process does not need to have finite,
bounded or discrete search spaces.

2 Drift Analysis 125

2n−1, respectively. A mutation of s1 is accepted only if it flips the last bit,
and no other bit, which happens with probability ≈ 1/(en) = x1/(en). On
the other hand, for s2 we accept every mutation that flips the first bit, which
happens with probability 1/n. We may also flip a few other bits, but the
potential still goes down by (1−o(1))2n−1 in expectation if we flip the first
bit. Therefore the drift is ≈ 2n−1/n = x2/n. So the drift for s2 is by factor e
larger than desired, if we compare it with s1. Hence, we must try to decrease
the potential for s2 and/or increase it for s1. A natural way to do this is to
reduce the weight of the higher-order bits in computing the potential. This
might also alleviate the effects of large jumps.

How much should we reduce the weight? In the extreme case, we would
make all weights equal, i.e.we would use the OneMax potential. This works
well on strings where the higher-order bits are all zero. For example, for s2
we get a drift of 1/n, and the ratio between drift and fitness is generally very
close to 1/n if all one-bits are in the last, say, 10% of the string. However,
there is a problem for s1. Here we accept an offspring whenever we flip the
first bit, and in this case we flip an expected number of (n−1)/n other bits.
Therefore, the drift for s2 is 1/n · (1− (n− 1)/n) = 1/n2, so it is too small.
Hence we need to increase the potential of s2 compared with the potential
of its typical offspring, i.e. we need to increase the weight of higher-order
bits. It takes some fiddling to get the right trade-off, but Doerr, Johannsen
and Winzen figured out that a good choice is a weight of 5/4 for the first
half of the bits, and 1 for the second half [19]. This choice works not only
for BinVal but for all linear functions (cf.Example 2.3.12). In principle, the
same approach can also be used for mutation rates other than 1/n. In one
of the most important results on the theory of evolutionary algorithms, for
a mutation rate of the form c/n for any constant c > 0 Witt [75] managed
to find weights which lead to a good potential. In this way, he could prove
in just 2–3 pages that the runtime of the (1+1) EA is (1± o(1))ec/c ·n lnn,
settling a question that had been open for years.

We should keep in mind that the methods discussed above are only guide-
lines, which may be helpful in some situations but fruitless in others. Finding
the right drift function often requires ingenuity, and cannot be reduced to a
simple cooking recipe. Thus it is still one of the most challenging, but also
most rewarding tasks in runtime analysis.

2.6 Conclusion

We have seen how drift analysis can be applied to transform knowledge about
the drift into knowledge about the runtime of an algorithm. In this chapter
we have restricted ourselves to applications in the analysis of evolutionary
algorithms, but drift analysis can be applied to other randomised algorithms
or random processes. We refer the reader to [35], which contains a nice variety

126 Johannes Lengler

of applications of drift analysis, including algorithms for approximate vertex
cover, 2-SAT and random sorting, and applications to processes such as the
Moran process.

In theory, it is always possible to apply drift analysis to obtain match-
ing upper and lower bounds on the expected runtime. However, in practice
there are many situations which are still difficult to handle because we do not
know a good potential function. In particular, the more complex the state
space and the behaviour of the algorithm are, the more difficult it is to find
a single real-valued function which is a sufficiently good measure of progress.
For example, in genetic programming (GP) the states are trees instead of
strings, which makes the situation considerably more complex. In the few
cases where theoretical results exist, this is mostly because the tree structure
is unimportant for the problem [23, 27, 46, 62], with the notable exception
of [25]. Similarly, while there have been impressive advances for large pop-
ulation sizes, especially through the level-based theorem (see Section 2.4.4),
these techniques are still limited to some special cases of population dynam-
ics. In particular, they consider only the number of individuals on each fitness
level. This limits the complexity of the interactions that we can understand
with this method – for example, the approach is blind to beneficial crossovers
that happen between search points on the same fitness level. In general, it
remains a major challenge to apply drift analysis to complex state spaces,
and to algorithms which maintain and utilise a large diversity within their
population, for example through crossover.

References

[1] Baritompa, B., Steel, M.: Bounds on absorption times of directionally
biased random sequences. Random Structures & Algorithms 9(3), 279–
293 (1996)

[2] Bramson, M.: Stability of queueing networks. Probability Surveys 5,
169–345 (2008)

[3] Corus, D., Dang, D.C., Eremeev, A.V., Lehre, P.K.: Level-based analysis
of genetic algorithms and other search processes. In: Proceedings of
the International Conference on Parallel Problem Solving from Nature
(PPSN 2014), pp. 912–921. Springer (2014)

[4] Corus, D., Dang, D.C., Eremeev, A.V., Lehre, P.K.: Level-based analysis
of genetic algorithms and other search processes. IEEE Transactions on
Evolutionary Computation (2017)

[5] Dang, D.C., Jansen, T., Lehre, P.K.: Populations can be essential in
tracking dynamic optima. Algorithmica 78(2), 660–680 (2017)

[6] Dang, D.C., Lehre, P.K.: Efficient optimisation of noisy fitness functions
with population-based evolutionary algorithms. In: Proceedings of the

2 Drift Analysis 127

International Workshop on Foundations of Genetic Algorithms (FOGA
2015), pp. 62–68. ACM (2015)

[7] Dang, D.C., Lehre, P.K.: Simplified runtime analysis of estimation of
distribution algorithms. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2015), pp. 513–518. ACM (2015)

[8] Dang, D.C., Lehre, P.K.: Runtime analysis of non-elitist populations:
From classical optimisation to partial information. Algorithmica 75(3),
428–461 (2016)

[9] Dang, D.C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist
populations. In: Proceedings of the International Conference on Paral-
lel Problem Solving from Nature (PPSN 2016), pp. 803–813. Springer
(2016)

[10] Doerr, B., Doerr, C.: The impact of random initialization on the runtime
of randomized search heuristics. Algorithmica 75(3), 529–553 (2016)

[11] Doerr, B., Doerr, C., Kötzing, T.: Static and self-adjusting mutation
strengths for multi-valued decision variables. Algorithmica pp. 1–37
(2017)

[12] Doerr, B., Doerr, C., Yang, J.: Optimal Parameter Choices via Precise
Black-Box Analysis. arXiv preprint arXiv:1807.03403 (2018)

[13] Doerr, B., Fischbeck, P., Frahnow, C., Friedrich, T., Kötzing, T., Schir-
neck, M.: Island models meet rumor spreading. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2017), pp.
1359–1366. ACM (2017)

[14] Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating
functions and variable drift. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO 2011), pp. 2083–2090. ACM
(2011)

[15] Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65(1),
1–27 (2013)

[16] Doerr, B., Hota, A., Kötzing, T.: Ants easily solve stochastic shortest
path problems. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO 2012), pp. 17–24. ACM (2012)

[17] Doerr, B., Johannsen, D.: Edge-based representation beats vertex-based
representation in shortest path problems. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2010), pp. 758–766.
ACM (2010)

[18] Doerr, B., Johannsen, D., Winzen, C.: Drift analysis and linear functions
revisited. In: Proceedings of the Congress on Evolutionary Computation
(CEC 2010), pp. 1–8. IEEE (2010)

[19] Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. In:
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2010), pp. 1449–1456. ACM (2010)

[20] Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Al-
gorithmica 64, 673–697 (2012)

128 Johannes Lengler

[21] Doerr, B., Johannsen, D., Winzen, C.: Non-existence of linear universal
drift functions. Theoretical Computer Science 436, 71–86 (2012)

[22] Doerr, B., Kötzing, T., Lagodzinski, G., Lengler, J.: Bounding bloat in
genetic programming. arXiv preprint arXiv:2287.2831 (2018)

[23] Doerr, B., Kötzing, T., Lagodzinski, J., Lengler, J.: Bounding bloat in
genetic programming. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2017), pp. 921–928. ACM (2017)

[24] Doerr, B., Künnemann, M.: Optimizing linear functions with the (1+
λ) evolutionary algorithm - different asymptotic runtimes for different
instances. Theoretical Computer Science 561, 3–23 (2015)

[25] Doerr, B., Lissovoi, A., Oliveto, P.S.: On the evolution of boolean func-
tions with conjunctions and disjunctions via genetic programming. arXiv
preprint arXiv:????.???? (2018)

[26] Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolu-
tionary algorithm. Theoretical Computer Science 276, 51–81 (2002)

[27] Durrett, G., Neumann, F., O’Reilly, U.M.: Computational complexity
analysis of simple genetic programming on two problems modeling iso-
lated program semantics. In: Proceedings of the International Workshop
on Foundations of Genetic Algorithms (FOGA 2011), pp. 69–80. ACM
(2011)

[28] Feldmann, M., Kötzing, T.: Optimizing expected path lengths with ant
colony optimization using fitness proportional update. In: Proceedings
of the International Workshop on Foundations of Genetic Algorithms
(FOGA 2013), pp. 65–74. ACM (2013)

[29] Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The benefit of
recombination in noisy evolutionary search. In: International Symposium
on Algorithms and Computation (ISAAC 2015), pp. 140–150. Springer
(2015)

[30] Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: Robustness of ant
colony optimization to noise. Evolutionary computation 24(2), 237–254
(2016)

[31] Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The compact
genetic algorithm is efficient under extreme gaussian noise. IEEE Trans-
actions on Evolutionary Computation 21(3), 477–490 (2017)

[32] Gießen, C., Kötzing, T.: Robustness of populations in stochastic envi-
ronments. Algorithmica 75(3), 462–489 (2016)

[33] Gießen, C., Witt, C.: Optimal Mutation Rates for the (1+λ) EA on
OneMax Through Asymptotically Tight Drift Analysis. Algorithmica
pp. 1–22 (2017)

[34] Gießen, C., Witt, C.: The Interplay of Population Size and Mutation
Probability in the (1+λ) EA on OneMax. Algorithmica 78(2), 587–609
(2017)

[35] Göbel, A., Kötzing, T., Krejca, M.S.: Intuitive analyses via drift theory.
arXiv preprint arXiv:1806.01919 (2018)

2 Drift Analysis 129

[36] Grimmett, G., Stirzaker, D.: Probability and random processes. Oxford
University Press (2001)

[37] Hajek, B.: Hitting-time and occupation-time bounds implied by drift
analysis with applications. Advances in Applied probability 14(3), 502–
525 (1982)

[38] He, J., Yao, X.: Drift analysis and average time complexity of evolution-
ary algorithms. Artificial Intelligence 127, 57–85 (2001)

[39] He, J., Yao, X.: A study of drift analysis for estimating computation
time of evolutionary algorithms. Natural Computing 3, 21–35 (2004)

[40] He, J., Yao, X.: Average drift analysis and population scalability. IEEE
Transactions on Evolutionary Computation 21(3), 426–439 (2017)

[41] Jägersküpper, J.: A Blend of Markov-Chain and Drift Analysis. In: Pro-
ceedings of the International Conference on Parallel Problem Solving
from Nature (PPSN 2008), pp. 41–51. Springer (2008)

[42] Johannsen, D.: Random combinatorial structures and randomized search
heuristics. Ph.D. thesis, Universität des Saarlandes (2010)

[43] Kötzing, T.: Concentration of first hitting times under additive drift. In:
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2014), pp. 1391–1398. ACM (2014)

[44] Kötzing, T.: Concentration of first hitting times under additive drift.
Algorithmica 75(3), 490–506 (2016)

[45] Kötzing, T., Krejca, M.S.: First-hitting times under additive drift. In:
Proceedings of the International Conference on Parallel Problem Solving
from Nature (PPSN 2018). Springer (2018). To appear

[46] Kötzing, T., Lagodzinski, G., Lengler, J., Melnichenko, A.: Destructive-
ness of lexicographic parsimony pressure and alleviation by a concate-
nation crossover in genetic programming. In: Proceedings of the Inter-
national Conference on Parallel Problem Solving from Nature (PPSN
2018). Springer (2018). To appear

[47] Kötzing, T., Molter, H.: Aco beats ea on a dynamic pseudo-boolean func-
tion. In: Proceedings of the International Conference on Parallel Problem
Solving from Nature (PPSN 2012), pp. 113–122. Springer (2012)

[48] Koza, J.R.: Genetic programming as a means for programming comput-
ers by natural selection. MIT Press (1992)

[49] Ladret, V.: Asymptotic hitting time for a simple evolutionary model of
protein folding. Journal of Applied Probability 42(1), 39–51 (2005)

[50] Lehre, P.K., Nguyen, P.T.H.: Improved runtime bounds for the univari-
ate marginal distribution algorithm via anti-concentration. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO
2017), pp. 1383–1390. ACM (2017)

[51] Lehre, P.K., Oliveto, P.S.: Theoretical analysis of stochastic search al-
gorithms. arXiv preprint arXiv:1709.00890 (2017)

[52] Lehre, P.K., Witt, C.: General drift analysis with tail bounds. arXiv
preprint arXiv:1307.2559 (2013)

130 Johannes Lengler

[53] Lehre, P.K., Witt, C.: Concentrated hitting times of randomized search
heuristics with variable drift. In: International Symposium on Algo-
rithms and Computation (ISAAC 2014), pp. 686–697. Springer (2014)

[54] Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms re-
visited. Combinatorics, Probability and Computing (to appear, 2018).
Preprint available at arXiv:1608.03226

[55] Lissovoi, A., Witt, C.: Runtime analysis of ant colony optimization on
dynamic shortest path problems. Theoretical Computer Science 561,
73–85 (2015)

[56] Lissovoi, A., Witt, C.: Mmas versus population-based ea on a family of
dynamic fitness functions. Algorithmica 75(3), 554–576 (2016)

[57] Lissovoi, A., Witt, C.: A runtime analysis of parallel evolutionary algo-
rithms in dynamic optimization. Algorithmica 78(2), 641–659 (2017)

[58] Menshikov, M., Popov, S., Wade, A.: Non-homogeneous Random Walks:
Lyapunov Function Methods for Near-Critical Stochastic Systems, vol.
209. Cambridge University Press (2016)

[59] Meyn, S.P., Tweedie, R.L.: Markov chains and stochastic stability.
Springer Science & Business Media (2012)

[60] Mitavskiy, B., Rowe, J., Cannings, C.: Theoretical analysis of local search
strategies to optimize network communication subject to preserving the
total number of links. International Journal of Intelligent Computing
and Cybernetics pp. 243–284 (2009)

[61] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Uni-
versity Press (1995)

[62] Neumann, F.: Computational complexity analysis of multi-objective ge-
netic programming. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2012), pp. 799–806. ACM (2012)

[63] Neumann, F., Sudholt, D., Witt, C.: A few ants are enough: Aco with
iteration-best update. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2010), pp. 63–70. ACM (2010)

[64] Neumann, F., Wegener, I.: Randomized local search, evolutionary algo-
rithms, and the minimum spanning tree problem. Theoretical Computer
Science 378(1), 32–40 (2007)

[65] Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds
in evolutionary computation. Algorithmica 59(3), 369–386 (2011)

[66] Oliveto, P.S., Witt, C.: Erratum: Simplified drift analysis for prov-
ing lower bounds in evolutionary computation. arXiv preprint
arXiv:1211.7184 (2012)

[67] Oliveto, P.S., Witt, C.: Improved time complexity analysis of the simple
genetic algorithm. Theoretical Computer Science 605, 21–41 (2015)

[68] Paixão, T., Heredia, J.P., Sudholt, D., Trubenová, B.: Towards a runtime
comparison of natural and artificial evolution. Algorithmica 78(2), 681–
713 (2017)

[69] Reichel, J., Skutella, M.: Evolutionary algorithms and matroid optimiza-
tion problems. Algorithmica 57(1), 187–206 (2010)

2 Drift Analysis 131

[70] Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the
(1,λ) EA. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2012), pp. 1349–1356 (2012)

[71] Rowe, J.E., Sudholt, D.: The choice of the offspring population size in
the (1, λ) evolutionary algorithm. Theoretical Computer Science 545,
20–38 (2014)

[72] Sudholt, D., Witt, C.: Update strength in edas and aco: How to avoid
genetic drift. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO 2016), pp. 61–68. ACM (2016)

[73] Tweedie, R.: Criteria for classifying general markov chains. Advances in
Applied Probability 8(4), 737–771 (1976)

[74] Wegener, I.: Methods for the analysis of evolutionary algorithms on
pseudo-boolean functions. In: Evolutionary Optimization, pp. 349–369.
Springer (2003)

[75] Witt, C.: Tight bounds on the optimization time of a randomized search
heuristic on linear functions. Combinatorics, Probability and Computing
22(2), 294–318 (2013)

[76] Witt, C.: Upper bounds on the runtime of the univariate marginal dis-
tribution algorithm on onemax. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO 2017), GECCO, pp. 1415–
1422. ACM (2017)

Chapter 3
Complexity Theory for Discrete
Black-Box Optimization Heuristics

Carola Doerr

Abstract A predominant topic in the theory of evolutionary algorithms and,
more generally, theory of randomized black-box optimization techniques is
running-time analysis. Running-time analysis is aimed at understanding the
performance of a given heuristic on a given problem by bounding the number
of function evaluations that are needed by the heuristic to identify a solution
of a desired quality. As in general algorithms theory, this running-time per-
spective is most useful when it is complemented by a meaningful complexity
theory that studies the limits of algorithmic solutions.

In the context of discrete black-box optimization, several black-box com-
plexity models have been developed to analyze the best possible performance
that a black-box optimization algorithm can achieve on a given problem. The
models differ in the classes of algorithms to which these lower bounds apply.
This way, black-box complexity contributes to a better understanding of how
certain algorithmic choices (such as the amount of memory used by a heuris-
tic, its selective pressure, or properties of the strategies that it uses to create
new solution candidates) influence performance.

In this chapter we review the different black-box complexity models that
have been proposed in the literature, survey the bounds that have been ob-
tained for these models, and discuss how the interplay of running-time ana-
lysis and black-box complexity can inspire new algorithmic solutions to well-
researched problems in evolutionary computation. We also discuss in this
chapter several interesting open questions for future work.

Carola Doerr
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, 75005 Paris,
France

133

134 Carola Doerr

3.1 Introduction and Historical Remarks

One of the driving forces in theoretical computer science is the fruitful in-
terplay between complexity theory and the theory of algorithms. While the
former measures the minimum computational effort that is needed to solve
a given problem, the latter is aimed at designing and analyzing efficient al-
gorithmic solutions which prove that a problem can be solved with a certain
computational effort. When, for a problem, the lower bounds on the resources
needed to solve it are identical to (or not much smaller than) the upper
bounds attained by some specific algorithm, we can be certain that we have
an (almost) optimal algorithmic solution to this problem. Big gaps between
lower and upper bounds, in contrast, indicate that more research effort is
needed to understand the problem: it may be that more efficient algorithms
for the problem exist, or that the problem is indeed “harder” than what the
lower bound suggests.

Many different complexity models coexist in the theoretical computer sci-
ence literature. The arguably most classical one measures the number of
arithmetic operations that an algorithm needs to perform on the problem
data until it obtains a solution for the problem. A solution can be a “yes/no”
answer (a decision problem), a classification of a problem instance according
to some criteria (a classification problem), a vector of decision variables that
maximize or minimize some objective function (an optimization problem), etc.
In the optimization context, we are typically interested only in algorithms
that satisfy some minimal quality requirements such as a guarantee that the
suggested solutions (“the output” of the algorithm) are always optimal or are
optimal with some large enough probability, or that they are not worse than
an optimal solution by more than some additive or multiplicative factor C,
etc.

In the white-box setting, in which the algorithms have full access to the
data describing the problem instance, complexity theory is a well-established
and very intensively studied research objective. In black-box optimization,
where the algorithms do not have access to the problem data and can learn
about the problem at hand only through the evaluation of potential solu-
tion candidates, complexity theory is a much less present topic, with rather
large fluctuations in the number of publications. In the context of heuris-
tic solutions to black-box optimization problems, which is the topic of this
book, complexity theory has been systematically studied only since 2010, us-
ing the notion of black-box complexity. Luckily, black-box complexity theory
can build on results in related research domains such as information theory,
discrete mathematics, cryptography, and others.

In this chapter, we review the state of the art in this currently very active
area of research, which is concerned with bounding the best possible perfor-
mance that an optimization algorithm can achieve in a black-box setting.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 135

3.1.1 Black-Box vs. White-Box Complexity

Most of the traditional complexity measures assume that the algorithms have
access to the problem data, and count the number of steps that are needed
until the algorithm outputs a solution. In the black-box setting, these com-
plexity measures are not very meaningful, as the algorithms are asked to
optimize a problem without having direct access to it. As a consequence, the
performance of a black-box optimization algorithm is therefore traditionally
measured by the number of function evaluations that the algorithm does until
it queries for the first time a solution that satisfies some specific performance
criteria. In this book, we are mostly interested in the expected number of
evaluations needed until an optimal solution is evaluated for the first time. It
is therefore natural to define black-box complexity as the minimum number
of function evaluations that any black-box algorithm needs to perform, on
average, until it queries an optimal solution for the first time.

We typically consider classes of problems, for example, the set of traveling
salesperson instances of planar graphs with integer edge weights. For such
a class F ⊆ {f : S → R} of problem instances, we take a worst-case view
and measure the expected number of function evaluations that an algorithm
needs to optimize any instance f ∈ F . That is, the black-box complexity
of a problem F is infA supf∈F E[T (A,f)], the best (among all algorithms
A) worst-case (among all problem instances f) expected number E[T (A,f)]
of function evaluations that are needed to optimize any f ∈ F . A formal
definition will be given in Section 3.2.

The black-box complexity of a problem can be very different from its white-
box counterpart. We will discuss, for example, in Sections 3.2.4 and 3.6.3.5
the fact that there are a number of NP-hard problems whose black-box com-
plexity is of small polynomial order.

3.1.2 Motivation and Objectives

The ultimate objective of black-box complexity is to support the investigation
and design of efficient black-box optimization techniques. This is achieved in
several complementary ways.

A first benefit of black-box complexity is that it enables the above-
mentioned evaluation of how well we have understood a black-box optimiza-
tion problem, and how suitable the state-of-the-art heuristics are. Where large
gaps between lower and upper bounds exist, we may want to explore alter-
native algorithmic solutions, in the hope of identifying more efficient solvers.
Where the lower and upper bounds match or are close, we can stop striving
for more efficient algorithms.

Another advantage of black-box complexity studies is that they allow us to
investigate how certain algorithmic choices influence the performance: By re-

136 Carola Doerr

stricting the class of algorithms under consideration, we can judge how these
restrictions increase the complexity of a black-box optimization problem. In
the context of evolutionary computation, interesting restrictions include the
amount of memory that is available to the algorithms, the number of solutions
that are sampled in every iteration, the way new solution candidates are gen-
erated, the selection principles according to which it is decided which search
points to keep for future reference, etc. Comparing the unrestricted with the
restricted black-box complexity of a problem (i.e. its black-box complexity
with respect to all versus that with respect to a subclass of all algorithms)
quantifies the performance loss caused by these restrictions. This way, we can
understand, for example, the effects of not storing the set of all previously
evaluated solution candidates, but only a small subset.

The black-box complexity of a problem can be significantly smaller than
the performance of a best known ‘standard’ heuristic. In such cases, the small
complexity is often attained by a problem-tailored black-box algorithm, which
is not representative of common black-box heuristics. Interestingly, it turns
out that we can nevertheless learn from such highly specific algorithms, as
they often incorporate some ideas that could be beneficial far beyond the
particular problem at hand. As we shall demonstrate in Section 3.9, even for
very well-researched optimization problems, such ideas can give rise to the
design of novel heuristics which are provably more efficient than standard
solutions. This way, black-box complexity serves as a source of inspiration
for the development of novel algorithmic ideas that lead to the design of
better search heuristics.

3.1.3 Relationship to Query Complexity

As indicated above, black-box complexity is studied in several different con-
texts, which reach far beyond evolutionary computation. In the 1960s and
1970s, for example, this complexity measure was very popular in the context
of combinatorial games, such as coin-weighing problems of the type “given n
coins of two different types, what is the minimum number of weighings that is
needed to classify the coins according to their weight?” Interpreting a weigh-
ing as a function evaluation, we see that such questions can be formulated as
black-box optimization problems.

Black-box complexity also plays an important role in cryptography, where
a common research question concerns the minimum amount of information
that suffices to break a secret code. Quantum computing, communication
complexity, and information theory are other research areas where (variants
of) black-box complexity are intensively studied performance measures. While
in these settings the precise model is often not exactly identical to a model
of the kind we are faced with in black-box optimization, some of the tools
developed in these related areas can be useful in our context.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 137

A significant part of the literature studies the performance of determinis-
tic algorithms. Randomized black-box complexities are much less understood.
They can be much smaller than their deterministic counterparts. Since de-
terministic algorithms form a subclass of randomized ones, any lower bound
proven for the randomized black-box complexity of a problem also applies
to any deterministic algorithm. In some cases, a strict separation between
deterministic and randomized black-box complexities can be proven. This
is the case for the LeadingOnes function, as we shall briefly discuss in
Section 3.3.6. For other problems, the deterministic and randomized black-
box complexities coincide. Characterizing those problems for which access to
random bits can provably decrease the complexity is a wide-open research
question.

In several contexts, in particular the research domains mentioned above,
black-box complexity is typically referred to as query or oracle complexity,
with the idea that the algorithms do not evaluate the function values of
the solution candidates themselves but rather query them from an oracle.
This interpretation is mostly identical to the black-box scenario classically
considered in evolutionary computation.

3.1.4 Scope of This Chapter

In this chapter, as in the remainder of this book, we restrict our attention
to discrete optimization problems, i.e., the maximization or minimization
of functions f : S → R that are defined over finite search spaces S. As in
the previous chapters, we will mostly deal with the optimization of pseudo-
Boolean functions f : {0,1}n → R, permutation problems f : Sn → R, and
functions f : [0..r−1]n→ R defined for strings over an alphabet of bounded
size, where, here and in the following, we use the following abbreviations:
[0..r−1] := {0,1, . . . , r−1} represents the set of non-negative integers smaller
than r, [n] := {1,2, . . . ,n}, and Sn represents the set of all permutations (one-
to-one maps) σ : [n]→ [n].

We point out that black-box complexity notions are also studied for infinite
search spaces S. In the context of continuous optimization problems, studies
of black-box complexity are aimed at bounding the best possible convergence
rates that a derivative-free black-box optimization algorithm can achieve,
see [57, 86] for examples.

3.1.5 Target Audience and Complementary Material

This chapter is written with a reader in mind who is familiar with black-
box optimization, and who brings with them some background in theoretical

138 Carola Doerr

running-time analysis. We will give an exhaustive survey of existing results.
Where appropriate, we provide proof ideas and discuss some historical de-
velopments. Readers interested in a more gentle introduction to the basic
concepts of black-box complexity are referred to [61]. A slide presentation on
selected aspects of black-box complexity, along with a summary of complexity
bounds known back in spring 2014, can be found in the tutorial [20].

3.1.6 Overview of the Content

Black-box complexity is formally defined in Section 3.2. We also provide
there a summary of useful tools. In Section 3.2.4 we discuss why classical
complexity statements such as NP-hardness results do not necessarily imply
hardness in the black-box complexity model.

In Sections 3.3-3.7 we review the different black-box complexity models
that have been proposed in the literature. For each model, we discuss the
main results that have been achieved for it. For several benchmark problems,
including most notably OneMax, LeadingOnes, and Jump, but also combi-
natorial problems such as the minimum spanning tree problem and shortest-
paths problems, bounds have been derived for various complexity models.
For OneMax and LeadingOnes, we compare these different bounds in Sec-
tion 3.8, to summarize where gaps between upper and lower bounds exist, and
to highlight the increasing complexities imposed by the restrictive models.

We will demonstrate in Section 3.9 that the complexity-theoretic view of
black-box optimization can inspire the design of more efficient optimization
heuristics. This is made possible by questioning some of the state-of-the-art
choices that are made in evolutionary computation and neighboring disci-
plines.

Finally, we show in Section 3.10 that research efforts originally motivated
by the study of black-box complexity have yielded improved bounds for long-
standing open problems in classical computer science.

In Section 3.11, we conclude this chapter with a summary of open questions
and problems in discrete black-box complexity and directions for future work.

3.2 The Unrestricted Black-Box Model

In this section we introduce the most basic black-box model, which is the
unrestricted one. This model contains all black-box optimization algorithms.
Any lower bound in this model therefore immediately applies to any of the
restricted models which we discuss in Sections 3.4-3.7. We also discuss in
this section some useful tools for the analysis of black-box complexity and

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 139

Fig. 3.1 In the unrestricted black-box model, the algorithm can store the full history
of previously queried search points. For each of these already evaluated candidate solu-
tions x, the algorithm has access to its absolute function value f(x) ∈ R. There are no
restrictions on the structure of the distributions D from which new solution candidates
are sampled.

demonstrate that the black-box complexity of a problem can be very different
from its classical white-box complexity.

The unrestricted black-box model was introduced by Droste, Jansen, We-
gener in [54]. The only assumption that it makes is that the algorithms do
not have any information about the problem at hand other than the fact
that it stems from some function class F ⊆ {f : S → R}. The only way an
unrestricted black-box algorithm can learn about the instance f is by eval-
uating the function values f(x) of potential solution candidates x ∈ S. We
can assume that the evaluation is done by some oracle, from which f(x) is
queried. In the unrestricted model, the algorithms can update after any such
query the strategy by which the next search point(s) are generated. In this
book, we are mostly interested in the performance of randomized black-box
heuristics, so that these strategies are often probability distributions over the
search space from which the next solution candidates are sampled. This pro-
cess continues until an optimal search point x ∈ argmaxf is queried for the
first time.

The algorithms that we are interested in are thus those that maintain a
probability distribution D over the search space S. In every iteration, a new
solution candidate x is sampled from this distribution and the function value
f(x) of this search point is evaluated. After this evaluation, the probability
distribution D is updated according to the information gathered through the
sample (x,f(x)). The next iteration starts again by sampling a search point
from this updated distribution D, and so on. This structure is summarized
in Algorithm 3.1, which models unrestricted randomized black-box algorithms.
A visualization is provided in Fig. 3.1.

Note that in Algorithm 3.1, in every iteration only one new solution candi-
date is sampled. In contrast, many evolutionary algorithms and other black-
box optimization techniques generate and evaluate several search points in
parallel. It is not difficult to see that lower bounds obtained for the un-
restricted black-box complexity described here apply immediately to such
population-based heuristics, since an unrestricted algorithm is free to ignore

140 Carola Doerr

Algorithm 3.1: Blueprint of an unrestricted randomized black-box al-
gorithm

1 Initialization: Sample x(0) according to some probability distribution D(0) over
S and query f(x(0));

2 Optimization: for t = 1,2,3, . . . do
3 Depending on

(
(x(0),f(x(0))), . . . ,(x(t−1),f(x(t−1)))

)
choose a probability

distribution D(t) over S and sample x(t) according to D(t);
4 Query f(x(t));

information obtained from previous iterations. As will be commented on in
Section 3.7.2, the parallel black-box complexity of a function can be (much)
larger than its sequential variant. Taking this idea to the extreme, i.e., requir-
ing the algorithm to neglect information obtained through previous queries
yields so-called nonadaptive black-box algorithms. A prime example for a
nonadaptive black-box algorithm is random sampling (with and without rep-
etitions). Nonadaptive algorithms play only a marginal role in evolutionary
computation. From a complexity point of view, however, it can be interest-
ing to study how much adaptation is needed for an efficient optimization;
see also the discussions in Sections 3.3.2 and 3.10. For most problems, the
adaptive and nonadaptive complexity differ by large factors. For some other
problems, however, the two complexity notions coincide; see Section 3.3.1 for
an example.

Note also that unrestricted black-box algorithms have access to the full his-
tory of previously evaluated solutions. The effects of restricting the available
memory to a population of a certain size will be the focus of the memory-
restricted black-box models discussed in Section 3.4.

In line 3 of Algorithm 3.1 we do not specify how the probability distribution
D(t) is chosen. Thus, in principle, the algorithm can spend significant time
on choosing this distribution. This can result in small polynomial black-box
complexities for NP-hard problems; see Section 3.2.4. Droste, Jansen, and
Wegener [54] therefore suggested restricting the set of algorithms to those
that execute the choice of the distributions D(t) in a polynomial number of
algebraic steps (i.e., polynomial time in the input length, where “time” refers
to the classically considered complexity measure). They called this model the
time-restricted model. In this chapter, we will not study this time-restricted
model. That is, we allow the algorithms to spend arbitrary time on the choice
of the distributions D(t). This way, we obtain very general lower bounds.
Almost all upper bounds stated in this chapter nevertheless apply also to the
time-restricted model. The polynomial bounds for NP-hard problems form,
of course, an exception to this rule.

We comment, finally, on the fact that Algorithm 3.1 runs forever. As we
have seen in previous chapters in this book, the pseudocode in Algorithm 3.1
is a common representation of black-box algorithms in the theory of heuris-

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 141

tic optimization. Not specifying the termination criterion is justified by our
performance measure, which is the expected number of function evaluations
that an algorithm performs until (and including) the first iteration in which
an optimal solution is evaluated; see Definition 3.2.1 below. Other perfor-
mance measures for black-box heuristics have been discussed in the liter-
ature [11, 34, 65], but in the realm of black-box complexity, the average
optimization time is still the predominant performance indicator. See Sec-
tion 3.11 for a discussion of the possibility of extending existing results to
other, possibly more complex performance measures.

3.2.1 Formal Definition of Black-Box Complexity

In this section, we give a very general definition of black-box complexity.
More precisely, we formally define the black-box complexity of a class F of
functions with respect to some class A of algorithms. The unrestricted black-
box complexity will be the complexity of F with respect to all black-box
algorithms that follow the blueprint provided in Algorithm 3.1.

For a black-box optimization algorithm A and a function f : S → R, let
T (A,f) ∈ R∪{∞} be the number of function evaluations that algorithm A
does until and including the evaluation in which it evaluates for the first
time an optimal search point x ∈ argmaxf . As in previous chapters, we call
T (A,f) the running time of A for f or, synonymously, the optimization time
of A for f . When A is a randomized algorithm, T (A,f) is a random variable
that depends on the random decisions made by A. We are mostly interested
in its expected value E[T (A,f)].

With this performance measure in place, the definition of the black-box
complexity of a class F of functions S→ R with respect to some class A of
algorithms now follows the usual approach in complexity theory.

Definition 3.2.1. For a given black-box algorithm A, the A-black-box com-
plexity of F is

E[T (A,F)] := sup
f∈F

E[T (A,f)],

the worst-case expected running time of A on F .
The A-black-box complexity of F is

E[T (A,F)] := inf
A∈A

E[T (A,F)],

the minimum (“best”) complexity among all A ∈ A for F .

Thus, formally, the unrestricted black-box complexity of a problem class
F is E[T (A,F)], where A is the collection of all unrestricted black-box algo-
rithms, i.e., all algorithms that can be expressed in the framework of Algo-
rithm 3.1.

142 Carola Doerr

The following lemma formalizes the intuition that every lower bound for
the unrestricted black-box model also applies to any restricted black-box
model.

Lemma 3.2.2. Let F ⊆ {f : S → R}. For every collection A′ of black-box
optimization algorithms for F , the A′-black-box complexity of F is at least
as large as its unrestricted black-box complexity.

Formally, this lemma holds because A′ is a subclass of the set A of all un-
restricted black-box algorithms. The infimum in the definition of E[T (A′,F)]
is therefore taken over a smaller class, thus giving values that are at least as
large as E[T (A,F)].

3.2.2 Tools for Proving Lower Bounds

Lemma 3.2.2 shows that the unrestricted black-box complexity of a class F
of functions is a lower bound for the performance of any black-box algorithm
on F . In other words, no black-box algorithm can optimize F more effi-
ciently than what the unrestricted black-box complexity of F indicates. We
are therefore particularly interested in proving lower bounds for the black-box
complexity of a problem. This is the topic of this section.

To date, the most powerful tool to prove lower bounds for randomized
query complexity models such as our unrestricted black-box model is the so-
called minimax principle of Yao [88]. In order to discuss this principle, we first
need to recall that we can interpret every randomized unrestricted black-box
algorithm as a probability distribution over deterministic algorithms. In fact,
randomized black-box algorithms are often defined this way.

Deterministic black-box algorithms are those for which the probability dis-
tributions in line 3 of Algorithm 3.1 are one-point distributions. That is, for
every t and for every sequence

(
(x(0),f(x(0))), . . . ,(x(t−1),f(x(t−1)))

)
of previous queries, there exists a search point s ∈ S such
that D(t)

((
(x(0),f(x(0))), . . . ,(x(t−1),f(x(t−1)))

))
(s) = 1 and

D(t)
((

(x(0),f(x(0))), . . . ,(x(t−1),f(x(t−1)))
))

(y) = 0 for all y ̸= s. In
other words, we can interpret deterministic black-box algorithms as decision
trees. A decision tree for a class F of functions is a rooted tree in which the
nodes are labeled by the search points that the algorithm queries. The first
query is the label of the root node, say x(0). The edges from the root node to
its neighbors are labeled with the possible objective values {g(x(0)) | g ∈ F}.
After evaluating f(x(0)), the algorithm follows the (unique) edge {x(0),x(1)}
which is labeled with the value f(x(0)). The next query is the label of the
endpoint x(1) of this edge. We call x(1) a level-1 node. The level-2 neighbors
of x(0) (i.e., all neighbors of x(1) except the root node x(0)) are the potential
search points to be queried in the next iteration. As before, the algorithm

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 143

chooses as the next query the neighbor x(2) of x(1) to which the unique
edge labeled with the value f(x(1)) leads. This process continues until an
optimal search point has been queried. The optimization time T (A,f) of the
algorithm A on the function f equals the depth of this node plus one (the
“plus one” accounts for the evaluation of the root node).

We can easily see that, in this model, it does not make sense to query the
same search point twice. Such a query would not reveal any new information
about the objective function f . For this reason, on every rooted path in the
decision tree, every search point appears at most once. This shows that the
depth of the decision tree is bounded by |S|−1. The width of the tree, however,
can be as large as the size of the set F(S) := {g(s) | g ∈ F ,s ∈ S}, which can
be infinite or even uncountable, for example, if F equals the set of all linear
or monotone functions f : {0,1}n→R. As we shall see below, Yao’s minimax
principle can only be applied to problems for which F(S) is finite. Luckily, it
is often possible to identify subclasses F ′ of F for which F ′(S) is finite and
whose complexity is identical to or not much smaller than that of the whole
class F .

When S and F(S) are finite, the number of (nonrepetitive) deterministic
decision trees, and hence the number of deterministic black-box algorithms
for F , is finite. In this case, we can apply Yao’s minimax principle. This the-
orem, intuitively speaking, allows us to restrict our attention to bounding
the expected running time E[T (A,f)] of a best possible deterministic algo-
rithm A on a random instance f taken from F according to some probability
distribution p. By Yao’s minimax principle, this best possible expected run-
ning time is a lower bound for the expected performance of a best possible
randomized algorithm on an arbitrary input. In our words, it is thus a lower
bound on the unrestricted black-box complexity of the class F .

Analyzing deterministic black-box algorithms is often considerably easier
than directly bounding the performance of any possible randomized algo-
rithm. An a priori challenge in applying this theorem is the identification of
a probability distribution p on F for which the expected optimization time
of a best possible deterministic algorithm is large. Luckily, for many appli-
cations some rather simple distributions on the inputs suffice, for example
the uniform distribution, which assigns equal probability to each problem
instance f ∈ F . Another difficulty in the application of the theorem is the
above-mentioned identification of subclasses F ′ of F for which F ′(S) is finite.

Formally, Yao’s minimax principle reads as follows.

Theorem 3.2.3 (Yao’s minimax principle). Let Π be a problem with a
finite set I of input instances (of a fixed size) permitting a finite set A of
deterministic algorithms. Let p be a probability distribution over I and let q
be a probability distribution over A. Then,

min
A∈A

E[T (Ip,A)]≤max
I∈I

E[T (I,Aq)] ,

144 Carola Doerr

where Ip denotes a random input chosen from I according to p, Aq denotes
a random algorithm chosen from A according to q, and T (I,A) denotes the
running time of algorithm A on input I.

The formulation of Theorem 3.2.3 is taken from the book by Motwani and
Raghavan [77], where an extended discussion of this principle can be found.

A straightforward but still quite handy application of Yao’s minimax prin-
ciple gives the following lower bound.

Theorem 3.2.4 (simple information-theoretic lower bound, Theo-
rem 2 in [54]). Let S be finite. Let F be a set of functions {f : S → R}
such that for every s ∈ S there exists a function fs ∈ F for which the size of
fs(S) := {fs(x) | x∈ S} is bounded by k and for which s is a unique optimum,
i.e., argmaxfs = {s} and |fs(S)| ≤ k. The unrestricted black-box complexity
of F is at least ⌈logk(|S|)⌉−1.

To prove Theorem 3.2.4 it suffices to select for every s ∈ S one function
fs as in the statement and to consider the uniform distribution over the set
{fs | s ∈ S}. Every deterministic black-box algorithm that eventually solves
any instance fs has to have at least one node labeled s. We therefore need
to distribute all |S| potential optima on the decision tree that corresponds to
this deterministic black-box algorithm. Since the outdegree of every node is
bounded from above by k, the average distance from a node to the root is at
least ⌈logk(|S|)⌉−2.

An informal interpretation of Theorem 3.2.4, which in addition ignores
the rounding of the logarithms, is as follows. In the setting of Theorem 3.2.4,
optimizing a function fs corresponds to learning s. A binary encoding of the
optimum s requires log2(|S|) bits. With every query, we obtain at most log2(k)
bits of information, namely, the number of bits needed to encode which of the
at most k possible objective values is assigned to the queried search point. We
therefore need to query at least log2(|S|)/ log2(k) = logk(|S|) search points
to obtain the information that is required to decode s. This “hand-wavy”
interpretation often gives a good first idea of the lower bounds that can be
proven by Theorem 3.2.4.

This intuitive proof for Theorem 3.2.4 shows that it works best if at every
search point exactly k answers are possible, and each of them is equally likely.
This situation, however, is not typical for black-box optimization processes,
where usually only a (possibly small) subset of function values are likely to
appear next. As a rule of thumb, the larger the difference of the potential
function value from the function value of the current best solution, the less
likely an algorithm is to obtain it in the next iteration. Such transition prob-
abilities are not taken into account in Theorem 3.2.4. The theorem also does
not cover very well the situation in which, at a certain step, fewer than k
answers are possible. Even for fully symmetric problem classes, this situation
is likely to appear in the later parts of the optimization process, where those
problem instances that are still aligned with all previously evaluated function
values all map the next query to one out of fewer than k possible function

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 145

values. Covering these two shortcomings of Theorem 3.2.4 is one of the main
challenges in black-box complexity. One step in this direction is the matrix
lower bound theorem presented in [9] and the subsequent publication [7]. As
also acknowledged there, however, the verification of the conditions under
which these two generalizations apply is often quite tedious, so that the two
methods are unfortunately not yet easily and very generally applicable. So
far, they have been used to derive lower bounds for the black-box complex-
ity of the OneMax and the Jump benchmark functions; see Sections 3.3.2
and 3.3.7.

Another tool that will be very useful in the subsequent sections is the fol-
lowing theorem, which allows us to transfer lower bounds proven for a simpler
problem to a problem that is derived from it by a composition with another
function. Most notably, it allows us to bound the black-box complexity of
functions of unitation (i.e; functions for which the function value depends
only on the number of ones in the string) by that of the OneMax problems.
We will apply this theorem to show that the black-box complexity of the
jump functions is at least as large as that of OneMax; see Section 3.3.7.

Theorem 3.2.5 (generalization of Theorem 2 in [28]). For all problem
classes F , all classes of algorithms A, and all maps g : R→ R that are such
that for all f ∈F it holds that {x | g(f(x)) optimal}= {x | f(x) optimal} the
A-black-box complexity of g(F) := {g ◦ f | f ∈ F} is at least as large as that
of F .

The intuition behind Theorem 3.2.5 is that with a knowledge of f(x), we
can compute g(f(x)), so that every algorithm that optimizes g(F) can also
be used to optimize F , by evaluating the f(x) values, feeding g(f(x)) to the
algorithm, and querying the solution candidates that this algorithm suggests.

3.2.3 Tools to Prove Upper Bounds

We now present general upper bounds for the black-box complexity of a
problem. We recall that, by definition, a small upper bound for the black-
box complexity of a problem F shows that there exists an algorithm which
solves every problem instance f ∈ F efficiently. When the upper bound for a
problem is smaller than the expected performance of well-understood search
heuristics, the question of whether these state-of-the-art heuristics can be
improved or whether the unrestricted black-box model is too generous arises.

The simplest upper bound for the black-box complexity of a class F of
functions is the expected performance of random sampling without repeti-
tions.

Lemma 3.2.6. For every finite set S and every class F ⊂ {f : S → R} of
real-valued functions over S, the unrestricted black-box complexity of F is at
most (|S|+1)/2.

146 Carola Doerr

This simple bound can be tight, as we shall discuss in Section 3.3.1. A
similarly simple upper bound is presented in the next subsection.

3.2.3.1 Function Classes vs. Individual Instances

In all of the above we have discussed the black-box complexity of a class of
functions, and not of individual problem instances. This is justified by the
following observation, which also explains why in the following we will usually
consider generalizations of the benchmark problems typically studied in the
theory of randomized black-box optimization.

Lemma 3.2.7. For every function f : S→R, the unrestricted black-box com-
plexity of the class {f} that consists only of f is one. The same holds for any
class F of functions that all have their optimum at the same point, i.e., for
which there exists a search point x ∈ S such that, for all f ∈F , x ∈ argmaxf
holds.

More generally, if F is a collection of functions f : S→R and X ⊆S is such
that for all f ∈F there exists at least one point x∈X such that x∈ argmaxf ,
the unrestricted black-box complexity of F is at most (|X|+1)/2.

For every finite set F of functions, the unrestricted black-box complexity
is bounded from above by (|F|+1)/2.

The proof of this lemma is quite straightforward. For the first statement,
the algorithm which queries any point in argmaxf in the first query certifies
this bound. Similarly, the second statement is certified by the algorithm that
queries x in the first iteration. The algorithm which queries the points in
X in random order proves the third statement. Finally, note that the third
statement implies the fourth by letting X be the set that contains, for each
function f ∈ F , one optimal solution xf ∈ argmaxf .

Lemma 3.2.7 indicates that function classes F for which ∪f∈F argmaxf
or, more precisely, for which a small set X as in the third statement of
Lemma 3.2.7 exists are not very interesting research objects in the unre-
stricted black-box model. We therefore typically choose generalizations of
the benchmark problems in such a way that any set X which contains for
each objective function f ∈F at least one optimal search point has to be large.
We shall often even have |X| = |F|, i.e., the optima of any two functions in
F are pairwise different.

We will see in Section 3.6 that Lemma 3.2.7 does not apply to all of the
restricted black-box models. In fact, in the unary unbiased black-box model
considered there, the black-box complexity of a single function can be of order
n logn. That is, even if the algorithm “knows” where the optimum is, it may
still need Ω(n logn) steps to generate it.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 147

3.2.3.2 Upper Bounds via Restarts

In several situations, rather than bounding the expected optimization time
of a black-box heuristic, it can be easier to show that the probability that it
solves a given problem within s iterations is at least p. If p is large enough
(for an asymptotic bound, it suffices that this success probability is constant),
then a restarting strategy can be used to obtain upper bounds on the black-
box complexity of the problem. Either the algorithm is finished after at most
s steps, or it is initialized from scratch, independently of all previous runs.
This way, we obtain the following lemma.

Lemma 3.2.8 (Remark 7 in [37]). Suppose for a problem F that there
exists an unrestricted black-box algorithm A that, with constant success prob-
ability, solves any instance f ∈F in s iterations (that is, it queries an optimal
solution within s queries). Then the unrestricted black-box complexity of F is
at most O(s).

Lemma 3.2.8 also applies to almost all of the restricted black-box models
that we will discuss in Sections 3.4-3.7. In general, it applies to all black-box
models in which restarts are allowed. It does not apply to the (strict version
of the) elitist black-box model, which we discuss in Section 3.7.4.

3.2.4 Polynomial Bounds for NP-Hard Problems

Our discussion in Section 3.1.1 indicates that the classical complexity no-
tions developed for white-box optimization and decision problems are not
very meaningful in the black-box setting. This is impressively demonstrated
by a number of NP-hard problems that have a small polynomial black-box
complexity. We present such an example here, taken from [54, Section 3].

One of the best-known NP-complete problems is MaxClique. For a given
graph G = (V,E) of |V |= n nodes and for a given parameter k, it asks whether
there exists a complete subgraph G′ = (V ′ ⊆ V,E′ := E ∩{{u,v} ∈ E | u,v ∈
V ′}) of size |V ′| ≥ k. A complete graph is a graph in which every two vertices
are connected by a direct edge between them. The optimization version of
MaxClique asks us to find a complete subgraph of the largest possible size.
A polynomial-time optimization algorithm for this problem implies P=NP.

The unrestricted black-box complexity of MaxClique is, however, only
of order n2. This bound can be achieved as follows. In the first

(n
2
)
queries,

the algorithm queries the presence of individual edges. This way, it learns the
structure of the problem instance. From this information, all future solution
candidates can be evaluated without any oracle queries. That is, a black-
box algorithm can now compute an optimal solution offline, i.e., without
the need for further function evaluations. This offline computation may take
exponential time, but in the black-box complexity model, we do not charge

148 Carola Doerr

the algorithm for the time needed between two queries. The optimal solution
of the MaxClique instance can be queried in the

((n
2
)

+1
)
-st query.

Theorem 3.2.9 (Section 3 in [54]). The unrestricted black-box complexity
of MaxClique is at most

(n
2
)

+1 and thus O(n2).

Several similar results can be obtained. For most of the restricted black-
box complexity models this has been explicitly done; see also Section 3.6.3.5.

One way to avoid such small complexities would be to restrict the time
that an algorithm can spend between any two queries. This suggestion was
made in [54]. In our opinion, this requirement would, however, carry a few
disadvantages such as a mixture of different complexity measures. We will
therefore, in this chapter, not explicitly verify that the algorithms run in
polynomial time. Most upper bounds are nevertheless easily seen to be ob-
tained by polynomial-time algorithms. Where polynomial bounds are proven
for NP-hard problems, there must be at least one iteration for which the
respective algorithm, according to today’s knowledge, needs excessive time.

3.3 Known Black-Box Complexities in the Unrestricted
Model

We survey existing results for the unrestricted black-box model, and proceed
by problem type. For each benchmark problem considered, we first introduce
its generalization to classes of similar problem instances. We discuss which
of characteristics of the original problem are maintained in these general-
izations. We will see that for some classical benchmark problems, different
generalizations have been proposed in the literature.

3.3.1 Needle

Our first benchmark problem is an example that shows that the simple upper
bound given in Lemma 3.2.6 can be tight. The function that we generalize
is the Needle function, which assigns 0 to all search points s ∈ S except for
one distinguished optimum, which has a function value of one. In order to
obtain the above-mentioned property that every function in the generalized
class has a different optimum than any other function (see the discussion
after Lemma 3.2.7), while at the same time maintaining the characteristics
of the problem, the following generalization is made. For every s ∈ S, we let
fs : S→ R be the function which assigns the function value 1 to the unique
optimum s ∈ S and 0 to all other search points x ̸= s. We let Needle(S) :=
{fs | s ∈ S} be the set of all such functions.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 149

Confronted with such a function fs, we do not learn anything about the
target string s until we have found it. It seems quite intuitive that the best we
can do in such a case is to query search points at random, without repetitions.
That this is indeed optimal is the statement of the following theorem, which
can be easily proven by Yao’s minimax principle applied to Needle(S) with
the uniform distribution.

Theorem 3.3.1 (Theorem 1 in [54]). For every finite set S, the unre-
stricted black-box complexity of Needle(S) is (|S|+1)/2.

3.3.2 OneMax

The best-studied benchmark function in the theory of randomized black-box
optimization is certainly OneMax. OneMax assigns to each bit string x of
length n the number

∑n
i=1 xi of ones in it. The natural generalization of this

particular function to a nontrivial class of functions is as follows.

Definition 3.3.2 (OneMax). For all n ∈ N and all z ∈ {0,1}n let

OMz : {0,1}n→ [0..n],x 7→OMz(x) = |{i ∈ [n] | xi = zi}|,

the function that assigns to each length-n bit string x the number of bits
in which x and z agree. Being the unique optimum of OMz, the string z is
called its target string.

We refer to OneMaxn := {OMz | z ∈ {0,1}n} as the set of all (generalized)
OneMax functions. We will often omit the subscript n.

We easily observe that, for every n, the original OneMax function OM
counting the number of ones corresponds to OM(1,...,1). It is, furthermore,
not difficult to prove that, for every z ∈ {0,1}n, the fitness landscape of OMz

is isomorphic to that of OM. This can be seen by observing that OMz(x) =
OM(x⊕z⊕(1, . . . ,1)) for all x,z ∈ {0,1}n, which shows that OMz = OM◦αz

for the Hamming automorphism αz : {0,1}n→ {0,1}n,x 7→ x⊕ z⊕ (1, . . . ,1).
As we shall discuss in Section 3.6, a Hamming automorphism is a one-to-
one map α : {0,1}n → {0,1}n such that for all x and all z the Hamming
distance between x and z is identical to that between α(x) and α(z). This
shows that the generalization of OM to functions OMz preserves its problem
characteristics. In essence, the generalization is just a “relabeling” of the
search points.

3.3.2.1 The Unrestricted Black-Box Complexity of OneMax

With Definition 3.3.2 at hand, we can study the unrestricted black-box com-
plexity of this important class of benchmark functions.

150 Carola Doerr

Interestingly, it turns out that the black-box complexity of OneMaxn

has been studied in several different contexts, long before Droste, Jansen,
and Wegener introduced black-box complexity. In fact, Erdős and Rényi [55]
as well as several other authors studied it in the early 1960s, inspired by a
question about so-called coin-weighing problems.

In our terminology, Erdős and Rényi [55] showed that the unrestricted
black-box complexity of OneMax is at least (1− o(1))n/ log2(n) and at
most (1 + o(1)) log2(9)n/ log2(n). The upper bound was improved to (1 +
o(1))2n/ log2(n) in [10, 73, 74]. Identical or weaker bounds have been proven
several times in the literature. Some publications appeared at the same time
as the work of Erdős and Rényi (see the discussion in [6]), and some much
later [2, 6, 54].

Theorem 3.3.3 ([10, 55, 73, 74]). The unrestricted black-box complexity
of OneMax is at least (1−o(1))n/ log2(n) and at most (1+o(1))2n/ log2(n).
It is thus Θ(n/ logn).

The lower bound in Theorem 3.3.3 follows from Yao’s minimax principle,
applied to OneMaxn with the uniform distribution. Informally, we can use
the arguments given after Theorem 3.2.4: since the optimum can be anywhere
in {0,1}n, we need to learn the n bits of the target string z. With each function
evaluation, we receive at most log2(n + 1) bits of information, namely the
objective value, which is an integer between 0 and n. We therefore need at
least (roughly) n/ log2(n+1) iterations. Using Theorem 3.2.4, this reasoning
can be turned into a formal proof.

The upper bound given in Theorem 3.2.4 is quite interesting because it is
obtained by a very simple strategy. Erdős and Rényi showed that O(n/ logn)
bit strings sampled independently and uniformly at random from the hyper-
cube {0,1}n have a high probability of revealing the target string. That is,
an asymptotically optimal unrestricted black-box algorithm for OneMax can
just sample O(n/ logn) random samples. From these samples and the corre-
sponding objective values, the target string can be identified without further
queries. Its computation, however, may not be possible in polynomial time.
The fact that OneMaxn can be optimized in O(n/ logn) queries also in poly-
nomial time was proven in [6].1 The reader interested in a formal analysis of
the strategy used by Erdős and Rényi may refer to Section 3 of [35], where a
detailed proof of the O(n/ logn) random sampling strategy is presented.

In the context of learning, it is interesting to note that the random sam-
pling strategy of Erdős and Rényi is nonadaptive, i.e., the t-th search point
does not depend on the previous t− 1 evaluations. In the black-box con-
text, a last query, in which the optimal solution is evaluated, is needed. This
query certainly depends on the previous O(n/ logn) evaluations, but note

1 Bshouty [6] mentions that also the constructions of Lindström [73, 74] and Cantor and
Mills [10] can be done in polynomial time. But this was not explicitly mentioned in the
latter publications. The method of Bshouty also has the advantage that it generalizes
to OneMax functions over alphabets larger than {0,1}; see also Section 3.10.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 151

that here we know the answer to this evaluation already (with high proba-
bility). For nonadaptive strategies, learning z with (1+o(1))2n/ logn queries
is optimal [55]. The intuitive reason for this lower bound is that a random
guess typically has an objective value close to n/2. More precisely, instead
of using the whole range of n+1 possible answers, almost all function values
are in an O(

√
n) range around n/2, giving, very informally, the lower bound

log2(n)/ log2(O(
√

n)) = Ω(2n/ logn).
Using the probabilistic method (or the constructive result of Bshouty [6]),

the random sampling strategy can be derandomized. This derandomization
says that for every n, there is a sequence of t = Θ(n/ logn) strings x(1), . . . ,x(t)

such that the objective values OMz(x(1)), . . . ,OMz(x(t)) uniquely determine
the target string z. Such a derandomized version will be used in later parts
of this chapter, for example, in the context of the k-ary unbiased black-box
complexity of OneMax studied in Section 3.6.3.2.

Theorem 3.3.4 (from [55] and others). For every n there is a sequence
x(1), . . . ,x(t) of t = Θ(n/ logn) bit strings such that for every two length-n bit
strings y ̸= z there exists an index i with OMz(x(i)) ̸= OMy(x(i)).

For some very concrete OneMax instances, i.e., for instances of bounded
dimension n, very precise bounds for the black-box complexity are known;
see [7] and the pointers in [29, Section 1.4] for details. Here, in this chapter,
we are only concerned with the asymptotic complexity of OneMaxn with
respect to the problem dimension n. Unsurprisingly, this benchmark problem
will also be studied in almost all of the restricted black-box models that
we describe in the subsequent sections. A summary of known results can be
found in Section 3.8.

3.3.3 BinaryValue

Another intensively studied benchmark function is the binary-value function
BV(x) :=

∑n
i=1 2i−1xi, which assigns to each bit string the value of the bi-

nary number it represents. As 2i >
∑i

j=1 2j−1, the bit value of the bit i + 1
dominates the effect of all bits 1, . . . , i on the function value.

Two straightforward generalizations of BV to function classes exist. The
first one is the collection of all functions

BVz : {0,1}n→ [0..2n],x 7→
n∑

i=1
2i−11(xi,zi),

where 1(a,b) := 1 if and only if a = b, and 1(a,b) := 0 otherwise. In light of
Definition 3.3.2, this may seem like a natural extension of BV to a class of
functions. It also satisfies our sought condition that for any two functions
BVz ̸= BVz′ the respective optima z and z′ differ, so that the smallest set

152 Carola Doerr

containing its optimum for each function is the full n-dimensional hypercube
{0,1}n. However, we can easily see that the unrestricted black-box complexity
of the set BinaryValue∗

n := {BVz | z ∈ {0,1}n} so defined is very small.

Theorem 3.3.5 (Theorem 4 in [54]). The unrestricted black-box complex-
ity of BinaryValue∗

n is 2−2−n.

Proof. The lower bound follows from observing that, for an instance BVz

for which z is chosen uniformly at random, the probability of querying the
optimum z in the first query is 2−n. In all other cases, at least two queries
are needed.

For the upper bound, we only need to observe that for any two target
strings z ̸= z′ and for every search point x ∈ {0,1}n we have BVz(x) ̸=
BVz′(x). More precisely, it is easy to see that from BVz(x) we can eas-
ily determine for which bits i ∈ [n] the bit value of xi is identical to zi. This
shows that by querying the objective value of a random string in the first
query we can compute the optimum z, which we query in the second itera-
tion if the first value is not already optimal. ⊓⊔

Theorem 3.3.5 is possible because the objective values disclose a lot of infor-
mation about the target string. A second generalization of BV has therefore
been suggested in the literature. In light of the typical behavior of black-box
heuristics, which do not discriminate between bit positions, and in particu-
lar with respect to the unbiased black-box model defined in Section 3.6, this
variant seems to be the more “natural” choice in the context of evolutionary
algorithms. This second generalization of BV collects together all functions
BVz,σ, defined as

BVz,σ : {0,1}n→ N0,x 7→
n∑

i=1
2i−1δ(xσ(i),zσ(i)) .

Denting by σ(x) the string (xσ(1) . . .xσ(n)), we easily see that BVz,σ(x) =
BV

(
σ(x⊕z⊕(1, . . . ,1))

)
, thus showing that the class {BVz,σ | z ∈ {0,1}n,σ ∈

Sn} can be obtained from BV by composing it with an ⊕-shift of the bit
values and a permutation of the indices i ∈ [n]. Since z = argmaxBVz,σ, we
call z the target string of BVz,σ. Similarly, we call σ the target permutation
of BVz,σ.

Going through the bit string one by one, i.e., flipping one bit at a time,
shows that at most n + 1 function evaluations are needed to optimize any
BVz,σ instance. This simple upper bound can be improved by observing that
for each query x and for each i∈ [n] we can derive from BVz,σ(x) whether or
not xσ(i) = zσ(i), even if we cannot yet locate σ(i). Hence, all we need to do
is to identify the target permutation σ. This can be done by a binary search,
which gives the following result.

Theorem 3.3.6 (Theorem 16 in [44]). The unrestricted black-box complex-
ity of BinaryValuen := {BVz,σ | z ∈ {0,1}n,σ ∈ Sn} is at most ⌈log2 n⌉+2.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 153

In a learning-related sense, in which we want to learn both z and σ, the
bound in Theorem 3.3.6 is tight, as, informally, the identification of σ requires
us to learn Θ(log(n!)) = Θ(n logn) bits, while with every query we obtain
log2(2n) = n bits of information. In our optimization context, however, we do
not necessarily need to learn σ in order to optimize BVz,σ. A similar situation
will be discussed in Section 3.3.6, where we study the unrestricted black-box
complexity of LeadingOnes. For LeadingOnes, it can be formally proven
that the complexities of optimization and learning are identical (up to at
most n queries). We are not aware of any formal statement showing whether
or not a similar argument holds for the class BinaryValuen.

3.3.4 Linear Functions

OM and BV are representatives of the class of linear functions f : {0,1}n→
R,x 7→

∑n
i=1 fixi. We can generalize this class in the same way as above to

obtain the collection

Linearn :=
{

fz : {0,1}n→ R,x 7→
n∑

i=1
fi1(xi,zi) | z ∈ {0,1}n

}
of generalized linear functions. OneMaxn and BinaryValuen are both con-
tained in this class.

Not much is known about the black-box complexity of this class. The only
known bounds are summarized by the following theorem.

Theorem 3.3.7 (Theorem 3.3.3 above and Theorem 4 in [54]). The
unrestricted black-box complexity of the class Linearn is at most n + 1 and
at least (1−o(1))n/ log2 n.

The upper bound is attained by an algorithm that starts with a random or
a fixed bit string x and flips one bit at a time, using the better of the parent
and the offspring as the starting point for the next iteration. A linear lower
bound seems likely, but has not been formally proven.

3.3.5 Monotone and Unimodal Functions

For the sake of completeness, we mention that the class Linearn is a subclass
of the class of generalized monotone functions.

Definition 3.3.8 (monotone functions). Let n ∈ N and let z ∈ {0,1}n.
A function f : {0,1}n → R is said to be monotone with respect to z if for
all y,y′ ∈ {0,1}n with {i ∈ [n] | yi = zi} ⊊ {i ∈ [n] | y′

i = zi} it holds that

154 Carola Doerr

f(y) < f(y′). The class Monotonen contains all such functions that are
monotone with respect to some z ∈ {0,1}n.

The above-mentioned algorithm which flips one bit at a time (see the
discussion after Theorem 3.3.7) solves any of these instances in at most n+1
queries, giving the following theorem.

Theorem 3.3.9. The unrestricted black-box complexity of the class
Monotonen is at most n+1 and at least (1−o(1))n/ log2 n.

Monotone functions are instances of so-called unimodal functions. A func-
tion f is unimodal if and only if for every nonoptimal search point x there
exists a direct neighbor y of x with f(y) > f(x). The unrestricted black-box
complexity of this class of unimodal functions was studied in [54, Section 8],
where a lower bound that depends on the number of different function values
that the objective functions can map to was presented.

3.3.6 LeadingOnes

After OneMax, probably the second most investigated function in the theory
of discrete black-box optimization is the leading-ones function LO : {0,1}n→
[0..n], which assigns to each bit string x the length of the longest prefix of
ones, i.e., LO(x) := max{i ∈ [0..n] | ∀j ∈ [i] : xj = 1}. Like for BinaryValue,
two generalizations have been studied, an ⊕-invariant version and an ⊕- and
permutation-invariant version. As a consequence of the unbiased black-box
complexity model which we will discuss in Section 3.6, the latter is the more
frequently studied.

Definition 3.3.10 (LeadingOnes function classes). Let n ∈ N. For any
z ∈ {0,1}n, let

LOz : {0,1}n→ N,x 7→max{i ∈ [0..n] | ∀j ∈ [i] : xj = zj} ,

the length of the maximal joint prefix of x and z. Let LeadingOnes∗
n :=

{LOz | z ∈ {0,1}n} .
For z ∈ {0,1}n and σ ∈ Sn, let

LOz,σ : {0,1}n→ N,x 7→max{i ∈ [0..n] | ∀j ∈ [i] : xσ(j) = zσ(j)} ,

the maximal joint prefix of x and z with respect to σ. The set LeadingOnesn

is the collection of all such functions, i.e.,

LeadingOnesn := {LOz,σ | z ∈ {0,1}n,σ ∈ Sn} .

The unrestricted black-box complexity of the set LeadingOnes∗
n is easily

seen to be around n/2. This is the complexity of the algorithm which starts

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 155

with a random string x and, given an objective value of LOz(x), replaces x
by the string that is obtained from x by flipping the LOz(x) + 1-st bit in x.
The lower bound is a simple application of Yao’s minimax principle to the
uniform distribution over all possible problem instances. It is crucial here
to note that the algorithms do not have any information about the “tail”
(zj . . .zn) until they have seen for the first time a search point of function
value at least j−1.

Theorem 3.3.11 (Theorem 6 in [54]). The unrestricted black-box com-
plexity of the set LeadingOnes∗

n is n/2± o(n). The same holds for the set
{LOz,σ | z ∈ {0,1}n}, for any fixed permutation σ ∈ Sn.

The unrestricted black-box complexity of LeadingOnesn is also quite
well understood.

Theorem 3.3.12 (Theorem 4 in [1]). The unrestricted black-box complex-
ity of LeadingOnesn is Θ(n log logn).

Both the upper and the lower bounds in Theorem 3.3.12 are quite involved.
For the lower bound, Yao’s minimax principle is applied to the uniform dis-
tribution over the instances LOz,σ with zσ(i) := (i mod 2), i = 1, . . . ,n. Infor-
mally, this choice indicates that the complexity of the LeadingOnes problem
originates in the difficulty of identifying the target permutation. Indeed, as
soon as we know the permutation, we need at most n + 1 queries to identify
the target string z (and only around n/2 on average, by Theorem 3.3.11). To
measure the amount of information that an algorithm can have about the
target permutation σ, a potential function is designed that maps each search
point x to a real number. To prove the lower bound in Theorem 3.3.12, it
is necessary to show that, for every query x, the expected increase in this
potential is not very large. Using drift analysis, this can be used to bound
the expected time needed to accumulate the amount of information needed
to uniquely determine the target permutation.

The proof of the upper bound will be sketched in Section 3.6.3.3, in the
context of the unbiased black-box complexity of LeadingOnesn.

It may be interesting to note that the O(n log logn) bound in Theo-
rem 3.3.12 cannot be achieved by deterministic algorithms. In fact, Theo-
rem 3 in [1] states that the deterministic unrestricted black-box complexity of
LeadingOnesn is Θ(n logn).

3.3.7 Classes of Jump Functions

Another class of popular pseudo-Boolean benchmark functions is that of so-
called “jump” functions. In black-box complexity, this class is currently one
of the most intensively studied problems, with a number of surprising results,
which in addition carry some interesting ideas for potential refinements of

156 Carola Doerr

state-of-the-art heuristics. For this reason, we discuss this class in more detail,
and compare the known complexity bounds with running-time bounds for
some standard and recently developed heuristics.

For a nonnegative integer ℓ, the function Jumpℓ,z is derived from the
OneMax function OMz with target string z ∈ {0,1}n by “blanking out” any
useful information within the strict ℓ-neighborhood of the optimum z and its
bitwise complement z̄, by giving all these search points a fitness value of 0.
In other words,

Jumpℓ,z(x) :=


n if OMz(x) = n,

OMz(x) if ℓ < OMz(x) < n− ℓ,

0 otherwise.
(3.3.1)

This definition is mostly similar to the two definitions used in [53, 71] that
we shall discuss below, which do not fully agree.

3.3.7.1 Known Running-Time Bounds for Jump Functions

We summarize here the known running-time results for the optimization of
jump functions via randomized optimization heuristics. The reader interested
only in black-box complexity results can skip this section.

Droste, Jansen, and Wegener [53] analyzed the optimization time of the
(1+1) EA on jump functions. From this work, it is not difficult to see that
the expected running time of the (1+1) EA on Jumpℓ,z is Θ(nℓ+1), for all
ℓ ∈ {1, . . . ,⌊n/2⌋ − 1} and all z ∈ {0,1}n. This running time is dominated
by the time needed to “jump” from a local optimum x with function value
OMz(x) = n− ℓ−1 to the unique global optimum z.

The fast genetic algorithm proposed in [39] significantly reduces this run-
ning time by using a generalized variant of standard bit mutation, which
goes through its input and flips each bit independently with probability c/n.
By choosing in every iteration the expected step size c in this mutation rate
c/n from a power-law distribution with exponent β (more precisely, in every
iteration, c is chosen independently of all previous iterations, and indepen-
dently of the current state of the optimization process), an expected run-
ning time of O(ℓβ−0.5((1 + o(1))e/ℓ)ℓnℓ) on Jumpℓ,z is achieved, uniformly
for all jump sizes ℓ > β−1. This is only a polynomial factor worse than the
((1+o(1))e/ℓ)ℓnℓ expected running time of a (1+1) EA which for every jump
size ℓ uses a bit flip probability of ℓ/n, which is the optimal static choice.

Dange et Lehre [17] showed an expected running time of O((n/c)ℓ+1) for
a large class of nonelitist population-based evolutionary algorithms with mu-
tation rate c/n, where c is supposed to be a constant.

Jump functions were originally studied to investigate the usefulness of
crossover, i.e., the recombination of two or more search points into a new
solution candidate. In [64], a (µ + 1) genetic algorithm using crossover was

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 157

shown to optimize any Jumpℓ,z function in an expected number O(µn2(ℓ−
1)3 + 4ℓ−1/pc) of function evaluations, where pc < 1/(c(ℓ−1)n) denotes the
(artificially small) probability of doing a crossover. In [18] it was shown that
for more “natural” parameter settings, most notably those with a nonvan-
ishing probability of crossover, a standard (µ + 1) genetic algorithm which
uses crossover followed by mutation has an expected O(nℓ logn) optimiza-
tion time on any Jumpℓ,z function, which is a gain by a factor O(n/ logn)
over the above-mentioned bound for the standard (1+1) EA. In [16] it was
shown that significant performance gains can be achieved by the usage of
diversity mechanisms. We refer the interested reader to Chapter 7.6 of this
book for a more detailed description of these mechanisms and running-time
statements; see in particular Sections 8.4.4 and 8.4.5.

3.3.7.2 The Unrestricted Black-Box Complexity of Jump
Functions

From the definition in (3.3.1), we can easily see that for every n ∈ N and for
all ℓ∈ [0..n/2] there exists a function f : [0..n]→ [0..n] such that Jumpℓ,z(x) =
f(OMz(x)) for all z,x ∈ {0,1}n. By Theorem 3.2.5, we therefore obtain the
result that for every class A of algorithms and for all ℓ, the A-black-box
complexity of Jumpℓ,n := {Jumpℓ,z | z ∈ {0,1}n} is at least as large as that
of OneMaxn. Quite surprisingly, it turns out that this bound can be met
for a broad range of jump sizes ℓ. Building on work [28] on the unbiased
black-box complexity of jump functions (see Section 3.6.3.4 for a detailed
description of the results proven in [27]), the following bounds were obtained
in [9].

Theorem 3.3.13 ([9]). For ℓ < n/2−
√

n log2 n, the unrestricted black-box
complexity of Jumpℓ,n is at most (1 + o(1))2n/ log2 n, while for n/2−√

n log2 n ≤ ℓ < ⌊n/2⌋−ω(1) it is at most (1 + o(1))n/ log2(n− 2ℓ) (where,
in this latter bound, ω(1) and o(1) refer to n−2ℓ→∞).

For the extreme case of ℓ = ⌊n/2⌋−1, the unrestricted black-box complexity
of Jumpℓ,n is n+Θ(

√
n).

For all ℓ and every odd n, the unrestricted black-box complexity of Jumpℓ,n

is at least ⌊log n−2ℓ+1
2

(
2n−2(n− 2ℓ− 1) + 1

)
⌋− 2

n−2ℓ−1 . For even n, it is at

least ⌊log n−2ℓ+2
2

(
1+2n−1 (n−2ℓ)2

n−2ℓ−1
)
⌋− 2

n−2ℓ .

The proofs of the results in Theorem 3.3.13 are built to a large extent
on the techniques used in [28], which we shall discuss in Section 3.6.3.4. In
addition to these techniques, [9] introduced a matrix lower-bound method,
which allows one to prove stronger lower bounds than the simple information-
theoretic result presented in Theorem 3.2.4 by taking into account the fact
that the “typical” information obtained through a function evaluation can be

158 Carola Doerr

much smaller than what the whole range {f(s) | s ∈ S} of possible f -values
suggests.

Note that even for the case of “small” ℓ < n/2−
√

n log2, the region around
the optimum in which the function values are zero is actually quite large. This
plateau contains 2(1−o(1))n points and has a diameter that is linear in n.

For the case of the extreme jump functions, note also that, apart from the
optimum, only the points x with OMz(x) = ⌊n/2⌋ and OMz(x) = ⌈n/2⌉ have
a nonzero function value. It is thus quite surprising that these functions can
nevertheless be optimized so efficiently. We shall see in Section 3.6.3.4 how
this is possible.

One may wonder why, in the definition of Jumpℓ,n, we have fixed the
jump size ℓ, as in this way it is “known” to the algorithm. It has been argued
in [38] that the algorithms can learn ℓ efficiently, if this is needed; in some
cases, including those of small ℓ-values, knowing ℓ may not be needed to
achieve the above-mentioned optimization times. Whether or not knowledge
of ℓ is needed can be decided adaptively.

3.3.7.3 Alternative Definitions of Jump Functions

Following up on results for the so-called unbiased black-box complexity of
jump functions [28] (see Section 3.6.3.4), Jansen [62] proposed an alternative
generalization of the classical jump function considered in [53]. To discuss
this extension, we recall that the jump function analyzed in [53, Definition
24] is the (1, . . . ,1) version of the maps fℓ,z that assign to every length-n bit
string x the function value

fℓ,z(x) :=


ℓ+n if OMz(x) = n,

ℓ+OMz(x) if OMz(x)≤ n− ℓ,

n−OMz(x) otherwise.

We first describe the motivation behind the extension considered in the
definition given by Equation (3.3.1). To this end, we first note that in the un-
restricted black-box complexity model, fℓ,z can be very efficiently optimized
by searching for the bitwise complement z̄ of z and then inverting this string
to the optimal search point z. Note also that, in this definition, the region
around the optimum z provides more information than the functions Jumpℓ,z

defined via (3.3.1). When we are interested in bounding the expected opti-
mization time of classical black-box heuristics, this additional information
most often does not pose any problems. But, for our sought black-box com-
plexity studies, this information can make a crucial difference. Lehre and
Witt [71] therefore designed a different set of jump functions consisting of
maps gℓ,z that assign to each x the function value

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 159

gℓ,z(x) :=


n if OMz(x) = n,

OMz(x) if ℓ < OMz(x)≤ n− ℓ,

0 otherwise.

The definition in Equation (3.3.1) is mostly similar to this definition of Lehre
and witt, with the only difference being the function values for bit strings
x with OMz(x) = n− ℓ. Note that in (3.3.1) the sizes of the “blanked-out
areas” around the optimum and its complement are equal, while for gℓ,z the
area around the complement is larger than that around the optimum.

As mentioned, Jansen [62] introduced yet another version of the jump
function. His motivation was that the spirit of the jump function is to “[lo-
cate] an unknown target string that is hidden in some distance to points a
search heuristic can find easily”. Jansen’s definition also has black-box com-
plexity analysis in mind. For a given z ∈ {0,1}n and a search point x∗ with
OMz(x∗) > n− ℓ, his jump function hℓ,z,x∗ assigns to every bit string x the
function value

hℓ,z,x∗(x) :=


n+1 if x = x∗,

n−OMz(x) if n− ℓ < OMz(x)≤ n and x ̸= x∗,

ℓ+OMz(x) otherwise.

Since these functions do not reveal information about the optimum other
than its ℓ-neighborhood, the unrestricted black-box complexity of the class
{hℓ,z,x∗ | z ∈ {0,1}n,OMz(x∗) > n−ℓ} is

(∑ℓ−1
i=0

(n
i

)
+1
)

/2 [62, Theorem 4].
This bound also holds if z is fixed to be the all-ones string, i.e., if we consider
the unrestricted black-box complexity of the class {hℓ,(1,...,1),x∗ |OMz(x∗) >
n−ℓ}. For constant ℓ, the black-box complexity of this class of jump functions
is thus Θ(nℓ−1), very different from the results for the unrestricted black-box
complexity of the Jumpℓ,z functions considered above. In contrast to the
latter, the expected optimization times stated for crossover-based algorithms
in Section 3.3.7.1 above do not necessarily apply to the functions hℓ,z,x∗ ,
as for these functions the optimum x∗ is not located in the middle of the
ℓ-neighborhood of z.

3.3.8 Combinatorial Problems

The results described above are mostly concerned with benchmark functions
that were introduced to study some particular features of typical black-box
optimization techniques, for example, their hill-climbing capabilities (via the
OneMax function) or their ability to jump a plateau of a certain size (this is
the focus of the jump functions). Running-time analysis, of course, also stud-
ies more “natural” combinatorial problems, such as satisfiability problems,

160 Carola Doerr

partition problems, scheduling, and graph-based problems such as routing,
vertex cover, and MaxCut, see [79] for a survey of running-time results for
combinatorial optimization problems.

Apart from a few results for combinatorial problems derived in [54],2 the
first publication to present a systematic investigation of the black-box com-
plexities of combinatorial optimization problems was [37]. In that publication,
the two well-known problems of finding a minimum spanning tree (MST) in
a graph and the single-source shortest-paths problem (SSSP) were considered.
The study revealed that, for combinatorial optimization problems, the pre-
cise formulation of the problem can make a decisive difference. Modeling such
problems therefore needs be done with care.

We will not be able to summarize all results proven in [37], but the follow-
ing summarizes the most relevant ones for the unrestricted black-box model.
[37] also studies the MST and the SSSP problem in various restricted black-
box models: more precisely, in the unbiased black-box model (see Section 3.6),
the ranking-based model (Section 3.5) and combinations thereof. We will
briefly discuss results for the unbiased case in Sections 3.6.3.6 and 3.6.4.1.

3.3.8.1 Minimum Spanning Trees

For a given graph G = (V,E) with edge weights w : E → R, the minimum
spanning tree problem asks us to find a connected subgraph G′ = (V,E′)
of G such that the sum

∑
e∈E′ w(e) of the edge weights in G′ is mini-

mized. This problem has a natural bit string representation. Letting m := |E|,
we can fix an enumeration ν : [m] → e. In this way, we can identify a
length-m bit string x = (x1, . . . ,xm) with the subgraph Gx := (V,Ex), where
Ex := {ν(i) | i ∈ [m] with xi = 1} is the set of edges i for which xi = 1. Using
this interpretation, the MST problem can be modeled as a pseudo-Boolean
optimization problem f : {0,1}m→ R; see [79] for details. This formulation
is one of the two most common formulations of the MST problem in the
evolutionary computation literature. The other common formulation uses a
biobjective fitness function f : {0,1}m→ R2; the first component maps each
subgraph to its number of connected components, while the second compo-
nent measures the total weight of the edges in this subgraph. In the unre-
stricted black-box model, the two formulations are almost equivalent.3

Theorem 3.3.14 (Theorems 10 and 12 in [37]). For the biobjective and
the single-objective formulation of the MST problem on an arbitrary connected
2 More precisely, the following combinatorial problems were studied in [54]: MaxClique
(Section 3), Sorting (Section 4), and the single-source shortest-paths problem (Sections
4 and 9).
3 Note that this is not the case for the ranking-based model discussed in Section 3.5, since
here it can make a decisive difference whether two rankings for the two components of
the biobjective function are reported or whether this information is condensed further
into one single ranking.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 161

graph of n nodes and m edges, the unrestricted black-box complexity is strictly
larger than n−2 and at most 2m+1.

These bounds also apply if, instead of absolute function values f(x), only
their rankings are revealed; in other words, the ranking-based black-box com-
plexity (which will be introduced in Section 3.5) of the MST problem is also
at most 2m+1.

The upper bound is shown by first learning the order of the edge weights
and then testing, in increasing order of the edge weights, whether or not
the inclusion of the corresponding edge forms a cycle or not. This way, the
algorithm imitates the well-known MST algorithm of Kruskal.

The lower bound of Theorem 3.3.14 is obtained by applying Yao’s minimax
principle with a probability distribution on the problem instances that sam-
ples uniformly at random a spanning tree, gives weight 1 to all of its edges,
and gives weight 2 to all other edges. By Cayley’s formula, the number of
spanning trees on n vertices is nn−2. In intuitive terms, a black-box algorithm
solving the MST problem therefore needs to learn (n− 2) log2 n bits. Since
each query reveals a number between 2k−n+1 and 2k (k being the number
of edges included in the corresponding graph), it provides at most log2 n bits
of information. Hence, in the worst case, we get a running time of at least
n−2 iterations. To turn this intuition into a formal proof, a drift theorem is
used to show that in each iteration the number of consistent possible trees
decreases by factor of at most 1/n.

3.3.8.2 Single-Source Shortest Paths

For the SSSP problem, which asks us to connect all vertices of an edge-
weighted graph to a distinguished source node through a path of smallest total
weight, several formulations coexist. The first one, which was also considered
in [54], uses the following multicriteria objective function. An algorithm can
query arbitrary trees on [n] and the objective value of any such tree is an
(n− 1)-tuple of the distances of the n− 1 nonsource vertices to the source
s = 1 (if an edge is traversed which does not exist in the input graph, the
entry in the tuple is ∞).

Theorem 3.3.15 (Theorems 16 and 17 in [37]). For arbitrary connected
graphs with n vertices and m edges, the unrestricted black-box complexity of
the multiobjective formulation of the SSSP problem is n− 1. For complete
graphs, it is at least n/4 and at most ⌊(n+1)/2⌋+1.

Theorem 3.3.15 improves on the previous n/2 lower and the 2n−3 upper
bound given in [54, Theorem 9]. For the general case, the proof of the upper
bound imitates Dijkstra’s algorithm by first connecting all vertices to the
source, then all but one of the vertices to the vertex of lowest distance to the
source, then all but the two of lowest distance to the vertex of second lowest

162 Carola Doerr

distance, and so on, fixing one vertex with each query. The lower bound
is an application of Yao’s minimax principle to a bound on deterministic
algorithms, which is obtained through an additive drift analysis.

For complete graphs, it is essentially shown that the problem instance
can be learned with ⌊(n + 1)/2⌋ queries, while the lower bound is again a
consequence of Yao’s minimax principle.

The bound in Theorem 3.3.15 is not very satisfactory as already the size
of the input is Ω(m). The discrepancy is due to the large amount of infor-
mation that the objective function reveals about the problem instance. To
avoid such low black-box complexities, and to shed a better light on the
complexity of the SSSP problem, [37] considered also an alternative model
for the SSSP problem, in which a representation of a candidate solution is
a vector (ρ(2), . . . ,ρ(n)) ∈ [n]n−1. Such a vector is interpreted such that the
predecessor of node i is ρ(i) (the indices run from 2 to n to match the indices
with the labels of the nodes - node 1 is the source node to which a shortest
path is sought). With this interpretation, the search space becomes the set
S[2..n] of permutations of [2..n], i.e., S[2..n] is the set of all one-to-one maps
σ : [2..n]→ [2..n]. For a given graph G, the single-criterion objective function
fG is defined by assigning to each candidate solution (ρ(2), . . . ,ρ(n)) the func-
tion value

∑n
i=2 di, where di is the distance of the i-th node to the source

node. If an edge - including loops - is traversed which does not exist in the
input graph, di is set to n times the maximum weight wmax of any edge in
the graph.

Theorem 3.3.16 (Theorem 18 in [37]). The unrestricted black-box com-
plexity of the SSSP problem with the single-criterion objective function is at
most

∑n−1
i=1 i = n(n−1)/2.

As in the multiobjective case, the bound in Theorem 3.3.16 is obtained
by imitating Dijkstra’s algorithm. In the single-objective setting, adding the
i-th node to the shortest-path tree comes at a cost of at most n− i function
evaluations.

3.4 Memory-Restricted Black-Box Complexity

As mentioned in the previous section, as early as in the first publication on
black-box complexity [54] it was noted that the unrestricted model can be too
generous in the sense that it includes black-box algorithms that are highly
problem-tailored and whose expected running time is much smaller than that
of typical black-box algorithms. One potential reason for such a discrepancy
is the fact that unrestricted algorithms are allowed to store and to access
the full search history, while typical heuristics store only a subset (“popula-
tion” in evolutionary computation) of previously evaluated samples and their
corresponding objective values. Droste, Jansen, and Wegener [54] therefore

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 163

Algorithm 3.2: The (µ+λ) memory-restricted black-box algorithm for
optimizing an unknown function f : S→ R

1 Initialization:
2 X←∅;
3 Choose a probability distribution D(0) over Sµ, sample from it

x(1), . . . ,x(µ) ∈ S, and query f(x(1)), . . . ,f(x(µ));
4 X←

{(
x(1),f(x(1))

)
, . . . ,

(
x(µ),f(x(µ))

)}
;

5 Optimization: for t = 1,2,3, . . . do
6 Depending only on the multiset X choose a probability distribution D(t) over

Sλ, sample from it y(1), . . . ,y(λ) ∈ S, and query f(y(1)), . . . ,f(y(µ));
7 Set X←X ∪

{(
y(1),f(y(1))

)
, . . . ,

(
y(µ),f(y(λ))

)}
;

8 for i = 1, . . . ,λ do Select (x,f(x)) ∈X and update X←X \{(x,f(x))};

suggested adjusting the unrestricted black-box model to reflect this behavior.
In their memory-restricted model of size µ,4 the algorithms can store up to
µ pairs (x,f(x)) of previous samples. Based only on this information, they
decide on the probability distribution D from which the next solution candi-
date is sampled. Note that this also implies that the algorithm does not have
any iteration counter or any other information about the time elapsed so far.
Regardless of how many samples have been evaluated already, the sampling
distribution D depends only on the µ pairs

(
x(1),f(x(1))

)
, . . . ,

(
x(µ),f(x(µ))

)
stored in the memory.

We extend this model to a (µ + λ) memory-restricted black-box model, in
which the algorithms have to query λ solution candidates in every round; see
Algorithm 3.2 and Fig. 3.2. Following Definition 3.2.1, the (µ + λ) memory-
restricted black-box complexity of a function class F is the black-box com-
plexity with respect to the class A of all (µ+λ) memory-restricted black-box
algorithms.

The memory-restricted model of size µ corresponds to the (µ+1) memory-
restricted one, in which only one search point needs to be evaluated per round.
Since this variant with λ = 1 allows the highest degree of adaptation, it is
not difficult to verify that for all µ ∈N and for all λ > 1 the (µ+λ) memory-
restricted black-box complexity of a problem F is at least as large as its
(µ + 1) black-box complexity. The effects of larger λ have been studied in a
parallel black-box complexity model, which we will discuss in Section 3.7.2.

While it seems intuitive that larger memory sizes yield smaller optimiza-
tion times, this is not necessarily true for all functions. Indeed, the following
discussion shows that memory is not needed for the efficient optimization of
OneMax.

4 In the original publication [54], a memory-restricted algorithm of size µ was called a
black-box algorithm with size bound µ.

164 Carola Doerr

Fig. 3.2 In the (µ + λ) memory-restricted black-box model, the algorithm can store
up to µ previously evaluated search points and their absolute function values. In each
iteration, it queries the function values of λ new solution candidates. It then has to
decide which of the µ + λ search points to keep in the memory for the next iteration.

3.4.1 OneMax

Droste, Jansen, and Wegener conjectured in [54, Section 6] that the (1 + 1)
memory-restricted black-box complexity of OneMax is O(n logn), in the be-
lief that Randomized Local Search and the (1+1) EA are asymptotically
optimal representatives of this class. This conjecture was refuted in [42],
where a linear upper bound was presented. This bound was reduced further
to O(n/ logn) in [43], showing that even the most restrictive version of the
memory-restricted black-box model does not increase the asymptotic com-
plexity of OneMax. By the lower bound presented in Theorem 3.3.3, the
O(n/ logn) bound is asymptotically best possible.

Theorem 3.4.1 (Theorem 1 in [43]). The (1+1) memory-restricted black-
box complexity of OneMax is Θ(n/ logn).

The proof of Theorem 3.4.1 makes use of the O(n/ logn) unrestricted
strategy of Erdős and Rényi. To respect the memory restriction, the algo-
rithm achieving the O(n/ logn) expected optimization time works in rounds.
In every round, a substring of size s :=

√
n of the target string z is iden-

tified, using O(s/ logs) queries. The algorithm alternates between query-
ing a string to obtain new information and queries which are used only
to store the function value of the last query in the current memory. This
works only if sufficiently many bits are available in the guessing string to
store this information. It was shown that O(n/ logn) bits suffice. These last
remaining O(n/ logn) bits of z are then identified with a constant num-
ber of guesses per position, giving an overall expected optimization time
of O(n/s)O(s/ logs)+O(n/ logn) = O(n/ logn).

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 165

3.4.2 Difference with Respect to the Unrestricted
Model

In light of Theorem 3.4.1, it is interesting to find examples for which the (µ+
1) memory-restricted black-box complexity is strictly (and potentially much)
larger than its ((µ+1)+1) memory-restricted complexity. This question was
addressed in [82].

In the first step, it was shown that having a memory of one can make a
decisive difference compared with not being able to store any information
at all. In fact, it is easily seen that without any memory, for every function
class F that for every s ∈ S contains a function fs such that s is the only
optimal solution of fs, the best one can do without any memory is random
sampling, resulting in an expected optimization time of |S|. Assume now that
there is a (fixed) search point h∈ S where a hint is given, in the sense that for
all s ∈ S the objective value fs(h) uniquely determines where the optimum s
is located. Then, clearly, the (1+1) memory-restricted algorithm which first
queries h and then, based on (h,fs(h)), queries s solves any problem instance
fs in at most two queries.

This idea can be generalized to a class of functions with two hints hidden
in two different distinguished search points h1 and h2. Only the combina-
tion of (h1,fs(h1)) with (h2,fs(h2)) defines where the optimum s is located.
This way, the (2 + 1) memory-restricted black-box complexity of this class
F(h1,h2) is at most three, while its (1 + 1) memory-restricted complexity is
at least (S + 1)/2. For, say, S = {0,1}n we thus see that the discrepancies
between the (0+1) memory-restricted black-box complexity of a problem F
and its (1+1) memory-restricted complexity can be exponential, and so can
be the difference between the (1 + 1) memory-restricted black-box complex-
ity and the (2 + 1) memory-restricted complexity. We are not aware of any
generalization of this result to arbitrary values of µ.

Theorem 3.4.2 ([82]). There are classes of functions F(h) ⊂ {f | f :
{0,1}n→ R} and F(h1,h2)⊂ {f | f : {0,1}n→ R} such that

• the (0 + 1) memory-restricted black-box complexity of F(h) is exponential
in n, while its (1 + 1) memory-restricted black-box complexity is at most
two, and

• the (1 + 1) memory-restricted black-box complexity of F(h1,h2) is expo-
nential in n, while its (2+1) memory-restricted black-box complexity is at
most three.

Storch [82] also presented a class of functions that is efficiently optimized
by a standard (2+1) genetic algorithm, which is a (2+1) memory-restricted
black-box algorithm, in O(n2) queries on average, while its (1 + 1) memory-
restricted black-box complexity is exponential in n. This function class is built
around so-called royal road functions, the main idea being that the genetic

166 Carola Doerr

algorithm is guided towards the two “hints” between which the unique global
optimum is located.

3.5 Comparison- and Ranking-Based Black-Box
Complexity

Many standard black-box heuristics do not take advantage of knowing ex-
act objective values. Instead, they use these function values only to rank
the search points. This ranking determines the next steps, so that the ab-
solute function values are not needed. Such algorithms are often referred
to as comparison-based or ranking-based. To understand their efficiency
comparison-based and ranking-based black-box complexity models were sug-
gested in [44, 57, 86].

3.5.1 The Ranking-Based Black-Box Model

In the ranking-based black-box model, the algorithms receive a ranking of the
search points currently stored in the memory of the population. This ranking
is defined by the objective values of these points.

Definition 3.5.1. Let S be a finite set, let f : S→ R be a function, and let
C be a subset of S. The ranking ρ of C with respect to f assigns to each
element c ∈ C the number of elements in C with a smaller f -value plus 1,
formally, ρ(c) := 1+ |{c′ ∈ C |f(c′) < f(c)}|.

Note that two elements with the same f -value are assigned the same rank-
ing.

In the ranking-based black-box model without memory restriction, an al-
gorithm thus receives with every query a ranking of all previously evaluated
solution candidates, while, in the memory-restricted case, naturally, only the
ranking of those search points currently stored in the memory is revealed.
To be more precise, the ranking-based black-box model without memory re-
striction subsumes all algorithms that can be described via the scheme of
Algorithm 3.3. Fig. 3.3 illustrates these ranking-based black-box algorithms.

Likewise, the (µ + λ) memory-restricted ranking-based model contains
those (µ+λ) memory-restricted algorithms that follow the blueprint in Algo-
rithm 3.4; Fig. 3.4 illustrates this pseudocode.

These ranking-based black-box models capture many common search
heuristics, such as (µ+λ) evolutionary algorithms, some ant colony optimiza-
tion algorithms (e.g., simple versions of the Max-Min Ant Systems analyzed
in [68, 78]), and Randomized Local Search. They do not include algorithms

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 167

Fig. 3.3 A ranking-based black-box algorithm without memory restriction can store all
previously evaluated search points. Instead of knowing their function values, it only has
access to the ranking of the search points induced by the objective function f . Based on
this, it decides upon a distribution D from which the next search point is sampled.

Algorithm 3.3: Blueprint of a ranking-based black-box algorithm with-
out memory restriction

1 Initialization:
2 Sample x(0) according to some probability distribution D(0) over S;
3 X←{x(0)};
4 Optimization: for t = 1,2,3, . . . do
5 Depending on {x(0), . . . ,x(t−1)} and its ranking ρ(X,f) with respect to f ,

choose a probability distribution D(t) on S and sample from it x(t);
6 X←X ∪{x(t)};
7 Query the ranking ρ(X,f) of X induced by f ;

Algorithm 3.4: The (µ+λ) memory-restricted ranking-based black-box
algorithm for maximizing an unknown function f : {0,1}n→ R

1 Initialization:
2 X←∅;
3 Choose a probability distribution D(0) over Sµ and sample from it

X = {x(1), . . . ,x(µ)} ⊆ S;
4 Query the ranking ρ(X,f) of X induced by f ;
5 Optimization: for t = 1,2,3, . . . do
6 Depending only on the multiset X and the ranking ρ(X,f) of X induced by f

choose a probability distribution D(t) on Sλ and sample from it
y(1), . . . ,y(λ);

7 Set X←X ∪{y(1), . . . ,y(λ)} and query the ranking ρ(X,f) of X induced by f ;
8 for i = 1, . . . ,λ do Based on X and ρ(X,f) select a (multi)subset Y of X of

size µ and update X← Y ;

with fitness-dependent parameter choices, such as fitness-proportional muta-
tion rates or fitness-dependent selection schemes.

168 Carola Doerr

Fig. 3.4 A (µ + λ) memory-restricted ranking-based black-box algorithm can store up
to µ previously evaluated search points and the ranking of this population induced by
the objective function f . Using only this information, λ new solution candidates are
sampled in each iteration and the ranking of the (µ + λ) points is revealed. Based on
this ranking, the algorithm needs to select which µ points to keep in the memory.

Surprisingly, the unrestricted and the nonmemory-restricted ranking-
based black-box complexities of OneMax coincide in asymptotic terms; the
leading constants may be different.

Theorem 3.5.2 (Theorem 6 in [44]). The ranking-based black-box com-
plexity of OneMax without memory restriction is Θ(n/ logn).

The upper bound for OneMax is obtained by showing that, for a suffi-
ciently large sample base, a median search point x (i.e., a search point for
which half of the search points have a ranking that is at most as large as that
of x and the other half of the search points have a ranking that is at least as
large as that of x) is very likely to have n/2 correct bits. It was shown fur-
thermore that with O(n/ logn) random queries, each of the function values in
the interval [n/2−κ

√
n,n/2 + κ

√
n] appears at least once. This information

is used to translate the ranking of the random queries into absolute function
values, for those solution candidates y for which OMz(y) lies in the interval
[n/2−κ

√
n,n/2+κ

√
n]. The proof is then concluded by showing that it suf-

fices to consider only these samples in order to identify the target string z of
the problem instance OMz.

For BinaryValue, in contrast, it makes a substantial difference whether
absolute or relative objective values are available.

Theorem 3.5.3 (Theorem 17 in [44]). The ranking-based black-box com-
plexity of BinaryValuen and BinaryValue∗

n is strictly larger than n− 1,
even when the memory is not bounded.

This lower bound of n−1 is almost tight. In fact, an n+1 ranking-based al-
gorithm is easily obtained by starting with a random initial search point and
then, from left to right, flipping exactly one bit in each iteration. The rank-
ing uniquely determines the permutation σ and the string z of the problem
instance BVz,σ.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 169

Theorem 3.5.3 can be shown with Yao’s minimax principle applied to the
uniform distribution over the problem instances. The crucial observation is
that when optimizing BVz,σ with a ranking-based algorithm, from t samples
we can learn at most t− 1 bits of the hidden bit string z, and not Θ(t log t)
bits as one might guess from the fact that there are t! permutations of the
set [t].

This last intuition, however, gives a very general lower bound. Intuitively,
if F is such that every z ∈ {0,1}n is the unique optimum for a function fz ∈F ,
and we learn only the ranking of the search points evaluated so far, then for
the t-th query we learn at most log2(t!) = Θ(t log t) bits of information. Since
we need to learn n bits in total, the ranking-based black-box complexity of
F is of order at least n/ logn.

Theorem 3.5.4 (Theorem 21 in [44]). Let F be a class of functions such
that each f ∈F has a unique global optimum and such that for all z ∈ {0,1}n
there exists a function fz ∈ F with {z} = argmaxfz. Then the unrestricted
ranking-based black-box complexity of F is Ω(n/ logn).

Results for the ranking-based black-box complexity of the two combinato-
rial problems MST and SSSP have been derived in [37]. Some of these bounds
were mentioned in Section 3.3.8.

3.5.2 The Comparison-Based Black-Box Model

In the ranking-based model, the algorithms receive for every query quite a
lot of information, namely the full ranking of the current population and its
offspring. One may argue that some evolutionary algorithms use even less
information. Instead of considering the full ranking, they base their decisions
on a few selected points only. This idea is captured in the comparison-based
black-box model. In contrast to the ranking-based model, here only the rank-
ing of the queried points is revealed. In this model it can therefore make
sense to query a search point more than once, to compare it with a differ-
ent offspring, for example. Fig. 3.5 illustrates the (µ + λ) memory-restricted
comparison-based black-box model. A comparison-based model without mem-
ory restriction is obtained by setting µ =∞.

We will not detail this model further, as it has received only marginal
attention so far in the black-box complexity literature. We note, however,
that Teytaud and co-authors [57, 86] have presented some very general lower
bounds for the convergence rate of comparison-based and ranking-based evo-
lutionary strategies in continuous domains. From these studies, results for the
comparison-based black-box complexity of problems defined over discrete do-
mains can be obtained. These bounds, however, seem to coincide with the
information-theoretic ones that can be obtained through Theorem 3.2.4.

170 Carola Doerr

Fig. 3.5 A (µ + λ) memory-restricted comparison-based black-box algorithm can store
up to µ previously evaluated search points and the comparison of these points that have
been learned through previous queries. In the next iteration, λ solution candidates are
queried, possibly containing some of the current population. Only the ranking of the µ
queried points is revealed. Based on this ranking and the previous information about
the relative fitness values, the algorithm needs to select which µ points to keep in the
memory.

3.6 Unbiased Black-Box Complexity

As previously commented, the quest to develop a meaningful complexity the-
ory for evolutionary algorithms and other black-box optimization heuristics
seemed to have come to an early end after 2006, the only publication which
picked up on this topic being that of Anil and Wiegand on the unrestricted
black-box complexity of OneMax [2] (see Section 3.3.2). In 2010, the situ-
ation changed drastically. Black-box complexity was revived by Lehre and
Witt in [71] (a journal version appeared as [72]). To overcome the drawbacks
of the previous unrestricted black-box model, they restricted the class of
black-box optimization algorithms in a natural way that still covers a large
class of the classically used algorithms.

In their unbiased black-box complexity model, Lehre and Witt considered
pseudo-Boolean optimization problems F ⊆ {f : {0,1}n→ R}. The unbiased
black-box model requires that all solution candidates must be sampled from
distributions that are unbiased. In the context of pseudo-Boolean optimiza-
tion, unbiasedness means that the distribution cannot discriminate between
bit positions 1,2, . . . ,n nor between the bit entries 0 and 1; a formal definition
will be given in Sections 3.6.1 and 3.6.2. The unbiased black-box model also
admits a notion of arity. A k-ary unbiased black-box algorithm is one that em-
ploys only such variation operators that take up to k arguments. This allows
one, for example, to talk about mutation-only algorithms (unary unbiased
algorithms) and to study the potential benefits of recombining previously
sampled search points through distributions of higher arity.

In a crucial difference from the memory-restricted model, in the pure ver-
sion of the unbiased black-box model the memory is not restricted. That is,
the k search points that form the input for the k-ary variation operator can
be any random or previously evaluated solution candidate. As in the case of

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 171

the comparison- and the ranking-based black-box models, combined unbiased
memory-restricted models have also been studied; see Section 3.7.

Before we formally introduce unbiased black-box models for pseudo-
Boolean optimization problems in Section 3.6.2, we define and discuss in
Section 3.6.1 the concept of unbiased variation operators. Known black-box
complexities in the unbiased black-box models are surveyed in Section 3.6.3.
In Section 3.6.4 we present extensions of the unbiased black-box models to
search spaces different from {0,1}n.

3.6.1 Unbiased Variation Operators

In order to formally define the unbiased black-box model, we first introduce
the notion of k-ary unbiased variation operators. Informally, a k-ary unbiased
variation operator takes as input up to k search points. It samples a new point
z ∈ {0,1}n by applying some procedure to these previously evaluated solution
candidates that treats all bit positions and the two bit values in an equal way.

Definition 3.6.1 (k-ary unbiased variation operator). Let k ∈ N. A k-
ary unbiased distribution (D(. | y(1), . . . ,y(k)))y(1),...,y(k)∈{0,1}n is a family of
probability distributions over {0,1}n such that for all inputs y(1), . . . ,y(k) ∈
{0,1}n the following two conditions hold:

(i) ∀x,z ∈ {0,1}n : D(x | y(1), . . . ,y(k)) = D(x⊕z | y(1)⊕z, . . . ,y(k)⊕z) ,

(ii)∀x ∈ {0,1}n∀σ ∈ Sn : D(x | y(1), . . . ,y(k)) = D(σ(x) | σ(y(1)), . . . ,σ(y(k))) .

We refer to the first condition as ⊕-invariance and to the second as permu-
tation invariance. A variation operator that creates an offspring by sampling
from a k-ary unbiased distribution is called a k-ary unbiased variation oper-
ator.

To get some intuition about unbiased variation operators, we now summa-
rize a few characterizations and consequences of Definition 3.6.1.

We first note that the combination of ⊕- and permutation invariance can
be characterized as invariance under Hamming automorphisms. A Hamming
automorphism is a one-to-one map α : {0,1}n→{0,1}n that satisfies the con-
dition that for any two points x,y ∈ {0,1}n their Hamming distance H(x,y)
is equal to the Hamming distance H(α(x),α(y)) of their images. A formal
proof of the following lemma can be found in [37, Lemma 3].

Lemma 3.6.2. A distribution D(· | x1, . . . ,xk) is unbiased if and only if, for
all Hamming automorphisms α : {0,1}n → {0,1}n and for all bit strings
y ∈ {0,1}n, the probability D(y | x1, . . . ,xk) of sampling y from (x1, . . . ,xk)
equals the probability D(α(y) | α(x1), . . . ,α(xk)) of sampling α(y) from
(α(x1), . . . ,α(xk)).

172 Carola Doerr

It is not difficult to see that the only 0-ary unbiased distribution over
{0,1}n is the uniform one.

1-ary operators, also called unary operators, are sometimes referred to as
mutation operators, in particular in the field of evolutionary computation.
Standard bit mutation, as used in several (µ + λ) EAs and (µ + λ) EAs, is
a unary unbiased variation operator. The random bit flip operation used
by RLS, which chooses at random a bit position i ∈ [n] and replaces the
entry xi by the value 1− xi, is also unbiased. In fact, all unary unbiased
variation operators are of a very similar type, as the following definition and
lemma, taken from [31], show. These results can be derived from a more
general description of unbiased operators offered in [37], which characterizes
unbiased operations on arbitrary search spaces. When restricted to pseudo-
Boolean optimization, we obtain the following geometric interpretation.

Definition 3.6.3. Let n ∈ N and r ∈ [0..n]. For every x ∈ {0,1}n, let flipr

be the variation operator that creates an offspring y from x by selecting r
positions i1, . . . , ir in [n] uniformly at random (without replacement), setting
yi := 1−xi for i ∈ {i1, . . . , ir}, and copying yi := xi for all other bit positions
i ∈ [n]\{i1, . . . , ir}.

Using this definition, unary unbiased variation operators can be character-
ized as follows.

Lemma 3.6.4 (Lemma 1 in [31]). For every unary unbiased variation
operator (p(·|x))x∈{0,1}n , there exists a family of probability distributions
(rp,x)x∈{0,1}n on [0..n] such that for all x,y ∈ {0,1}n the probability p(y|x)
that (p(·|x))x∈{0,1}n samples y from x equals the probability that the routine
first samples a random number r from rp,x and then obtains y by applying
flipr to x. On the other hand, each such family of distributions (rp,x)x∈{0,1}n

on [0..n] induces a unary unbiased variation operator.

From this characterization, we can easily see that neither the somatic con-
tiguous hypermutation operator used in artificial immune systems (which
selects a random position i ∈ [n] and a random length ℓ ∈ [n] and flips the
ℓ consecutive bits in positions i, i + 1 mod n, . . . , i + ℓ mod n; see [15, Algo-
rithm 3]), nor the asymmetric nor the position-dependent mutation operators
considered in [63] and [12, 27], respectively, are unbiased.

2-ary operators, also called binary operators, are often referred to as
crossover operators. A prime example of a binary unbiased variation op-
erator is uniform crossover. Given two search points x and y, the uniform
crossover operator creates an offspring z from x and y by choosing, inde-
pendently for each index i ∈ [n], the entry zi ∈ {xi,yi} uniformly at random.
In contrast, the standard one-point crossover operator - which, given two
search points x,y ∈ {0,1}n picks uniformly at random an index k ∈ [n] and
outputs from x and y one or both of the two offspring x′ := x1 . . .xkyk+1 . . .yn

and y′ := y1 . . .ykxk+1 . . .xn - publicationsis not permutation-invariant, and
therefore not an unbiased operator.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 173

Fig. 3.6 In the k-ary unbiased black-box model, the algorithm can store the full query
history. For every already evaluated search point x, the algorithm has access to the ab-
solute function value f(x) ∈R. The distributions D from which new solution candidates
are sampled have to be unbiased. They can depend on up to k previously evaluated
solution candidates.

Some publications refer to the unbiased black-box model allowing variation
operators of arbitrary arity as the ∗-ary unbiased black-box model. Black-box
complexities in the ∗-ary unbiased black-box model are of the same asymp-
totic order as those in the unrestricted model. This has been formally shown
in [81], for a general notion of unbiasedness that is not restricted to pseudo-
Boolean optimization problems (see Definition 3.6.16).

Theorem 3.6.5 (Corollary 1 in [81]). The ∗-ary unbiased black-box com-
plexity of a problem class F is the same as its unrestricted black-box complex-
ity.

Apart from [81], most research on the unbiased black-box model assumes
a restriction on the arity of the variation operators. We therefore concentrate
in the remainder of this chapter on such restricted settings.

3.6.2 The Unbiased Black-Box Model for
Pseudo-Boolean Optimization

With Definition 3.6.1 and its characterizations at hand, we can now introduce
the unbiased black-box models. The k-ary unbiased black-box model covers
all algorithms that follow the blueprint of Algorithm 3.5. Fig. 3.6 illustrates
these algorithms. As in previous sections, the k-ary unbiased black-box com-
plexity of some class of functions F is the complexity of F with respect to all
k-ary unbiased black-box algorithms.

As Fig. 3.6 indicates, it is important to note that in line 3 of Algorithm 3.5
the k selected previously evaluated search points x(i1), . . . ,x(ik) do not nec-
essarily have to be the k immediately previously queried ones. That is, the
algorithm can store and is allowed to choose from all previously sampled
search points.

174 Carola Doerr

Algorithm 3.5: Scheme of a k-ary unbiased black-box algorithm
1 Initialization: Sample x(0) ∈ {0,1}n uniformly at random and query f(x(0));
2 Optimization: for t = 1,2,3, . . . do
3 Depending on

(
f(x(0)), . . . ,f(x(t−1))

)
choose up to k indices

i1, . . . , ik ∈ [0..t−1] and a k-ary unbiased distribution
(D(· | y(1), . . . ,y(k)))y(1),...,y(k)∈{0,1}n ;

4 Sample x(t) according to D(· | x(i1), . . . ,x(ik)) and query f(x(t));

Note further that for all k ≤ ℓ, each k-ary unbiased black-box algorithm is
contained in the ℓ-ary unbiased black-box model. This is due to the fact that
we do not require the indices to be pairwise distinct.

The unary unbiased black-box model captures most of the commonly used
mutation-based algorithms, such as the (µ + λ) EA and the (µ,λ) EA, Sim-
ulated Annealing, the Metropolis algorithm, and Randomized Local Search.
The binary unbiased model subsumes many traditional genetic algorithms,
such as the (µ + λ) GAs and the (µ,λ) GAs using uniform crossover. As we
shall discuss in Section 3.9, the (1 + (λ,λ)) GA introduced in [25] is also
binary unbiased.

As a word of warning, we note that in [85] and [87] lower bounds are proven
for what the authors of those publications call mutation-based algorithms.
Their definitions are more restrictive than what Algorithm 3.5 proposes. The
lower bounds proven in [85, 87] therefore do not (immediately) apply to the
unary unbiased black-box model. A comparison of Theorem 12 in [85] and
Theorem 3.1(5) in [87] with Theorem 9 in [31] shows that there can be substan-
tial differences (in this case, a multiplicative factor ≈ e in the lower bound for
the complexity of OneMax with respect to all mutation-based and all unary
unbiased black-box algorithms, respectively). One of the main differences be-
tween the different models is that in [85, 87] only algorithms using standard
bit mutation are considered. This definition excludes algorithms such as RLS
for which the radius r fed into the variation operator flipr is deterministic and
is thus not sampled from a binomial distribution Bin(n,p). When using the
term “mutation-based algorithms,” we should therefore always make precise
which algorithmic framework we are referring to. Here, in this chapter, we
will exclusively refer to the unary unbiased black-box algorithms defined via
Algorithm 3.5.

3.6.3 Existing Results for Pseudo-Boolean Problems

In this section we survey existing bounds for the unbiased black-box com-
plexity of several classical benchmark functions. As in previous sections, we
proceed by function class, and not in historical order.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 175

3.6.3.1 Functions with a Unique Global Optimum

As discussed in Section 3.2.3.1, the unrestricted black-box complexity of every
function class F = {f} containing only one function f is one, certified by
the algorithm that simply queries a point x ∈ argmaxf in the first step.
The situation is different in the unbiased black-box model, as the following
theorem reveals.

Theorem 3.6.6 (Theorem 6 in [71]). Let f : {0,1}n → R be a function
that has a single global optimum (i.e., in the case of maximization, the size
of the set argmaxf is one). The unary unbiased black-box complexity of f is
Ω(n logn).

Theorem 3.6.6 gives an Ω(n logn) lower bound on the unary unbiased
black-box complexity of several standard benchmark functions, such as
OneMax and LeadingOnes. We shall see below that for some of these
classes, including OneMax, this bound is tight, since it is met by different
unary unbiased heuristics, such as the (1 + 1) EA or RLS. For other classes,
including LeadingOnes, the lower bound can be improved through problem-
specific arguments.

The proof of Theorem 3.6.6 uses multiplicative drift analysis. To this end,
the potential P (t) of an algorithm at time t is defined as the smallest Ham-
ming distance from any of the previously queried search points x(1), . . . ,x(t)

to the unique global optimum z or its bitwise complement z̄. The algorithm
has identified z (or its complement) if and only if P (t) = 0. The distance to z̄
needs to be considered, as the algorithm that first identifies z̄ and then flips
all bits obtains z from z̄ in only one additional query. As we have discussed
for jump functions in Section 3.3.7, for some functions it can be substantially
easier to identify z̄ than to identify z itself. This is true in particular if there
are paths leading to z̄, such as in the original jump functions fℓ,z discussed in
Section 3.3.7.3. The key step in the proof of Theorem 3.6.6 is to show that in
one iteration P (t) decreases by at most 200P (t)/n, in expectation, provided
that P (t) is between c log logn (for some positive constant c > 0) and n/5. Put
differently, in this case E[P (t)−P (t+1) | P (t)]≤ δP (t) for δ := 200/n. It can
be shown, furthermore, that the probability of making very large gains in
potential is very small. These two statements allow the application of a mul-
tiplicative drift theorem, which bounds the total expected optimization time
by Ω((log(n/10)− log log(n))/δ) = Ω(n logn), provided that the algorithm
reaches a state t with P (t) ∈ (n/10,n/5]. A short proof that every unary un-
biased black-box algorithm reaches such a state with probability 1− e−Ω(n)

then concludes the proof of Theorem 3.6.6.

176 Carola Doerr

3.6.3.2 OneMax

The Unary Unbiased Black-Box Complexity of OneMax

Since OneMax is a unimodal function, the lower bound of Theorem 3.6.6
certainly applies to that function, thus showing that no unary unbiased
black-box optimization can optimize OneMax faster than in expected time
Ω(n logn). This bound is attained by several classical heuristics, such as RLS,
the (1+1) EA, and others. While the (1+1) EA has an expected optimiza-
tion time of (1± o(1))en ln(n) [32, 85], that of RLS is only (1± o(1))n ln(n).
More precisely, it is n ln(n/2) + γn± o(1) [23], where γ ≈ 0.5772156649 . . . is
the Euler-Mascheroni constant. The unary unbiased black-box complexity of
OneMax is just slightly smaller than this term. It was slightly improved by
an additive

√
n logn term in [69] through iterated initial sampling. In [31], the

following very precise bound for the unary unbiased black-box complexity of
OneMax was shown. It is smaller than the expected running time of RLS by
an additive term that is between 0.138n±o(n) and 0.151n±o(n). It was also
proven in [31] that a variant of RLS that uses fitness-dependent neighbor-
hood structures attains this optimal bound, up to additive o(n) lower-order
terms.

Theorem 3.6.7 (Theorem 9 in [31]). The unary unbiased black-box com-
plexity of OneMax is n ln(n)−cn±o(n) for a constant c between 0.2539 and
0.2665.

The Binary Unbiased Black-Box Complexity of OneMax

When Lehre and Witt initially defined the unbiased black-box model, they
conjectured that also the binary black-box complexity of OneMax was
Ω(n logn) [P.K. Lehre, personal communication in 2010]. In light of our un-
derstanding of the role and usefulness of crossover in black-box optimization,
such a bound would have indicated that crossover cannot be beneficial for
simple hill-climbing tasks. Given that in 2010 all results seemed to indicate
that it was at least very difficult, if not impossible, to rigorously prove any
advantages of crossover for problems with smooth fitness landscapes, this
conjecture came along very naturally. It was, however, soon refuted. In [35],
a binary unbiased algorithm was presented that achieves linear expected run-
ning time on OneMax.

Theorem 3.6.8 (Theorem 9 in [35]). The binary unbiased black-box com-
plexity of OneMax and that of any other monotone function is at most linear
in the problem dimension n.

This bound is attained by the algorithm that keeps in the memory two
strings x and y that agree in those positions for which the optimal entry

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 177

has been identified already, and which differ in all other positions. In every
iteration, the algorithm flips a fair random coin and, depending on the out-
come of this coin flip, flips exactly one bit in x or one bit in y. The bit to
be flipped is chosen uniformly at random from those bits in which x and y
disagree. The offspring so created replaces its parent if and only if its function
value is larger. In this case, the Hamming distance between x and y reduces
by one. Since the probability of choosing the right parent equals 1/2, it is
not difficult to show that, with high probability, for all constants ε > 0, this
algorithm optimizes OneMax within at most (2 + ε)n iterations. Together
with Lemma 3.2.8, this proves Theorem 3.6.8.

A drawback of this algorithm is that it is very problem-specific, and it
has been an open question whether or not a “natural” binary evolutionary
algorithm can achieve an o(n logn) (or better) expected running time on
OneMax. This question was answered affirmatively in [25] and [21], as we
shall discuss in Section 3.9.

Whether or not the linear bound in Theorem 3.6.8 is tight remains an open
problem. In general, proving lower bounds for unbiased black-box models of
arities larger than one remains one of the biggest challenges in black-box
complexity theory. Owing to the greatly enlarged computational power of
black-box algorithms using higher-arity operators, proving lower bounds in
these models seems to be significantly harder than in the unary unbiased
model. As a matter of fact, the best lower bound that we have for the binary
unbiased black-box complexity of OneMax is the Ω(n/ logn) one stated in
Theorem 3.3.3, and not even constant-factor improvements of this bound
exist.

The k-Ary Unbiased Black-Box Complexity of OneMax

In [35], a general bound for the k-ary unbiased black-box complexity of
OneMax of order n/ logk was presented (see Theorem 9 in [35]). This bound
has been improved in [45].

Theorem 3.6.9 (Theorem 3 in [45]). For every 2 ≤ k ≤ logn, the k-ary
unbiased black-box complexity of OneMax is of order at most n/k. For
k ≥ logn, it is Θ(n/ logn).

Note that for k ≥ logn, the lower bound in Theorem 3.6.9 follows from
the Ω(n/ logn) unrestricted black-box complexity of OneMax discussed in
Theorem 3.3.3.

The main idea used to achieve the results of Theorem 3.6.9 can be easily
described. For a given k, the bit string is split into blocks of size k−2. This
has to be done in an unbiased way, so that the “blocks” are not consecutive
bit positions, but some random k−2 positions not previously optimized. Sim-
ilarly to the binary case, two reference strings x and y are used to encode
which k−2 bit positions are currently under investigation, namely the k−2

178 Carola Doerr

bits in which x and y disagree. Using the same encoding, two other strings x′

and y′ store which bits have been optimized already, and which ones have not
been investigated so far. To optimize the k− 2 bits in which x and y differ,
the derandomized version of the result of Erdős and Rényi (Theorem 3.3.4)
is used. Applied in our context, this result states that there exists a sequence
of Θ(k/ logk) queries which uniquely determines the entries in the k−2 po-
sitions. Since Θ(n/k) such blocks need to be optimized, the claimed total
expected optimization time of Θ(n/ logk) follows. Some technical difficulties
need to be overcome to implement this strategy in an unbiased way. To this
end, in [45] a generally applicable encoding strategy was presented that with
k-ary unbiased variation operators simulates a memory of 2k−2 bits that can
be accessed in an unrestricted fashion.

3.6.3.3 LeadingOnes

The Unary Unbiased Black-Box Complexity of LeadingOnes

Since LeadingOnes is a classic benchmark problem, unsurprisingly, Lehre
and Witt had already presented in [72] a first bound for the unbiased black-
box complexity of this function.

Theorem 3.6.10 (Theorem 2 in [72]). The unary unbiased black-box com-
plexity of LeadingOnes is Θ(n2).

Theorem 3.6.10 can be proven by drift analysis. To this end, in [72] a
potential function was defined that maps the state of the search process at
time t (i.e., the sequence {

(
x(1),f(x(1))

)
, . . . ,

(
x(t),f(x(t))

)
} of the pairs of

search points evaluated so far and their respective function values) to the
largest number of initial ones and initial zeros in any of the t + 1 strings
x(1), . . . ,x(t). It was then shown that a given potential k cannot increase
in one iteration by more than an additive term 4/(k + 1), in expectation,
provided that k is at least n/2. Since with probability at least 1−e−Ω(n) any
unary unbiased black-box algorithm reaches a state in which the potential
is between n/2 and 3n/4, and since from this state a total potential of at
least n/4 must be gained, the claimed Ω(n2) bound follows from a variant of
the additive drift theorem. More precisely, using these bounds, the additive
drift theorem shows that the total optimization time of any unary unbiased
black-box algorithm is at least (n/4)/

(
4/(n/2))

)
= Ω(n2).

The Binary Unbiased Black-Box Complexity of LeadingOnes

Similarly to the case of OneMax, the binary unbiased black-box complexity
of LeadingOnes is much smaller than its unary counterpart.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 179

Theorem 3.6.11 (Theorem 14 in [35]). The binary unbiased black-box
complexity of LeadingOnes is O(n logn).

The algorithm achieving this bound borrows its main idea from the bi-
nary unbiased algorithm used to optimize OneMax in linear time, which
we described after Theorem 3.6.8. We recall that the key strategy was to
use two strings to encode those bits that have been optimized already. In
the O(n logn) algorithm for LeadingOnes, this approach is combined with
a binary search for the (unique) bit position that needs to be flipped next.
Such a binary search step requires O(logn) steps in expectation. Iterating it
n times gives the claimed O(n logn) bound.

As in the case of OneMax, it is not known whether or not the bound
in Theorem 3.6.11 is tight. The best known lower bound is the Ω(n log logn)
one for the unrestricted black-box model discussed in Theorem 3.3.12.

The Complexity of LeadingOnes in Unbiased Black-Box Models of Higher
Arity

The O(n logn) bound presented in Theorem 3.6.11 reduces further to at most
O(n log(n)/ log logn) in the ternary unbiased black-box model.

Theorem 3.6.12 (Theorems 2 and 3 in [41]). For every k ≥ 3, the k-
ary unbiased black-box complexity of LeadingOnes is of order at most
n log(n)/ log logn. This bound also holds in the combined k-ary unbiased
ranking-based black-box model, in which instead of absolute function values
the algorithm can make use only of the ranking of the search points induced
by the optimization problem instance f .

The algorithm that certifies the upper bound in Theorem 3.6.12 uses
the additional power gained through the larger arity to parallelize the bi-
nary search of the binary unbiased algorithm described after Theorem 3.6.11.
More precisely, the optimization process is split into phases. In each phase,
the algorithm identifies the entries of up to k := O(

√
logn) positions. It can

be shown that each phase takes O(k3/ logk2) steps in expectation. Since
there are n/k phases, a total expected optimization time of O(nk2/ logk2) =
O(n log(n)/ log logn) follows.

The idea of parallelizing the search for several indices was later taken up
and further developed in [1], where an iterative procedure with overlapping
phases was used to derive the asymptotically optimal Θ(n log logn) unre-
stricted black-box algorithm that proves Theorem 3.3.12.

It seems plausible that higher arities allow a larger degree of parallelization,
but no formal proof of this intuition exists. In the context of LeadingOnes,
it would be interesting to derive a lower bound on the smallest value of
k such that an asymptotically optimal k-ary unbiased Θ(n log logn) black-
box algorithm for LeadingOnes exists. As a first step towards answering

180 Carola Doerr

this question, the encoding and sampling strategies sketched above could be
applied to the algorithm presented in [1], to understand the smallest arity
needed to implement this algorithm in an unbiased way.

3.6.3.4 Jump Functions

Jump functions are benchmark functions, which are observed to be difficult
for evolutionary approaches because of their large plateaus of constant and
low fitness around the global optimum. One would expect that this would be
reflected in the unbiased black-box complexity, at least in the unary model.
Surprisingly, this is not the case. In [28], it was shown that even extreme
jump functions that reveal only the three different fitness values 0, n/2, and
n have a small polynomial unary unbiased black-box complexity. That is, they
can be optimized quite efficiently by unary unbiased approaches. This result
indicates that efficient optimization is not necessarily restricted to problems
for which the function values reveal a lot of information about the instance
at hand.

As discussed in Section 3.3.7, the literature is not unanimous with respect
to how to generalize the jump function defined in [53] to a problem class. The
results stated in the following apply to the jump function defined in (3.3.1). In
the unbiased black-box model, we can assume without loss of generality that
the underlying target string is the all-ones string (1, . . . ,1). That is, to simplify
our notation, we drop the subscript z and assume that for every ℓ < n/2 we
consider the function that assigns to every x ∈ {0,1}n the function value

Jumpℓ(x) :=


n if |x|1 = n,

|x|1 if ℓ < |x|1 < n− ℓ,

0 otherwise.

The results in [28] cover a broad range of different combinations of jump
sizes ℓ and arities k.

Short jump Long jump Extreme jump
Arity ℓ = O(n1/2−ε) ℓ = (1/2−ε)n ℓ = n/2−1
k = 1 Θ(n logn) O(n2) O(n9/2)
k = 2 O(n) O(n logn) O(n logn)

3≤ k ≤ logn O(n/k) O(n/k) Θ(n)

Table 3.1 Known bounds for the unbiased black-box complexity of Jumpℓ

Theorem 3.6.13 ([28]). Table 3.1 summarizes the known bounds for the
unbiased black-box complexity of Jumpℓ in the different models.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 181

To discuss the bounds in Theorem 3.6.13, we proceed by problem type.
Almost all proofs are rather involved, and so we sketch here only the main
ideas.

Short Jumps, i.e., ℓ = O(n1/2−ε)

A comparison with the bounds discussed in Section 3.6.3.2 shows that the
bounds for the k-ary unbiased black-box complexities of short jump functions
stated above are of the same order as those for OneMax (which can be
seen as a jump function with parameter ℓ = 0). In fact, it was shown in [28,
Lemma 3] that a black-box algorithm having access to a jump function with
ℓ = O(n1/2−ε) can retrieve (with high probability) the true OneMax value of
a search point using only a constant number of queries. The other direction is
of course also true, since from the OneMax value we can compute the Jumpℓ

value without further queries. This implies that the black-box complexities of
short jump functions are of the same asymptotic order as those of OneMax.
Any improved bound for the k-ary unbiased black-box complexity OneMax
therefore immediately carries over to short jump functions.

The fact that the Θ(n logn) bound for the unary unbiased black-box com-
plexity carries over to so-called Plateau functions, which assign to all sub-
optimal solutions of Hamming distance at most ℓ the same function value
n− ℓ−1 and are identical to Jump otherwise, has been discussed in [3].

Long Jumps, i.e., ℓ = (1/2−ε)n

Despite the fact that the above-mentioned Lemma 3 in [28] can probably
not be directly extended to long jump functions, the bounds for arities k ≥ 3
nevertheless coincide with those for OneMax. In fact, it was shown in [28,
Theorem 6] that for all ℓ < (1/2− ε)n and for all k ≥ 3 the k-ary unbiased
black-box complexity of Jumpℓ is at most of the same asymptotic order as the
(k−2)-ary unbiased black-box complexity of OneMax. For k > 3, this proves
the bounds stated in Theorem 3.6.13. The linear bound for k = 3 follows from
the case of extreme jumps.

A key ingredient for the bound on the unary unbiased black-box complex-
ity of long jump functions is a procedure that samples a number of neighbors
at some fixed distance d and studies the empirical expected function values
of these neighbors to decide upon the direction in which the search for the
global optimum is continued. More precisely, it uses the samples to estimate
the OneMax value of the currently investigated search point. Strong concen-
tration bounds are used to bound the probability that this approach gives an
accurate estimation of the correct OneMax values.

The O(n logn) bound for the binary unbiased black-box complexity of long
jump functions follows from its extreme analogue.

182 Carola Doerr

Extreme Jump, i.e., ℓ = n/2−1

The work [28] first considered the ternary unbiased black-box complexity of
the extreme jump function. A strategy that allowed individual bits to be
tested was derived. Testing each bit individually in an efficient way (using
the encoding strategies originally developed in [35] and described in Sec-
tion 3.6.3.2 above) gives the linear bound.

In the binary case, the bits cannot be tested as efficiently anymore. The
main idea is nevertheless to flip individual bits and to test whether the flip was
in a “good” or a “bad” direction. This test is done by estimating the distance
to a reference string with n/2 ones. Implementing this strategy in O(n logn)
queries requires one to overcome a few technical difficulties imposed by the
restriction of sampling only from binary unbiased distributions, resulting in
a rather complex bookkeeping procedure, and a rather technical proof 4.5
pages long.

Finally, the polynomial unary unbiased black-box complexity of the ex-
treme jump function can be proven as follows. Similarly to the cases discussed
above, individual bits are flipped in a current “best” solution candidate x. A
sampling routine is used to estimate whether the bit flip was in a “good” or a
“bad” direction, i.e., whether it created a string that was closer to the global
optimum or to its bitwise complement than the previous string. The sampling
strategy works as follows. Depending on the estimated parity of |x|1, exactly
n/2 or n/2−1 bits are flipped in x. The fraction of offspring so created with
function value n/2 (the only value that is “visible” apart from that of the
global optimum) is recorded. This fraction depends on the distance from x to
the global optimum (1, . . . ,1) or its complement (0, . . . ,0) and is slightly dif-
ferent for different distances. A key step in the analysis of the unary unbiased
black-box complexity of the extreme jump function is therefore a proof that
shows that a polynomial number of such samples are sufficient to determine
the OneMax value of x with sufficiently large probability.

Comments on the Upper Bounds in Theorem 3.6.13

Note that even for long jump functions, the search points having a func-
tion value of 0 form plateaus around the optimum (1, . . . ,1) and its com-
plement (0, . . . ,0) of exponential size. For the extreme jump function, all
but a Θ(n−1/2) fraction of the search points form one single fitness plateau.
Problem-unspecific black-box optimization techniques will therefore typically
not find the optimum of long and extreme jump functions in subexponential
time.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 183

Lower Bound

The Ω(n logn) lower bound in Theorem 3.6.13 follows from the more general
result discussed in Theorem 3.2.5 and the Ω(n logn) bound for OneMax in
the unary unbiased black-box model, which we discussed in Section 3.6.3.2.
Note also that Theorem 3.2.5, together with the Ω(n/ logn) unrestricted
black-box complexity of OneMax, implies a lower bound for Jumpℓ of the
same asymptotic order (for all values of ℓ). The linear lower bound for the
extreme jump function can be easily proven by the information-theoretic
arguments presented in Theorem 3.2.4. Intuitively, the algorithm needs to
learn a linear number of bits, while it receives only a constant number per
function evaluation.

Insights from these Bounds and Open Questions

The proof sketches provided above highlight the fact that one of the key nov-
elties presented in [28] are the sampling strategies that are used to estimate
the OneMax values of a current string of interest. The idea of accumulating
some statistical information about the fitness landscape could be an interest-
ing concept for the design of novel heuristics, in particular for optimization
in the presence of noisy function evaluations or for dynamic problems, which
change over time.

3.6.3.5 Number Partition

Number partition is one of the best-known NP-hard problems. Given a set
S ⊂Nn of n positive integers, this partition problem asks us to decide whether
or not it is possible to split S into two disjoint subsets such that the sums
of the integers in these two subsets are identical, i.e., whether or not two
disjoint subsets S1 and S2 of S with S1 ∪S2 = S and

∑
s∈S1

s =
∑

s∈S2
s

exist. The optimization version of partition asks us to split S into two disjoint
subsets such that the absolute discrepancy

∣∣∑
s∈S1

s−
∑

s∈S2
s
∣∣ is as small

as possible.
In [26], a subclass of partition was studied in which the integers in S are

pairwise different. The problem remains NP-hard under this assumption. It is
thus unlikely that it can be solved efficiently. For two different formulations of
this problem (using a signed and an unsigned function assigning to each par-
tition S1,S2 of S the discrepancy

∑
s∈S1

s−
∑

s∈S2
s or the absolute value of

this expression, respectively), it was shown that the unary unbiased black-box
complexity of this subclass is nevertheless of small polynomial order. More
precisely, it was shown that there are unary unbiased black-box algorithms
that need only O(n logn) function evaluations to optimize any Partition̸=
instance. The proof techniques are very similar to the ones presented in Sec-

184 Carola Doerr

tion 3.2.4: the algorithm achieving the O(n logn) expected optimization time
first uses O(n logn) steps to learn the problem instance at hand. After some
(possibly – and probably – nonpolynomial-time) offline computation of an
optimal solution for this instance, this optimum is then created via an ad-
ditional O(n logn) function evaluations, needed to move the integers of the
partition instance to the right subset. Learning and moving the bits can be
done in linear time in the unrestricted model. The factor logn stems from the
fact that here, in this unary unbiased model, in every iteration a random bit
is moved, so that a coupon collector process results in a logarithmic overhead.

This result and those for the different versions of jump functions described
in Section 3.6.3.4 show that the unary unbiased black-box complexity can
be much smaller than the typical performance of mutation-only black-box
heuristics. This indicates that the unary unbiased black-box model does not
always give a good estimation of the difficulty of a problem when optimized
by mutation-based algorithms. As we shall discuss in Section 3.7, a possible
direction to obtain more meaningful results could be to restrict the class of
algorithms even further, for example through bounds on the memory size or
the selection operators.

3.6.3.6 Minimum Spanning Trees

Having a formulation over the search space {0,1}m, the minimum spanning
tree problem considered in Section 3.3.8.1 can be directly studied in the un-
biased black-box model proposed by Lehre and Witt. The following theorem
summarizes the bounds proven in [37] for this problem. We see here that [37]
also studied the black-box complexity of a model that combines the restric-
tions imposed by the ranking-based and the unbiased black-box models. We
will discuss this model in Section 3.7 but, for the sake of brevity, will state
the bounds now for this combined model.

Theorem 3.6.14 (Theorem 10 in [37]). The unary unbiased black-box
complexity of the MST problem is O(mn log(m/n)) if there are no duplicate
weights, and O(mn logn) if there are. The ranking-based unary unbiased
black-box complexity of the MST problem is O(mn logn). Its ranking-based
binary unbiased black box-complexity is O(m logn) and its ranking-based 3-
ary unbiased black-box complexity is O(m).

For every k, the k-ary unbiased black-box complexity of MST for m edges
is at least as large as the k-ary unbiased black-box complexity of OneMaxm.

As in the unrestricted case of Theorem 3.3.14, the upper bounds in The-
orem 3.6.14 are obtained by modifying Kruskal’s algorithm to fit the black-
box setting at hand. For the lower bound, the path P on m + 1 vertices
with unit edge weights shows that OneMaxm is a subproblem of the MST
problem. More precisely, for all bit strings x ∈ {0,1}m, the function value

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 185

f(x) = (OneMaxm(x),m+1−OneMaxm(x)) of the associated MST fitness
function reveals the OneMax value of x.

3.6.3.7 Other Results

Motivated to introduce a class of functions for which the unary unbiased
black-box complexity is Θ(2m) for some parameter m that can be scaled
between 1 and n, Lehre and Witt introduced in [72] the following function:

OM-Needle : {0,1}n→ [0..n],x 7→
n−m∑
i=1

xi +
n∏

i=1
xi.

It is easily seen that this function has its unique global optimum in the
all-ones string (1, . . . ,1). All other search points whose first n−m entries
are equal to one are located on a plateau of function value n−m. In the
unbiased model, this part is thus similar to the Needle functions discussed
in Section 3.3.1. Lehre andWitt showed that for 0≤m≤n the unary unbiased
black-box complexity of this function is at least 2m−2 [72, Theorem 3]. Note
that this function is similar in flavor to the version of the jump function
proposed in [62] (see Section 3.3.7.3).

3.6.4 Beyond Pseudo-Boolean Optimization: Unbiased
Black-Box Models for Other Search Spaces

In this section we discuss an extension of the pseudo-Boolean unbiased black-
box model of Lehre and Witt [72] to more general search spaces. To this end,
we first recall from Definition 3.6.1 that the unbiased model is defined through
a set of invariances that must be satisfied by the probability distributions from
which unbiased algorithms sample their solution candidates. It is therefore
quite natural to first generalize the notion of an unbiased operator in the
following way.

Definition 3.6.15 (Definition 1 in [37]). Let k ∈ N, let S be some arbi-
trary set, and let G be a set of bijections on S that forms a group, i.e., a
set of one-to-one maps g : S→ S that is closed under composition (· ◦ ·) and
under inversion (·)−1. We call G the set of invariances.

A k-ary G-unbiased distribution is a family of probability distributions(
D(· |y1, . . . ,yk)

)
y1,...,yk∈S

over S such that for all inputs y1, . . . ,yk ∈ S the
condition

∀x ∈ S ∀g ∈ G : D(x | y1, . . . ,yk) = D(g(x) | g(y1), . . . ,g(yk))

186 Carola Doerr

holds. An operator sampling from a k-ary G-unbiased distribution is called a
k-ary G-unbiased variation operator.

For S := {0,1}n and when G is the set of Hamming automorphisms, it is
not difficult to verify that Definition 3.6.15 extends Definition 3.6.1. A k-ary
G-unbiased black-box algorithm is one that samples all search points from
k-ary G-unbiased variation operators.

In [81], Rowe and Vose gave the following very general, but rather indirect,
definition of unbiased distributions.

Definition 3.6.16 (Definition 2 in [81]). Let F be a class of functions
from a search space S to some set Y . We say that a one-to-one map α : S→ S
preserves F if, for all f ∈ F , it holds that f ◦α ∈ F . Let Π(F) be the class
of all such F-preserving bijections α.

A k-ary generalized unbiased distribution (for F) is a k-ary Π(F)-unbiased
distribution.

It was argued in [81] that Π(F) in fact forms a group, so that Defini-
tion 3.6.16 satisfies the requirements of Definition 3.6.15.

To apply the framework of Definition 3.6.16, one has to make precise the set
of invariances covered by the class Π(F). This can be quite straightforward in
some cases [81] but may require some more effort in others [37]. In particular,
it is often inconvenient to define the whole family of unbiased distributions
from which a given variation operator originates. Luckily, in many cases this
effort can be considerably reduced, to proving only the unbiasedness of the
variation operator itself. The following theorem demonstrates this for the
case S = [n]n−1, which is used, for example, in the single-source shortest-
path problem considered in the next subsection. In this case, condition (ii)
in the theorem states that it suffices to show the k-ary G-unbiasedness of the
distribution Dz, without making precise the whole family of distributions
associated to it.

Theorem 3.6.17. Let G be a set of invariances, i.e., a set of permutations
of the search space S = [n]n−1 that form a group. Let k ∈ N, and let z =
(z1, . . . ,zk) ∈ Sk be a k-tuple of search points. Let

G0 := {g ∈ G | g(zi) = zi for all i ∈ [k]}

be the set of all invariances that leave z1, . . . ,zk fixed.
Then, for any probability distribution Dz on [n]n−1, the following two

statements are equivalent.

(i) There exists a k-ary G-unbiased distribution (D(· |y))y∈Sk on S such that
Dz = D(· |z).

(ii) For every g ∈ G0 and for all x ∈ S, it holds that Dz(x) = Dz(g(x)).

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 187

3.6.4.1 Alternative Extensions of the Unbiased Black-Box Model
for the SSSP problem

As discussed in Section 3.3.8.2, several formulations of the single-source
shortest-path problem (SSSP) coexist. In the unbiased black-box setting, the
multicriteria formulation is not very meaningful, as the function values ex-
plicitly distinguish between the vertices, so that treating them in an unbiased
fashion seems unreasonable. For this reason, in [37] only the single-objective
formulation was investigated in the unbiased black-box model. Note that for
this formulation, the unbiased black-box model for pseudo-Boolean functions
needs to be extended to the search space S[2..n]. The work [37] discussed
three different extensions:

(a) a structure-preserving unbiased model in which, intuitively speaking, the
operators do not consider the labels of different nodes, but only their local
structure (e.g., the size of their neighborhoods);

(b) the generalized unbiased model proposed in [81] (this model follows the
approach presented in Section 3.6.4 above); and

(c) a redirecting unbiased black-box model in which, intuitively, a node may
choose to change its predecessor in the shortest-path tree but, if it decides
to do so, then all possible predecessors must be equally likely to be chosen.

Whereas all three notions a priori seem to capture different aspects of what
unbiasedness in the SSSP problem could mean, two of them were shown to
be too powerful. More precisely, it was shown that even the unary structure-
preserving unbiased black-box complexity of SSSP and the unary generalized
unbiased black-box complexity are almost identical to the unrestricted black-
box complexity. The three models were proven to differ by at most one query
in [37, Theorem 25 and Corollary 32].

It was then shown that the redirecting unbiased black-box model yields
more meaningful black-box complexities.

Theorem 3.6.18 (Corollary 28, Theorem 29, and Theorem 30
in [37]). The unary ranking-based redirecting unbiased black-box complex-
ity of SSSP is O(n3). Its binary ranking-based redirecting unbiased black-box
complexity is O(n2 logn). For all k ∈ N, the k-ary redirecting unbiased black-
box complexity of SSSP is Ω(n2).

The unary bound is obtained by a variant of RLS which, in every step,
redirects one randomly chosen node to a random predecessor. For the binary
bound, the problem instance is learned in a two-phase step. An optimal so-
lution is then created by an imitation of Dijkstra’s algorithm. For the lower
bound, drift analysis can be used to prove that every redirecting unbiased
algorithm needs Ω(n2) function evaluations to reconstruct a given path on n
vertices.

188 Carola Doerr

3.7 Combined Black-Box Complexity Models

The black-box models discussed in the previous sections either study the
complexity of a problem with respect to all black-box algorithms (in the un-
restricted model) or restrict the class of algorithms with respect to one partic-
ular feature of common optimization heuristics, such as the size of their mem-
ory, their selection behavior, or their sampling strategies. As we have seen,
many classical black-box optimization algorithms are members of several of
these classes. At the same time, a nonnegligible number of the upper bounds
stated in the previous sections can, to date, be certified only by algorithms
that satisfy an individual restriction, but clearly violate other requirements
that are not controlled by the respective model. In the unbiased black-box
model, for example, several of the upper bounds are obtained by algorithms
that make use of a rather large memory size. It is therefore natural to ask if
and how the black-box complexity of a problem increases if two or more of
the different restrictions proposed in the previous sections are combined in a
new black-box model. This is the focus of this section, which surveys results
obtained in such combined black-box complexity models.

3.7.1 Unbiased Ranking-Based Black-Box Complexity

Even some of the very early publications on the unbiased black-box model
considered a combination with the ranking-based model. In fact, the binary
unbiased algorithm in [35], which solves OneMax with Θ(n) queries on aver-
age, uses only comparisons, and does not make use of knowledge of absolute
fitness values. It was shown in [44] that, also, the other upper bounds for
the k-ary black-box complexity of OneMax proven in [35] hold also in the
ranking-based version of the k-ary unbiased black-box model.

Theorem 3.7.1 (Theorem 6 and Lemma 7 in [44]). The unary unbiased
ranking-based black-box complexity of OneMaxn is Θ(n logn). For constant k,
the k-ary unbiased ranking-based black-box complexity of OneMaxn and that
of every strictly monotone function is at most 4n−5. For 2≤ k≤ n, the k-ary
unbiased ranking-based black-box complexity of OneMaxn is O(n/ logk).

In light of Theorem 3.6.9, it seems plausible that the upper bounds for the
case 2≤ k ≤ n can be reduced to O(n/k), but we are not aware of any result
proving such a claim.

Also, the binary unbiased algorithm achieving an expected O(n logn) op-
timization time on LeadingOnes uses only comparisons.

Theorem 3.7.2 (follows from the proof of Theorem 14 in [35]; see
Theorem 3.6.11). The binary unbiased ranking-based black-box complexity
of LeadingOnes is O(n logn).

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 189

For the ternary black-box complexity we have mentioned already in The-
orem 3.6.12 that the O(n log(n)/ log logn) bound also holds in the ranking-
based version of the ternary unbiased black-box model.

For the two combinatorial problems MST and SSSP, it has already been
mentioned in Theorems 3.6.14 and 3.6.18 that the bounds hold also in models
in which we require the algorithms to base all decisions on only the ranking
of previously evaluated search points, and not on absolute function values.

3.7.2 Parallel Black-Box Complexity

The (unary) unbiased black-box model was also the starting point for the
authors of [4], who introduced a black-box model to investigate the effects of
a parallel optimization. Their model can be seen as a unary unbiased (∞+λ)
memory-restricted black-box model. More precisely, their model covers all
algorithms following the scheme of Algorithm 3.6.

The model covers the (µ+λ) EA and the (µ,λ) EA, cellular evolutionary
algorithms, and unary unbiased evolutionary algorithms working in the island
model. The restriction to unary unbiased variation operators can of course
be relaxed to obtain general models for λ-parallel k-ary unbiased black-box
algorithms.

We see that Algorithm 3.6 forces the algorithm to query λ new solution
candidates in every iteration. Thus, intuitively, for every two positive integers
k and ℓ with k/ℓ ∈ N and for all problem classes F , the ℓ-parallel unary
unbiased black-box complexity of F is at most as large as its k-parallel unary
unbiased black-box complexity.

Algorithm 3.6: A blueprint for λ-parallel unary unbiased black-box
algorithms for the optimization of an unknown function f : S→ R

1 Initialization:
2 for i = 1, . . . ,µ do Sample x(i,0) uniformly at random from S and

query f
(
x(i,0));

3 I ← {f
(
x(1,0)), . . . ,f(x(λ,0))};

4 Optimization: for t = 1,2,3, . . . do
5 for i = 1, . . . ,λ do
6 Depending only on the multiset I choose a pair of indices

(j,ℓ) ∈ [λ]× [0..t−1];
7 Depending only on the multiset I choose a unary unbiased probability

distribution D(i,t)(·) on S, sample x(i,t)←D(i,t)(x(j,ℓ)) and
query f

(
x(i,t));

8 I ← I ∪{f
(
x(1,t)), . . . ,f(x(λ,t))};

190 Carola Doerr

The following bounds for the λ-parallel unary unbiased black-box complex-
ity are known.

Theorem 3.7.3 (Theorems 1, 3 and 4 in [4]). The λ-parallel unary un-
biased black-box complexity of LeadingOnes is Ω

(
λn

max{1,log(λ/n)} + n2). It
is of order at most λn+n2.

For any λ≤ e
√

n, the λ-parallel unary unbiased black-box complexity of any
function having a unique global optimum is Ω

(
λn

log(λ) + n logn
)
. This bound

is asymptotically tight for OneMax.

For LeadingOnes, the upper bound is attained by a (1 + λ) EA investi-
gated in [70]. The lower bound was shown by means of drift analysis, building
upon the arguments used in [72] to prove Theorem 3.6.10.

For OneMax, a (1 + λ) EA with fitness-dependent mutation rates was
shown to achieve an O

(
λn

log(λ) + n logn
)
expected optimization time in [4,

Theorem 4]; see Chapter 5.6 for details.
The lower bound for the λ-parallel unary unbiased black-box complexity of

functions having a unique global optimum uses additive drift analysis. The
proof is similar to the proof of Theorem 3.6.6 in [72], but requires a very
precise tail bound for hypergeometric variables (Lemma 2 in [4]).

3.7.3 Distributed Black-Box Complexity

To study the effects of the migration topology on the efficiency of distributed
evolutionary algorithms, the λ-parallel unary unbiased black-box model was
extended in [5] to a distributed version, in which islands exchange their ac-
cumulated information along a given graph topology. Commonly employed
topologies are the complete graph (in which all nodes exchange information
with each other), the ring topology, the grid of equal side lengths, and the
torus. [5] presents an unrestricted and a unary unbiased version of the dis-
tributed black-box model. In this context, it is interesting to study how the
black-box complexity of a problem increases with sparser migration topolo-
gies or with the infrequency of migration. The model of [5] allows all nodes
to share all the information that they have accumulated so far. Another in-
teresting extension of the distributed model would be to study the effects
of bounding the amount of information that can be shared in any migration
phase. We will not present the model, nor all results obtained in [5], in de-
tail. The main result which is interpretable and comparable to the others
presented in this chapter is summarized by the following theorem.

Theorem 3.7.4 (Table 1 in [5]). The λ-distributed unary unbiased black-
box complexity of the class of all unimodal functions with Θ(n) different
function values satisfies the bounds stated in Table 3.2. The lower bound for

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 191

Ring Topology Grid/Torus Complete Topology
Upper Bound O(λn3/2 + n2) O(λn4/3 + n2)

Θ(λn + n2)Lower Bound Ω(λn + λ2/3n5/3 + n2) Ω(λn + λ3/4n3/2 + n2)
Table 3.2 The λ-distributed unary unbiased black-box complexity of the class of all
unimodal functions with Θ(n) different function values

the grid applies to arbitrary side lengths, while the upper bound holds for the
grid with

√
λ islands in each of the two dimensions.

The upper bounds in Theorem 3.7.4 are achieved by a parallel (1+1) EA,
in which every node migrates its complete information after every round. The
lower bounds were shown to hold even for a subproblem called the “random
short path,” which is a collection of problems which all have a global optimum
in some point with exactly n/2 ones. A short path of Hamming-1 neighbors
leads to this optimum. The paths start at the all-ones string. Search points
that do not lie on the path lead the optimization process towards the all-ones
string; their objective values equal the number of ones in the string.

3.7.4 Elitist Black-Box Complexity

One of the most relevant questions in black-box optimization is how to avoid
getting stuck in local optima. Essentially, two strategies have been developed.

• Nonelitist selection. The first idea is to allow the heuristics to direct
their search towards search points that are, a priori, less favorable than
the current best solutions in the memory. This can be achieved, for ex-
ample, by accepting into the memory (“population”) search points with
function values that are smaller than the current best solutions. We re-
fer to such selection procedures as nonelitist selection. Nonelitist selection
is used, for example, in the Metropolis algorithm [75], Simulated Anneal-
ing [66], and, more recently, the biology-inspired “Strong Selection, Weak
Mutation” framework [80].

• Global sampling. A different strategy to overcome local optima is global
sampling. This approach is used, most notably, by evolutionary and genetic
algorithms, but also by swarm optimizers such as ant colony optimization
techniques [52] and estimation-of-distribution algorithms (EDAs, see Chap-
ter 7 in this book). The underlying idea of global sampling is to select new
solution candidates not only locally in some predefined neighborhood of
the current population, but also to reserve some positive probability to
sample far away from these solutions. Very often, a truly global sampling
operation is used, in which every point x ∈ S has a positive probability
of being sampled. This probability typically decreases with increasing dis-

192 Carola Doerr

Fig. 3.7 A (µ + λ) elitist black-box algorithm stores the µ previously evaluated search
points of largest function value (ties broken arbitrarily or according to some specified
rule) and the ranking of these points induced by f . Based on this information, it decides
upon a strategy according to which the next λ search points are sampled. From the
µ+λ parent and offspring solutions, those µ search points that have the largest function
values form the population for the next iteration.

tance to the current best solutions. Standard bit mutation with bit flip
probabilities p < 1/2 is such a global sampling strategy.

Global sampling and nonelitist selection can certainly be combined, and
several attempts in this direction have been made. The predominant selec-
tion strategy used in combination with global sampling, however, is trunca-
tion selection. Truncation selection is a natural implementation of Darwin’s
“survival of the fittest” paradigm in an optimization context: given a collec-
tion P of search points and a population size µ, truncation selection chooses
from P the µ search points of largest function values and discards the others,
breaking ties arbitrarily or according to some rule such as favoring offspring
over parents or favoring genotypic or phenotypic diversity.

To understand the influence that this elitist selection behavior has on the
performance of black-box heuristics, the elitist black-box model was intro-
duced in [46] (a journal version has appeared as [49]). The elitist black-box
model combines features of the memory-restricted and the ranking-based
black-box models with an enforced truncation selection. More precisely, the
(µ + λ) elitist black-box model covers all algorithms that follow the pseudo-
code in Algorithm 3.7. We use here an adaptive initialization phase. A non-
adaptive version, as in the (µ + λ) memory-restricted black-box model, can
also be considered. This and other subtleties such as the tie-breaking rules
for search points of equal function values can result in different black-box
complexities. It is therefore important to make very precise the model with
respect to which a bound is claimed or shown to hold.

The elitist black-box model covers, in particular, all (µ+λ) EAs, RLS, and
other hill climbers. It does not cover algorithms using nonelitist selection rules
such as Boltzmann selection, tournament selection, or fitness-proportional se-
lection. Figure 3.7 illustrates the (µ + λ) elitist black-box model. As a seem-
ingly subtle but possibly influential difference from the parallel black-box
complexities introduced in Section 3.7.2, note that in the elitist black-box

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 193

Algorithm 3.7: The (µ+λ) elitist black-box algorithm for maximizing
an unknown function f : S→ R

1 Initialization:
2 X←∅;
3 for i = 1, . . . ,µ do
4 Depending only on the multiset X and the ranking ρ(X,f) of X induced

by f , choose a probability distribution D(i) over S and sample from it
x(i);

5 Set X←X ∪{x(i)} and query the ranking ρ(X,f) of X induced by f ;
6 Optimization: for t = 1,2,3, . . . do
7 Depending only on the multiset X and the ranking ρ(X,f) of X induced by f

choose a probability distribution D(t) on Sλ and sample from it
y(1), . . . ,y(λ) ∈ S;

8 Set X←X ∪{y(1), . . . ,y(λ)} and query the ranking ρ(X,f) of X induced by f ;
9 for i = 1, . . . ,λ do Select x ∈ argminX and update X←X \{x};

model the offspring sampled in the optimization phase do not need to be in-
dependent of each other. If, for example, an offspring x is created by crossover,
in the (µ+λ) elitist black-box model with λ≥ 2 we allow another offspring y
to be created from the same parents, whose entries yi in those positions i in
which the parents do not agree equal 1−xi. These two offspring are obviously
not independent of each other. It is nevertheless required in the (µ+λ) elitist
black-box model that the λ offspring are created before any evaluation of the
offspring happens. That is, the k-th offspring may not depend on the ranking
or fitness of the first k−1 offspring.

In addition to combining several features of previous black-box models,
the elitist black-box model can be further restricted to cover only those eli-
tist black-box algorithms that sample from unbiased distributions. For this
unbiased elitist black-box model, we require that the distribution p(t) in line 7
of Algorithm 3.7 is unbiased (in the sense of Section 3.6). Some of the results
mentioned below also hold for this more restrictive class.

3.7.4.1 Nonapplicability of Yao’s Minimax Principle

An important difficulty in the analysis of elitist black-box complexities is the
fact that Yao’s minimax principle (Theorem 3.2.3) cannot be directly applied
to the elitist black-box model, since in this model the previously exploited
fact that randomized algorithms are convex combinations of deterministic
ones does not apply; see [49, Section 2.2] for an illustrated discussion. As
discussed in the previous sections, Yao’s minimax principle is the most im-
portant tool for proving lower bounds in the black-box complexity context,
and we can hardly do without it. A natural workaround that allows us to

194 Carola Doerr

nevertheless employ this technique is to extend the collection A of elitist
black-box algorithms to some superset A′ in which every randomized algo-
rithm can be expressed as a probability distribution over deterministic ones.
A lower bound shown for this broader class A′ applies trivially to all elitist
black-box algorithms. Finding extensions A′ that do not decrease the lower
bounds by too much is the main difficulty to be overcome in this strategy.

3.7.4.2 Exponential Gaps to Previous Models

In [49, Section 3], it was shown that even for quite simple function classes
there can be an exponential gap between the efficiency of elitist and noneli-
tist black-box algorithms; and this applies even in the very restrictive (1+1)
unary unbiased elitist black-box complexity model. This shows that heuris-
tics can sometimes benefit quite crucially from eventually giving preference
to search points of fitness inferior to that of the current best search points.
The underlying intuition for these results is that elitist algorithms do not
work very well if there are several local optima that the algorithm needs to
explore in order to determine the best one of them.

3.7.4.3 The Elitist Black-Box Complexity of OneMax

As we have discussed in Sections 3.4 and 3.5, respectively, the (1+1) memory-
restricted and the ranking-based black-box complexity of OneMax are only
of order n/ logn. In contrast, it is easy to see that the combined (1+1)
memory-restricted ranking-based black-box model does not allow algorithms
that are faster than linear in n, as can easily be seen by standard information-
theoretic considerations. In [47] (a journal version has appeared as [50]) it
was shown that this linear bound is tight. Whether or not it applies to the
(1+1) elitist model remains unsolved, but it was shown in [50] that the ex-
pected time needed to optimize OneMax with probability at least 1− ε is
linear for every constant ε > 0. This is the so-called Monte Carlo black-box
complexity, which we shall briefly discuss in Section 3.11. The following theo-
rem summarizes the bounds presented in [50]. Without detailing this further,
we note that [50, Section 9] also introduced and studied a comma-variant of
the elitist black-box model.

Theorem 3.7.5 ([50]). The (1+1) memory-restricted ranking-based black-
box complexity of OneMax is Θ(n).

For 1 < λ < 2n1−ε , ε > 0 being an arbitrary constant, the (1+λ) memory-
restricted ranking-based black-box complexity of OneMax is Θ(n/logλ) (in
terms of generations), while for µ = ω(log2(n)/ log logn) its (µ+1) memory-
restricted ranking-based black-box complexity is Θ(n/logµ).

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 195

For every constant 0 < ε < 1, there exists a (1+1) elitist black-box algorithm
that finds the optimum of any OneMax instance in time O(n) with probability
at least 1−ε, and this running time is asymptotically optimal.

For constant µ, the (µ + 1) elitist black-box complexity of OneMax is at
most n+1.

For δ > 0, C > 0, 2 ≤ λ < 2n1−δ , and a suitably chosen ε =
O(log2(n) log log(n) log(λ)/n), there exists a (1+λ) elitist black-box algorithm
that needs at most O(n/logλ) generations to optimize OneMax with proba-
bility at least 1−ε.

For µ = ω(log2(n)/log logn)∩O(n/logn) and every constant ε > 0, there is
a (µ + 1) elitist black-box algorithm optimizing OneMax in time Θ(n/logµ)
with probability at least 1−ε.

There exists a constant C > 1 such that for µ≥Cn/logn, the (µ+1) elitist
black-box complexity is Θ(n/logn).

3.7.4.4 The Elitist Black-Box Complexity of LeadingOnes

The (1+1) elitist black-box complexity of LeadingOnes was studied in [48]
(a journal version has appeared as [51]). Using the approach sketched in
Section 3.7.4.1, the following result was derived.

Theorem 3.7.6 (Theorem 1 in [51]). The (1+1) elitist black-box complex-
ity of LeadingOnes is Θ(n2). This bound holds also in the case where the
algorithms have access to (and can make use of) the absolute fitness values of
the search points in the population, and not only their rankings, i.e., in the
(1+1) memory-restricted black-box model with enforced truncation selection.

The (1 + 1) elitist black-box complexity of LeadingOnes is thus consid-
erably larger than its unrestricted black-box complexity, which is known to
be of order n log logn, as discussed in Theorem 3.3.12.

It is well known that the quadratic bound in Theorem 3.7.6 is matched by
classical (1+1)-type algorithms such as the (1+1) EA, RLS, and others.

3.7.4.5 The Unbiased Elitist Black-Box Complexity of Jump
Functions

Some shortcomings of previous models can be eliminated when they are com-
bined with an elitist selection requirement. This was shown in [49] for the
Jumpk function already discussed.

Theorem 3.7.7 (Theorem 9 in [49]). For k = 0, the unary unbiased (1+1)
elitist black-box complexity of Jumpk is Θ(n logn). For 1≤ k ≤ n

2 −1, it is of
order

(n
k+1

)
.

196 Carola Doerr

Model Lower bound Upper bound
Unrestricted Θ(n/logn)
Unbiased, arity 1 Θ(n logn)
Unbiased, arity 2≤ k ≤ logn Ω(n/logn) O(n/k)
Ranking-based (unrestricted) Θ(n/logn)
Ranking-based unbiased, arity 1 Θ(n logn)
Ranking-based unbiased, arity 2≤ k ≤ n Ω(n/logn) O(n/ logk)
(1+1) comparison-based Θ(n)
(1+1) memory-restricted Θ(n/logn)
λ-parallel unbiased, arity 1 Θ

(
λn

log(λ) + n logn
)

(1+1) elitist Las Vegas Ω(n) O(n logn)
(1+1) elitist logn/n-Monte Carlo Θ(n)
(2+1) elitist Monte Carlo/Las Vegas Θ(n)
(1+λ) elitist Monte Carlo (# generations) Θ(n/logλ)
(µ+1) elitist Monte Carlo Θ(n/logµ)
(1,λ) elitist Monte Carlo/Las Vegas (# generations) Θ(n/logλ)

Table 3.3 Summary of known black-box complexities of OneMaxn in the different
black-box complexity models

The bound in Theorem 3.7.7 is nonpolynomial for k = ω(1). This is in con-
trast to the unary unbiased black-box complexity of Jumpk, which, according
to Theorem 3.6.13, is polynomial even for extreme values of k.

3.8 Summary of Known Black-Box Complexities for
OneMax and LeadingOnes

For better identification of open problems concerning the black-box com-
plexity of the two benchmark functions OneMax and LeadingOnes, we
summarize the bounds that have been presented in previous sections.

Table 3.3 summarizes the known black-box complexities of OneMaxn in
the different models. The bound for the λ-parallel black-box model assumes
λ ≤ e

√
n. The bounds for the (1 + λ) and the (1,λ) elitist model assume

1 < λ < 2n1−ε for some ε > 0. Finally, the bound for the (µ+1) model assumes
that µ = ω(log2 n/log logn) and µ≤ n.

Table 3.4 summarizes the known black-box complexities of
LeadingOnesn. The upper bounds for the unbiased black-box models
also hold in the ranking-based variants.

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 197

Model Lower bound Upper bound
unrestricted Θ(n log logn)
unbiased, arity 1 Θ(n2)
unbiased, arity 2 Ω(n log logn) O(n logn)
unbiased, arity ≥ 3 Ω(n log logn) O(n log(n)/ log logn)
λ-parallel unbiased, arity 1 Ω

(
λn

log(λ/n) + n2) O(λn + n2)
(1+1) elitist Ω(n2) O(n2)

Table 3.4 Summary of known black-box complexities of LeadingOnesn in the different
black-box complexity models

3.9 From Black-Box Complexity to Algorithm Design

In the previous sections, the focus of our attention has been on comput-
ing performance limits for black-box optimization heuristics. In some cases,
for example for OneMax in the unary unbiased black-box model and for
LeadingOnes in the (1+1) elitist black-box model, we have obtained lower
bounds that are matched by the performance of well-known standard heuris-
tics such as RLS or the (1+1) EA. For several other models and problems,
however, we have obtained black-box complexities that are much smaller than
the expected running times of typical black-box optimization techniques. As
discussed in the introduction, two possible reasons for this discrepancy exist.
Either the respective black-box models do not capture very well the complex-
ity of the problems for heuristic approaches, or there are ways to improve
classical heuristics by novel design principles.

In the case of the restrictive models discussed in Sections 3.4-3.7, we have
seen that there is some truth in the first possibility. For several optimiza-
tion problems, we have seen that their complexity increases if the class of
black-box algorithms is restricted to subclasses of heuristics that all share
some properties that are commonly found in state-of-the-art optimization
heuristics. Here, in this section, we shall demonstrate that this is neverthe-
less not the end of the story. We discuss two examples where a discrepancy
between black-box complexity and the performance of classical heuristics
can be observed, and we show how the analysis of typically rather artificial
problem-tailored algorithms can inspire the design of new heuristics.

3.9.1 The (1+(λ,λ)) Genetic Algorithm

Our first example is a binary unbiased algorithm, which optimizes OneMax
more efficiently than any classical unbiased heuristic, and provably faster
than any unary unbiased black-box optimizer.

198 Carola Doerr

We recall from Theorems 3.6.7 and 3.6.8 that the unary unbiased black-box
complexity of OneMaxn is Θ(n logn), while its binary unbiased black-box
complexity is only O(n). The linear-time algorithm flips one bit at a time,
and uses a simple but clever encoding to store which bits have been flipped
already. In this way, it is a rather problem-specific algorithm, since it “knows”
that a bit that has been tested already does not need to be tested again. The
algorithm is therefore not very suitable for nonseparable problems, where the
influence of an individual bit depends on the value of several or all other bits.

Until recently, all existing running-time results have indicated that general-
purpose unbiased heuristics need Ω(n logn) function evaluations to optimize
OneMax, so that the question of whether the binary unbiased black-box
model is too “generous” arose. In [21, 25] this question was answered nega-
tively, through the presentation of a novel binary unbiased black-box heuris-
tic that optimizes OneMax in expected linear time. This algorithm is the
(1+ (λ,λ)) GA. Since the algorithm itself will be discussed in more detail in
Chapter 5.6, we present here only the main ideas behind it.

Disregarding some technical subtleties, one observation that we can make
when considering the linear-time binary unbiased algorithm for OneMax is
that when it test the value of a bit, the amount of information that it obtains
is the same whether or not the offspring has a better function value. In other
words, the algorithm benefits equally from offspring that are better or worse
than the previously best. A similar observation applies to all of the O(n/ logn)
algorithms for OneMax discussed in Sections 3.3-3.7. These algorithms do
not strive to sample search points of large objective value, but rather aim at
maximizing the amount of information that they can learn about the problem
instance at hand. This way, they benefit substantially also from those search
points that are (much) worse than other ones already evaluated.

Most classical black-box heuristics are different. They store only the best
solutions so far, or use inferior search points only to create diversity in the
population. Thus, in general, they are not very efficient in learning from
“bad” samples (where we consider a search point to be “bad” if it has a small
function value). When a heuristic is close to a local or a global optimum
(in the sense that it has identified search points that are not far from these
optima), it samples, in expectation, a fairly large number of search points that
are wore than the current best solutions. Not learning from these offspring
results in a significant number of “wasted” iterations, from which the heuristic
does not benefit. This observation was the starting point for the development
of the (1+(λ,λ)) GA.

Since the unary unbiased black-box complexity of OneMax is Ω(n logn),
it was clear in the development of the (1 + (λ,λ)) GA that an o(n logn) un-
biased algorithm must be at least binary. This led to the question of how
recombination can be used to learn from inferior search points. The follow-
ing idea emerged. For illustration purposes, assume that we have identified a
search point x of function value OMz(x) = n−1. From the function value, we
know that there exists exactly one bit that we need to flip in order to obtain

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 199

the global optimum z. Since we want to be unbiased, the best mutation seems
to be a random 1-bit flip. This has a probability 1/n of returning z. If we
were to do this until we identified z, the expected number of samples would
be n, and even if we stored which bits had been flipped already, we would
need n/2 samples on average.

Assume now that, in the same situation, we flip ℓ > 1 bits of x. Then, with
a probability that depends on ℓ, we may have only flipped already optimized
bits (i.e., bits in positions i for which xi = zi) to 1− zi, thus resulting in
an offspring of function value n− 1− ℓ. However, the probability that the
position j in which x and z differ is among the ℓ positions is ℓ/n. If we
repeat this experiment some λ times, independently of each other and always
starting with x as the “parent,” then the probability that j has been flipped
in at least one of the offspring is 1− (1− ℓ/n)λ. For moderately large ℓ and
λ, this probability is sufficiently large for us to assume that among the λ
offspring there is at least one in which j has been flipped. Such an offspring
is distinguished from the others by a function value of n− 1− (ℓ− 1) + 1 =
n−ℓ+1 instead of n−ℓ−1. Assume that there is one such offspring x′ among
the λ independent samples created from x. When we compare x′ with x, they
differ in exactly ℓ positions. In ℓ−1 of these, the entry of x equals that of z.
Only in the j-th position is the situation reversed: x′

j = zj ̸= xj . We would
therefore like to identify this position j, and to incorporate the bit value x′

j
into x.

So far, we have used only mutation, which is a unary unbiased operation.
At this point, we want to compare and merge two search points, which is one
of the driving motivations behind crossover. Since x clearly has more “good”
bits than x′, a uniform crossover, which takes for each position i its entry
uniformly at random from either of its two parents, does not seem to be a
good choice. We would like to add some bias to the decision-making process,
in favor of choosing the entries of x. This yields a biased crossover, which
takes for each position i its entry yi from x′ with some probability p < 1/2,
and from x otherwise. The hope is to choose p in such a way that in the end
only good bits are chosen. Where x and x′ are identical, there is nothing to
worry about, as these positions are correct already (and, in general, we have
no indication to flip the entry in this position). So, we only need to look at
those ℓ positions in which x and x′ differ. The probability of making only
good choices, i.e., of selecting ℓ−1 times the entry from x and, only for the
j-th position, the entry from x′ equals p(1−p)ℓ−1. This probability may not
be very large, but when we do λ independent trials again, the probability of
having created z in at least one of the trials equals 1− (1−p(1−p)ℓ−1)λ. As
we shall see, for suitable values of the parameters p, λ, and ℓ, this expression
is sufficiently large to gain over the O(n) strategies discussed above. Since
we want to sample exactly one out of the ℓ bits in which x and x′ differ, it
seems intuitive to set p = 1/ℓ; see the discussion in [25, Section 2.1].

Before we summarize the main findings, let us briefly reflect on the struc-
ture of the algorithm. In the mutation step, we have created λ offspring from x,

200 Carola Doerr

by a mutation operator that flips ℓ random bits in x. This is a unary unbiased
operation. From these λ offspring, we have selected one offspring x′ with the
largest function value among all offspring (with ties broken at random). In
the crossover phase, we have then created λ offspring again, by recombining
x and x′ using a biased crossover. This biased crossover is a binary unbiased
variation operator. The algorithm now chooses from these λ recombined off-
spring one that has the largest function value (for OneMax, ties can again
be broken at random, but for other problems it can be better to favor individ-
uals that are different from x; see [25, Section 4.3]). This selected offspring y
replaces x if it is at least as good as x, i.e., if f(y)≥ f(x).

We see that we have employed only unbiased operations, and that the
largest arity in use is two. Both of the variation operators, mutation and
biased crossover, are standard operators in the evolutionary computation
literature. What is novel is that crossover is used as a repair mechanism, and
after the mutation step.

We also see that this algorithm is ranking-based, and even comparison-
based in the sense that it can be implemented in a way in which, instead of
querying absolute function values, only a comparison of the function values
of two search points is asked for. Using information-theoretic arguments as
described in Section 3.2.2, it is then not difficult to show that for any (adap-
tive or nonadaptive) parameter setting the best expected performance of the
(1+(λ,λ)) GA on OneMaxn is at least linear in the problem dimension n.

The following theorem summarizes some of the results on the expected
running time of the (1 + (λ,λ)) GA on OneMax. An exhaustive discussion
of these results can be found in [24]. The fitness-dependent and self-adjusting
choice of the parameters will also be discussed in Section 6.5.2.1 in this book.

Theorem 3.9.1 (from [19, 21, 22, 25]). The (1 + (λ,λ)) GA is a binary
unbiased black-box algorithm. For a mutation strength ℓ sampled from the
binomial distribution Bin(n,k/n) and a crossover bias p = 1/k, the following
holds:

• For k = λ = Θ(
√

log(n) log log(n)/ log log log(n)) the expected
optimization time of the (1 + (λ,λ)) GA on OneMaxn is
O(n

√
log(n) log log log(n)/ log log(n)).

• No static parameter choice of λ ∈ [n], k ∈ [0..n], and p ∈ [0,1] can give a
better expected running time.

• There exists a fitness-dependent choice of λ and k = λ such that the (1 +
(λ,λ)) GA has a linear expected running time on OneMax.

• A linear expected running time can also be achieved by a self-adjusting
choice of k = λ.

Note that these results answer one of the most prominent long-standing
open problems in evolutionary computation: the usefulness of crossover in
an optimization context. Previous and other recent examples exist where
crossover has been shown to be beneficial [16, 18, 33, 36, 40, 56, 64, 83, 84],

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 201

but in all of these publications, either nonstandard problems or operators
were considered or the results hold only for uncommon parameter settings,
or substantial additional mechanisms such as diversity-preserving selection
schemes are needed to make crossover really work. To our knowledge, Theo-
rem 3.9.1 is thus the first example that proves advantages of crossover in a
natural algorithmic setting for a simple hill-climbing problem.

Without going into detail, we mention that the (1 + (λ,λ)) GA has also
been analyzed on a number of other benchmark problems, both by theoret-
ical [8] and by empirical [25, 58, 76] means. These results indicate that the
concept of using crossover as a repair mechanism can be useful far beyond
OneMax.

3.9.2 Randomized Local Search with Self-Adjusting
Mutation Strengths

Another example highlighting the impact that black-box complexity studies
can have on the design of heuristic optimization techniques was presented
in [30]. This work built on [31], where the tight bound for the unary unbiased
black-box complexity of OneMax stated in Theorem 3.6.7 was presented.
This bound is attained, up to an additive difference that is sublinear in n, by
a variant of RLS that in each iteration chooses a value r that depends on the
function value OMz(x) of the current best search point x and then uses the
flipr variation operator introduced in Definition 3.6.3 to create an offspring y.
The offspring y replaces x if and only if OMz(y)≥OMz(x). The dependence
of r on the function value OMz is rather complex and difficult to compute
directly; see the discussion in [31]. Quite surprisingly, a self-adjusting choice of
r is capable of identifying the optimal mutation strengths r in all but a small
fraction of the iterations. This way, RLS with this self-adjusting parameter
choice achieves an expected running time on OneMax that is only worse by
an additive o(n) term than that of the theoretically optimal unary unbiased
black-box algorithm.

The algorithm in [30] will be discussed in Chapter 5.6 of this book. In the
context of black-box optimization, it is interesting to note that the idea of
taking a closer look at self-adjusting parameter choices, as well as our ability
to investigate the optimality of such nonstatic parameter choices, is deeply
rooted in the study of black-box complexities.

3.10 From Black-Box Complexity to Mastermind

In [29], the black-box complexity studies for OneMax were extended to the
following generalization of OneMax to functions over an alphabet of size k.

202 Carola Doerr

For a given string z ∈ [0..k−1]n, the Mastermind function fz assigns to each
search point x ∈ [0..k− 1]n the number of positions in which x and z agree.
Thus, formally,

fz : [0..k−1]n→ R,x 7→ |{i ∈ [n] | xi = zi}|.

The collection {fz | z ∈ [0..k− 1]n} of all such Mastermind functions forms
the Mastermind problem of n positions and k colors.

The Mastermind problem models the homonymous board game, which
was very popular in North America and in the western parts of Europe in
the 1970s and 1980s. More precisely, it models a variant of this game, as in
the original Mastermind game information is provided also about colors xi

that appear in z but not in the same position i; see [29] for details and results
about this Mastermind variant using black and white pegs.

Mastermind and similar guessing games were studied in the computer
science literature long before the release of Mastermind as a commercial board
game. As we have discussed in Section 3.3, the case of k = 2 colors (this is
the OneMax problem) had already been considered by Erdős and Rényi and
several other authors in the early 1960s. These authors were mostly interested
in the complexity- and information-theoretic aspects of this problem, and/or
its cryptographic nature. The playful character of the problem, in turn, was
the motivation of Knuth [67], who computed an optimal strategy that solves
any Mastermind instance with n = 4 positions and k = 6 colors in at most
five guesses.

The first to study the general case with arbitrary values of k was Chvá-
tal [14].

Theorem 3.10.1 (Theorem 1 in [14]). For every k ≥ 2 the unrestricted
black-box complexity of the Mastermind game with n positions and k col-
ors is Ω(n logk/ logn). For ε > 0 and k ≤ n1−ε, it is at most (2 + ε)n(1 +
2logk)/ log(n/k).

Note that for k ≤ n1−ε, ε > 0 being a constant, Theorem 3.10.1 gives an
asymptotically tight bound of Θ(n logk/ logn) for the k-color, n-position Mas-
termind game. Similarly to the random guessing strategy of Erdős and Rényi,
it is sufficient to perform this many random queries, chosen independently
and uniformly at random from [0..k−1]n. That is, no adaptation is needed
for such combinations of n and k to learn the secret target vector z.

The situation changes for the regime around k = n, which was the fo-
cus of several subsequent publications [13, 59, 60]. These publications all
showed bounds of order n logn for the k = n Mastermind problem. Originally
motivated by the study of black-box complexities for randomized black-box
heuristics, these bounds were improved to O(n log logn) in [29].

Theorem 3.10.2 (Theorem 2.1 in [29]). For Mastermind with n posi-
tions and k = Ω(n) colors, the unrestricted black-box complexity of the n-

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 203

position, k-color Mastermind game is O(n log logn + k). For k = o(n), it is
O
(

n log
(

logn
log(n/k)

))
.

Like the O(n/ logn) bound for the case k = 2, the bounds in Theorem 3.10.2
can be achieved by deterministic black-box algorithms [29, Theorem 2.3]. On
the other hand, and unlike the situation considered in Theorem 3.10.1, it can
be shown that any (deterministic or randomized) o(n logn) algorithm for the
Mastermind game with k = Θ(n) colors has to be adaptive, showing that in
this regime adaptive strategies are indeed more powerful than nonadaptive
ones.

Theorem 3.10.3 (Theorem 4.1 and Lemma 4.2 in [29]). The nonadap-
tive unrestricted black-box complexity of the Mastermind problem with n posi-
tions and k colors is Ω

(
n logk

max{log(n/k),1}

)
. For k = n, this bound is tight, i.e.,

the nonadaptive unrestricted black-box complexity of the Mastermind problem
with n positions and n colors is Θ(n logn).

Whether or not the O(n log logn) upper bound in Theorem 3.10.2 can be
further improved remains a – seemingly quite challenging – open problem. To
date, the best known lower bound is the linear one reported in [14]. Some nu-
merical results for different values of k = n can be found in [7], but extending
these numbers to asymptotic results may require a substantially new idea or
technique for proving lower bounds in the unrestricted black-box complexity
model.

3.11 Conclusion and Selected Open Problems

In this chapter we have surveyed theory-driven approaches that shed light
on the performance limits of black-box optimization techniques such as local
search strategies, nature-inspired heuristics, and pure random search. We
have presented a detailed discussion of existing results for these black-box
complexity measures. We now highlight a few avenues for future work in this
young research discipline.

3.11.1 Extension to Other Optimization Problems

In line with the existing literature, our focus has been on classes of classical
benchmark problems such as the OneMax, LeadingOnes, Jump, MST,
and SSSP problems, since for these problems we can compare the black-
box complexity results with known running-time results for well-understood
heuristics. As with running-time analysis, it would be highly desirable to
extend these results to other problem classes.

204 Carola Doerr

3.11.2 Systematic Investigation of Combined
Black-Box Models

In the years before around 2013, most research on black-box complexity was
centered around the question of how individual characteristics of state-of-the-
art heuristics influence their performance. With this aim in mind, various
black-box models have been developed that each restrict the algorithms with
respect to some specific property, for example their memory size, or the prop-
erties of their variation operators or of the selection mechanisms in use. Since
2013 we have observed an increasing interest in combining two or more such
restrictions to obtain a better picture of what is needed to design algorithms
that significantly excel over existing approaches. A systematic investigation
of such combined black-box models constitutes one of the most promising
avenues for future research.

3.11.3 Tools to Derive Lower Bounds

To date, the most powerful technique to prove lower bounds on the black-
box complexity of a problem is the information-theoretic approach, most
notably in the form of Yao’s minimax principle, and the simple information-
theoretic lower bound presented in Theorem 3.2.4. Refined variants of this
theorem have been designed to capture the situation in which the number
of possible function values depends on the state of the optimization process,
or where the probabilities for different objective values are nonhomogeneous.
Unfortunately, either the verification that the conditions under which these
theorems apply or the computation of a closed expression that summarizes
the resulting bounds is often very tedious, making these extensions rather
difficult to apply. Alternative tools for the derivation of lower bounds in
black-box complexity contexts form another of the most desirable directions
for future work.

In particular, for the k-ary unbiased black-box complexity with arities
k ≥ 2, we do not have any model-specific lower bounds. We therefore do not
know, for example, if the linear bound on the binary unbiased black-box
complexity of OneMaxn or the O(n logn) bound on the binary unbiased
black-box complexity of LeadingOnesn is tight, or whether the power of
recombination is even larger than what these bounds, in comparison with
the unary unbiased black-box complexities, indicate.

Another specifically interesting problem is raised by the Ω(n2) lower
bound on the (1+1) elitist black-box complexity of LeadingOnesn presented
in Theorem 3.7.6. It has been conjectured in [51, Section 4] that this bound
holds even for the (1+1) memory-restricted setting. A more systematic in-
vestigation of lower bounds for memory-restricted black-box models would

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 205

help us to understand better the role of large populations in evolutionary
computation, a question that is not very well understood to date.

3.11.4 Beyond Worst-Case Expected Optimization
Time as Unique Performance Measure

Black-box complexity, as introduced in this chapter, takes the worst-case ex-
pected optimization time as the performance measure. This measure reduces
the whole optimization procedure to one single number. This, naturally, has
several disadvantages. The same critique applies to running-time analysis in
general, which is very much centered around this single performance mea-
sure. Complementary performance indicators such as fixed-budget (see [65])
and fixed-target (see [11]) results have been proposed in the literature, but
unfortunately have not yet attracted significant attention. Since these mea-
sure give a better picture of the anytime behavior of black-box optimization
techniques, we believe that an extension of existing black-box complexity re-
sults to such anytime statements would make it easier to communicate and
to discuss the results with practitioners, for whom the anytime performance
is often at least as important as the expected optimization time.

In the same context, one may ask if the expected optimization time should
be the only measure considered. Clearly, when the optimization time T (A,f)
of an algorithm A on a function f is highly concentrated, its expectation is
often very similar to its median, and is in particular of the same or similar
asymptotic order. Such concentration can be observed for the running time
of classical heuristics on most of the benchmark problems considered in this
chapter. At the same time, it is also not very difficult to construct problems
for which such a concentration provably does not hold. In particular, for
multimodal problems, in which two or more local optima exist, the running
time is often not concentrated. In [49, Section 3] examples were presented
for which the probability of finding a solution within a small polynomial
given bound is rather large, but where – owing to excessive running times
in the remaining cases – the expected optimization time is very large. This
motivated the authors of [49] to introduce the concept of p-Monte Carlo
black-box complexity. The p-Monte Carlo black-box complexity of a class F
of functions measures the time it takes to optimize any problem f ∈ F with
failure probability at most p. It was shown that even for small p, the p-
Monte Carlo black-box complexity of a function class F can be smaller by
an exponential factor than its traditional (expected) black-box complexity,
which is referred to as the Las Vegas black-box complexity in [49].

Acknowledgements This work was supported by a public grant as part of the In-
vestissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH, in a

206 Carola Doerr

joint call with the Gaspard Monge Program for optimization, operations research, and
their interactions with data sciences.

References

[1] Afshani, P., Agrawal, M., Doerr, B., Doerr, C., Larsen, K.G., Mehlhorn,
K.: The query complexity of finding a hidden permutation. In: Space-
Efficient Data Structures, Streams, and Algorithms - Papers in Honor
of J. Ian Munro on the Occasion of His 66th Birthday, Lecture Notes in
Computer Science, vol. 8066, pp. 1–11. Springer (2013)

[2] Anil, G., Wiegand, R.P.: Black-box search by elimination of fitness func-
tions. In: Proc. of Foundations of Genetic Algorithms (FOGA’09), pp.
67–78. ACM (2009)

[3] Antipov, D., Doerr, B.: Precise runtime analysis for plateaus. In: Proc.
of Parallel Problem Solving from Nature (PPSN’18), Lecture Notes in
Computer Science, vol. 11102, pp. 117–128. Springer (2018)

[4] Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity
of parallel search. In: Proc. of Parallel Problem Solving from Nature
(PPSN’14), Lecture Notes in Computer Science, vol. 8672, pp. 892–901.
Springer (2014)

[5] Badkobeh, G., Lehre, P.K., Sudholt, D.: Black-box complexity of parallel
search with distributed populations. In: Proc. of Foundations of Genetic
Algorithms (FOGA’15), pp. 3–15. ACM (2015)

[6] Bshouty, N.H.: Optimal algorithms for the coin weighing problem with
a spring scale. In: Proc. of the 22nd Conference on Learning Theory
(COLT’09). Omnipress (2009)

[7] Buzdalov, M.: An algorithm for computing lower bounds for unrestricted
black-box complexities. In: Companion Material for Proc. of Genetic and
Evolutionary Computation Conference (GECCO’16), pp. 147–148. ACM
(2016)

[8] Buzdalov, M., Doerr, B.: Runtime analysis of the (1 + (λ,λ)) Genetic
Algorithm on random satisfiable 3-CNF formulas. In: Proc. of Genetic
and Evolutionary Computation Conference (GECCO’17), pp. 1343–1350.
ACM (2017)

[9] Buzdalov, M., Doerr, B., Kever, M.: The unrestricted black-box com-
plexity of jump functions. Evolutionary Computation 24(4), 719–744
(2016). DOI 10.1162/EVCO_a_00185. URL https://doi.org/10.
1162/EVCO_a_00185

[10] Cantor, D.G., Mills, W.H.: Determining a subset from certain combina-
torial properties. Canadian Journal of Mathematics 18, 42–48 (1966)

[11] Carvalho Pinto, E., Doerr, C.: Discussion of a more practice-aware run-
time analysis for evolutionary algorithms. In: Proc. of Artificial Evo-

https://doi.org/10.1162/EVCO_a_00185
https://doi.org/10.1162/EVCO_a_00185

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 207

lution (EA’17), pp. 298–305 (2017). URL https://ea2017.inria.fr/
/EA2017_Proceedings_web_ISBN_978-2-9539267-7-4.pdf

[12] Cathabard, S., Lehre, P.K., Yao, X.: Non-uniform mutation rates for
problems with unknown solution lengths. In: Proc. of Foundations of
Genetic Algorithms (FOGA’11), pp. 173–180. ACM (2011)

[13] Chen, Z., Cunha, C., Homer, S.: Finding a hidden code by asking ques-
tions. In: Proc. of the 2nd Annual International Conference on Comput-
ing and Combinatorics (COCOON’96), pp. 50–55. Springer (1996)

[14] Chvátal, V.: Mastermind. Combinatorica 3, 325–329 (1983)
[15] Corus, D., He, J., Jansen, T., Oliveto, P.S., Sudholt, D., Zarges, C.:

On easiest functions for mutation operators in bio-inspired optimisation.
Algorithmica 78, 714–740 (2017). DOI 10.1007/s00453-016-0201-4. URL
https://doi.org/10.1007/s00453-016-0201-4

[16] Dang, D., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto,
P.S., Sudholt, D., Sutton, A.M.: Escaping local optima with diversity
mechanisms and crossover. In: Proc. of Genetic and Evolutionary Com-
putation Conference (GECCO’16), pp. 645–652. ACM (2016)

[17] Dang, D., Lehre, P.K.: Runtime analysis of non-elitist populations: From
classical optimisation to partial information. Algorithmica 75, 428–461
(2016). DOI 10.1007/s00453-015-0103-x. URL https://doi.org/10.
1007/s00453-015-0103-x

[18] Dang, D.C., Friedrich, T., Kötzing, T., Krejca, M.S., , Lehre, P.K.,
Oliveto, P.S., Sudholt, D., Sutton, A.M.: Escaping local optima using
crossover with emergent diversity. IEEE Transactions on Evolutionary
Computation 22(3), 484–497 (2018)

[19] Doerr, B.: Optimal parameter settings for the (1 + (λ,λ)) genetic algo-
rithm. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’16), pp. 1107–1114. ACM (2016)

[20] Doerr, B., Doerr, C.: Black-box complexity: from complexity theory to
playing Mastermind. In: Companion Material for Proc. of Genetic and
Evolutionary Computation Conference (GECCO’14), pp. 623–646. ACM
(2014). URL http://doi.acm.org/10.1145/2598394.2605352

[21] Doerr, B., Doerr, C.: Optimal parameter choices through self-
adjustment: Applying the 1/5-th rule in discrete settings. In: Proc. of
Genetic and Evolutionary Computation Conference (GECCO’15), pp.
1335–1342. ACM (2015)

[22] Doerr, B., Doerr, C.: A tight runtime analysis of the (1+(λ,λ)) genetic
algorithm on OneMax. In: Proc. of Genetic and Evolutionary Computa-
tion Conference (GECCO’15), pp. 1423–1430. ACM (2015)

[23] Doerr, B., Doerr, C.: The impact of random initialization on the runtime
of randomized search heuristics. Algorithmica 75, 529–553 (2016). URL
https://doi.org/10.1007/s00453-015-0019-5

[24] Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices
for the (1+(λ,λ)) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

https://ea2017.inria.fr//EA2017_Proceedings_web_ISBN_978-2-9539267-7-4.pdf
https://ea2017.inria.fr//EA2017_Proceedings_web_ISBN_978-2-9539267-7-4.pdf
https://doi.org/10.1007/s00453-016-0201-4
https://doi.org/10.1007/s00453-015-0103-x
https://doi.org/10.1007/s00453-015-0103-x
http://doi.acm.org/10.1145/2598394.2605352
https://doi.org/10.1007/s00453-015-0019-5

208 Carola Doerr

[25] Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to design-
ing new genetic algorithms. Theoretical Computer Science 567, 87–104
(2015)

[26] Doerr, B., Doerr, C., Kötzing, T.: The unbiased black-box complexity
of partition is polynomial. Artificial Intelligence 216, 275–286 (2014).
URL https://doi.org/10.1016/j.artint.2014.07.009

[27] Doerr, B., Doerr, C., Kötzing, T.: Solving problems with unknown solu-
tion length at (almost) no extra cost. In: Proc. of Genetic and Evolution-
ary Computation Conference (GECCO’15), pp. 831–838. ACM (2015).
URL http://doi.acm.org/10.1145/2739480.2754681

[28] Doerr, B., Doerr, C., Kötzing, T.: Unbiased black-box complexities of
jump functions. Evolutionary Computation 23, 641–670 (2015). URL
https://doi.org/10.1162/EVCO_a_00158

[29] Doerr, B., Doerr, C., Spöhel, R., Thomas, H.: Playing Mastermind with
many colors. Journal of the ACM 63, 42:1–42:23 (2016). URL http:
//dl.acm.org/citation.cfm?id=2987372

[30] Doerr, B., Doerr, C., Yang, J.: k-bit mutation with self-adjusting k out-
performs standard bit mutation. In: Proc. of Parallel Problem Solving
from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921,
pp. 824–834. Springer (2016)

[31] Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise
black-box analysis. In: Proc. of Genetic and Evolutionary Computation
Conference (GECCO’16), pp. 1123–1130. ACM (2016)

[32] Doerr, B., Fouz, M., Witt, C.: Quasirandom evolutionary algo-
rithms. In: Proc. of Genetic and Evolutionary Computation Confer-
ence (GECCO’10), pp. 1457–1464. ACM (2010). DOI 10.1145/1830483.
1830749. URL http://doi.acm.org/10.1145/1830483.1830749

[33] Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolu-
tionary computation. Theoretical Computer Science 425, 17–33 (2012)

[34] Doerr, B., Jansen, T., Witt, C., Zarges, C.: A method to derive fixed
budget results from expected optimisation times. In: Proc. of Genetic
and Evolutionary Computation Conference (GECCO’13), pp. 1581–1588.
ACM (2013). DOI 10.1145/2463372.2463565. URL http://doi.acm.
org/10.1145/2463372.2463565

[35] Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen,
C.: Faster black-box algorithms through higher arity operators. In: Proc.
of Foundations of Genetic Algorithms (FOGA’11), pp. 163–172. ACM
(2011)

[36] Doerr, B., Johannsen, D., Kötzing, T., Neumann, F., Theile, M.: More
effective crossover operators for the all-pairs shortest path problem. The-
oretical Computer Science 471, 12–26 (2013)

[37] Doerr, B., Kötzing, T., Lengler, J., Winzen, C.: Black-box complexities
of combinatorial problems. Theoretical Computer Science 471, 84–106
(2013)

https://doi.org/10.1016/j.artint.2014.07.009
http://doi.acm.org/10.1145/2739480.2754681
https://doi.org/10.1162/EVCO_a_00158
http://dl.acm.org/citation.cfm?id=2987372
http://dl.acm.org/citation.cfm?id=2987372
http://doi.acm.org/10.1145/1830483.1830749
http://doi.acm.org/10.1145/2463372.2463565
http://doi.acm.org/10.1145/2463372.2463565

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 209

[38] Doerr, B., Kötzing, T., Winzen, C.: Too fast unbiased black-box algo-
rithms. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’11), pp. 2043–2050. ACM (2011)

[39] Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algo-
rithms. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’17), pp. 777–784. ACM (2017). DOI 10.1145/3071178.3071301.
URL http://doi.acm.org/10.1145/3071178.3071301

[40] Doerr, B., Theile, M.: Improved analysis methods for crossover-based
algorithms. In: Proc. of Genetic and Evolutionary Computation Confer-
ence (GECCO’09), pp. 247–254. ACM (2009)

[41] Doerr, B., Winzen, C.: Black-box complexity: Breaking the O(n logn)
barrier of LeadingOnes. In: Artificial Evolution (EA’11), Revised Se-
lected Papers, Lecture Notes in Computer Science, vol. 7401, pp. 205–
216. Springer (2012)

[42] Doerr, B., Winzen, C.: Memory-restricted black-box complexity of
OneMax. Information Processing Letters 112(1-2), 32–34 (2012). URL
https://doi.org/10.1016/j.ipl.2011.10.004

[43] Doerr, B., Winzen, C.: Playing Mastermind with constant-size memory.
Theory of Computing Systems 55, 658–684 (2014). URL https://doi.
org/10.1007/s00224-012-9438-8

[44] Doerr, B., Winzen, C.: Ranking-based black-box complexity. Al-
gorithmica 68, 571–609 (2014). URL https://doi.org/10.1007/
s00453-012-9684-9

[45] Doerr, B., Winzen, C.: Reducing the arity in unbiased black-box com-
plexity. Theoretical Computer Science 545, 108–121 (2014). URL
https://doi.org/10.1016/j.tcs.2013.05.004

[46] Doerr, C., Lengler, J.: Elitist black-box models: Analyzing the impact of
elitist selection on the performance of evolutionary algorithms. In: Proc.
of Genetic and Evolutionary Computation Conference (GECCO’15), pp.
839–846. ACM (2015). URL http://doi.acm.org/10.1145/2739480.
2754654

[47] Doerr, C., Lengler, J.: OneMax in black-box models with several restric-
tions. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’15), pp. 1431–1438. ACM (2015)

[48] Doerr, C., Lengler, J.: The (1+1) elitist black-box complexity of
LeadingOnes. In: Proc. of Genetic and Evolutionary Computation
Conference (GECCO’16), pp. 1131–1138. ACM (2016). URL http:
//doi.acm.org/10.1145/2908812.2908922

[49] Doerr, C., Lengler, J.: Introducing elitist black-box models: When does
elitist behavior weaken the performance of evolutionary algorithms? Evo-
lutionary Computation 25 (2017). DOI 10.1162/evco_a_00195. URL
https://doi.org/10.1162/evco_a_00195

[50] Doerr, C., Lengler, J.: OneMax in black-box models with several restric-
tions. Algorithmica 78, 610–640 (2017). URL https://doi.org/10.
1007/s00453-016-0168-1

http://doi.acm.org/10.1145/3071178.3071301
https://doi.org/10.1016/j.ipl.2011.10.004
https://doi.org/10.1007/s00224-012-9438-8
https://doi.org/10.1007/s00224-012-9438-8
https://doi.org/10.1007/s00453-012-9684-9
https://doi.org/10.1007/s00453-012-9684-9
https://doi.org/10.1016/j.tcs.2013.05.004
http://doi.acm.org/10.1145/2739480.2754654
http://doi.acm.org/10.1145/2739480.2754654
http://doi.acm.org/10.1145/2908812.2908922
http://doi.acm.org/10.1145/2908812.2908922
https://doi.org/10.1162/evco_a_00195
https://doi.org/10.1007/s00453-016-0168-1
https://doi.org/10.1007/s00453-016-0168-1

210 Carola Doerr

[51] Doerr, C., Lengler, J.: The (1+1) elitist black-box complexity
of LeadingOnes. Algorithmica 80, 1579–1603 (2018). DOI
10.1007/s00453-017-0304-6. URL https://doi.org/10.1007/
s00453-017-0304-6

[52] Dorigo, M., Stützle, T.: Ant colony optimization. MIT Press (2004)
[53] Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolu-

tionary algorithm. Theoretical Computer Science 276, 51–81 (2002)
[54] Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for random-

ized search heuristics in black-box optimization. Theory of Computing
Systems 39, 525–544 (2006)

[55] Erdős, P., Rényi, A.: On two problems of information theory. Mag-
yar Tudományos Akadémia Matematikai Kutató Intézet Közleményei 8,
229–243 (1963)

[56] Fischer, S., Wegener, I.: The Ising model on the ring: Mutation versus
recombination. In: Proc. of Genetic and Evolutionary Computation Con-
ference (GECCO’04), Lecture Notes in Computer Science, vol. 3102, pp.
1113–1124. Springer (2004)

[57] Fournier, H., Teytaud, O.: Lower bounds for comparison based evolution
strategies using VC-dimension and sign patterns. Algorithmica 59, 387–
408 (2011)

[58] Goldman, B.W., Punch, W.F.: Fast and efficient black box optimization
using the parameter-less population pyramid. Evolutionary Computa-
tion 23, 451–479 (2015)

[59] Goodrich, M.T.: On the algorithmic complexity of the Mastermind game
with black-peg results. Information Processing Letters 109, 675–678
(2009)

[60] Jäger, G., Peczarski, M.: The number of pessimistic guesses in general-
ized black-peg Mastermind. Information Processing Letters 111, 933–
940 (2011)

[61] Jansen, T.: Black-box complexity for bounding the performance
of randomized search heuristics. In: Y. Borenstein, A. Moraglio
(eds.) Theory and Principled Methods for the Design of Meta-
heuristics, Natural Computing Series, pp. 85–110. Springer (2014).
DOI 10.1007/978-3-642-33206-7_5. URL https://doi.org/10.1007/
978-3-642-33206-7_5

[62] Jansen, T.: On the black-box complexity of example functions: The
real jump function. In: Proc. of Foundations of Genetic Algorithms
(FOGA’15), pp. 16–24. ACM (2015)

[63] Jansen, T., Sudholt, D.: Analysis of an asymmetric mutation operator.
Evolutionary Computation 18, 1–26 (2010). DOI 10.1162/evco.2010.18.
1.18101. URL https://doi.org/10.1162/evco.2010.18.1.18101

[64] Jansen, T., Wegener, I.: The analysis of evolutionary algorithms - a proof
that crossover really can help. Algorithmica 34, 47–66 (2002)

https://doi.org/10.1007/s00453-017-0304-6
https://doi.org/10.1007/s00453-017-0304-6
https://doi.org/10.1007/978-3-642-33206-7_5
https://doi.org/10.1007/978-3-642-33206-7_5
https://doi.org/10.1162/evco.2010.18.1.18101

3 Complexity Theory for Discrete Black-Box Optimization Heuristics 211

[65] Jansen, T., Zarges, C.: Performance analysis of randomised search heuris-
tics operating with a fixed budget. Theoretical Computer Science 545,
39–58 (2014). URL https://doi.org/10.1016/j.tcs.2013.06.007

[66] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated
annealing. Science 220(4598), 671–680 (1983)

[67] Knuth, D.E.: The computer as a master mind. Journal of Recreational
Mathematics 9, 1–5 (1977)

[68] Kötzing, T., Neumann, F., Sudholt, D., Wagner, M.: Simple max-min
ant systems and the optimization of linear pseudo-boolean functions. In:
Proc. of Foundations of Genetic Algorithms (FOGA’11), pp. 209–218.
ACM (2011). DOI 10.1145/1967654.1967673. URL http://doi.acm.
org/10.1145/1967654.1967673

[69] de Perthuis de Laillevault, A., Doerr, B., Doerr, C.: Money for noth-
ing: Speeding up evolutionary algorithms through better initializa-
tion. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’15), pp. 815–822. ACM (2015). URL http://doi.acm.org/
10.1145/2739480.2754760

[70] Lässig, J., Sudholt, D.: Analysis of speedups in parallel evolutionary
algorithms and (1+λ) EAs for combinatorial optimization. Theoretical
Computer Science 551, 66–83 (2014). DOI 10.1016/j.tcs.2014.06.037.
URL https://doi.org/10.1016/j.tcs.2014.06.037

[71] Lehre, P.K., Witt, C.: Black-box search by unbiased variation. In: Proc.
of Genetic and Evolutionary Computation Conference (GECCO’10), pp.
1441–1448. ACM (2010)

[72] Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorith-
mica 64, 623–642 (2012)

[73] Lindström, B.: On a combinatory detection problem i. Mathematical
Institute of the Hungarian Academy of Science 9, 195–207 (1964)

[74] Lindström, B.: On a combinatorial problem in number theory. Canadian
Mathematical Bulletin 8, 477–490 (1965)

[75] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H.,
Teller, E.: Equation of state calculations by fast computing machines.
The Journal of Chemical Physics 21, 1087–1092 (1953)

[76] Mironovich, V., Buzdalov, M.: Hard test generation for maximum flow al-
gorithms with the fast crossover-based evolutionary algorithm. In: Com-
panion Material for Proc. of Genetic and Evolutionary Computation
Conference (GECCO’15), pp. 1229–1232. ACM (2015)

[77] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Uni-
versity Press (1995)

[78] Neumann, F., Witt, C.: Runtime analysis of a simple ant colony opti-
mization algorithm. Algorithmica 54, 243–255 (2009)

[79] Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Op-
timization – Algorithms and Their Computational Complexity. Springer
(2010)

https://doi.org/10.1016/j.tcs.2013.06.007
http://doi.acm.org/10.1145/1967654.1967673
http://doi.acm.org/10.1145/1967654.1967673
http://doi.acm.org/10.1145/2739480.2754760
http://doi.acm.org/10.1145/2739480.2754760
https://doi.org/10.1016/j.tcs.2014.06.037

212 Carola Doerr

[80] Paixão, T., Pérez Heredia, J., Sudholt, D., Trubenová, B.: Towards a
runtime comparison of natural and artificial evolution. Algorithmica 78,
681–713 (2017)

[81] Rowe, J., Vose, M.: Unbiased black box search algorithms. In: Proc.
of Genetic and Evolutionary Computation Conference (GECCO’11), pp.
2035–2042. ACM (2011)

[82] Storch, T.: Black-box complexity: Advantages of memory usage. Infor-
mation Processing Letters 116(6), 428–432 (2016). DOI 10.1016/j.ipl.
2016.01.009. URL https://doi.org/10.1016/j.ipl.2016.01.009

[83] Sudholt, D.: Crossover is provably essential for the Ising model on
trees. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’05), pp. 1161–1167. ACM Press (2005)

[84] Sudholt, D.: Crossover speeds up building-block assembly. In: Proc. of
Genetic and Evolutionary Computation Conference (GECCO’12), pp.
689–702. ACM (2012)

[85] Sudholt, D.: A new method for lower bounds on the running time of evo-
lutionary algorithms. IEEE Transactions on Evolutionary Computation
17, 418–435 (2013)

[86] Teytaud, O., Gelly, S.: General lower bounds for evolutionary algorithms.
In: Proc. of Parallel Problem Solving from Nature (PPSN 2006), Lecture
Notes in Computer Science, vol. 4193, pp. 21–31. Springer (2006)

[87] Witt, C.: Tight bounds on the optimization time of a randomized search
heuristic on linear functions. Combinatorics, Probability & Computing
22, 294–318 (2013)

[88] Yao, A.C.C.: Probabilistic computations: Toward a unified measure of
complexity. In: Proc. of Foundations of Computer Science (FOCS’77),
pp. 222–227. IEEE (1977)

https://doi.org/10.1016/j.ipl.2016.01.009

Chapter 4
Parameterized Complexity Analysis of
Randomized Search Heuristics

Frank Neumann and Andrew M. Sutton

Abstract This chapter compiles a number of results that apply the theory of
parameterized algorithmics to the running-time analysis of randomized search
heuristics such as evolutionary algorithms. The parameterized approach ar-
ticulates the running time of algorithms solving combinatorial problems in
finer detail than traditional approaches from classical complexity theory. We
outline the main results and proof techniques for a collection of randomized
search heuristics tasked to solve NP-hard combinatorial optimization prob-
lems such as finding a minimum vertex cover in a graph, finding a maximum
leaf spanning tree in a graph, and the traveling salesperson problem.

4.1 Introduction

Randomized search heuristics (RSHs) are a class of general-purpose algo-
rithms that are often deployed to tackle hard combinatorial optimization
problems that arise in practice. Instances of practical, real-world problems
are usually structured or restricted in some way, and it is typically assumed
that RSH techniques are successful when the underlying strategy is able to
exploit the structural properties of the resulting search space.

The mathematical analysis of the running time of randomized search
heuristics on discrete optimization problems has advanced in the last decade.
For a wide array of these techniques, rigorous and precise asymptotic bounds
on the performance as a function of problem size are now available. However,

Frank Neumann
Optimisation and Logistics Group, School of Computer Science, The University of Ade-
laide, Adelaide, Australia e-mail: frank.neumann@adelaide.edu.au
Andrew M. Sutton
Department of Computer Science, University of Minnesota Duluth, Duluth, MN, USA
e-mail: amsutton@d.umn.edu

213

frank.neumann@adelaide.edu.au
amsutton@d.umn.edu

214 Frank Neumann and Andrew M. Sutton

many of these kinds of results are restricted only to toy problems. While
such analyses are useful for gaining an understanding of the general working
principles underlying RSH techniques, it is often not clear how they might be
interpreted in the context of classically hard problems in computer science.

Unless P = NP, the worst-case runtime of an NP-hard problem cannot
be bounded from above by a polynomial in the input size. This is a rather
restrictive view, and it often tells us nothing about the typical behavior of
algorithms on problems that are likely to be encountered in practice. For ex-
ample, many experimental studies confirm that randomized search heuristics
such as evolutionary algorithms (EAs), ant colony optimization, simulated
annealing, and simple hill-climbing perform well on practical instances of
NP-hard problems. An important research question for RSH techniques ap-
plied to combinatorial optimization is: which features of a given instance
determine its hardness, and how do such parameters influence the runtime?

The field of parameterized complexity offers a refinement of classical time
complexity by analyzing the running time of an algorithm not just as a func-
tion of problem size, but also as a function of further parameters of the
input, for example, solution size, structural restrictions, or quality of approx-
imation [12, 15]. The idea is to capture the essence of what makes a problem
instance hard, and try to isolate this hardness to some structural feature of
the instance or its solution. The inevitable combinatorial explosion in the
runtime is confined to a function of this parameter, with only polynomial de-
pendence on the input size. Even large instances may exhibit a very restricted
structure and can be easier to solve, independent of size. Parameterized com-
plexity is therefore an obvious candidate for systematically studying what
features of a particular problem are hard for RSH techniques. It can also
offer advice on what types of problem might be soluble or insoluble by such
approaches, and guide algorithm design. It should be noted that parameter-
ized analysis can also be applied to study the efficiency of modules of an
evolutionary algorithm. A good example is the hypervolume indicator, which
has been widely applied in the area of evolutionary multiobjective optimiza-
tion. Computing the optimal hypervolume is hard when the dimension grows,
and the computation of the hypervolume has been investigated in [5] from a
parameterized and average-case perspective.

Many hard problems have “easy parts” that can be efficiently solved in
order to effectively shrink a problem to its computationally hard core struc-
ture. This can be done by efficiently reducing the problem instance to a
smaller instance (kernelization), or constraining the search tree to a manage-
able size that is still guaranteed to contain a solution (bounded search tree
method). A slower exact algorithm (even brute-force search) can then be run
on the resulting smaller instance or search space. With little to no hope of a
polynomial-time solution, one instead seeks algorithms that can solve a prob-
lem in time that grows polynomially with the problem size, although perhaps
superpolynomially with respect to some instance parameter. In other words,
if the parameter is fixed to be small, the problem class is tractable, even as

4 Parameterized Complexity Analysis of Randomized Search Heuristics 215

its instances grow large. Such a problem class (and corresponding algorithm)
is called fixed-parameter tractable (FPT). A slightly less desirable situation is
an algorithm that runs in so-called slicewise polynomial time (XP). Here the
runtime is a polynomial in the problem size, but a polynomial whose degree
depends on the parameter.

This kind of demarcation into hard and easy components can also be useful
for the analysis of RSH techniques. At the extreme end of the spectrum are
functions such as Needle, whose black-box complexity establishes that no
RSH could even beat simple random sampling in expectation. At the other
extreme are problems from the OneMax class that are solved efficiently by
even very simple approaches. Likely, practical optimization problems lie some-
where between these two extremes, containing some mixture of components
that can be efficiently exploited by randomized search heuristics and compo-
nents that essentially require random sampling. If the hard core component
that demands random sampling is guaranteed to be small by the nature of
the problem class, then RSH techniques can be a reasonable approach. The
theory of parameterized complexity is therefore useful for isolating the struc-
tural features that can be efficiently exploited by RSH techniques from the
hard “core” of a problem, on which an approach must resort to some kind
of stochastic brute-force search behavior such as random walks, lucky jumps,
or explicit restarts.

It should therefore not come as a surprise that analyzing randomized
search heuristics from the perspective of parameterized complexity can lead
to useful theoretical insights into algorithm design. For example, it has been
shown that the specific choice of search operator can directly influence the
fixed-parameter tractability of an algorithm on certain problems, for example,
tree-preserving mutation on the maximum-leaf spanning tree problem [24] or
standard uniform crossover on the closest-string problem [39].

The aim of this chapter is to discuss a number of results in the field of pa-
rameterized complexity applied to RSH techniques. We begin in Section 4.2
by introducing some background and technical details. In Section 4.3, we con-
sider the maximum-leaf spanning tree problem and show that the use of a mu-
tation operator commonly used for spanning trees reduces the XP runtime to
FPT runtime when compared with standard bit mutations. In Section 4.4, we
discuss multiobjective evolutionary algorithms that quickly focus their search
on a kernel of minimum vertex cover instances, and subsequently perform ran-
dom sampling on that kernel, resulting in FPT runtime. Decomposing the
runtime analysis of an algorithm into a set of instance parameters is useful
in its own right to better understand the components of a problem that influ-
ence the behavior of search heuristics. In Section 4.5, we present results on
the maximization of submodular functions under different constraints. These
results derive the expected time that simple evolutionary algorithms need
to produce approximations as a function of both the problem size and ad-
ditional parameters of the input. In Section 4.6, we describe the analysis of
a standard evolutionary algorithm (EA) applied to the Euclidean traveling

216 Frank Neumann and Andrew M. Sutton

salesperson problem (TSP), which bounds the running time in the context
of a well-known TSP parameterization (the number of points interior to the
convex hull). In this case, it is possible to prove that the performance of
the algorithm is bounded by the number of interior points, although this is
not enough to obtain the desired fixed-parameter tractable runtime. On the
other hand, if the EA is allowed to use some problem-specific information
(namely, the cyclic order of points as they appear on the convex hull), it can
explicitly focus its search on a small subset of states. This dramatic search
space reduction yields fixed-parameter tractable runtimes for algorithms on
parameterized TSP instances. We summarize the chapter in Section 4.7 and
briefly discuss some open research problems.

4.2 Parameterized Complexity Analysis

Extending traditional runtime analysis by parameterization requires conduct-
ing a rigorous runtime analysis of an algorithm on a parameterization of a
problem class. A parameterization of a problem class is a mapping of problem
instances into the set of natural numbers. The running time of the algorithm
is then expressed in terms of both the problem size and this extra parameter.

Let L be a language over a finite alphabet Σ. A parameterization of L is
a mapping κ : Σ∗→ N. The corresponding parameterized problem is the pair
(L,κ). For a string x ∈ Σ∗, let k = κ(x) and n = |x|. An algorithm deciding
x∈L in time bounded by ng(k) is called a slicewise polynomial-time algorithm
(or XP algorithm). Here, g : N→ N is an arbitrary but computable function.
An algorithm deciding x ∈ L in time bounded by g(k) ·nO(1) is called a fixed-
parameter tractable (or FPT) algorithm for the parameterization κ. Both
kinds of algorithms run in polynomial time for fixed k, but an XP algorithm
allows the degree of the polynomial to depend on the parameter, while the
degree of the polynomial for the running time is independent of both n and
k for an FPT algorithm.

Randomized search heuristics are typically stochastic processes that are
allowed to run for a certain number of iterations, after which the best-so-far
result is collected and returned. In each iteration, the process keeps a set of
one or more candidate solutions, and evaluates their quality via a fitness or
objective function. The candidate solutions for the next iteration are then
computed using a number of transformation operations.

To analyze this class of algorithm, we consider a random variable T that
measures the number of basic iterations (usually measured in calls to the
objective function) until a solution is first discovered. Here, a solution may
be, depending on the context, an element that maximizes or minimizes the
objective function. This allows us to treat optimization problems in the same
manner as one would treat decision problems. Specifically, given a class of
instances of an optimization problem, for each N one can construct a deci-

4 Parameterized Complexity Analysis of Randomized Search Heuristics 217

sion problem L ⊆ Σ∗ as the set of all instances on which the maximum (or,
minimum) objective function value is at least (or, at most) a particular value.

The quantity E[T] is the expected optimization time, and is the most com-
monly used performance measure in the rigorous runtime analysis of random-
ized search heuristics. We say an algorithm is a Monte Carlo FPT algorithm
for a parameterized problem (L,κ) if it accepts x∈L with probability at least
1/2 in time g(κ(x)) · |x|O(1) and accepts x ̸∈ L with probability zero. Thus,
any randomized search heuristic with a bound E[T] ≤ g(κ(x)) · |x|O(1) on L
can be trivially transformed into a Monte Carlo FPT algorithm by stopping
its execution after 2g(κ(x)) · |x|O(1) iterations.

Note that the parameter is allowed to depend on the input in more or less
an arbitrary way. The selection of a meaningful parameterization depends
strongly on what a “typical” problem instance looks like. In most cases, one
hopes to choose a parameter that is assumed to be small over the set of
problems one wishes to solve. Ideally, the parameter should somehow capture
the source of exponential complexity for the problem [15].

The goal of applying parameterized complexity analysis to the field of
randomized search heuristics is thus to somehow understand how much in-
formation from the fitness function can be exploited in more detail. At the
worst extreme, there is no exploitable information in the fitness of solutions
at all (i.e., the fitness of a solution tells us nothing about its relationship to a
global optimum), and we are in a blind Needle-like case. Any RSH technique
that employs such a fitness function must then rely entirely on getting lucky
enough to stumble on an optimal solution. However, as previously mentioned,
for most realistic problems we conjecture that there exists some structure in
the fitness function that can be implicitly used by the RSH technique. Pa-
rameterized analysis can be seen as a technique that allows us to inspect the
fitness function to assist in bounding how much “luck” is required to solve
the problem.

4.3 Maximum-Leaf Spanning Trees

The classical minimum spanning tree problem, which can be solved in poly-
nomial time by well-known deterministic algorithms such as those of Kruskal
and Prim, has gained significant attention in the evolutionary computation
literature [11, 32]. This includes the investigations of Witt [43], who consid-
ered an additional structural parameter of the given graph. He gave an upper
bound on the runtime of simple evolutionary algorithms for the minimum
spanning tree problem that depends on the circumference of the given graph.
We will not present the details here, as the focus of this chapter is on NP-hard
problems. We instead refer the interested reader to the original articles.

We start our investigations by considering an NP-hard variant of a span-
ning tree problem where the choice of mutation operator affects the parame-

218 Frank Neumann and Andrew M. Sutton

terized runtime. Specifically, the commonly used standard bit mutation oper-
ation results in XP runtime, whereas a mutation operator that creates feasible
solutions produces FPT runtime.

The problem we consider is the maximum-leaf spanning tree problem, and
we summarize the results given in [24]. Given an undirected, connected graph
G = (V,E), the goal is to find a spanning tree T ∗ of G such that the number
of leaves is maximum.

The authors of [24] considered two simple evolutionary algorithms that
differ in the choice of the mutation operator. The first algorithm uses a general
mutation operator carrying out standard bit mutations, and the second is
specific to spanning tree problems. Both algorithms start with an arbitrary
spanning tree T of G. We denote by m the number of edges in G, and by
ℓ(T) the number of leaves of the spanning tree T . A new solution is accepted
only if it is a spanning tree whose number of leaves is at least as high as the
number of leaves in the current solution. The algorithm called the Generic
(1+1) EA is given in Algorithm 4.1.

Algorithm 4.1: Generic (1+1) EA
1 Choose a spanning tree of T uniformly at random;
2 repeat forever
3 Produce T ′ by swapping each edge of T independently with probability 1/m;
4 if T ′ is a tree and ℓ(T ′)≥ ℓ(T) then T ← T ′;

Swapping an edge in the mutation step of the Generic (1+1) EA means
that if an edge is present in T then it is not contained in T ′ with probability
1/m. On the other hand, if an edge is not present in T then it is contained
in T ′ with probability 1/m. An edge does not change from T to T ′ with
probability 1−1/m in each mutation step, independently of the other edges.

The mutation operator of Algorithm 4.1 does not necessarily create an
offspring that is a tree. If the offspring is not a tree, then this individual is
discarded, as it represents an infeasible solution.

The second algorithm we consider is called the Tree-Based (1+1) EA and is
illustrated in Algorithm 4.2. This approach uses a problem-specific mutation
operator that ensures valid solutions, i.e., spanning trees. It is well known
that, given a spanning tree T , a new spanning tree T ′ can be created by
introducing an edge e ∈E \T and removing an edge from the resulting cycle.
Mutation operators based on this idea are commonly used when applying
evolutionary algorithms to NP-hard spanning tree problems.

Our goal is to point out the differences between the two algorithms. To do
this, we compare the expected optimization time E[T] of the two algorithms.
This shows that the problem-specific mutation operator of Algorithm 4.2
makes the difference between a fixed-parameter evolutionary algorithm and

4 Parameterized Complexity Analysis of Randomized Search Heuristics 219

Algorithm 4.2: Tree-Based (1+1) EA
1 Choose an arbitrary spanning tree T of G;
2 repeat forever
3 Choose S according to a Poisson distribution with parameter λ = 1 and

perform sequentially S random edge-exchange operations to obtain a
spanning tree T ′. A random exchange operation applied to a spanning tree
T̃ chooses an edge e ∈E \ T̃ uniformly at random. The edge e is inserted and
one randomly chosen edge of the cycle in T̃ ∪{e} is deleted;

4 if ℓ(T ′)≥ ℓ(T) then T ← T ′;

r vertices

x

y
ui

vi

Fig. 4.1 Local optimum, shown with dashed edges, and global optimum, shown with
dotted edges; shared edges are drawn solid.

an evolutionary algorithm that cannot compute an optimal solution in ex-
pected FPT time.

For the Generic (1+1) EA, the authors of [24] gave a lower bound which
showed that the algorithm cannot solve the problem in FPT time. They
considered the graph given in Fig. 4.1. The instance contains a local optimum,
which has a distance to the global optimum in terms of the number of edges
that have to be exchanged. The number of these edge exchanges depends on
the number of nodes, r, the magnitude of which can be chosen to make it
hard or easy to escape from the local optimum.

Formally, our graph, called Gloc (see Fig. 4.1) contains two components
consisting of r vertices each. In component i, 1 ≤ i ≤ 2, two vertices ui and
vi are connected to all the other vertices in that component. The vertex ui

is connected to vertex x, which lies outside the component. Similarly, vertex
vi is connected to vertex y. In addition, x and y share an edge. The graph is
completed by attaching a path of n−2r−2 vertices to the vertex x. A tree
has to contain all the edges of the path attached to x. In addition, at least
one of the edges {ui,x} and {vi,y} has to be chosen for each i. For a given
component, the maximum number of possible leaves is at most r− 1. This

220 Frank Neumann and Andrew M. Sutton

can be obtained by attaching all nodes of the component either to ui or to
vi.

The graph contains a local optimum Tlopt which consists of all edges at-
tached to the vertices vi, 1≤ i≤ 2, the edge {x,y}, and all path edges. The
global optimum Topt consists of all edges attached to the vertices ui, 1≤ i≤ 2,
the edge {x,y}, and all path edges. Compared with Tlopt, Topt has an extra
leaf, namely the vertex y. However, Tlopt and Topt differ by 4(r− 1), edges
which make it hard for the algorithms under consideration to obtain Topt if
Tlopt has been produced before.

Tlopt can only by improved by swapping at least 2(r− 2) edges, as all
nonsolid edges adjacent to at least one node vi need to be swapped to reach
an improvement. As each bit corresponding to an edge of the graph is flipped
with probability 1/m in the Generic (1+1) EA, the following lower bound on
the expected optimization time of the Generic (1+1) EA is obtained.

Theorem 4.3.1. The expected optimization time of the Generic (1+1) EA
on Gloc is lower bounded by (m/c)2(r−2) where c is an appropriate constant.

Using the same arguments, a lower bound of ((r−2)/c)r−2 where c is an
appropriate constant, has been given for the Tree-Based (1+1) EA. Again
the bound considers the time to improve the locally optimal solution, which
requires r− 2 edge exchanges. The mutation operator of the Tree-Based
(1+1) EA has the benefit that a spanning tree is always created by introduc-
ing an edge and removing an edge from the resulting cycle, which results in a
lower bound that is smaller than the one obtained for the Generic (1+1) EA.
In terms of upper bounds, the Tree-Based (1+1) EA runs in FPT time when
the value of an optimal solution k is the parameter.

The proof of the main result builds on the following lemma, which upper
bounds the number of edges and the number of nodes of degree at least three
as a function of k.

Lemma 4.3.2. Any connected graph G on n nodes and with a maximum
number of k leaves in any spanning tree has at most n + 5k2−7k edges and
at most 10k−14 nodes of degree at least three.

Each spanning tree has n−1 edges, which implies that the number of edge
exchanges to obtain a maximum-leaf spanning tree from any spanning tree
is n+5k2−7k− (n−1)≤ 5k2. Furthermore, a nonoptimal spanning tree can
be improved by removing an edge of degree two from the cycle. The number
of nodes of degree at least 3 is at most 10k−14, which gives a lower bound of
1/20k on the probability of removing an edge of degree two from the cycle.

The upper bound for the Tree-Based (1+1) EA is given in the following
theorem, and the proof uses the arguments stated above.

Theorem 4.3.3. If the maximum number of leaf nodes in any spanning tree
of G is k, then the Tree-Based (1+1) EA finds an optimal solution in expected
time O(215k2 logk).

4 Parameterized Complexity Analysis of Randomized Search Heuristics 221

4.4 Minimum Vertex Cover

The minimum vertex cover problem is an important classical NP-hard com-
binatorial optimization problem. Given an undirected connected graph G =
(V,E), the task is to find a minimum set of vertices V ′ ⊆ V such that each
edge e ∈ E is covered by one of the chosen nodes, i.e., e∩V ′ ̸= ∅ holds for
each e ∈ E. A set of vertices V ′ covering each edge e ∈ E is called a vertex
cover.

Using a binary variable xi for each vertex vi ∈V , the minimum vertex cover
problem can be formulated as the following integer linear program (ILP):

minimize
n∑

i=1
xi

subject to xi +xj ≥ 1, ∀{i, j} ∈ E,

xi ∈ {0,1}, 1≤ i≤ n.

The linear program (LP) relaxation is obtained by relaxing the requirement
xi ∈ {0,1} to xi ∈ [0,1],1≤ i≤ n

The vertex cover problem is the most prominent problem in the area of
parameterized complexity. As stated before, this area usually deals with de-
cision problems. In the case of the vertex cover problem, one asks whether a
given graph G has a vertex cover of at most k nodes.

Earlier studies [16, 33] on the performance of the (1+1) EA have shown
that this algorithm may get stuck in the smaller component of a complete
bipartite graph when the two partitions have different sizes. Escaping this
local optimum requires the algorithm to flip all bits belonging to the global
optimum at once, and therefore has a waiting time of Ω(nOPT), where OPT is
the value of an optimal solution. Furthermore, if the two partitions V1 and V2
of the bipartite graph are extremely unbalanced, say |V1|= nε and |V2|= n1−ε,
where ε > 0 is an arbitrary small constant, then the approximation ratio
achieved by getting stuck in a local optimum is only n1−ε/nε = n1−2ε and
can therefore be made very close to the trivial approximation achieved by
selecting all vertices of the given graph.

4.4.1 Global SEMO

We consider the search space {0,1}n, where each bit xi of a search point x
corresponds to a vertex vi of the given graph G. The vertex vi is chosen in
the solution x iff xi = 1. The task is to find a solution x with a minimum
number of vertices that covers all edges. This motivates us to introduce a
fitness function based on the number of edges left uncovered by x.

222 Frank Neumann and Andrew M. Sutton

We denote by E(x) the set of edges covered by the cover x, i.e., E(x) :=
{e | e∩Vx ̸= ∅}, where Vx := {vi | xi = 1,1 ≤ i ≤ n} is the subset of vertices
chosen by x.

Kratsch and Neumann [25] considered two fitness functions for minimum
vertex cover. The first fitness function was

f1(x) = (|x|1,u(x)),

where |x|1 = |{i : xi = 1}| corresponds to the number of chosen vertices and
u(x) := |E \E(x)| is the number of edges left uncovered by x. Note that u(x)
is useful for directing the search process towards a feasible solution, i.e., a
solution x for which u(x) = 0 holds. This function had already been considered
in [16] in the context of approximations.

In addition, the authors of [25] examined a second fitness function that uses
additional information obtained from a linear program. Let G(x) = (V,E \
E(x)) be the graph obtained from G by removing all edges covered by nodes
in x. We also consider the fitness function

f2(x) = (|x|1,LP (x)),

where LP (x) denotes the optimum value of the relaxed vertex cover ILP for
G(x), i.e., the cost of an optimal fractional vertex cover of G(x).

Algorithm 4.3: Global SEMO
1 Choose an initial solution x ∈ {0,1}n uniformly at random;
2 Determine f(x) and initialize P ←{x};
3 repeat forever
4 Choose x ∈ P randomly;
5 Create x′ by flipping each bit of x independently with probability 1/n;
6 Determine f(x′);
7 if ∃x′′ ∈ P, f(x′′)≤ f(x′) and f(x′′) ̸= f(x′) then
8 P is unchanged
9 else

10 exclude all x′′ where f(x′)≤ f(x′′) from P and add x′ to P

The multiobjective approach uses the Global SEMO algorithm (see Al-
gorithm 4.3). The algorithm starts with a bit string chosen uniformly at
random. In each iteration, one individual x of the current population P is
selected uniformly at random and undergoes standard bit mutation to pro-
duce an offspring x′. The offspring x′ is added to the population iff it is not
strictly dominated by any other individual in P . In this case, all individuals
in P that are (weakly) dominated by x′ are removed from P . We will exam-
ine Global SEMO for the minimum vertex cover problem in this section and

4 Parameterized Complexity Analysis of Randomized Search Heuristics 223

for maximization in several different types of problem involving submodular
functions in the next section.

When minimizing the number of uncovered edges and the number of cho-
sen vertices at the same time, Global SEMO achieves an approximation to
within a factor of O(logn) for the minimum vertex cover problem. These re-
sults may be generalized to the wider class of set cover problems. Kratsch
and Neumann [25] have used a modification of Global SEMO (called Global
SEMOalt) and shown that their approach computes an optimal solution in
FPT time.

Algorithm 4.4: Alternative mutation operator in Global SEMOalt

1 Let U(x)⊆ E denote the set of edges that are not covered by x;
2 Let S(x)⊆ {1, . . . ,n} denote the vertices that are incident on the edges in U(x);
3 Choose b ∈ {0,1} uniform at random;
4 if b = 0 or S(x) = ∅ then
5 flip each bit of x independently with probability 1/n

6 else
7 flip each bit of S(x) independently with probability 1/2;
8 flip each bit of {1, . . . ,n}\S(x) independently with probability 1/n

The results presented rely on an alternative mutation operator (see Algo-
rithm 4.4) that has the ability to perform bit flips with a high probability if
the corresponding node is adjacent to at least one uncovered edge (line 7 of
Algorithm 4.4). This allows the algorithm to perform random sampling on
the subgraph consisting of the uncovered edges. If this subgraph constitutes a
kernel of the problem, the random sampling process is similar to a brute-force
search on the kernel. We will summarize those results in the following.

We outline the results for the algorithms introduced in this section, but
should also mention that the vertex cover problem has been subject to further
parameterized analyses in the context of randomized search heuristics. For
example, the investigations of the vertex cover problem that we present in
this section have been extended to the weighted vertex cover problem [35].
Gao et al. [18] have studied random initialization heuristics as well as local
search algorithms in terms of parameterized complexity and approximation.
Furthermore, the vertex cover problem has been analyzed in dynamic settings
where edges can be removed from or added to the graph [34].

4.4.2 Parameterized Analysis

The first parameterized result in the context of optimal vertex covers consid-
ers Global SEMOalt together with the objective function f1, which uses the
number of uncovered edges as the second objective. The population size of

224 Frank Neumann and Andrew M. Sutton

the algorithm is upper bounded by n + 1, as the main objective (number of
chosen nodes) can only take on that many different values. The same upper
bound on the population size is applied when using f2.

The first analysis relies on the following basic insight. Let OPT be the value
of an optimal solution; then an optimal solution has to include all nodes of
degree at least OPT+1. This is based on the simple observation that if a node
v of degree OPT + 1 is not selected, all neighbors of v have to be selected,
resulting in a nonoptimal solution.

Theorem 4.4.1. The expected optimization time of Global SEMOalt for the
minimum vertex cover problem using the fitness function f1 is upper bounded
by O(OPT ·n4 +n ·2OPT+OPT2).

The proof of the theorem proceeds in several different phases. First, the
expected time until the search point 0n is included in the population is an-
alyzed. The proof for this part focuses on selecting the individual with the
smallest number of 1-bits, which happens with probability at least 1/(n+1),
as the number of different values for |x|1 is at most n + 1. Producing a solu-
tion with a smaller number of 1-bits is always accepted, and the problem can
be seen as maximizing the number of 0-bits, slowed down by a population
of size at most n + 1. Hence, after an expected number of O(n2 logn) steps
of Global SEMO or Global SEMOalt using f1 or f2, the search point 0n is
included in the population.

We now consider f1 and assume that the search point 0n is already in-
cluded in the population. Subsequently, the expected number of steps where
the population does not contain a solution x for f1 that is a kernel for the
problem is upper bounded by O(OPT ·n4). For f1, x is a kernel iff the vertices
chosen by x constitute a subset of an optimal solution and the maximum de-
gree of G(x) is at most OPT. In order to upper bound the number of steps
where the population does not contain a solution x that is a kernel, a potential
function with O(n2OPT) different values is taken into account that measures
the population with respect to the number of uncovered edges that its in-
dividuals have. It can be shown that the potential can always be improved
with probability at least Ω(1/n2) if no kernel is contained in the population.
As the potential cannot increase, the expected number of steps where the
population does not contain a kernel is O(n4 ·OPT)

Denoting by x̂ the resulting vertex cover, the kernel instance G(x̂) has
at most OPT2 + OPT nonisolated nodes. In this case, the alternative muta-
tion operator is able to produce the optimal solution from x̂ in expected time
O(n ·2OPT+OPT2). In this upper bound, the factor n accounts for selecting the
individual x̂ with probability at least 1/(n + 1) and the term O(2OPT+OPT2)
accounts for mutating this individual into an optimal solution. The exponen-
tial component of the runtime arises from the waiting time to make a lucky
random jump, but this jump is now required only on a reasonably small
kernel instance.

4 Parameterized Complexity Analysis of Randomized Search Heuristics 225

The runtime bound can be improved if the value of an optimal linear
program LP (x) for the graph G(x) consisting only of the uncovered edges is
used as the second criterion, leading to the fitness function f2. The goal is to
minimize the penalty LP (x), and we have LP (x) = 0 iff x is a vertex cover.

The analysis is based on the following result of Nemhauser and Trotter [31],
who proved a very strong relation between optimal fractional vertex covers
and minimum vertex covers.

Theorem 4.4.2. Let x∗ be an optimal fractional vertex cover and let P0,P1⊆
V be the vertices whose corresponding components of x∗ are 0 or 1, respec-
tively. Then there exists a minimum vertex cover that contains P1 and no
vertex of P0.

Theorem 4.4.2 implies that one can take all vertices set to 1 in an optimal
fractional vertex cover and reduce the size of the problem in this way. Fur-
thermore, it is well known that every basic feasible solution x of the vertex
cover LP relaxation is half-integral, i.e., we have x ∈ {0,1/2,1}n [4]. Using
these properties, the following result has been shown.

Theorem 4.4.3. The expected optimization time of Global SEMOalt for the
minimum vertex cover problem using the fitness function f2 is upper bounded
by O(n2 · logn+OPT ·n2 +n ·4OPT).

We now explain the key ideas of the proof. We already know that the pop-
ulation contains the search point 0n after an expected number of O(n2 logn)
steps. After 0n has been included in the population, the number of steps
where the population does not contain a kernel is investigated. For f2, a solu-
tion x is a kernel iff LP (x) = LP (0n)−|x|1 and each optimal fractional vertex
cover assigns 1/2 to each nonisolated vertex of G(x). The number of steps
where P does not contain such a kernel x after 0n has been included in the
population can be bounded by O(OPT ·n2) using the following arguments.
Solutions with objective value (r,LP (0n)− r) are Pareto optimal. The proof
proceeds by considering the solution x with objective vector (r,LP (0n)− r)
and the largest value of r in the population. If x is not a kernel, that x
can be chosen for mutation with a probability of at least 1/(n + 1) and one
specific bit can be flipped with a probability of at least 1/(en) to produce a
Pareto-optimal offspring x′ with objective vector (r + 1,LP (0n)− r−1). As
the value of the LP is upper bounded by OPT, at most OPT of such steps
can happen. This upper bounds the number of additional steps (after 0n has
been included in the population) by O(n2 ·OPT).

Let x̂ be the kernel with objective vector (r,LP (0n)− r), where r is the
maximum such that all nonisolated vertices of G(x) obtain a value of 1/2 in
LP (x̂). G(x̂) has at most 2(OPT−|x̂|1)≤ 2 ·OPT nonisolated vertices, as the
vertices that are chosen belong to an optimal solution and every nonisolated
vertex contributes 1/2 to the LP value. The expected time to produce an
optimal solution after a kernel x̂ has been included in the population is O(n ·

226 Frank Neumann and Andrew M. Sutton

22·OPT) = O(n ·4OPT), as the optimal solution can be obtained by choosing x̂
for mutation and flipping exactly the bits corresponding to the nonisolated
nodes of an optimal solution while not flipping the remaining bits.

Kratsch and Neumann have also given the following trade-off results
with respect to runtime and approximation. These results show the previ-
ous FPT time bound (ε = 0), as well as that Global SEMOalt achieves a
2-approximation (ε = 1) in expected polynomial time.

Theorem 4.4.4. Using the fitness function f2, the expected number of itera-
tions of Global SEMOalt until it has generated a (1 + ε)-approximate vertex
cover, i.e., a solution of fitness (r,0) with r ≤ (1 + ε) ·OPT, is O(n2 · logn +
OPT ·n2 +n ·4(1−ε)·OPT).

The proof of Theorem 4.4.4 uses the same kernelization arguments as the
proof of Theorem 4.4.3. Once a solution x̂ that is a kernel of the problem
has been produced, it is shown that if x̂ is selected for mutation then it will
mutate with probability Ω((1/4)(1−ε)·OPT′) into a solution x′ for which

|x′|1 +2 ·LP (x′)≤ (1+ε) ·OPT

holds. Such a solution x′ can be turned into a vertex cover by single mutation
steps that reduce LP (x) by at least 1/2 while increasing the size of the vertex
cover by one, leading to a vertex cover of size at most (1+ε) ·OPT.

4.5 Submodular Functions with Constraints

Submodular functions constitute a broad class of interesting problems. A
function f : 2X →R is submodular iff f(A∪B)+f(A∩B)≤ f(A)+f(B) for
all A,B ⊆X. In the context of optimizing a submodular function f , we will
often consider the incremental value of adding a single element, leading to an
equivalent definition. We denote by Fi(A) = f(A∪{i})− f(A) the marginal
value of i with respect to A. A function f is submodular iff Fi(A) ≥ Fi(B)
for all A⊆B ⊆X and i ∈X \B.

We consider the problem of maximizing a given submodular function
f . The problem is NP-hard, as it generalizes many NP-hard combinato-
rial optimization problems, such as maximum cut [14, 19] and several oth-
ers [1, 7, 14, 21], The class of submodular functions also includes the class
of linear functions that have been well studied in the area of theory of evo-
lutionary computation. Friedrich and Neumann [17] have analyzed the max-
imization of submodular functions with different constraints and carried out
runtime analyses depending on the parameters of the given constraint. We
will summarize the results in this section.

Friedrich and Neumann considered the maximization of a given submodu-
lar function f under a given set of matroid constraints. A matroid is a pair

4 Parameterized Complexity Analysis of Randomized Search Heuristics 227

(X,I) composed of a ground set X and a nonempty collection I of subsets
of X satisfying (1) if A ∈ I and B ⊆ A then B ∈ I and, (2) if A,B ∈ I and
|A|> |B| then B +x ∈ I for some x ∈A\B. The sets in I are called indepen-
dent, and the rank of a matroid is the size of any maximal independent set.
We will consider several different classes of submodular functions together
with different types of matroid constraints.

Friedrich and Neumann analyzed the (1+1) EA and Global SEMO as base-
line algorithms. For the (1+1) EA, the fitness function h(x) = (v(x),f(x))
was considered. Here, v(x) measures the constraint violation of x. General-
izing the fitness function used by Reichel and Skutella [37] for the intersec-
tion of two matroids, they considered problems with k matroid constraints
M1, . . . ,Mk,

v(x) = k · |x|1−
k∑

j=1
rj(x),

where rj(x) denotes the rank of x in matroid Mj , i.e.,

rj(X) = max{|Y | : Y ⊆X,Y ∈ Ij}

for the set X given by x.
We have v(x) = 0 iff x is a feasible solution and v(x) > 0 otherwise. The

function h(x) is optimized in lexicographic order, i.e.,

h(y)≥ h(x) holds iff (v(y) < v(x))∨ (v(y) = v(x)∧f(y)≥ f(x)).

We denote by F the set of feasible solutions. For Global SEMO, Friedrich and
Neumann set z(x) = f(x) iff x∈F and z(x) =−1 iff x ̸∈F and considered the
multiobjective problem g(x) := (z(x), |x|0), where |x|0 =

∑n
i=1(1−xi) denotes

the number of 0-bits in the given bit string x. Adding the number of 0-bits
as the second objective to be maximized forces the empty set to be Pareto
optimal, and allows the algorithm to construct solutions greedily.

4.5.1 Monotone Functions with Uniform Constraints

We now summarize the results for the special class of monotone submodular
functions under one uniform matroid constraint. A function f is monotone iff
f(A)≤ f(B) for all A⊆B. A uniform matroid constraint of size r means that
a set is feasible iff it consists of at most r elements, i.e., I = {A⊆X : |A| ≤ r}.

A key property of Global SEMO that is often employed in theoretical ana-
lysis is that it constructs solutions in a manner similar to a greedy algorithm.
Furthermore, the population size can be bounded by n + 1, as the number
of different objective values for the second objective is n + 1. This implies
that one particular individual that is needed for the analysis is selected with

228 Frank Neumann and Andrew M. Sutton

probability Ω(1/n). The algorithm removes elements in order to maximize
the number of zeros. Using the number of zeros as the second objective im-
plies that the algorithm maintains a population where the solution with the
smallest number of elements is never removed. Furthermore, each solution
that has a smaller number of selected elements than the solutions previously
found is included in the population. Eventually, this leads to a population
which includes the solution consisting of the empty set. In terms of the first
objective (the overall goal function), the algorithm tries to maximize its ob-
jective value in a greedy manner. It does so by adding elements that provide
the largest benefit to a current solution. Putting these arguments together,
the following approximation result can be obtained for Global SEMO and the
maximization of monotone submodular functions with a uniform constraint.

Theorem 4.5.1. The expected time until Global SEMO has obtained a (1−
1/e)-approximation for a monotone submodular function f under a uniform
constraint of size r is O(n2 (logn+ r)).

The proof of the theorem uses the fact that the population size is always
bounded by n+1 and therefore one particular individual is selected with prob-
ability at least 1/(n+1) in each step. The first phase of the proof shows that
the empty set, represented by the bit string 0n, is included in the population
in expected time O(n2 logn). Similarly to the analysis for vertex cover in the
previous section, this bound is obtained by considering the factor O(n) for
the population size and bounds on a coupon collector process for maximizing
the number of 0-bits. The O(n2r) term accounts for the greedy process where
the correct individual in the population is selected with probability Ω(1/n)
and the appropriate greedy step is applied to this individual with probabil-
ity Ω(1/n). Finally, there are at most r of these steps, as no more than r
elements can be inserted owing to the given constraint. The approximation
ratio follows from the greedy process.

4.5.2 Monotone Submodular Functions under Matroid
Constraints

Now we take a look at more complex problems. Again we consider monotone
submodular functions but with k matroid constraints. The algorithm that we
consider is the (1+1) EA. The number of these matroid constraints is the
important parameter that we consider and it determines the approximation
ratio that is achieved, as well as the exponent of the runtime. Furthermore,
there is a parameter p ≥ 1 that allows for a fixed value of k to trade off the
approximation quality and runtime of the algorithm.

Theorem 4.5.2. For any integers k ≥ 2, p ≥ 1 and a real value ε > 0,
the expected time until the (1+1) EA has obtained a (1/(k + 1/p + ε))-

4 Parameterized Complexity Analysis of Randomized Search Heuristics 229

approximation for any monotone submodular function f under k matroid
constraints is O

(
1
ε ·n

2p(k+1)+1 ·k · logn
)

.

We summarize the main ideas of the proof here. The first part of the proof
consists of showing that the algorithm reaches a feasible solution x with
f(x)≥ OPT/n. The expected time until the (1+1) EA has obtained such a
solution can be upper bounded by O(nk+1). To attain this bound, the proof
first argues that the (1+1) EA obtains a feasible solution in expected time
O(kn(logk +logn)) by using the fitness level method applied to the value of
the penalty v(x). Afterwards, it is shown that, from any feasible solution x,
a feasible solution y with f(x) ≥ OPT/n can be obtained by flipping k + 1
specific bits. The expected waiting time for this event is O(nk+1).

A p-exchange operation applied to the current solution x introduces at
most 2p new elements and deletes at most 2kp elements of x. A solution y
that can be obtained from x by a p-exchange operation is called a p-exchange
neighbor of x. According to [27], every solution x for which there exists no
p-exchange neighbor y with f(y) ≥ (1 + ε

n(k+1)) · f(x) is a (1/(k + 1/p + ε))-
approximation for any monotone submodular function. So, the proof works
by analyzing the time until a feasible solution has been obtained. Afterwards,
it uses the fact that there is still a p-exchange neighbor unless the desired
approximation quality has already been obtained.

4.5.3 Symmetric Submodular Functions under Matroid
Constraints

We now summarize the main result for Global SEMO for the optimization of
symmetric submodular functions under k matroid constraints. The following
theorem makes use of the greedy and local search ability that the algorithm
Global SEMO has.

Theorem 4.5.3. The expected number of iterations until Global SEMO at-
tains a

(
1

(k+2)(1+ε)

)
-approximation for any symmetric submodular function

under k matroid constraints is O
(1

ε nk+6 logn
)
, for any constant ε > 0.

The analysis makes use of the following result in [26], which shows that
there are always locally improving steps as long as the desired approximation
quality has not been obtained.

Lemma 4.5.4. Let x be a solution such that no solution with fitness at
least

(
1+ ε

n4
)
· f(x) can be achieved by deleting one element or by inserting

one element and deleting at most k elements. Then x is a
(

1
(k+2)(1+ε)

)
-

approximation.

230 Frank Neumann and Andrew M. Sutton

The proof of Theorem 4.5.3 uses this lemma together with the fact that
Global SEMO introduces the search point 0n into the population after an
expected number of O(n2 logn) steps. As the search point 0n is Pareto opti-
mal, it stays in the population once it has been introduced. Selecting 0n for
mutation and inserting the element that leads to the largest increase in the
f -value produces a solution y with f(y)≥OPT/n. The reason for this is that
the number of elements is limited by n and that f is submodular. Global
SEMO will also always have a solution with the largest f -value obtained so
far in the population. Selecting this solution x for mutation and flipping at
most k +1 specific bits according to Lemma 4.5.4 produces a solution y with
f(y)≥

(
1+ ε

n4
)
·f(x) as long as x does not yet have the desired approxima-

tion quality. The expected waiting time for this event is O(nk+2), as at most
k + 1 specific bits of x have to be flipped and the population size is at most
n+1.

The number of steps that improve the solution with the largest f -value
needed in order to achieve the desired

(
1

(k+2)(1+ε)

)
-approximation is upper

bounded by
log(1+ ε

n4
) OPT

OPT/n
= O

(
1
ε

n4 logn

)
which implies that the expected time to achieve a

(
1

(k+2)(1+ε)

)
-

approximation is O
(1

ε nk+6 logn
)
.

4.6 Euclidean TSP

Given a set of n points V = {v1,v2, . . . ,vn} in the plane, the objective of the
Euclidean TSP is to find a permutation π : V → V that minimizes the cost
function

c(π) =
n∑

i=1
d(vπ(i),vπ(i+1)), (4.6.1)

where d(vi,vj) denotes the Euclidean distance separating the points vi and vj

and arithmetic is taken to be modulo n. The Euclidean TSP is NP-hard, but
can be approximated to within a factor (1+ε) for every fixed ε in polynomial
time [2].

It is convenient to consider the complete undirected graph G = (V,E) and
define the Hamiltonian cycle C(π) ⊆ E induced by the edges followed by a
given permutation π:

C(π) = {{vπ(1),vπ(2)},{vπ(2),vπ(3)}, . . . ,{vπ(n−1),vπ(n)},{vπ(n),vπ(1)}}.

We will refer to the cycle C(π) as a tour.

4 Parameterized Complexity Analysis of Randomized Search Heuristics 231

Iterative improvement methods rely on the iterated exchange of a small
number of edges and are powerful approaches for solving large-scale TSP
instances in practice. These heuristics move through the space of candidate
solutions by repeatedly applying move or mutation operators to pivot be-
tween tours. For the TSP, this is typically some variant of the powerful k-opt
operation. The k-opt move considers some candidate tour C(π), and deletes k
mutually disjoint edges and reassembles the remaining fragments into a new
valid tour C(π′). The operation induces a neighborhood structure on the
search space of tours, and thus serves as a strong and easy-to-implement lo-
cal search operator. However, instances exist where this approach is provably
inefficient. For example, local search algorithms employing a k-opt neigh-
borhood operator can take exponential time even to find a locally optimal
solution [6]. This even holds for the Euclidean case [13].

The convex hull of V is the smallest convex set containing V . A point
v ∈ V is called an inner point if v lies in the interior of the convex hull of V .
We denote by Inn(V)⊂ V the set of inner points of V , and define Out(V) :=
V \ Inn(V). The TSP parameterized by k = Inn(V) is in FPT. Specifically,
Deĭneko et al. [9] showed that if a Euclidean TSP instance with n vertices
has k vertices interior to the convex hull, there is a dynamic programming
FPT algorithm. Other parameterizations are not as propitious; for example,
finding a local optimum in the k-opt neighborhood for the metric TSP is
hard for W[1] [28]. FPT ⊆W[1], but the containment is conjectured to be
proper [15], in which case no such FPT algorithm can exist.

Parameterized results for evolutionary algorithms for the Euclidean TSP
have been developed in a series of papers [29, 30, 40, 41] in the context of
the inner-point parameterization of Deĭneko et al. [9]. We also would like to
mention that the generalized traveling salesperson problem has been investi-
gated in the context of parameterized complexity. In this problem, the cities
belong to different clusters and the goal is to compute a shortest tour that
visits each cluster exactly once. We refer the interested reader for details of
the generalized TSP to Corus et al. [8].

The remainder of this section sketches these results, starting with the set-
ting in which the algorithm is oblivious to problem-specific information (other
than the cost of a tour) and ending with algorithms that exploit problem-
specific structure.

4.6.1 Black-Box Algorithms

In the black-box setting, heuristics are not allowed any access to domain-
specific knowledge about the instance other than the cost of a tour. For
Euclidean TSP instances with k = Inn(V) inner points, it is possible to show
that the (µ+λ) EA generates an optimal solution in slicewise polynomial time
(that is, in time ng(k), where g depends only on k). Later, in Section 4.6.2,

232 Frank Neumann and Andrew M. Sutton

we will discuss how it is possible to improve this to FPT time when domain
knowledge is incorporated into the design of the algorithm.

The 2-opt operator mentioned above corresponds to segment reversal in
the linear form of the corresponding tour permutation. We refer to the 2-
opt operation as the inversion operation and illustrate it in Fig. 4.2. We
consider random local search (RLS), defined in Algorithm 4.5, and the (µ +
λ) EA, defined in Algorithm 4.6. Note that RLS maintains a population of
size one, and performs exactly one inversion operation in each iteration. On
the other hand, the (µ + λ) EA maintains a population of µ permutations
and produces λ offspring in each generation by applying Poisson mutation
(see Function mutate).

Definition 4.6.1. The inversion operation σI
ij transforms permutations into

one another by segment reversal in their linear forms.
A permutation x is transformed into a permutation σI

ij [x] by inverting
the subsequence of the linear form of x from position i to position j, where
1≤ i < j ≤ n:

x = (x(1), . . . ,x(i−1),x(i),x(i+1), . . . ,x(j−1),x(j),x(j +1), . . . ,x(n)),
σI

ij [x] = (x(1), . . . ,x(i−1),x(j),x(j−1), . . . ,x(i+1),x(i),x(j +1), . . . ,x(n)).

x(i−1)

x(j)

x(j−1)

x(j + 1)

x(i)

x(i + 1)

x(1)

x(n)

x(i−1)

x(j)

x(j−1)

x(j + 1)

x(i)

x(i + 1)

x(1)

x(n)

Fig. 4.2 The effect of the inversion operation σI
ij on a tour. Inverting a subsequence

in the permutation representation corresponds to a 2-opt move in which a pair of edges
in the current tour is replaced by a pair of edges not in the tour.

We also consider the permutation jump operator studied by Scharnow,
Tinnefeld, and Wegener [38] in the context of sorting problems.

Definition 4.6.2. The jump operation σJ
ij transforms permutations into one

another by position shifts in their linear form. A permutation x is transformed
into a permutation σJ

ij [x] by moving the element in position i in the linear
form of x into position j in the linear form of σJ

ij [x] while the other elements

4 Parameterized Complexity Analysis of Randomized Search Heuristics 233

between position i and position j are shifted in the appropriate direction.
Without loss of generality, suppose i < j. Then,

x = (x(1), . . . ,x(i−1),x(i),x(i+1), . . . ,x(j−1),x(j),x(j +1), . . . ,x(n)),
σJ

ij [x] = (x(1), . . . ,x(i−1),x(i+1), . . . ,x(j−1),x(j),x(i),x(j +1), . . . ,x(n)).

Algorithm 4.5: Randomized local search (RLS)
1 Choose a random permutation x on V ;
2 repeat forever
3 choose a random distinct pair of elements (i, j) from [n];
4 y← σI

ij [x];
5 if f(y)≤ f(x) then x← y;

Function mutate(x)
1 y← x;
2 draw s from a Poisson distribution with unit expectation;
3 perform s + 1 random inversion operations on y;
4 return y;

Algorithm 4.6: The (µ+λ) EA
1 Choose a multiset P of µ random permutations on V ;
2 repeat forever
3 P ′←{};
4 repeat λ times
5 choose x uniformly at random from P ;
6 y← mutate(x);
7 P ′← P ′⊎{y};
8 P ← select(P ⊎P ′) ;

Every tour C(π), for all permutations π on V , corresponds to a set of
edges that describe a closed polygon in the plane. If V is noncollinear (no
three points are collinear), the vertices on the boundary of the convex hull
of V appear in their cyclic order in a minimum-cost tour, and no edge is
intersecting [36]. When a tour contains a pair of edges that intersect at a point
p, those edges form the diagonals of a convex quadrilateral. The interior edges
of this figure describe nondegenerate triangles in the Euclidean plane. Thus,
as long as no three points are collinear, removing these edges and replacing

234 Frank Neumann and Andrew M. Sutton

them with the corresponding nonintersecting edges results in a strictly shorter
tour. This is illustrated in Fig. 4.3.

u

s

t

v

p

Tour path Tour path

Fig. 4.3 Removing the intersecting edges (s, t) and (u,v) and reconnecting the two
disconnected tour path segments with edges (s,v) and (u,t) results in a strictly shorter
tour.

4.6.1.1 Avoiding Arbitrarily Small Improvements

Worst-case proofs for 2-opt on the TSP exploit the fact that when points
are allowed in arbitrary positions, the smallest change in fitness between
neighboring solutions can be made arbitrarily small [13]. This allows the
possibility of exponential-length paths between a candidate solution and a
reachable local optimum. Sutton and Neumann [40] circumvented this is by
imposing bounds on the angles between points. A set of points V is angle-
bounded by ε for some 0 < ε < π/2 if, for any three points u,v,w ∈ V , 0 < ε <
θ < π−ε, where θ denotes the angle formed by the line from u to v and the line
from v to w. Under this condition, the runtime bound depends on the angle
bound ε, and so we may consider it as an additional parameterization of the
instance. This is also applicable to the class of TSP instances whose points are
embedded in an m×m grid (with the further restriction that no three points
are collinear). This kind of quantization can result when the coordinates of
each point are rounded to the nearest value in a set of m equidistant values. In
these cases, the changes in cost between neighboring solutions can be bounded
from below, avoiding exponentially long improvement chains to reach a local
optimum.

Definition 4.6.3. Let V be a set of points angle-bounded by ε. We define

A(ε) =
(

dmax
dmin

−1
)(

cos(ε)
1− cos(ε)

)
where dmax and dmin denote the maximum and minimum Euclidean distances,
respectively, between points in V .

4 Parameterized Complexity Analysis of Randomized Search Heuristics 235

Quantized instances yield a more meaningful interpretation of A(ε), as is
captured by the following proposition.

Proposition 4.6.4. Let V be a set of points embedded in an m×m grid with
no three points collinear. Then V is angle-bounded by ε such that

A(ε) = m5.

Proposition 4.6.4 follows from Definition 4.6.3 and the fact that V is angle-
bounded by arctan

(
1/(2(m−2)2)

)
and dmax = O(m).

4.6.1.2 Instances in Convex Position

A set of points V are in convex position when Inn(V) = ∅. In this case, we
must wait only for the process to remove all intersecting edges. Upper bounds
on the time until RLS and the (µ+λ) EA have removed all such edges (and
thus produced an optimal tour) can be expressed as a function of the angle-
bounding function A. More conveniently, when an instance is embedded in
an m×m grid, both processes can solve the instance in time polynomial in
both n and m.

Theorem 4.6.5. Let V be a set of planar points in convex position angle-
bounded by ε. The expected time for RLS to solve the TSP on V is O(n3A(ε)),
where A is as defined in Definition 4.6.3.

The proof of Theorem 4.6.5 relies on the fact that any 2-opt move that
replaces a pair of intersecting edges with a pair of nonintersecting edges in
an angle-bounded instance results in an improvement of the tour by at least

2dmin (1− cos(ε))/(cos(ε)) . (4.6.2)

Any pair of intersecting edges can be removed with a particular 2-opt opera-
tion (each of which occurs with probability Ω(n−2)), and thus we can derive
a straightforward bound on the waiting time until all such intersections have
been removed.

Theorem 4.6.6. Let V be a set of planar points in convex position angle-
bounded by ε. The expected number of fitness evaluations needed by the (µ +
λ) EA using 2-opt mutation to solve the TSP on V is bounded from above by
O
(
n ·A(ε) ·max

{
µn2,λ

})
, where A is as defined in Definition 4.6.3.

The proof of Theorem 4.6.6 is similar to the proof of Theorem 4.6.5, ex-
cept that we must account for any slowdown incurred by selecting from a
population. Specifically, the probability that at least one of the λ offspring
improves on the current best-so-far point is at least 1−

(
1− 1

µen(n−1)/2

)λ
.

When λ≥ µn(n−1)/2, an intersection is removed with constant probability

236 Frank Neumann and Andrew M. Sutton

in each generation and we must wait only O(nA(ε)) generations to find an
intersection-free tour (owing to the improvement guarantee from (4.6.2)). On
the other hand, when λ < µen(n−1)/2, the improvement probability can be
as low as λ/(µen2). The runtime bound follows by accounting for this and
the extra µ+λ fitness evaluations that need to occur in each generation.

4.6.1.3 Bounded Number of Inner Points

The polynomial-time results on angle-bounded instances in convex position
raise the question of what kind of influence the number of inner points can
have on the running time of the above-mentioned algorithms. In this section,
we discuss how the Euclidean TSP parameterized by the number of inner
points can be solved in slicewise polynomial time in the black-box setting.

Theorem 4.6.7. Let V be a set of points angle-bounded by ε such that
|Inn(V) | = k. The expected number of fitness evaluations needed for the
(µ + λ) EA using 2-opt mutation to solve the TSP on V is bounded from
above by

O
(

n ·A(ε) ·max
{

µn2,λ
}

+µn4k(2k−1)!
)

,

and the expected optimization time for the (1+1) EA is

O
(

n3 ·A(ε)+n4k(2k−1)!
)

.

Theorem 4.6.7 can be proved by partitioning the amount of time the
(µ + λ) EA spends on tours that contain intersections and tours that do
not contain intersections. In particular, let x(t) be the best-so-far tour found
by generation t of the (µ + λ) EA. If C(x(t)) contains a pair of intersecting
edges, the probability of the EA creating a strictly improving tour via a 2-opt
mutation on x(t) is bounded from below. Moreover, the angle-boundedness of
the instance guarantees an additional lower bound on the amount of actual
fitness improvement when such a mutation occurs. Hence, the total expected
time that the process spends on tours with intersecting edges is bounded as
in Theorem 4.6.6.

In the case where x(t) contains no intersecting edges, the vertices on the
boundary of the convex hull must appear in x(t) in their correct cyclic order
for a minimum-cost tour [36]. An optimal tour can then be produced from
x(t) by rearranging the points in Inn(V) to the correct positions. Poisson
mutation (see Function mutate) is capable of performing this rearrangement
by selecting at most 2|Inn(V) |= 2k specific inversion operations. This occurs
with probability at least

1
en4k(2k−1)!

,

4 Parameterized Complexity Analysis of Randomized Search Heuristics 237

which yields a simple upper bound on the waiting time to jump from an
intersection-free tour to an optimal solution. The claim then follows by care-
fully accounting for the correct parent selection probabilities and summing
the bounds on the expected time spent on tours with intersections and nonop-
timal intersection-free tours.

4.6.1.4 Mixed-Mutation Strategies

The proofs of the theorems in the preceding sections rely on the inversion
operator to construct an intersection-free tour, but then rely on the inversion
operator to simulate a jump operation in order to transform the intersection-
free tour into an optimal solution. The analysis can be improved by relying
on a mixed-mutation strategy (see Function mixed-mutation) that performs
a mixture of both inversion and jump operations, each with constant prob-
ability. This improves the upper bound on the running time by a factor of
Ω
(
n2k(2k−1)!/(k−1)!

)
.

Function mixed-mutation(x)
1 y← x;
2 draw r from a uniform distribution on the interval [0,1];
3 draw s from a Poisson distribution with unit expectation;
4 if r < 1/2 then perform s + 1 random inversion operations on y;
5 else perform s + 1 random jump operations on y;
6 return y;

Theorem 4.6.8. Let V be a set of points angle-bounded by ε such that
|Inn(V) | = k. The expected number of fitness evaluations needed for the
(µ + λ) EA using mixed mutation to solve the TSP on V is bounded from
above by

O
(

n ·A(ε) ·max
{

µn2,λ
}

+µn2k(k−1)!
)

,

and the expected optimization time for the (1+1) EA is bounded from above
by

O
(

n3 ·A(ε)+n2k(k−1)!
)

.

The proof is similar to the proof of Theorem 4.6.7. With mixed mutation,
a 2-opt operation still occurs with constant probability, so the likelihood of
a sufficient improvement is asymptotically equivalent to the case of Theo-
rem 4.6.7. A jump operation occurs also with constant probability, but the
probability that such an operation jumps to an optimal solution (by correctly
rearranging the positions of the points in Inn(V)) is bounded from below by

238 Frank Neumann and Andrew M. Sutton

Ω

(
1

n2k(k−1)!

)
.

4.6.2 FPT Evolutionary Algorithms

In the case where search heuristics have access to problem-specific informa-
tion, FPT results are also available. Specifically, we consider heuristics that
have access to both fitness values and the cyclic ordering of the points on the
convex hull. This ordering can be precomputed in polynomial time [20] and
stored so that it is available to the heuristic at any time.

4.6.2.1 A Population-Based Approach

Building on a previous study of Theile [42], Sutton et al. [41] constructed a
population-based evolutionary algorithm that efficiently solves the Euclidean
TSP when the number of inner points is not too large. They showed that
a small modification to Theile’s (µ+1) EA that carefully maintains the in-
variant that the points in Out(V) remain in correct convex-hull order for
each individual results in an FPT evolutionary algorithm for the inner-point
parameterization of the Euclidean TSP.

The EA maintains a large population of permutations on subtours in the
graph G = (V,E) (a subtour is a Hamiltonian cycle on a subset of V). In each
generation, a new offspring is created via a specialized mutation operator
that extends the subtour by incorporating an additional randomly chosen
vertex, and a modified truncation selection is applied that chooses the best
individual for a subtour. The EA can be seen as an evolutionary approach to
dynamic programming, the framework for which was presented in [10].

For a set of n points V in the plane with |Inn(V) | = k, we denote by
γ := (p1,p2, . . . ,pn−k) a linear order on the points of Out(V) such that for
all i ∈ {1, . . . ,n−k}, pi and pi+1 are adjacent on the boundary of the convex
hull of V . For any subset U ⊆ V , a permutation on U is a bijection x : U →U .
We say that a permutation x on U ⊆ V is γ-respecting if and only if, for
all pi,pj ∈ U , x−1(pi) < x−1(pj) =⇒ i < j. We call U the ground set of the
permutation x on U . We refer to the first element x(1) in the linear order of
such a permutation as the head vertex and the last element x(|U |) as the tail
vertex.

The (µ+λ) EA maintains a population P of γ-respecting permutations on
subsets of V . For each subset S ⊆ Inn(V) and each i ∈ [n−k], the population
P contains permutations on the ground set S ∪ {p1,p2, . . . ,pi}. There are
(|S|+ i)! possible permutation on this ground set. If we were to allow all of
them in the population, |P | would be exponential in n. Hence, the key to the
FPT running time of the EA is the realization that in an optimal solution, the

4 Parameterized Complexity Analysis of Randomized Search Heuristics 239

points in Out(V) must always appear in their order around the hull. Therefore
it is wasteful to consider permutations that are not γ-respecting.

To exploit this, for each possible ground set S ∪{p1,p2, . . . ,pi}, the popu-
lation contains exactly |S|+1 γ-respecting permutations on that ground set,
one for each possible unique tail vertex from the ground set. Specifically, for
every S ⊆ Inn(V) and every i ∈ [n− k] there is a permutation x for every
r ∈ S∪{pi} such that

(a) the head vertex of x is x(1) = p1,
(b) the tail vertex of x is x(|S|+ i) = r, and
(c) x is γ-respecting.

We denote a permutation over the ground set S ∪ {p1,p2, . . . ,pi} with tail
vertex r by x(i,S,r). The corresponding subtour of a x(i,S,r) is a cycle (x(1) =
p1,vx(2), . . . ,vx(|S|+i−1), r,p1) that starts at p1 and runs through each point
of the ground set U exactly once (the i points of Out(V) are visited in the
order in which they appear in γ). Finally, the cycle visits r before returning
to p1. An illustration of a subtour for an example permutation x(i,S,r) on a
small ground set is depicted in Fig. 4.4. The fitness function utilized by the
(µ+λ) EA is simply the cost of the subtour of an individual:

f(x(i,S,r)) =
|S|+i∑
j=1

d(vx(j),vx(j+1)), (4.6.3)

where the summation indices are taken to be modulo |S|+ i.
For any given S ⊆ Inn(V), there are n−k ways to construct a ground set

(by choosing i) and |S|+1 ways to choose the tail vertex from S∪{pi}. The
total number of individuals in the population is thus

µ = |P |= (n−k)
k∑

s=0

(
k

s

)
(s+1) = O(2kkn).

The specially designed mutation operator extends a permutation x =
x(i,S,r) by adding exactly one new point to its ground set, preserving the
validity constraints. In particular, a vertex v is chosen uniformly at random
from the remaining vertices in (Inn(V)\S)∪{pi+1}.1 A new permutation x′

is constructed from x by concatenating v with the linear order described by
x; that is, for j ∈ {1, . . . , |S|+ i+1},

x′(j) =

{
v if j = |S|+ i+1,
x(j) otherwise.

Thus x′ is a permutation over the ground set S∪r and uses v as the new tail
vertex:
1 We have abused notation slightly by taking {p|Out(V)|+1} to mean ∅.

240 Frank Neumann and Andrew M. Sutton

Convex hull

p1

p2

p3
p4

p5

p6

u

v

r

Fig. 4.4 The subtour defined by the permutation x(i,S,r) = (p1,u,p2,v,p3,p4, r) where
S = {u,v,r} and i = 4. The positions of the points pi ∈Out(V) in the linear order of the
permutation respect their cyclic order around the convex hull.

x′ =

{
x′

(i,S∪{v},v) if v ∈ Inn(V),
x′

(i+1,S,v) if v = pi+1.

When i = n− k and S = Inn(V), the mutation operator has no effect, since
the ground set cannot be extended for such an individual.

In each generation of the (µ+λ) EA, λ individuals are selected uniformly
at random from P . For each selected individual x, an offspring is generated
by composing the mutation operator described above s+1 times, where s is
drawn from a Poisson distribution with unit expectation. Survival selection
proceeds by ensuring that each mutated offspring may replace only the in-
dividual in the parent population with the same ground set and tail vertex,
and this replacement occurs only when the fitness of the offspring is at least
as good as the fitness of the corresponding parent. In this way, the surviving
population maintains the invariant that each valid combination of ground set
and tail vertex is represented exactly once.

Theorem 4.6.9. Let V be a set of n points in the Euclidean plane with
|Inn(V) |= k. After O(max{2kk2n2λ−1,n}) generations, the (µ+λ) EA solves
the TSP on V to optimality in expectation and with probability 1−e−Ω(n).

Note that this bound translates to O(max{2kk2n2,λn}) fitness evalua-
tions in expectation, by taking the random numbers counting fitness eval-
uations and generations to be Tf and Tg, respectively, and noting that for
Algorithm 4.7, E[Tf] = µ + λE[Tg]. The proof of Theorem 4.6.9 proceeds by
bounding the time it takes to increase the set of optimal subtours in the
population. In particular, we say that a population is solved to order m when
it contains an individual permutation on a ground set of size m that corre-
sponds to an optimal subtour on that ground set. Obviously, such subtours
are never lost (since they cannot be replaced by a suboptimal subtour), and

4 Parameterized Complexity Analysis of Randomized Search Heuristics 241

Algorithm 4.7: (µ+λ) EA
1 P ←∅;
2 foreach i ∈ {1, . . . ,n−k} do
3 foreach S ⊆ Inn(V) do
4 foreach r ∈ S∪pi do
5 x← a permutation on the ground set S∪{p1,p2, . . . ,pi} such that

x(|S|+ i) = r and x respects γ;
6 P ← P ∪x;

7 repeat forever
8 P ′←{};
9 repeat λ times

10 Select an individual z← x(i,S,r) ∈ P uniformly at random;
11 Draw s from a Poisson distribution with unit expectation;
12 Generate z′← x(i′,S′,r′) by applying the mutation operator s + 1 times;
13 Let f(z′) be the cost of TSP tour generated by z′;
14 P ′← P ′∪z′;

/* truncation selection based on the same ground set */
15 foreach offspring z′ in P ′ do
16 Let z′′← x(i′,S′r′) ∈ P be an individual defined on the same ground set

as z′ having the same end vertex if such an individual exists in the
population;

17 if f(z′)≤ f(z′′) then P ← P ∪z′ \z′′;

the initial population is solved to order 1 since it contains the individual
x(p1,∅,p1). The claim follows by bounding the probability of a transforma-
tion from a population solved to order m to one solved to order m + 1, and
subsequently taking the waiting time to get a population solved to order n.

4.6.2.2 Inner-Point Permutations

As we saw in Section 4.6.2.1, incorporating domain knowledge into the design
of an EA can allow us to create a randomized FPT algorithm for a particular
parameterization of the Euclidean TSP. Algorithm 4.7, however, potentially
needs a large population, specifically µ = O(2kkn). Another approach is to
keep a small population and use an EA to search for the optimal ordering on
the inner points. Specifically, we let γ = (p1,p2, . . . ,pn−k) be the fixed order
of points in Out(V) as they appear on the convex hull. For any permutation
x : Inn(V)→ Inn(V), it is straightforward to compute the value of the optimal
tour through Inn(V) and Out(V) respecting the order of both γ and x. The
naive approach is to try all O(nk) possible ways of merging the linear orders
of the permutations γ and x. This would violate our FPT requirement, since
the parameter appears in the power of the polynomial. Instead, to preserve

242 Frank Neumann and Andrew M. Sutton

our FPT conditions, we can directly use a dynamic programming approach
to compute the fitness of the permutation x on Inn(V).

We define two (n−k)× (k + 1) matrices F Out and F Inn, where F Out[i, j]
(or F Inn[i, j]) stores the value of the minimum-weight subtour of all tours
through points p1,p2, . . . ,pi and x(1),x(2), . . . ,x(j) such that they respect
the orders of both γ and x, and they end on an outer point (or inner point,
respectively). Then the optimal tour given the permutations γ and x is

Dyn(x) = min{F Out[n−k,k]+d(pn−k,p1),F Inn[n−k,k]+d(x(k),p1)}.

Taking the boundary case as F Out[1,0] = 0 (the subtour consisting only of
p1), we can compute

F Inn[i, j] = min{F Out[i, j−1]+d(pi,x(j)),F Inn[i, j−1]+d(x(j−1),x(j))}

for i ∈ {1,2, . . . ,n−k} and j ∈ {1, . . . ,k}, and

F Out[i, j] = min{F Out[i−1, j]+d(pi−1,pi),F Inn[i−1, j]+d(x(j),pi)}

for i ∈ {2,3, . . . ,n−k} and j ∈ {0, . . . ,k}. Entries that do not correspond to
valid subtours, namely F Out[1, j] for j ≥ 1 (since the tour cannot end on p1
and then return to p1) and F Inn[i,0] for i≥ 1 (since a subtour cannot end on
an inner point when the inner-point set is empty), are set to ∞.

The two F matrices can be computed in O(nk) time using dynamic pro-
gramming. Thus, the time complexity of the fitness evaluation of Dyn(x) is
O(nk).

Algorithm 4.8: (µ+λ) EAk

1 Choose a multiset P of µ random permutations on V ;
2 repeat forever
3 P ′←{};
4 repeat λ times
5 Choose x uniformly at random from P ;
6 Draw s from a Poisson distribution with unit expectation;
7 Construct x′ from x by applying s + 1 random basic operations;
8 Let f(x′) be Dyn(x′);
9 P ′← P ′∪x′;

10 P ← select(P ⊎P ′) ;

Theorem 4.6.10. Let V be a set of n points in the Euclidean plane with
|Inn(V) | = k. Assuming λ = O(µ), the (µ + λ) EAk solves the TSP on V
using at most O(µ + (k−1)!k2k) fitness evaluations with the jump operation
as the basic mutation operation. This bound can be improved to O(µ + (k−

4 Parameterized Complexity Analysis of Randomized Search Heuristics 243

2)!k2k−2) by using 2-opt mutation. Moreover, each fitness evaluation has time
complexity O(nk).

Note that we state the theorem slightly differently than in [41], in which the
expected number of generations was proved to be O(max{(k−1)!k2kλ−1,1})
for jumps and O(max{(k−2)!k2k−2λ−1,1}) for 2-opt mutation. The bounds
stated in Theorem 4.6.10 follow by noting that the number of fitness evalua-
tions in Tg generations of Algorithm 4.8 is µ+λTg, and the added assumption
about λ. The proof of Theorem 4.6.10 relies again on the probability that a
given mutation correctly arranges the inner points. Since the mutation oper-
ation performs s+1 random basic operations, where s is Poisson distributed,
the probability that it performs ℓ basic operations is e−1/(ℓ−1)!. On a per-
mutation of length k, a distinct jump (or 2-opt) move is chosen uniformly
at random with probability at least k−2, so the probability that a specific
sequence of ℓ basic operations occurs is at least

p(k,ℓ) = 1
e(ℓ−1)!k2ℓ

.

Therefore, the waiting time to create a globally optimal offspring is bounded
by the diameter of the search space induced by the mutation operator. For 2-
opt, this bound is at most k−1 [3], and for the jump operation, the bound is k.
In the case of jump, the probability that at least one of the λ offspring created
in any generation is optimal is at least 1− (1−p(k,k))λ ≥min{λp(k,k),1−
e−1}. The claim follows from a standard waiting-time argument. We improve
the bound for 2-opt by substituting p(k,k− 1) in the above transformation
probability.

4.7 Conclusion

In this chapter, we have presented an outline of recent results on the param-
eterized complexity analysis of randomized search heuristics. This approach
of incorporating additional salient parameters into running-time analysis al-
lows a finer-grained understanding of the influence of problem structure on
the behavior of these general-purpose optimization techniques.

We have seen that a parameterized analysis can illuminate the inherent
efficiency of particular search operators, as well as reveal the difficult compo-
nents that might arise in the search space of a problem instance. This is the
case for the maximum-leaf spanning tree problem. On graphs where k is the
maximum number of leaves in a spanning tree, a tree-preserving mutation op-
erator guarantees that the (1+1) EA can find such a tree in fixed-parameter
tractable time O(215k2 logk). This is in contrast to standard mutation, for
which there exist graphs with m edges requiring (m/c)Ω(k) steps.

244 Frank Neumann and Andrew M. Sutton

We have also observed that the concept of kernelization from the theory
of parameterized complexity can be useful. Multiobjective algorithms using a
specialized mutation operator can focus the search on a problem kernel of the
vertex cover problem, leading to an FPT running time. We have explored how
parameterized analysis can help to strengthen an understanding of the com-
ponents of very general problem classes on simple evolutionary algorithms.
This is the case, for example, with the maximization of submodular functions
under different constraints.

For the Euclidean TSP, the inner-point parameterization of Deĭneko et
al. [9] illuminates the difficulty for RSH techniques arising from the number
of points that lie inside the convex hull of the instance. This informs the
design of FPT problem-specific evolutionary algorithms, but so far the best
known black-box analysis for this parameterization remains in XP time. An
open problem is therefore either to prove that this is a lower bound for the
parameterization, or to improve the upper bound to FPT time.

Traditional running-time analyses of randomized search heuristics on some
artificial benchmark functions have already implicitly used a parameterized
perspective. One clear example is for the Jump function, the running time
analysis of which is typically parameterized by the jump-gap size (k) and
the string length (n). Indeed, the running-time dichotomy between mutation-
only evolutionary algorithms (Ω(nk) [22]) and recombinant evolutionary al-
gorithms (O(4k poly(n)) [22, 23]) already exhibits an “FPT-like” flavor. The
application of parameterized analysis to running-time analysis of random-
ized search heuristics on combinatorial optimization problems with well-
established parameterizations from the classical community is therefore a
very natural research direction.

Perhaps the most significant research requirement is the need for good
problem parameterizations. This requires theoreticians to work closely with
practitioners in order to understand what problem components are the most
meaningful and relevant in the real world, i.e., what features are most likely to
be manifested (or be restricted) in practice, and what problem characteristics
might be exploitable by different techniques. This emphasizes the importance
of a strong and vibrant relationship between theory and practice.

References

[1] Ageev, A.A., Sviridenko, M.: An 0.828-approximation algorithm for the
uncapacitated facility location problem. Discrete Applied Mathematics
93(2-3), 149–156 (1999)

[2] Arora, S.: Polynomial time approximation schemes for Euclidean trav-
eling salesman and other geometric problems. J. ACM 45(5), 753–782
(1998). DOI 10.1145/290179.290180. URL http://doi.acm.org/10.
1145/290179.290180

http://doi.acm.org/10.1145/290179.290180
http://doi.acm.org/10.1145/290179.290180

4 Parameterized Complexity Analysis of Randomized Search Heuristics 245

[3] Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by rever-
sals. SIAM Journal of Computing 25(2), 272–289 (1996)

[4] Balinski, M.L.: On maximum matching, minimum covering and their
connections. In: Proceedings of the Princeton Symposium on Mathe-
matical Programming, pp. 434–445 (1970)

[5] Bringmann, K., Friedrich, T.: Parameterized average-case complexity of
the hypervolume indicator. In: C. Blum, E. Alba (eds.) Proceedings
of the Genetic and Evolutionary Computation Conference, pp. 575–582.
ACM (2013). DOI 10.1145/2463372.2463450. URL http://doi.acm.
org/10.1145/2463372.2463450

[6] Chandra, B., Karloff, H., Tovey, C.: New results on the old k-opt algo-
rithm for the traveling salesman problem. SIAM Journal on Computing
28(6), 1998–2029 (1999)

[7] Cornuejols, G., Fisher, M., Nemhauser, G.L.: On the uncapacitated lo-
cation problem. In: Studies in Integer Programming, Annals of Discrete
Mathematics, vol. 1, pp. 163 – 177. Elsevier (1977)

[8] Corus, D., Lehre, P.K., Neumann, F., Pourhassan, M.: A parame-
terised complexity analysis of bi-level optimisation with evolutionary
algorithms. Evolutionary Computation 24(1), 183–203 (2016). DOI
10.1162/EVCO_a_00147. URL https://doi.org/10.1162/EVCO_a_
00147

[9] Deĭneko, V.G., Hoffman, M., Okamoto, Y., Woeginger, G.J.: The travel-
ing salesman problem with few inner points. Operations Research Letters
34, 106–110 (2006)

[10] Doerr, B., Eremeev, A.V., Neumann, F., Theile, M., Thyssen, C.: Evo-
lutionary algorithms and dynamic programming. Theoretical Computer
Science 412(43), 6020–6035 (2011)

[11] Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Al-
gorithmica 64(4), 673–697 (2012)

[12] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer
(1999)

[13] Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analy-
sis of the 2-opt algorithm for the TSP. In: Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1295–1304.
Society for Industrial and Applied Mathematics (2007)

[14] Feige, U., Goemans, M.X.: Approximating the value of two power proof
systems, with applications to MAX 2SAT and MAX DICUT. In: Third
Israel Symposium on Theory and Computing Systems (ISTCS), pp. 182–
189 (1995)

[15] Flum, J., Grohe, M.: Parameterized complexity theory. Springer-Verlag
(2006)

[16] Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approx-
imating covering problems by randomized search heuristics using multi-
objective models. Evolutionary Computation 18(4), 617–633 (2010)

http://doi.acm.org/10.1145/2463372.2463450
http://doi.acm.org/10.1145/2463372.2463450
https://doi.org/10.1162/EVCO_a_00147
https://doi.org/10.1162/EVCO_a_00147

246 Frank Neumann and Andrew M. Sutton

[17] Friedrich, T., Neumann, F.: Maximizing submodular functions under
matroid constraints by evolutionary algorithms. Evolutionary Compu-
tation 23(4), 543–558 (2015). DOI 10.1162/EVCO_a_00159. URL
https://doi.org/10.1162/EVCO_a_00159

[18] Gao, W., Friedrich, T., Neumann, F.: Fixed-parameter single objective
search heuristics for minimum vertex cover. In: J. Handl, E. Hart, P.R.
Lewis, M. López-Ibáñez, G. Ochoa, B. Paechter (eds.) Proceedings of
the Fourteenth International Conference on Parallel Problem Solving
from Nature, Lecture Notes in Computer Science, vol. 9921, pp. 740–
750. Springer (2016). DOI 10.1007/978-3-319-45823-6_69. URL https:
//doi.org/10.1007/978-3-319-45823-6_69

[19] Goemans, M.X., Williamson, D.P.: Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite program-
ming. Journal of the ACM 42(6), 1115–1145 (1995)

[20] Graham, R.L.: An efficient algorithm for determining the convex hull
of a finite planar set. Information Processesing Letters 1(4), 132–133
(1972). DOI 10.1016/0020-0190(72)90045-2. URL https://doi.org/
10.1016/0020-0190(72)90045-2

[21] Håstad, J.: Some optimal inapproximability results. Journal of the ACM
48(4), 798–859 (2001)

[22] Jansen, T., Wegener, I.: The analysis of evolutionary algorithms: A proof
that crossover really can help. Algorithmica 34(1), 47–66 (2002)

[23] Kötzing, T., Sudholt, D., Theile, M.: How crossover helps in pseudo-
Boolean optimization. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 989–996 (2011)

[24] Kratsch, S., Lehre, P.K., Neumann, F., Oliveto, P.S.: Fixed parameter
evolutionary algorithms and maximum leaf spanning trees: A matter of
mutation. In: R. Schaefer, C. Cotta, J. Kolodziej, G. Rudolph (eds.)
Proceedings of the Eleventh Conference on Parallel Problem Solving
from Nature, Lecture Notes in Computer Science, vol. 6238, pp. 204–
213. Springer-Verlag (2010)

[25] Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms
and the vertex cover problem. Algorithmica 65(4), 754–771 (2013).
DOI 10.1007/s00453-012-9660-4. URL https://doi.org/10.1007/
s00453-012-9660-4

[26] Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone
submodular maximization under matroid and knapsack constraints. In:
Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, pp. 323–332 (2009)

[27] Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over
multiple matroids via generalized exchange properties. Mathematics of
Operations Research 35(4), 795–806 (2010)

[28] Marx, D.: Searching the k-change neighborhood for TSP is W[1]-
hard. Operations Research Letters 36(1), 31–36 (2008). DOI 10.1016/

https://doi.org/10.1162/EVCO_a_00159
https://doi.org/10.1007/978-3-319-45823-6_69
https://doi.org/10.1007/978-3-319-45823-6_69
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1007/s00453-012-9660-4
https://doi.org/10.1007/s00453-012-9660-4

4 Parameterized Complexity Analysis of Randomized Search Heuristics 247

j.orl.2007.02.008. URL http://www.sciencedirect.com/science/
article/pii/S0167637707000302

[29] Nallaperuma, S., Sutton, A.M., Neumann, F.: Fixed-parameter evolu-
tionary algorithms for the Euclidean traveling salesperson problem. In:
IEEE Congress on Evolutionary Computation (CEC’13), pp. 2037–2044.
IEEE (2013)

[30] Nallaperuma, S., Sutton, A.M., Neumann, F.: Parameterized complexity
analysis and more effective construction methods for ACO algorithms
and the Euclidean traveling salesperson problem. In: Proceedings of
the IEEE Congress on Evolutionary Computation, pp. 2045–2052. IEEE
(2013). DOI 10.1109/CEC.2013.6557810. URL http://dx.doi.org/10.
1109/CEC.2013.6557810

[31] Nemhauser, G.L., Trotter, L.E.: Vertex packings: Structural properties
and algorithms. Mathematical Programming 8, 232–248 (1975)

[32] Neumann, F., Wegener, I.: Randomized local search, evolutionary algo-
rithms, and the minimum spanning tree problem. Theoretical Computer
Science 378(1), 32–40 (2007)

[33] Oliveto, P.S., He, J., Yao, X.: Analysis of the (1+1) EA for finding
approximate solutions to vertex cover problems. IEEE Trans. Evolution-
ary Computation 13(5), 1006–1029 (2009). DOI 10.1109/TEVC.2009.
2014362. URL https://doi.org/10.1109/TEVC.2009.2014362

[34] Pourhassan, M., Gao, W., Neumann, F.: Maintaining 2-approximations
for the dynamic vertex cover problem using evolutionary algorithms.
In: Proceedings of the Conference on Genetic and Evolutionary Com-
putation, GECCO ’15, pp. 903–910. ACM, New York, NY, USA (2015).
DOI 10.1145/2739480.2754700. URL http://doi.acm.org/10.1145/
2739480.2754700

[35] Pourhassan, M., Shi, F., Neumann, F.: Parameterized analysis of multi-
objective evolutionary algorithms and the weighted vertex cover prob-
lem. In: Proceedings of the Fourteenth International Conference of
Parallel Problem Solving from Nature, pp. 729–739. Springer Interna-
tional Publishing (2016). DOI 10.1007/978-3-319-45823-6_68. URL
https://doi.org/10.1007/978-3-319-45823-6_68

[36] Quintas, L.V., Supnick, F.: On some properties of shortest Hamiltonian
circuits. The American Mathematical Monthly 72(9), 977–980 (1965)

[37] Reichel, J., Skutella, M.: Evolutionary algorithms and matroid optimiza-
tion problems. Algorithmica 57(1), 187–206 (2010)

[38] Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary
algorithms on sorting and shortest paths problems. Journal of Mathe-
matical Modelling and Algorithms 3(4), 349–366 (2004)

[39] Sutton, A.M.: Crossover can simulate bounded tree search on a
fixed-parameter tractable optimization problem. In: H.E. Aguirre,
K. Takadama (eds.) Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1531–1538. ACM (2018). DOI 10.

http://www.sciencedirect.com/science/article/pii/S0167637707000302
http://www.sciencedirect.com/science/article/pii/S0167637707000302
http://dx.doi.org/10.1109/CEC.2013.6557810
http://dx.doi.org/10.1109/CEC.2013.6557810
https://doi.org/10.1109/TEVC.2009.2014362
http://doi.acm.org/10.1145/2739480.2754700
http://doi.acm.org/10.1145/2739480.2754700
https://doi.org/10.1007/978-3-319-45823-6_68

248 Frank Neumann and Andrew M. Sutton

1145/3205455.3205598. URL http://doi.acm.org/10.1145/3205455.
3205598

[40] Sutton, A.M., Neumann, F.: A parameterized runtime analysis of evolu-
tionary algorithms for the Euclidean traveling salesperson problem. In:
Proceedings of the Twenty-Sixth Conference on Artificial Intelligence
(AAAI’12), pp. 1105–1111. AAAI Press (2012)

[41] Sutton, A.M., Neumann, F., Nallaperuma, S.: Parameterized runtime
analyses of evolutionary algorithms for the planar Euclidean travel-
ing salesperson problem. Evolutionary Computation 22(4), 595–628
(2014). DOI 10.1162/EVCO_a_00119. URL https://doi.org/10.
1162/EVCO_a_00119

[42] Theile, M.: Exact solutions to the traveling salesperson problem by
a population-based evolutionary algorithm. In: C. Cotta, P. Cowling
(eds.) Evolutionary Computation in Combinatorial Optimization, Lec-
ture Notes in Computer Science, vol. 5482, pp. 145–155. Springer-Verlag
(2009). DOI 10.1007/978-3-642-01009-5_13. URL http://dx.doi.org/
10.1007/978-3-642-01009-5_13

[43] Witt, C.: Revised analysis of the (1+1) EA for the minimum spanning
tree problem. In: D.V. Arnold (ed.) Genetic and Evolutionary Com-
putation Conference, GECCO ’14, Vancouver, BC, Canada, July 12-16,
2014, pp. 509–516. ACM (2014). DOI 10.1145/2576768.2598237. URL
http://doi.acm.org/10.1145/2576768.2598237

http://doi.acm.org/10.1145/3205455.3205598
http://doi.acm.org/10.1145/3205455.3205598
https://doi.org/10.1162/EVCO_a_00119
https://doi.org/10.1162/EVCO_a_00119
http://dx.doi.org/10.1007/978-3-642-01009-5_13
http://dx.doi.org/10.1007/978-3-642-01009-5_13
http://doi.acm.org/10.1145/2576768.2598237

Chapter 5
Analysing Stochastic Search Heuristics
Operating on a Fixed Budget

Thomas Jansen

Abstract When stochastic search heuristics are used for optimisation they
are often stopped after some time has passed and the best search point they
have found at this point is used as the solution. Fixed-budget analysis is
an analytical perspective that delivers results about the expected quality of
the solution in this situation. It allows the comparison of different stochastic
search heuristics when only a fixed computational budget is available and it
offers a very different perspective from runtime analysis. This chapter intro-
duces and motivates this approach to the theoretical analysis of stochastic
search heuristics. It provides basic results, describes a general technique to
derive such results from runtime results, covers analytical methods that have
been applied and describes a range of different results that have been obtained
so far.

5.1 Introduction

Evolutionary algorithms [25], ant colony optimisation [11], artificial immune
systems [38], simulated annealing [17] and random local search [29] are just
five examples of different stochastic search heuristics. Each heuristic imple-
ments a specific idea of how the search for an optimal solution should be
conducted in general, often borrowing this idea from a natural example. Evo-
lutionary algorithms mimic the process of natural evolution, ant colony opti-
misation is based on the foraging behaviour of ants, artificial immune systems
are modelled on the immune system of vertebrates, simulated annealing takes
inspiration from annealing in metallurgy, and local search can be described as
a greedy search that always looks for the next improving move. A theoretical

Thomas Jansen
Department of Computer Science, Aberystwyth University, Aberystwyth, UK. e-mail:
t.jansen@aber.ac.uk

249

t.jansen@aber.ac.uk

250 Thomas Jansen

understanding of these heuristics – their potential and their limitations – can
help in selecting the right heuristic for a given problem and help in applying
it in a way that makes it more efficient on the given problem. This motivates
the theoretical analysis of this kind of general heuristic.

The past 25 years have been mostly dominated by a theoretical approach
that can be summarised as runtime analysis. It can be argued that when
Mühlenbein wanted to find out ‘how genetic algorithms really work’ [31] he
obtained the first runtime result, namely that the (1+1) EA has an expected
runtime of O(n logn) on OneMax. We now have a large number of results,
textbooks covering this topic [18, 33] and a large number of analytical tools
that are of invaluable help in improving our understanding of how these
heuristics work ([1] provides a good overview). The starting point of runtime
analysis is that all these stochastic search heuristics are really stochastic
search algorithms and, consequently, they should be analysed as algorithms.
This makes correctness and efficiency the two most important aspects of
a theoretical analysis. Correctness translates to ‘Will the algorithm find an
optimum eventually almost surely?’ and can often be answered positively with
little difficulty (see [39] for a more in-depth study of this topic). Efficiency,
measured as runtime for classical algorithms, translates to ‘How long will it
take on average until the algorithm finds an optimum?’ and the study of this
question is known as runtime analysis. While it appears natural to ask how
long an algorithm takes to accomplish its goal, this perspective is at odds
with the way stochastic search heuristics are actually applied in practice.
They are used when a problem is not well understood and no good problem-
specific algorithm is known. They are run for a limited time in the hope
of finding a good solution, not necessarily an optimal one or even one that
approximates an optimal solution with a preset quality. Even if an optimal
solution is found, it might not be possible to recognise this and be sure. In this
situation, runtime analysis does not offer much insight. It has been argued
[20] that practitioners are more interested in other kinds of questions that
runtime analysis cannot answer: ‘What is the expected quality of a solution if
I run my heuristic for this long? What better quality can I expect if I double
that time?’ These kinds of question are answered by fixed-budget analysis.

In the next section we will provide formal definitions and introduce an
overview of the goals of fixed-budget analysis. We will formally introduce
random local search and the (1+1) EA as a toy example to see how fixed-
budget results can be derived. In Section 5.3 we present and discuss a method
to transfer runtime results in a systematic way into fixed-budget results. This
is an important step because not only is the number of runtime results large
but there are also a number of powerful analytical tools that can be utilised
to develop results for fixed-budget analysis in this way. We consider different
analytical methods in Section 5.4. We provide a brief overview of the kind of
results and insights that have been obtained using the fixed-budget perspec-
tive in Section 5.5. We summarise the chapter in Section 5.6 and mention
possible directions of future research.

5 Analysing Stochastic Search Heuristics Operating on a Fixed Budget 251

5.2 Analytical Perspective and Basic Results

Runtime analysis considers the number of function evaluations TA,f a given
stochastic search heuristic A makes on a set objective function f until an
optimum is found for the first time. Usually, one analyses the expectation of
this random variable e[TA,f], the expected optimisation time. We could say
that we fix the solution quality (we care only about finding an optimum and
discard any worse solution) and care about the time it takes.

In fixed-budget analysis we reverse this. We fix the time (by deciding on the
computational budget we want to spend) and care about the solution quality
we are able to reach. Let xt denote the best search point after A has evaluated
t search points when running on f . For a given computational budget, b ∈
N, we analyse the expected function value e[f(xt)] for all t ≤ b. Similarly
to runtime analysis, there are situations where it might be more useful to
consider not (only) the expectation of the random variable in question (TA,f

for runtime analysis and f(xt) for fixed-budget analysis) but (also) other
aspects of its distribution.

Concentrating on the best search point found after t search points is a
natural thing for elitist algorithms and also makes sense for non-elitist algo-
rithms. If our aim is optimisation, we will output the best search point found
even if the population of a non-elitist search heuristic does not contain it any
more. It is possible, of course, to also consider the function values of other
search points of interest (e.g. the best search point in the current population
for a population-based search heuristic). However, we will stick to the best
search point here. This choice aligns fixed-budget analysis with the classi-
cal best-so-far curves known from experimental studies of search heuristics,
where one plots the currently best function value found against the number
of steps.

It is important to note that we are interested not only in f(xb) but also
in all f(xt) with t≤ b. Thus, we can visualise our results by plotting e[f(xt)]
against t (or the bounds we have for it). This yields graphs that look exactly
like best-so-far curves (see Fig. 5.1 on page 254 for an example). Thus, fixed-
budget results are a direct theoretical equivalent of the empirical best-so-far
curves and therefore are a more accessible type of theoretical result than
runtime results for practitioners.

We use the well-known (1+1) EA as a simple example and define it here
formally for the sake of completeness and clarity. In the form given it is used
to maximise a function f : {0,1}n→ R that maps bit strings of fixed length
n to real numbers.

We leave the choice of the initial search point x0 open. In most cases it
will be selected uniformly at random. However, for the sake of the discussion
here, it is sometimes more convenient to consider other initial search points.

To introduce fixed-budget analysis, it makes sense to consider an even
simpler algorithm, a variant of local search. We also formulate it for maximi-

252 Thomas Jansen

(1+1) evolutionary algorithm ((1 + 1) EA)
1 t := 0. Select xt ∈ {0,1}n. Evaluate f(xt).
2 While t + 1 < b do
3 t := t + 1. y := xt−1.
4 For each i ∈ {1,2, . . . ,n}: With probability 1/n flip i-th bit in y.
5 Evaluate f(y).
6 If f(y)≥ f(xt−1) then xt := y else xt := xt−1.

sation of f : {0,1}n→ R. Again, and for the same reason, we choose not to
define the choice of the initial search point x0 here.

Random local search (RLS)
1 t := 0. Select xt ∈ {0,1}n. Evaluate f(xt).
2 While t + 1 < b do
3 t := t + 1. y := xt−1.
4 Select i ∈ {1,2, . . . ,n} uniformly at random. Flip i-th bit in y.
5 Evaluate f(y).
6 If f(y)≥ f(xt−1) then xt := y else xt := xt−1.

For a given algorithm A and an objective function f , it is usually the
case that f(xt) approaches max

x∈{0,1}n
f(x) when t approaches e[TA,f]. For a

computational budget b > e[TA,f], the most useful question probably is what
is the probability that f(xb) < max

x∈{0,1}n
f(x) still holds. In most cases, the

expectation e[f(xb)] will be so close to max
x∈{0,1}n

f(x) that it will be not very

informative. This is also illustrated in the example in Fig. 5.1 on page 254.
Therefore, we restrict our interest to budgets b with b ≤ e[TA,f]. Note that,
ideally, we would like to get results up to b = e[TA,f]. However, obtaining
results for b = o(e[TA,f]) might be easier and can still be very informative.

We have mentioned in the introduction that one kind of question that
practitioners would like to see answered is what they can expect to gain in
the quality of the solution if they double the computation time, for example.
In fixed-budget analysis, it is therefore very desirable to obtain exact results
that reveal not only the order of growth but also the leading multiplicative
constants. While less precise results can still be valuable it should be kept in
mind that exact results are more desirable and important in the fixed-budget
perspective than they are in general runtime results.

One other notable difference from runtime analysis is that in fixed-budget
analysis, in general, we are more interested in lower bounds than in upper
bounds. The reasons are exactly the same as in runtime analysis, and the
difference simply stems from the change of perspective. In practice, guaran-
tees about the performance are usually more useful (or at least reassuring)

5 Analysing Stochastic Search Heuristics Operating on a Fixed Budget 253

than negative results. Thus, while in runtime analysis upper bounds on the
expected runtime are most useful, in fixed-budget analysis lower bounds on
the expected function value are most useful (if we consider maximisation; in
the case of minimisation, upper bounds are more useful).

He [14] has pointed out that fixed-budget analysis has some similarity to
the study of the convergence rate. However, there are significant differences
that make studying the performance of stochastic search heuristics in the
fixed-budget perspective an essentially different endeavour.

We introduce fixed-budget analysis using a very well-known example from
classical probability theory: the coupon collector’s problem ([30] is one of
many textbooks that contain a good description). The collector wants to get
a complete collection of n different coupons. The coupons are purchased one
by one and each time each coupon type is equally likely. It is well known that
the expected number of coupons the collector needs to buy to get a complete
collection is n lnn + O(n) and the reason is simply that when the current
collection contains i different coupons the probability of getting a new one
equals (n− i)/n. This implies that, in expectation, one needs to buy n/(n− i)
coupons to increase the collection from i to i + 1 different coupons, and the
result follows from the linearity of expectation.

It is not difficult to see that the result of the classical coupon collector’s
problem is a runtime result. The random process is exactly the same as the
one defined by starting random local search in the all 0-bit string 0n on the
classical OneMax problem, OneMax(x) =

∑n
i=1 x[i], when we read the i-th

bit x[i] as an indicator variable that has value 1 if the collection contains a
coupon of type i and 0 otherwise. Thus, e[TRLS,OneMax] = n lnn+O(n) holds.

In the fixed-budget scenario, we ask a different question. We have enough
money to buy b coupons; how many different coupons can we expect to find
in our collection after buying b? We actually want an answer to this question
for any number t ≤ b of coupons bought. Note that this is exactly the same
as asking for the expected function value of RLS on OneMax when starting
with 0n. It is rather elementary to observe that the probability of having
bought a coupon of type i after buying t coupons equals 1− (1− 1/n)t and
that this is the expected value of the i-th bit in xt. By linearity of expectation,
it follows that e[OneMax(xt)] = n ·

(
1− (1−1/n)t

)
holds. We have plotted

this result in Fig. 5.1 as an example and to demonstrate the similarity to
best-so-far curves.

Using the more common random initialisation in RLS, the process is not
much different. We expect OneMax(x0) = n/2 in this case (because each
bit is set to 1 with probability 1/2). For the remaining n/2 bits the random
process is unchanged, so e[OneMax(xt)] = (n/2) + (n/2) ·

(
1− (1−1/n)t

)
follows for random initialisation (see [21] for a more detailed proof).

Another example function that is useful for theoretical study is
LeadingOnes. It yields as the function value the number of consecutive 1-
bits counting from left to right (expressed in a formula as LeadingOnes(x) =

254 Thomas Jansen

E[TRLS(OneMax)]

m
ax

x
œ

{0
,1

}n
O

n
e
M

a
x

(x
)

Fig. 5.1 Expected number of different coupons after buying t coupons, and also
e[OneMax(xt)] for RLS on OneMax with initialisation with the all 0-bit string 0n.
The x-axis denotes t; the expected value is on the y-axis.

∑n
i=1
∏i

j=1 x[j]). It is appealing because the probability of increasing the
function value by means of mutation does not change a lot during a run,
as it is always necessary and sufficient to flip exactly the leftmost 0-bit.
Thus, the probability is always exactly 1/n for RLS and between 1/n and
(1/n)(1− 1/n)n−1 ≈ 1/(en) for the (1+1) EA. This is very different from
OneMax, where the probability is Θ(1) as long as there are still Θ(n) 0-bits
but drops to Θ(1/n) when the number of remaining 0-bits has dropped to
O(1).

It is not difficult to see that the bits after the leftmost 0-bit are always
uniformly randomly distributed because they never have played a role in
selection and the mutation operators are unbiased with respect to the role
of 0-bits and 1-bits. This makes it intuitive that the expected increase in
function value is 2/n for RLS. And, indeed, it can be shown that for RLS
with random initialisation e[LeadingOnes(xt)] = 1 + (2t/n)−2−Ω(n) holds
(but the proof is rather long and technical, see [21]).

For RLS and simple functions, it is not too difficult to get very precise
fixed-budget results, as we have seen for OneMax and LeadingOnes. The
same is true for other well-known example functions. There are, however, a
number of less precise results for other functions (see e.g. [21] for results on
Jumpk and Ridge; see [18] or [21] for definitions and discussion).

Making the seemingly small step from RLS to the (1+1) EA changes
this significantly. The reason is the increased degree of variability that the
standard bit mutations used in the (1+1) EA have in comparison with the
local mutations that are used in RLS.

Considering the (1+1) EA with random initialisation on LeadingOnes,
it is still possible to prove e[LeadingOnes(xt)] = 1 + (2t/n)− o(t/n) [21] if
the budget is much smaller than n2/2, i.e. b = o(n2), because in this case we

5 Analysing Stochastic Search Heuristics Operating on a Fixed Budget 255

are still far from reaching the optimum and the probability of having reached
it is so small that it does not contribute significantly to the expected function
value. For larger budgets b = cn2 with a constant 0 < c < 1/2, it can be shown
that

n · ce−c

(
1+ e−ce−ce−c

)
≤ LeadingOnes(xb)≤ n · ce−c

(
1+ e−ce−c

)
holds asymptotically almost surely (i.e. with probability 1− o(1)) [21]. One
can improve the analysis numerically to some extent (see [21] for a detailed
analysis) but this is still some way from a precise result for larger budgets.

Surprisingly, results for the (1+1) EA on OneMax are even more difficult
to obtain. Direct, elementary analysis seems to be too complicated to deal
with this still very simple case. This motivates us to look for more powerful
methods to derive fixed-budget computation results, something we begin in
the next section.

5.3 Reusing Known Runtime Results

Whereas runtime analysis has been around for at least 25 years, fixed-budget
analysis was introduced much more recently [20]. This implies that the num-
ber of methods available to perform fixed-budget analysis is much smaller
than for runtime analysis and, also, that there are many more runtime re-
sults available than fixed-budget results. It is therefore significant that there
is a method that allows runtime results to be transferred to the perspective
of fixed-budget analysis.

We know that one is usually interested in TA,f , the time a heuristic A
needs to find a global optimum of a function f for the first time. We can
generalise this notion slightly and say that TA,f (v) is the time A needs to
find a search point with a function value of at least v for the first time.
This way, the runtime TA,f becomes TA,f

(
max

x∈{0,1}n
f(x)

)
. This slightly more

general notion presents us with TA,f as a function that maps function values
to runtimes. Clearly, its inverse function T −1

A,f maps times to function values.
So, for a deterministic algorithm A, it suffices to have TA,f . We can then
compute the inverse function T −1

A,f and get, for each computational budget b,
the function value T −1

A,f (b) that can be reached in b steps. Unfortunately, for
randomised algorithms A, things are not quite so simple. We can still compute
the inverse function of e[TA,f (v)], but this does not necessarily yield the
expected function value after a given number of steps owing to the variability
of the random process. But if we have not only the expectation but also some
concentration bounds, we can use this directly to transform results about the
runtime into fixed-budget results about the function value.

256 Thomas Jansen

For the sake of clarity, we summarise the four steps that are involved in
the process before we discuss an example. We start with a known result on
the expected runtime e[TA,f] of a heuristic A on a function f . In the first step,
we generalise this to a result on e[TA,f (v)], the expected time A needs on f
to find a function value of at least v for the first time. This is usually not too
hard. In the second step we need deviation bounds, i. e., statements of the
form Pr[TA,f (v)≤ e[TA,f (v)]−dl]≤ pl and Pr[TA,f (v)≥ e[TA,f (v)]+du]≤ pu.
We can still obtain a result if we have only either the upper or the lower
bound. The third step is, given these bounds, to compute the inverse functions(
e[TA,f −dl]

)−1 and
(
e[TA,f +du]

)−1. While this might be a little tedious,
it is certainly not difficult. Now, in the fourth and final step, this yields the
fixed-budget results

Pr
[
f(xt)≤

⌈(
e[TA,f +du]

)−1 (t)
⌉]
≤ pu

and
Pr
[
f(xt)≥

⌈(
e[TA,f −dl]

)−1 (t)
⌉]
≤ pl

as a direct consequence.
The method was presented together with an application to the (1+1) EA

on LeadingOnes [10] because there are very precise results for the runtime
available for this setting. There are very exact results for the runtime [2]
that can easily be extended to an exact result e

[
T(1 + 1) EA,LeadingOnes(a)

]
=(

n2−n
)

/2 ·
(
(1+1/(n−1))a−1

)
for any function value a. One still needs to

add concentration bounds to the result for the expected runtime, and there
are several ways of doing that. One approach is to rely on the Chebyshev in-
equality (see [4] for an exposition that is tailored towards the kind of analysis
we are performing). This yields

Pr
[
LeadingOnes(xb) = n ln(1+2b/n2)±Θ(d/n)

]
= 1−o(1)

for any d = ω(n3/2) and budget b ≤ e[T(1 + 1) EA,LeadingOnes] (see [10] for a
complete proof). While the bounds are not too strong (because the Cheby-
shev inequality is a very general result that consequently does not yield the
strongest bounds), they are easy to obtain and it is easy to derive precise nu-
merical statements (and not only asymptotic ones). For concrete applications,
this is appealing.

If one wants stronger bounds, the application of Chernoff bounds for the
derivation of concentration results is possible. It is technically more involved
(again, see [10] for a complete proof), but we obtain a much stronger result.
This way, one can prove that

Pr
[
LeadingOnes(xb) = n ln(1+2b/n2)±Θ(d/n)

]
= 1−e−Ω(d2/n3)

5 Analysing Stochastic Search Heuristics Operating on a Fixed Budget 257

holds for any d≤ 2n2 and budget b≤ e[T(1 + 1) EA,LeadingOnes]. While this is
much tighter asymptotically, it does not lend itself to obtaining numerical
results for small n, which might be an issue, depending on the application.

Using results that derive sharp concentration bounds for variable drift
analysis [7], one can also obtain bounds by drift analysis, even sharper but
technically even more involved. This yields

Pr
[(

n2−n
)

/
(
n2−n+2b−2d−o(d)

)
ln(1−1/n)

≤ LeadingOnes(xb)

≤
(
n2−n

)
/
(
n2−n+2b+2d−o(d)

)
ln(1−1/n)

]
= 1−2−Ω(nε)

for any d = Ω(n(3/2)+ε) (ε > 0 constant) and budget b ≤
e[T(1 + 1) EA,LeadingOnes]. These are also of asymptotical nature, and it
is difficult to derive good numerical bounds for small n in this way.

We see that the method is general and has the potential to derive good
bounds. It depends on the runtime result, as well as the concentration bounds
used, how tight and useful the results are. Depending on the application, some
kinds of result might be more applicable than others.

5.4 Advanced Methods

Direct analysis based on first principles (such as that for RLS on OneMax
seen in Section 5.2) is not likely to be feasible for more than the simplest
scenarios. The method of transferring results about the expected runtime to
fixed-budget results with the help of concentration results that we discussed
in the previous section has the potential to yield helpful results, but it is
limited to situations where runtime results are available and where sufficiently
good concentration bounds can be found. To obtain results for other settings,
different analytical approaches may be needed.

It can be argued that the most versatile and successful collection of an-
alytical tools for runtime analysis is what is known as drift analysis. Drift
analysis covers a range of different results that consider the expected change
in one step of a random process over a state space. It clearly pre-dates runtime
analysis of evolutionary algorithms [13]. It was introduced into the runtime
analysis of evolutionary algorithms, among other things, to simplify the ana-
lysis of the (1+1) EA on the class of linear functions [15], i.e. OneMax-like
functions where each bit does not necessarily contribute 1 to the overall func-
tion value but has a fixed weight wi that it contributes, f(x) =

∑n
i=1 wi ·x[i].

In addition to additive drift [15] we now have tools for considering multiplica-
tive drift [8], negative drift (for proving lower bounds) [35] and variable drift
[9] ([36] provides an overview).

258 Thomas Jansen

Since drift analysis is based on the expected change in one step of a fairly
general and abstract random process and is not tied to runtime analysis,
it should not come as a surprise that it has been successfully applied to
fixed-budget analysis. Lengler and Spooner [28] considered the (1+1) EA
on the class of linear functions, changing the algorithm so that it performed
minimisation instead of maximisation. This change in perspective has the
advantage that the roles of upper and lower bounds on the expected function
value play the same role as upper and lower bounds on the runtime (while,
with maximisation, the roles are reversed as we have discussed earlier). They
introduced a drift theorem that they called fixed-budget multiplicative drift
and that provides an upper- as well as a lower-bound result.

Theorem 5.4.1 (Theorem 1 in [28]). Let (Xt)t≥0 be a stochastic process,
let b ∈ N, and 0 < δ < 1.

Upper bound. If for all t ≤ b we have e[Xt−Xt+1 | Xt = x] ≥ δx then
e[Xb |X0]≤X0 · (1− b)b ≤X0 ·e−δb.

Lower bound. If for all t ≤ b we have e[Xt−Xt+1 | Xt = x] ≤ δx then
e[Xb |X0]≥X0 · (1− b)b ≥X0 ·e−2δb for δ ≤ 0.797.

If we are minimising OneMax with the (1+1) EA, it is not too difficult to
see that the expected decrease in function value is at least OneMax(x)/(en):
with probability (1/n)(1−1/n)n−1 ≥ 1/(en) we flip exactly one bit and there
are OneMax(x) bits that all decrease the number of remaining 1-bits by
1. This yields e[OneMax(xt)] ≤ (n/2) · e−t/(en) as a direct consequence of
Theorem 5.4.1.

When we are considering arbitrary linear functions and the expected func-
tion value, it is clear that the concrete value depends on the concrete weights
in a very significant way. In order to obtain statements that are independent
of the concrete function values (in particular, to allow the derivation of state-
ments that allow a direct comparison with OneMax), we can restrict our
interest to linear functions with only positive weights that are sorted with
respect to size and sum up to n, i.e. w1 ≥ w2 ≥ ·· · ≥ wn > 0 and

n∑
i=1

wi = n.

Considering only positive weights is of no consequence for the (1+1) EA
because it is completely symmetric with respect to the roles of 0-bits and
1-bits (i.e. we can replace wi by −wi and swap the roles of 0-bits and 1-bits
at position i without significantly changing the situation for the (1+1) EA).
Assuming that the weights are sorted is of no consequence for the (1+1) EA,
because it is completely symmetric with respect to bit positions. Finally,
assuming that the weights now add up to n is of no consequence for the
(1+1) EA, because it is sensitive only to the ordering of the function values,
not their absolute values. Thus, changing all weights from wi to some s ·wi

with the same s does not change anything significant for the (1+1) EA.
Using this setting and following the same ideas as for the (1+1) EA on

OneMax, one can prove that

5 Analysing Stochastic Search Heuristics Operating on a Fixed Budget 259

n

2
·e−t/n−O

(
t

n

)
≤ e[f(xt)]≤

n

2
·e−t/(en)

holds [28] for any such linear function. In the upper bound, we recognise
the result for OneMax, which is provably the easiest linear function for the
(1+1) EA (as measured by runtime analysis [42]).

We also see that the bound is only tight for rather small budgets b = o(n)
(remember that b is the total computational budget we are allowed to spend,
and thus t≤ b in the formula above), much smaller than the expected runtime
Θ(n logn). We see here again that it is often much easier to obtain tight results
for earlier stages of a run. The difficulty is that later in the run we have a
non-negligible probability that the optimum has already been found. If that
is the case, no further improvements in the function value are possible, so
that this case significantly reduces the expected contribution of any steps
at later stages. Lengler and Spooner [28] suggested considering conditional
results that they called ‘a posteriori results’: results that are conditioned
on the assumption that, at the point of time we consider, the run has not
yet finished. For the (1+1) EA on OneMax, they were able to prove the
following result of this flavour.

Theorem 5.4.2 (Theorem 19 in [28]). Let γ,ρ be two constants with 0 <
γ < ρ < 1. Consider the (1+1) EA on OneMax for t steps and assume that
OneMax(xt) = o(n/ logn) and OneMax(xt) = Ω(nρ). Then

Pr
[
OneMax(xt+β) = OneMax(xt) ·e−β/(en) · (1±o(1))

]
= 1−o(1)

for all β ≤ (ρ−γ) ·en lnn.

We see that even for OneMax we do not have an unconditional tight
result for the expected function value that the (1+1) EA can deliver after t
steps for budgets that can get arbitrarily close to the expected runtime. For
general linear functions, the situation is even more open.

A fundamentally different approach is based on stochastic differential equa-
tions [16]. It is very similar in spirit to much earlier attempts to improve our
understanding of evolutionary algorithms by employing methods to analyse
dynamic systems inspired by statistical mechanics [37]: one introduces some
assumptions that facilitate the analysis and are reasonable but not proven to
hold in all cases. Based on these assumptions, it becomes possible to derive
results that otherwise elude the state of the art of analytical methods. It is
important to note that the assumptions made are explicit and the subsequent
analysis is completely rigorous. The only non-rigorous step is the definition of
the model that is considered instead of the actual random process as defined
by the algorithm and the fitness function. While this is not the first time
that stochastic differential equations have been used in the analysis of evolu-
tionary algorithms (see [40] for a different example), it is the first time that

260 Thomas Jansen

analytical results have been obtained that are clearly beyond the previous
body of knowledge.

This approach is based on the analysis of stochastic processes that can
be described as a one-dimensional Itô process [34], a process (Xt)t≥0 on
(Ω,F ,P) of the form Xt = X0 +

∫ t
0 b(s,Xs) ds +

∫ t
0 σ(s,Xs) dBs where dBt

denotes a Brownian motion process, b is absolutely integrable in [0, t] and
σ is square integrable in [0, t]. Considering the probability density p(x,t) of
the random process Xt, we approximate the density by considering it as
a time-continuous process (instead of the time-discrete process it actually
is) and applying a Taylor expansion to the Chapman-Kolmogorov equation
p(x,t + ∆t) =

∫
∆(δ | x) · p(x− δ, t) · dδ describing the probability density of

Xt. This leads to the diffusion equation (also known as the Fokker Planck
equation)

∆t · ∂p(x,t)
∂t

≈− ∂

∂x
(p(x,t) · e[∆])+ 1

2
· ∂

∂x2 (p(x,t) · e[∆2])

and one considers the stochastic differential equation associated with it,

dXt ≈ e[∆] dt+
√

e[∆2] dBt,

which turns out to be an Itô process [34]. Based on this, the main assumption
made is the following (Hypothesis 1 in [16]). The dynamics of RLS and the
(1+1) EA can be approximated by the Itô process

dXt = b(Xt, t) dt+ρ(Xt, t) dBt,

b(Xt, t) = e[Xt+1−Xt |Xt],
σ2(Xt, t) = e

[
(Xt+1−Xt)2 |Xt

]
,

where Bt is a Brownian motion process.
Approximation errors are introduced by considering a time-continuous ran-

dom process instead of the actual algorithm that operates in discrete time
steps, and by the Gaussian approximation that depends on the operators the
algorithm applies and the fitness function. It is worth mentioning that the
method is not tied to RLS and the (1+1) EA; in particular, it can cover a
much wider range of selection operators, and a number of results are already
available (see [16] for details).

Using this framework, it is not difficult to derive a number of results, we
consider fixed-budget results for LeadingOnes as an example. We start with
RLS and remember that e[LeadingOnes(xt)] = 1 + (2t/n)− 2−Ω(n) holds
(with the long and technical proof to be found in [21]). The approach here
yields 1+(t/n)−2−n ≤ e[LeadingOnes(xt)]≤ 1+(2t/n)−2−n (and we see
that the upper bound is actually tight and the lower bound off by a factor
of 2), but also a result for the variance of the process, namely 2 + (t/n)−
2−Ω(n) ≤Var[LeadingOnes(xt)]≤ 2+(4t/n)−2−Ω(n).

5 Analysing Stochastic Search Heuristics Operating on a Fixed Budget 261

For the (1+1) EA, the rigorous analysis becomes much more involved
and we have the tight result e[LeadingOnes(xt)] = 1+(2t/n)−o(t/n) only
for not too large budgets b = o(n2) [21]. Using the approximation approach,
we obtain 1+(t/(en))−2−Ω(n) ≤ e[LeadingOnes(xt)]≤ 1+(2t/n)−2−Ω(n)

and also 2 + (t/(en)) − 2−Ω(n) ≤ Var[LeadingOnes(xt)] ≤ 2 + (4t/n) −
2−Ω(n) without a restriction on the budget. The result, however, is again
not tight. The deviation seems to indicate that the results are rather pes-
simistic, resulting in lower bounds that tend to be too small. This trend is
confirmed by other results [16]. It is also possible to use the same approach
to derive fixed-budget results for non-elitist trajectory-based algorithms, i.e.
for algorithms that follow the same general algorithmic framework as RLS
and the (1+1) EA (Algorithms 5.2 and 5.2, respectively) but make use of a
selection that allows one to stay with an inferior search point under some cir-
cumstances (usually purely stochastic with some fixed probability that might
depend on the difference in function value, the Metropolis algorithm and sim-
ulated annealing are examples of this kind of algorithm [17]). We point the
interested reader to the original paper [16] and will not expand on the brief
description of the method presented so far.

5.5 Results Obtained by Using the Fixed-Budget
Perspective

When introducing the fixed-budget perspective, it has been argued that com-
pared to runtime analysis, fixed-budget results have greater potential to an-
swer questions that practitioners actually care about [20]. This might lead
to the belief that results obtained in the fixed-budget framework should give
answers to questions for which runtime analysis remains silent. While this is
actually the case, there is more to fixed-budget results. They might actually
lead to answers that are to some extent contradictory to the insights that
runtime analysis has provided. We will consider a range of different results
that have been obtained using the fixed-budget perspective, and the kind of
insights that have been obtained with the help of it.

Artificial immune systems [38] are a class of stochastic search heuristics
that are algorithmically very similar to evolutionary algorithms while being
very different in their motivation and quite different in the concrete implemen-
tation of operators. Artificial immune systems take inspiration from different
theories about the functioning of the immune system of vertebrates. One
aspect of artificial immune systems that is, algorithmically speaking, very
different from evolutionary algorithms is the way mutation works. In evolu-
tionary algorithms, mutation operators create small random choices and allow
a search that concentrates mostly on search points that are rather close to
the current population [18]. The standard bit mutation used in the (1+1) EA
(Algorithm 5.2) is a very typical example. Artificial immune systems make

262 Thomas Jansen

use of so-called hypermutations, which have a much higher probability of
producing new search points that have a huge Hamming distance from the
original search point. One can compare the performance of such hypermuta-
tions with the performance of other mutation operators such as standard bit
mutations by taking the (1+1) EA and replacing only the mutation operator
(see [19] for an example of this approach). When one analyses the performance
on common simple example functions such as OneMax and LeadingOnes,
the usual finding is that standard bit mutations perform much better than
hypermutations (or, expressed a little more drastically and less precisely, evo-
lutionary algorithms perform much better than artificial immune systems).
However, when the fixed-budget perspective is used to perform the same
analysis, a quite different and more varied picture emerges. We discuss the
findings here in some more detail (taking the setting and results from [22]).

One example of a hypermutation operator is the somatic contiguous hy-
permutations that are used in the B-cell algorithm [26]. In these somatic
contiguous hypermutations one picks a starting position p and a mutation
length l uniformly at random and flips a contiguous region of l bits starting at
position p (wrapping around and continuing at the beginning of the bit string
if l +p > n). Another example is the inversely fitness-proportional mutations
that have been used in CLONALG [3] and other artificial immune systems.
Like standard bit mutations, these flip each bit with some probability, but
instead of using a fixed probability 1/n they use e−ρf , where ρ ∈ R+ is a
parameter and f is a normalised fitness that is in the interval [0,1]. It is not
difficult to show that both mutation operators perform poorly on OneMax
in comparison with the (1+1) EA and RLS in terms of expected runtime.
However, when a very small computational budget b (e.g. b = o(n1/4)) is
considered, it can be shown that both somatic contiguous hypermutations
and inversely fitness-proportional mutations perform much better than the
(1+1) EA with standard bit mutations and RLS in terms of expected fit-
ness values [22]. The reason is that both of these hypermutation operators
have a very good chance of making large improving steps (large in the sense
of Ω(n1/4)), while RLS and the (1+1) EA are restricted to improving the
function value in each generation in expectation by not more than a rather
small constant. Thus, during these first steps, hypermutations perform much
better and it depends on the context of the concrete application which kind
of mutation operator should be preferred.

One example where one might be much more interested in the short-term
performance of a heuristic than in its ability to locate an optimal solution in
a much longer time frame is dynamic optimisation, where we are confronted
with an objective function that changes over time. In this context, it can be
much more important to reliably track the global optimum and be able to
keep the distance to the local optimum limited than to locate it occasionally.
With this specific measure of performance in mind, one can for example com-
pare evolutionary algorithms and artificial immune systems when confronted
with a dynamic problem. We consider one such example, where an evolu-

5 Analysing Stochastic Search Heuristics Operating on a Fixed Budget 263

tionary algorithm using standard bit mutations is compared with the B-cell
algorithm on a dynamic bistable example problem [24]. In this example prob-
lem, the fitness f(x) is given as the number of bits in which x agrees with
the unique global optimum (this is precisely the same as OneMax when the
global optimum is the all-1-bits string 1n). The global optimum oscillates be-
tween two search points that are the bitwise complement of each other. The
transition from one to the other is gradual, flipping one bit after the other
in a consecutive fashion. Once the global optimum is equal to one of the two
special search points, it remains unchanged for a period of fixed length. The
performance of the different algorithms depends crucially on the length of this
stable period, as well as on the speed of the execution platform (which defines
how many function evaluations an algorithm can perform in the time during
which the dynamic fitness function does not change). While the evolutionary
algorithm is generally better in locating the global optimum in the stable
phases (given that the stable phase is long enough and the execution plat-
form fast enough), during the transition phases the artificial immune systems
are better able to keep up with the moving optimum. Such results are easier
to describe and analyse precisely in the fixed-budget perspective. We point
the interested reader to [24] for a complete picture of different performance
results in this specific context.

The results on OneMax establish that RLS and the (1+1) EA are much
more efficient hill-climbers than the B-cell algorithm. One example function
that was introduced in the context of the role that crossover plays is H-Iff
[41]. To compute the function value H-Iff(x), we consider x as a concate-
nation of n/2l bit strings of equal length 2l for each l ∈ {0,1, . . . , logn} (and
assume for the sake of simplicity that n is a power of 2). One such block
contributes 2l to the overall function value if it is either an all 0-bits or an
all 1-bits block. Otherwise, it does not make any contribution to the function
value. We see that a bit string and its bitwise complement have the same func-
tion value and that the all-1-bits string and the all-0-bits string are the two
global optima. Random local search and the (1+1) EA both get stuck (either
forever in the case of RLS or for very long times in the case of the (1+1) EA)
in local optima which are easy to find. This might lead to the speculation
that in the fixed-budget perspective considering very small budgets RLS and
the (1+1) EA outperform the B-cell algorithm on H-Iff, while in the run-
time perspective the B-cell algorithm is much more efficient: it can be shown
using simple fitness-level arguments that its expected optimisation time is
O(n3 logn) [23]. We remark that the same problem and algorithm have been
subject to an intense analysis in a bigger study that, however, concentrated
only on results from the expected runtime perspective [43]. Considering the
fixed-budget perspective [23], the somewhat surprising finding is that RLS
and the (1+1) EA do not have a clear advantage on H-Iff even for rather
small computational budgets.

Analysing the performance of stochastic search heuristics from the fixed-
budget perspective is not restricted to artificial example problems. The first

264 Thomas Jansen

example of a combinatorial optimisation problem where fixed-budget results
have been obtained for simple stochastic search heuristics (namely, RLS and
(a variant of) the (1+1) EA) is the traveling salesperson problem (TSP)
[32]. While there are no provably tight results, there are lower bounds on the
expected gain in function value in one generation that can be used to obtain
performance guarantees for a stochastic search heuristic. We have argued
above that results of this type are most relevant in practical settings, and
it is important that [32] provides an example of results of this kind for a
practically relevant, hard combinatorial optimisation problem.

In the TSP, we are looking for an optimal order of all nodes of the given
input graph so that visiting the nodes in this order is a tour of minimum
length. While it is possible to encode this problem in a binary search space,
it is more natural to have the algorithms operate in the natural search space:
the set of all permutations. This implies that it becomes necessary to define a
mutation operator for this search space. Nallaperuma et al. [32] used a 2-opt
step as a local mutation for RLS. In a 2-opt step, one selects from a tour two
edges {u1,u2}, {v1,v2} that do not share any node, and appear in the tour in
that order. They are removed and replaced by the edges {u1,v1} and {u2,v2}.
One can in some sense ‘simulate’ standard bit mutations (concentrating on
the fact that a mutation flipping k bits can be viewed as executing k local
mutations and that this happens with probability ≈ e−1/k!) by selecting a
number k from a Poisson distribution with parameter λ = 1 and performing
k + 1 2-opt steps. Note that performing k + 1 2-opt steps (instead of k) ex-
cludes the case where no change is made (something that happens for the
(1+1) EA with probability ≈ e−1).

The analysis considers random instances that are generated by placing n
points in a d-dimensional unit hypercube, each point chosen independently
with its own probability density function fi : [0,1]d → [0,ϕ], where ϕ > 1 is
a parameter. The probability densities are chosen by an adversary who has
the aim of creating difficult random instances. The power of the adversary
increases with increasing ϕ (where ϕ = 1 would equal a powerless adversary
because there is only one valid choice and the instances are drawn with respect
to the uniform distribution).

For a fixed-budget analysis results, on the expected improvement for a
2-opt step are very helpful. For two variants of the TSP, the TSP where dis-
tances are given by the Manhattan metric and the Euclidean TSP, Englert
et al. [12] showed that the probability that the smallest possible improve-
ment for a 2-opt step is less than ε is bounded from above by 576εn4ϕ for
the Manhattan metric and by n2ε log(1/ε)ϕ3 for the Euclidean metric. Using
this it can be shown for the Manhattan metric that RLS and the (1+1) EA
both achieve an expected fitness gain of Ω(t/(n6ϕ)) or reach a local opti-
mum with expected approximation ratio O(

√
ϕ) in t steps (see [32] for the

proof). By considering not just single 2-opt steps but sequences of 2-opt steps,
this bound can be improved to Ω(t/(n5ϕ)) for RLS if the number of steps
t is sufficiently large, namely t > (3/2)n3. For the (1+1) EA, the analysis

5 Analysing Stochastic Search Heuristics Operating on a Fixed Budget 265

is more complicated and the proof in [32] works only when one makes the
assumption that the (1+1) EA never removes an edge in a 2-opt step that is
later reinserted in the sequence of steps considered. It can be hoped that this
assumption does not improve the performance and the result also holds for
the (1+1) EA, because excluding such steps only rejects steps that would
lead to an improvement. However, proving this is an open problem. Under
this assumption the same improved bound of Ω(t/(n5ϕ)) can be proved if the
number of steps t is sufficiently large, namely t > (3/2)e2n3 for the (1+1) EA.
For the Euclidean metric, the bound obtained by analysing a single step is
Ω(t log(nϕ)/(n6ϕ3)) for RLS and the (1+1) EA (and, as above, both algo-
rithms might alternatively find a local optimum with an expected approx-
imation ratio of O(

√
ϕ)). Again, for both algorithms this can be improved

by considering sequences of steps (under the condition that the number of
steps t is large enough, namely t > (3/2)n3 for RLS and t > (3/2)e2n3 for the
(1+1) EA) to Ω(t

√
log(nϕ)/(n5ϕ5/2)). Again, for the (1+1) EA the addi-

tional assumption about not accepting 2-opt steps that remove an edge that
is later re-inserted is required for the proof. It is possible to generalise the
analysis to cover variants of RLS and the (1+1) EA that do not produce one
mutated search point in each round but instead produce λ mutated search
points in each round (independently and identically distributed) and select a
best one. The detailed results and how the expected improvement in t steps
can be translated into a result about the expected approximation ratio can
be found in [32].

One other example that demonstrates the usefulness of the fixed-budget
perspective stems from the area of the design of stochastic search heuristics.
One motivation for theoretical analysis of general stochastic search heuristics
is that it leads to a better understanding that should enable us to design bet-
ter heuristics. Doerr et al. [6] presented one example of this kind of research.
They considered the generalised OneMax problem: the function value f(x) is
given by the number of bits where x agrees with the unknown target bit string.
If the target bit string is the all-1-bits string 1n, the function is OneMax.
For this problem, they considered heuristics that are unbiased in the sense of
unbiased black-box complexity [27]: intuitively speaking, the search heuris-
tic has to be completely symmetric with respect to the roles of 0-bits and
1-bits as well as bit positions. Moreover, selection can depend only on the
function values and not the search points themselves. In this context, Doerr
et al. considered a variant of RLS with two modifications. The first modifi-
cation is that if f(x) < n/2 (i.e. more than half of the bits in the current
search point are wrong), the current search point x is replaced by its bitwise
complement x. Since f(x) = n−f(x) for all generalised OneMax functions
f , this is guaranteed to be an improvement. The second motivation is that,
instead of flipping precisely one bit, the algorithm flips a number of bits that
depends on the function value. To determine how many bits should be flipped
Doerr et al. performed a very precise analysis of the expected improvement in
function value, the drift, and based on this defined a function that yields the

266 Thomas Jansen

number of bits to be flipped for each function value. This optimal number is
1 if the number of incorrect bits is less than n/3 and increases monotonically
with the number of incorrectly set bits after that. Moreover, it is always an
odd number. Using the method of variable drift analysis [7], they derived
precise results for the expected runtime that show the expected runtime to
be n ln(n)− cn± o(n) for a constant c with 0.2539 < c < 0.2665. This is at
most εn (ε > 0 constant) worse than the black-box complexity, the lower
bound for any unbiased algorithm. However, the actual advantage appears
to be small compared with unmodified RLS which has an expected runtime
n ln(n) + γn± o(n). Thus, the new algorithm has an advantage of at most
0.151n while the expected runtime is n ln(n)±Θ(n), a not very impressive
advantage. However, by performing an analysis using the fixed-budget per-
spective one can show that in comparison with RLS the expected function
value is about 13% larger for the new algorithm, a clear and tangible advan-
tage. The main difficulty in deriving the fixed-budget result is in proving a
concentration result for an aspect of the expected runtime (something that
is not surprising remembering the results in Section 5.3). Proof details can
be found in [6]. A similar result can be proven for a variant that self-adjusts
the choice of the number of bits to be flipped [5].

5.6 Summary

The fixed-budget perspective is an alternative to the ‘classical’ analytical per-
spective that runtime analysis offers. Instead of asking how long we expect a
stochastic search heuristic to run, we ask what solution quality we can expect
when we run the heuristic for a fixed number of steps. Since stochastic search
heuristics are often applied to hard problems that are not well understood,
it is often the case that they do not find an optimal solution, and even in the
case where they do the user is not able to recognise that this has happened.
Runtime analysis is not a good match to this way of applying stochastic
search heuristics. The fixed-budget perspective is more useful in these situa-
tions because it provides information about the expected performance in a
set time frame.

Considering RLS on OneMax, we have seen that in such very simple cases
it is possible to obtain very precise results. However, in even slightly more
realistic cases the analysis becomes much harder. This motivates the search
for analytical tools and methods to derive fixed-budget results.

So far, there is only one method that is tailored towards derivation of
fixed-budget results. It allows, to transfer runtime results if one is able to
generalise the runtime result to a runtime result for all possible function
values and if one is able to provide concentration bounds for this generalised
runtime result. The main difficulty is obtaining a strong concentration result.

5 Analysing Stochastic Search Heuristics Operating on a Fixed Budget 267

The strength of the concentration bound is directly reflected in the quality
of the fixed-budget result.

Results for the (1+1) EA on the class of linear functions show that existing
tools such as drift analysis can be applied to obtain fixed-budget results.
There is certainly a lot of room to extend this direction of research and see
how other methods can be used and adapted to yield fixed-budget results.

Our lack of knowledge when it comes to the (1+1) EA on the most stud-
ied example function, OneMax, and its cousins, the class of linear functions
(see Section 5.4), demonstrates that fixed-budget analysis is still in an early
stage and that there are many fundamental problems still unsolved that have
already been answered for runtime analysis some time ago. Answering these
kinds of questions has led to very significant research efforts in the runtime
analysis community with a large number of results, deep insights and, most
importantly, the development of a number of powerful and very useful ana-
lytical tools. It can be hoped that open problems that are so fundamental,
easy to state and yet very difficult to answer will lead to a similar effort and
success in the area of fixed-budget computations and their analysis.

It is currently unclear if the approximative approach via stochastic differ-
ential equations that is based on an approximation and in this sense yields
only non-rigorous results is a productive step forward. This approach has just
been published [16], and the results that come with it are currently restricted
to weaker versions of known results and results for less well-known algorithms.
It remains to be seen if it will deliver significant new insights in the future.

There are a number of results that show that fixed-budget analysis can
yield relevant and important insights. When one is designing novel stochastic
search heuristics (in the example we considered, based on insights that stem
from theoretical analysis), the fixed-budget perspective has the potential to
show that an advantage that might appear to be very small (or even insignif-
icant) in the runtime perspective can be relevant and meaningful from the
fixed-budget point of view. Considering artificial immune systems and revisit-
ing runtime results that demonstrated that evolutionary algorithms are faster
in optimising some example functions has revealed that while the artificial
immune systems took much longer to get to an optimum, they made much
quicker progress at the beginning of a run, implying that they would be the
preferred choice if the available computational budget was small. The same
effect can be exploited in the context of dynamic optimisation, where it can
be most important to make some progress quickly in situations where the
landscape is changing rapidly.

The travelling salesperson problem is, to the best of our knowledge, the
first and so far only combinatorial optimisation problem where fixed-budget
results are available, even for a range of algorithms. The way the results were
obtained demonstrates that insights that were gained in a different context
for different purposes can sometimes be reused to provide significant new
fixed-budget results. It would be useful to find more examples of this kind to

268 Thomas Jansen

increase our knowledge about the performance of stochastic search heuristics
in combinatorial optimisation from the perspective of fixed-budget analysis.

References

[1] Anne Auger and Benjamin Doerr, editors. Theory of Randomized Search
Heuristics. World Scientific, 2011.

[2] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. Optimal fixed
and adaptive mutation rates for the leadingones problem. In Proceedings
of the 11th International Conference on Parallel Problem Solving From
Nature (PPSN 2010), pages 1–10, 2010.

[3] Leandro N. de Castro and Fernando J. Von Zuben. Learning and op-
timization using the clonal selection principle. IEEE Transactions on
Evolutionary Computation, 6(3):239–251, 2002.

[4] Benjamin Doerr. Analyzing randomized search heuristics: Tools from
probability theory. In Auger and Doerr [1], pages 1–20.

[5] Benjamin Doerr, Carola Doerr, and Jing Yang. k-bit mutation with self-
adjusting k outperforms standard bit mutation. In Proceedings of the
14th International Conference on Parallel Problem Solving From Nature
(PPSN 2016), pages 824–834, 2016.

[6] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal parameter
choices via precise black-box analysis. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2016), pages 1123–
1130, 2016.

[7] Benjamin Doerr, Mahmoud Fouz, and Carsten Witt. Sharp bounds by
probability-generating functions and variable drift. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO 2011),
pages 2083–2090, 2011.

[8] Benjamin Doerr and Leslie Goldberg. Drift analysis with tail bounds.
In Proceedings of the 11th International Conference on Parallel Problem
Solving From Nature (PPSN 2010), pages 174–183, 2010.

[9] Benjamin Doerr and Leslie Goldberg. Adaptive drift analysis. Algorith-
mica, 65(1):224–250, 2013.

[10] Benjamin Doerr, Thomas Jansen, Carsten Witt, and Christine Zarges. A
method to derive fixed budget results from exptected optimisation times.
In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2013), pages 1581–1588, 2013.

[11] Marco Dorigo and Thomas Stützle. Ant Colony Optimisation. Springer,
2004.

[12] Mathias Englert, Heiko Röglin, and Bertold Vöcking. Worst case and
probabilistic analysis of the 2-Opt algorithm for the TSP. Algorithmica,
68(1):190–264, 2014.

5 Analysing Stochastic Search Heuristics Operating on a Fixed Budget 269

[13] Bruce Hajek. Hitting-time and occupation-time bounds implied by drift
analysis with applications. Advances in Applied Probability, 13(3):502–
505, 1982.

[14] Jun He. An analytic expression of relative approximation error for a class
of evolutionary algorithms. In Proceedings of the IEEE World Congress
on Computational Intelligence (CEC 2016), pages 4366–4373, 2016.

[15] Jun He and Xin Yao. Drift analysis and average time complexity of
evolutionary algorithms. Artificial Intelligence, 127(1):57–85, 2001.

[16] Jorge Pérez Heredia. Modelling evolutionary algorithms with stochastic
differential equations. Evolutionary Computation, 2018. To appear.

[17] Thomas Jansen. Simulated annealing. In Auger and Doerr [1], pages
171–196.

[18] Thomas Jansen. Analyzing Evolutionary Algorithms: The Computer Sci-
ence Perspective. Springer, 2013.

[19] Thomas Jansen and Christine Zarges. Analyzing different variants of
immune inspired somatic contiguous hypermutations. Theoretical Com-
puter Science, 412(6):517–533, 2011.

[20] Thomas Jansen and Christine Zarges. Fixed budget computations: a
different perspective on run time analysis. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2012), pages 1325–
1332, 2012.

[21] Thomas Jansen and Christine Zarges. Performance analysis of ran-
domised search heuristics operating with a fixed budget. Theoretical
Computer Science, 545:39–58, 2014.

[22] Thomas Jansen and Christine Zarges. Reevaluating immune-inspired
hypermutations using the fixed budget perspective. IEEE Transactions
on Evolutionary Computation, 18(5):674–688, 2014.

[23] Thomas Jansen and Christine Zarges. Understanding randomised search
heuristics. Lessons from the evolution of theory: a case study. In Proceed-
ings of the 20th International Conference on Soft Computing (MENDEL
2014), pages 293–298, 2014.

[24] Thomas Jansen and Christine Zarges. Analysis of randomised search
heuristics for dynamic optimisation. Evolutionary Algorithms, 23(4):513–
541, 2015.

[25] Kenneth A. De Jong. Evolutionary Computation: A Unified Approach.
MIT Press, 2006.

[26] Johnny Kelsey and Jon Timmis. Immune inspired somatic contiguous
hypermutation for function optimisation. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2003), pages 207–
218, 2003.

[27] Per Kristian Lehre and Carsten Witt. Black-box search by unbiased
variation. Algorithmica, 64(4):623–642, 2012.

[28] Johannes Lengler and Nick Spooner. Fixed budget performance of the
(1+1) EA on linear functions. In Proceedings of the 2015 ACM Confer-

270 Thomas Jansen

ence on Foundations of Genetic Algorithms XIII (FOGA 2015), pages
52–61, 2015.

[29] Wil Michiels, Emile Aarts, and Jan Korst. Theoretical Aspects of Local
Search. Springer, 2007.

[30] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[31] Heinz Mühlenbein. How genetic algorithms really work: Mutation and
hillclimbing. In Proceedings of the 2nd International Conference on
Parallel Problem Solving from Nature (PPSN II), pages 15–26, 2002.

[32] Samadhi Nallaperuma, Frank Neumann, and Dirk Sudholt. Expected
fitness gains of randomized search heuristics for the traveling salesperson
problem. Evolutionary Computation, 2018. To appear.

[33] Frank Neumann and Carsten Witt. Bioinspired Computation in Combi-
natorial Optimization: Algorithms and Their Computational Complexity.
Springer, 2010.

[34] Bernt Øksendal. Stochastic Differential Equations: An Introduction with
Applications. University of Michigan Press, 2003.

[35] Pietro Simone Oliveto and Carsten Witt. Simplified drift analysis
for proving lower bounds in evolutionary computation. Algorithmica,
59(3):369–386, 2011.

[36] Pietro Simone Oliveto and Xin Yao. Runtime analysis of evolutionary
algorithms for discrete optimization. In Auger and Doerr [1], pages 21–
52.

[37] Adam Prügel-Bennett. Modelling evolving populations. Journal of The-
oretical Biology, 185(1):81–95, 1997.

[38] Mark Read, Paul S. Andrews, and Jon Timmis. An introduction to
artificial immune systems. In Handbook of Natural Computing, pages
1575–1597. Springer, 2012.

[39] Günter Rudolph. Stochastic convergence. In Handbook of Natural Com-
puting, pages 847–869. Springer, 2012.

[40] Tom Schaul. Natural evolution strategies converge on sphere functions.
In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2012), pages 329–336, 2012.

[41] Richard A. Watson, Gregory S. Hornby, and Jordan B. Pollack. Mod-
eling building-block interdependency. In Proceedings of the Fifth Inter-
national Conference on Parallel Problem Solving From Nature (PPSN
1998), pages 97–108, 1998.

[42] Carsten Witt. Tight bounds on the optimization time of a random-
ized search heuristic on linear functions. Combinatorics, Probability and
Computing, 22(2):294–318, 2013.

[43] Xiaoyun Xia and Yuren Zhou. On the effectiveness of immune inspired
mutation operators in some discrete optimization problems. Information
Sciences, 426:87–100, 2018.

Chapter 6
Theory of Parameter Control for Discrete
Black-Box Optimization:
Provable Performance Gains Through
Dynamic Parameter Choices

Benjamin Doerr and Carola Doerr

Abstract Parameter control is aimed at realizing performance gains through
a dynamic choice of the parameters which determine the behavior of the un-
derlying optimization algorithm. In the context of evolutionary algorithms,
this research line has for a long time been dominated by empirical approaches.
With the significant advances in running-time analysis achieved in the last
ten years, the parameter control question has become accessible to theoret-
ical investigations. A number of running-time results for a broad range of
different parameter control mechanisms have been obtained in recent years.
This chapter surveys these results, and puts them into context by proposing
an updated classification scheme for parameter control.

6.1 Introduction

Evolutionary algorithms and many other iterative black-box optimization
heuristics are parameterized algorithms, i.e., their search behavior depends
(to a large extent) on a set of parameters which the user needs to specify, or
which are set by the algorithm designer to some default values. It is today
well understood that the parameter choice can have a very decisive influence
on the performance of a heuristic [71]. Understanding how to best choose the
parameters is therefore an important task. It is referred to as the parameter
selection problem.

The parameter-setting problem is difficult for several reasons.

Benjamin Doerr
École Polytechnique, CNRS, Laboratoire d’Informatique (LIX), Palaiseau, France
Carola Doerr
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, 75005 Paris,
France

271

272 Benjamin Doerr and Carola Doerr

• Complexity of performance prediction. Despite significant research efforts
devoted to this problem, predicting how the performance of an algorithm
depends on the chosen parameter values remains a very challenging prob-
lem – both with empirical and with theoretical methods. In fact, deter-
mining optimal parameter values can be very complex even for a single
parameter. Many black-box optimization heuristics, however, rely on two
or more parameters. Rigorously analyzing the interdependency between
these parameters is often infeasible by state-of-the-art technology.

• Problem and instance dependence. It is well known that no globally good
parameter values exist, but that suitable parameter values can differ sub-
stantially between different optimization problems, and even between dif-
ferent instances of the same problem.

• State dependence. It is, furthermore, widely acknowledged that the best
parameter values can change during the optimization process. For exam-
ple, it is often beneficial to use larger mutation rates at the beginning
of an optimization process, to allow faster exploration, and to shrink the
search radius over time, to allow better exploitation in the later stages, see
Section 6.2 for a detailed example.

To overcome these difficulties, a large number of different parameter-
setting techniques have been developed. Following standard terminology in
evolutionary computation, they can be classified into two main approaches.

• Static parameter settings: parameter tuning. Parameter tuning is aimed
at identifying parameter values that are, for a given algorithm on a given
problem (instance), globally suitable throughout the whole optimization
process. The parameters are initialized with these values and do not change
during the optimization process. Parameter tuning thus addresses the
above-mentioned problem and instance dependence of optimal parameter
choices, but not their state dependence.
In empirical studies, parameter tuning often requires an initial set of ex-
periments that support an informed decision. Automated tools that help
the user to identify reasonable static parameter values are available, and
have been shown to provide significant performance gains over a manual
tuning process. [3, 11, 51, 52, 72] are examples of automated parameter-
tuning approaches that have been used in (and to some extend specifically
designed for) evolutionary optimization contexts.
In theoretical studies, parameter tuning requires running-time bounds that
depend on the parameters under investigation. The minimization of these
performance bounds then suggests suitable parameter values. A prime ex-
ample of such a mathematical approach to parameter tuning is the pre-
cise running-time bound for the (1+1) EA with mutation rate p = c/n
on linear functions. Witt [86] has shown that this expected optimization
time is (1±o(1))ec

c n ln(n). This bound, together with larger running-time
bounds for mutation rates p ̸= c/n, proves that the often recommended
choice p = 1/n is indeed optimal for the (1+1) EA on this problem. Such

6 Theory of Parameter Control for Discrete Black-Box Optimization 273

precise upper and lower bounds, however, are rare. Even worse, only few
running-time bounds that depend on two or more parameters exist; see
Section 6.4.3.

• Dynamic parameter setting: parameter control. Parameter control,
in contrast, is aimed at benefiting from a non-static choice of the param-
eters, with the underlying idea that the flexibility in the behavior can be
used to adjust the algorithms’ behavior to the current state of the opti-
mization process. Put differently, parameter control is aimed not only at
identifying parameter values that are a good compromise for the whole op-
timization process, but also at tracking the evolution of the best parameter
values. Even when the optimal parameter values are rather stable, the role
of parameter control is to identify these values on the fly, without a dedi-
cated tuning step that precedes the actual optimization process.

This chapter focuses on non-static parameter choices, and thus on
parameter control mechanisms. We survey existing theoretical studies of
parameter control in the context of evolutionary algorithms and other stan-
dard black-box optimization heuristics. We also summarize a few standard
techniques used in the empirical research literature.1 We structure our pre-
sentation with a new classification scheme for parameter control mechanisms.
This taxonomy builds on the well-known classification by Eiben, Hinterding,
and Michalewicz [40], but modifies it to better reflect the developments that
parameter control has witnessed in the last 20 years.

This chapter is structured as follows. We indicate the motivation for the
use of non-static parameter choices in Section 6.2 by demonstrating a simple
example where adaptive parameter selection is provably beneficial. We then
introduce our revised classification scheme in Section 6.3. In the subsequent
Sections 6.4-6.8, we survey existing theoretical results. In Section 6.9, we
conclude this chapter with a discussion of promising avenues for future work.
A summary of selected theoretical running-time results covered in this chapter
can be found in Table 6.2.

6.2 A Motivating Example: (1+1) EA and RLS on
LeadingOnes

We start this section with an example that demonstrates the potential advan-
tages of parameter control mechanisms. To this end, we study the well-known
LeadingOnes benchmark, the problem of minimizing an unknown function
of the type

1 Readers interested in empirical studies of parameter control are referred to [61] for
an exhaustive survey. Additional pointers can be found in the systematic literature
review [2], the book chapter [41] (and other chapters in the same collection), and the
seminal paper [40].

274 Benjamin Doerr and Carola Doerr

LOz,σ : {0,1}n→ [0..n] := {0,1, . . . ,n},
x 7→max{i ∈ [0..n] | ∀j ∈ [1..i] : xσ(j) = zσ(j)},

where z ∈ {0,1}n and σ is a permutation (one-to-one map) of the set [1..n].
Optimizing LOz,σ corresponds to identifying z, the unique optimum of LOz,σ.
Note that for every x the function value LOz,σ(x) is the length of the longest
prefix that x and z have in common, when comparing the strings in the order
prescribed by σ.

It has been shown in [12] that the (1+1) EA with a static mutation rate
0 < p < 1 needs 1

2p2 [(1−p)1−n− (1−p)] iterations, on average, to optimize a
LeadingOnes instance. This term is minimized for p≈ 1.59/n, which yields
an expected optimization time of around 0.77n2. It was observed in [12] that
a fitness-dependent choice of the mutation rate gives a better optimization
time. More precisely, when x denotes the current best individual, and we
choose in the next iteration p = 1/(LO(x) + 1) as the mutation rate, the
expected optimization time decreases to around (e/4)n2 ≈ 0.68n2. This is
almost 21% better than the expected optimization time of the (1+1) EA
with standard mutation rate p = 1/n and about 11.7% better than the 0.77n2

expected running time mentioned above which the best static mutation rate,
p≈ 1.59/n, achieves.

Also Randomized Local Search (RLS), the algorithm which in each itera-
tion flips one uniformly selected bit and selects the better of the two offspring
as the parent individual for the next iteration, can profit from a non-static
choice of the step size, i.e., the number of bits that it flips in every iteration.
It is well known that RLS needs n2/2 iterations, in expectation, to optimize
an n-dimensional LeadingOnes instance. In Fig. 6.1 we take a closer look at
the optimization process, and plot the expected number of iterations (y-axis)
needed by RLS to identify, on the 1000-dimensional LeadingOnes problem,
a solution of fitness value at least LO(x) (x-axis). This is the blue straight
line. We also illustrate in the same figure the corresponding expected fixed-
target running times of the RLS variant which in each iteration flips exactly
two and three pairwise different bits, respectively. These are the yellow and
gray curves, respectively. The lowermost, black line illustrates the expected
performance of the RLS variant which chooses in each iteration the best of
these three parameter values. We observe that this adaptive variant has an
expected optimization time that is around 20% smaller than that of standard
1-bit-flip RLS. We also see that for LO values smaller than n/2, it is advis-
able to flip more than one bit per iteration, while 1-bit flips are optimal once
a solution of LO value ≥ n/2 has been identified. This can be best seen by
comparing the slopes of the curves in this plot of fixed-target running times.
The ultimate goal of parameter control is the design of mechanisms that de-
tect such transitions and suggest the best possible parameter values for the
different stages in an automated way.

We note that in the example discussed in this section, “only” constant
factors could be gained through the dynamic parameter choice, but that

6 Theory of Parameter Control for Discrete Black-Box Optimization 275

Fig. 6.1 Expected fixed-target running times of RLS variants flipping in each itera-
tion exactly one, two, three, or an adaptive number of bits on the 1,000-dimensional
LeadingOnes function. The adaptive variant, which chooses the best among the three
parameter values, has a total expected optimization time that is about 20% better than
RLS, which always flips one bit per iteration.

in general asymptotic performance gains can also be expected. An example
where this has been rigorously proven will be discussed in Section 6.4.3.

6.3 Classification of Parameter Control Mechanisms

A considerable obstacle to be overcome when searching for previous work on
non-static parameter choices is the lack of a commonly agreed-upon termi-
nology. This has led to a situation in which similar techniques have signif-
icantly different names, and, conversely, the same term has been used for
two fundamentally different concepts. Since 1999 a widely accepted classi-
fication scheme for parameter setting has been the taxonomy proposed by
Eiben, Hinterding, and Michalewicz in [40]. We present this classification in
Section 6.3.1, and modify it to cope with the developments in parameter
control in the last twenty years in Section 6.3.2.

6.3.1 The Classification Scheme of Eiben, Hinterding,
and Michalewicz

Eiben, Hinterding, and Michalewicz [40] distinguished three different types
of parameter control, namely deterministic, self-adaptive, and adaptive
parameter settings.

• A dynamic parameter choice is called deterministic if the choice of the
parameter value does not depend on the fitness landscape encountered by

276 Benjamin Doerr and Carola Doerr

the algorithm. Since there is thus no feedback from the optimization pro-
cess into the parameter choice, the parameter value can depend only on
iteration or time counters. It was noted already in [40] that the term “de-
terministic” is misleading, since a time-dependent parameter choice may
still contain randomized elements, that is, the time or iteration counter
determines a probability distribution from which the parameter value is
sampled. As alternative names for this class of update schemes, the terms
scheduled and feedback-free parameter control might be more appropriate.

• In self-adaptive parameter choices, the parameters are encoded into the
representation of the search points and are thus subject to variation op-
erators. The hope is that the better parameter values will yield better
offspring and will thus be more likely to survive the evolutionary process.
By this, implicitly, the choice of the parameters depends on the optimiza-
tion process and thus, in particular, on the fitness function.

• Adaptive parameter choices are dynamic parameter settings in which there
is an explicit dependence of the parameters on the optimization process.
This large category includes structurally simple success-based update rules
such as those resembling the one-fifth success rule in evolution strategies,
and also learning-inspired techniques which choose the parameter values
depending on statistics from the optimization process so far.

6.3.2 A Revised Classification Scheme

At the time of writing of [40], the three different types of parameter con-
trol discussed in Section 6.3.1 were of similar importance. In the last almost
twenty years, however, we have observed an increasing interest (and massive
progress) in the subcategory of adaptive parameter control schemes, which
also play a predominant role in theoretical studies. In particular, in recent
years it has become quite clear that the substantial differences between, say,
a simple deterministic fitness-dependent choice of a parameter value and a
parameter choice via reinforcement-learning approaches are a reason for us
not to have both in the same category. We therefore present in the next
subsection an alternative classification scheme, which takes into account this
development.
• State-dependent parameter control. We classify as state-dependent

parameter control those mechanisms that depend only on the current state
of the search process, for example the current population, its fitness val-
ues, and its diversity, but also those that depend on a time or iteration
counter. Hence this subsumes the previous “deterministic” category (con-
taining time-dependent parameter choices) and all other parameter-setting
mechanisms which determine the current parameter values via a prespec-
ified function mapping algorithm states to parameter values, possibly in
a randomized manner. All these mechanisms require the user to precisely

6 Theory of Parameter Control for Discrete Black-Box Optimization 277

specify how the parameter value depends on the current state and, as such,
need a substantial understanding of the problem to be solved.

• Success-based parameter control. To overcome the usability challenges and
the inflexibility of state-dependent parameter control mechanisms, several
approaches to setting the parameters in a self-adjusting manner have been
proposed. As one important type of self-adjusting parameter control mech-
anism, we classify as success-based parameter settings all those mechanisms
that change the parameters from one iteration to the next. In other words,
the parameter value to be used in the current iteration is determined (pos-
sibly in a randomized manner) by the parameter value used in the previous
iteration and by an evaluation of how successful the previous iteration was.
The success measure can be simple binary information such as whether a
solution with superior fitness was found, but it could also take into account
quantitative information such as the fitness gain or loss in this iteration.
Depending on the parameter to be set, also other quantities than the fit-
ness can be taken into account, for example the evolution of the diversity
of the population.
The most common forms of success-based rules are multiplicative updates
of parameters, which increase or decrease the parameter value by suit-
able factors depending on whether the previous iteration was classified
as a success or not. Success-based rules other than multiplicative updates
have been designed as well. For example, in [33] the offspring were gener-
ated with two different parameter values and the information about which
parameter value led to the best offspring determined the parameters of the
next iteration; see Section 6.5.2.3 for a detailed discussion.

• Learning-inspired parameter control. As the second main type of self-
adjusting parameter control mechanism, we classify as learning-inspired
parameter control mechanisms all those schemes which are aimed at ex-
ploiting a longer search history than just one iteration. To allow such
learning mechanisms also to adapt quickly to changing environments, older
information is taken into account to a lesser extent than more recent infor-
mation. This can be achieved by considering only information from (static
or sliding) time windows or by discounting the importance of older infor-
mation via weights that decrease (usually exponentially) with the age of
the data.
Most learning-inspired parameter control mechanisms that have been ex-
perimented with in the evolutionary computation context borrow tools
from machine learning, where a similar problem known as the multiarmed
bandit problem has been studied; see Section 6.6.1.

• Endogenous parameter control (self-adaptation). This category corre-
sponds to the self-adaptive parameter control mechanisms in the taxon-
omy of [40]. We prefer the name “endogenous parameter control” as it
best emphasizes the structural difference of these mechanisms, which is
that they encode the parameters in the genome and let them evolve via
the usual variation and selection mechanisms of the evolutionary system.

278 Benjamin Doerr and Carola Doerr

Fig. 6.2 Classification of parameter control mechanisms. We also call success-based and
learning-inspired mechanisms self-adjusting.

• Hyper-heuristics. Hyper-heuristics are algorithms that operate on a set of
low-level heuristics, select from it an algorithm, and run it for some time,
before reevaluating which of the low-level heuristics to use next. The main
hope is that hyper-heuristics will automate the algorithm selection and
configuration process, in a way that allows maximizing the profit from
different algorithmic ideas in the different stages of the optimization pro-
cess. Similarly to the motivation behind endogenous parameter control,
the use of a high-level hyper-heuristic is guided by the belief that the high
complexity of the parameter control problem calls for efficient heuristic
approaches.

Figure 6.2 summarizes our classification scheme. Existing theoretical re-
sults are summarized in the following sections, which are structured according
to this taxonomy.

We emphasize that our classification is partly driven by the historical
development of the field. For example, it would be more logical not to have
hyper-heuristics (as long as they essentially optimize parameters) as a sepa-
rate category, but rather to classify them as success-based or learning-inspired
parameter control schemes. Since, historically, the area of hyper-heuristics de-
veloped relatively independently (partially owing to the fact that there are
many hyper-heuristics that cannot be seen as parameter control mechanisms),
we prefer to maintain a separate category for hyper-heuristics.

6.4 State-Dependent Parameter Control

We recall from the previous section that state-dependent parameter selection
schemes are those mechanisms which choose the parameter values based only
on the current state of the algorithm, without making use of the search his-

6 Theory of Parameter Control for Discrete Black-Box Optimization 279

tory. One of the best known examples of state-dependent parameter control
is the so-called cooling schedule used in Simulated Annealing. The idea of
this cooling schedule is to start the heuristic with a rather generous accep-
tance behavior and to increase the selective pressure during the optimization
process; see Section 6.4.1 for a more detailed description. The cooling sched-
ule, as the name suggests, is a time-dependent selection mechanism, which
maps the iteration counter to a temperature value that defines the selective
pressure.

As we shall see in this section, time-dependent parameter selection schemes
have also been experimented with in the context of evolutionary computation.
In addition, other state-dependent parameter settings, such as rank- and
fitness-based mutation rates and diversity-based parameter choices, have been
analyzed empirically, but have received considerably less attention in the
theory-of-evolutionary-algorithms community.

6.4.1 Time-Dependent Parameter Choices

Simulated Annealing is typically not regarded as an evolutionary algorithm,
since it draws inspiration from the physical phenomenon of an annealing pro-
cess. We nevertheless decided to discuss it in this chapter, as it is structurally
very similar to Randomized Local Search, and certainly falls into the class of
iterative randomized black-box optimization heuristics.

Simulated Annealing [63] is a (1+1)-type search heuristic that uses a Boltz-
mann selection rule to decide whether or not to replace the previous parent
individual x by a new solution y. More precisely, the algorithm keeps in its
memory only one previously evaluated solution x, and modifies it by a lo-
cal variation. In the case of pseudo-Boolean maximization this local move is
identical to that of RLS, i.e., the offspring y is created from x by flipping
exactly one bit, the position of which is chosen uniformly at random. The
new solution y always replaces x if it is better, and it replaces x with proba-
bility exp

(
(f(y)−f(x))/T

)
otherwise. That is, the better y is, the larger the

probability that it survives the selection procedure. The novelty of Simulated
Annealing over its predecessor, the Metropolis algorithm [74], is an adaptive
choice of the “temperature” T in the Boltzmann selection rule: while the
Metropolis algorithm uses the same T throughout the whole optimization
process, the value of T is decreased over time in Simulated Annealing, either
with each iteration or, more commonly, after a fixed number τ of iterations.
The adaptive selective pressure results in a more generous acceptance behav-
ior at the beginning of the optimization process (to allow faster exploration),
and a more and more elitist selection towards the end (“exploitation”). Al-
gorithm 6.1 summarizes this algorithm. For constant Tt = T , we obtain from
Algorithm 6.1 the pseudocode for the Metropolis algorithm. Numerous suc-

280 Benjamin Doerr and Carola Doerr

cessful applications and more than 43,000 citations2 of [63] witness that this
idea of controlling the selective pressure during the optimization process can
have an impressive impact on performance.

Algorithm 6.1: Simulated Annealing for the maximization of a pseudo-
Boolean function f : {0,1}n→ R

1 Initialization: Choose x ∈ {0,1}n uniformly at random;
2 Optimization: for t = 1,2,3, . . . do
3 Create from x a new solution candidate y by flipping exactly one bit in x;
4 if f(y)≥ f(x) then
5 x← y
6 else
7 x← y with probability exp((f(y)−f(x))/Tt)

A number of theoretical results analyzing the performance of Simulated
Annealing exist. Most of these prove convergence to a global optimum for suit-
ably chosen parameter settings; see the book chapter [50] for a summary of
selected theoretical and empirical results. In addition to the results mentioned
there, a plethora of running-time results exist for combinatorial optimization
problems on graphs, including most notably matching [81] and graph bisec-
tion problems [15, 53, 59]. Selected theoretical studies that concentrate on
the advantages of dynamic parameter choices are summarized below.

Answering an open problem posed in [58], Wegener presented in [85] a prob-
lem class for which Simulated Annealing outperforms its static counterpart,
the Metropolis algorithm, regardless of how the temperature value is chosen
in the latter. More precisely, Wegener proved that Simulated Annealing with
a multiplicative temperature decay T (t) = αT (1) (α < 1 being a constant and
the initial value T (1) being ignorant of the instance, but possibly depending
on the number of edges m and the maximum weight wmax) has a better ex-
pected optimization time on some subclasses of the minimum spanning tree
(MST) problem than the Metropolis algorithm with any fixed temperature.
Previous examples of this phenomenon had been presented in [83] and [39],
but were of a rather artificial nature. The novelty of [85] was thus to prove
this statement for a natural combinatorial optimization problem. A particu-
lar instance of the MST problem for which Wegener proved the superiority
of Simulated Annealing is a graph that has the form of connected triangles.
Wegener also showed a provable advantage for ε-separated graphs, in which
nonequal weights are apart from each other by a constant factor of at least
1+ε [85, Section 5].

One of the first studies analyzing a classic evolutionary algorithm with a
dynamic parameter setting was presented by Droste, Jansen, and Wegener
in the above-mentioned publication [39]. Besides a time-dependent selection
2 This number of citations is according to Google Scholar as of April 12, 2018.

6 Theory of Parameter Control for Discrete Black-Box Optimization 281

strategy, these authors also analyzed the (1+1) EA with a time-dependent
mutation rate p ∈ {2k/n | k = 0,1,2, . . . ,⌈log2(n)⌉−2}. In this algorithm, the
mutation rate is initialized to 1/n and doubled in every iteration until p
exceeds 1/2, in which case it is reset to 1/n. An example function, Path-
ToJump, was presented for which the (1+1) EA with the time-dependent
mutation rate needs only O(n2 logn) steps, on average, to locate the optimum,
while the (1+1) EA with the static mutation rate p = 1/n does not optimize
PathToJump in expected polynomial time. The authors of [39] also showed
a converse result in which the dynamic (1+1) EA is much slower than the
classical static one. It is not difficult to see that the dynamic (1+1) EA per-
forms worse than the static (1+1) EA on most classical benchmark functions
such as OneMax and LeadingOnes; see [39, Section 4]. This work was later
extended and simplified by Jansen and Wegener in [55].

In [56] a comparison was made between the (1+1) EA with static and with
time-dependent mutation rates on the one hand, and Simulated Annealing
and the Metropolis algorithm on the other hand, but the focus of this work
was not on the advantages of adaptive parameter choices, but rather on a
comparison of the different selection schemes.

6.4.2 Rank-Dependent Parameter Control

Motivated by empirical work reported in [16], Oliveto, Lehre, and Neumann
analyzed in [77] a (µ + 1) EA with rank-based mutation rates. In this algo-
rithm, the individuals of the parent population are ranked according to their
fitness values, and the mutation rate applied in an iteration t depends on the
rank of the (uniformly selected) individual undergoing mutation. The intu-
ition behind these rank-based mutation rates is that individuals with larger
ranks (i.e., worse fitness) should be modified more aggressively (suggesting
large mutation rates), while the best individuals of the population should be
modified with caution, suggesting small mutation rates.

To be more precise, the algorithm proposed in [16] uses standard bit muta-
tion with mutation rate pi, where for the i-th ranked search point the value of
pi is set to pmin +(pmax−pmin)(i−1)/m (linear interpolation ensuring a min-
imum mutation rate of pmin > 0 and a maximum mutation rate pmax). The
variant studied in [77] uses pmin = 1/n, pmax = 1, and m = µ. Theorem 6.4.1
below gives a general upper bound for the rank-based (µ + 1) EA, which is
better than the Θ(nn) expected running time of the (1+1) EA on functions
such as Needle or Trap.

Theorem 6.4.1 (Theorems 1 and 2 in [77]). For µ≥ 2 and µ = poly(n),
the expected optimization time of the (µ + 1) EA with rank-based mutation

282 Benjamin Doerr and Carola Doerr

rates is at most3 7 ·3n for any pseudo-Boolean function f : {0,1}n→ R, and
it is O(µn logn) for OneMax.4

In addition to these results, examples were constructed for which the (µ+1)
EA with rank-based mutation rates performs significantly worse [77, Sec-
tion V] and significantly better [77, Section VI] than the classical (µ+1) EA
with standard bit mutation rate p = 1/n.

6.4.3 Fitness-Dependent Parameter Control

While rank-based parameter selection was originally introduced with the
hope of finding a generally well-functioning control scheme, fitness-based
parameter selection schemes are often highly problem-tailored, and cannot
be assumed to work particularly well when applied to different objective func-
tions. The theoretical results stated below should therefore not be considered
as a suggestion for generally applicable parameter control mechanisms, but
rather as a point of comparison for more plausible, general-purpose parameter
update techniques, i.e., we should use these results only as a lower bound for
the performance of a best possible parameter update scheme. This way, the
results form a baseline that helps us understand and judge the limits of
parameter control.

6.4.3.1 Fitness-Dependent Mutation Rates for the (1+1) EA on
LeadingOnes

The first study showing a significant advantage of a fitness-dependent choice
of the mutation rate was presented in [12], where the following result was
shown.5

Theorem 6.4.2 (Theorems 3-6 in [12]). On LeadingOnes, the expected
number of iterations needed by the (1+1) EA with a static mutation rate
p ∈ (0,1) to identify the optimal solution is 1

2p2 [(1− p)1−n− (1− p)]. This
expression is minimized for p≈ 1.59/n, which gives an expected optimization
time of around 0.77n2.
3 This bound is mistakenly stated as O(2n) in [77, Theorem 1], but the proof clearly
shows the upper bound stated here.
4 We recall that OneMax is the function that assigns to each x ∈ {0,1}n the number
of ones in it, i.e., OM(x) =

∑n

i=1 xi. All running-time bounds that we state in this
chapter for the optimization of OneMax also apply to the optimization of the functions
OMz : {0,1}n→R,x 7→ |{i∈ [n] | xi = zi}|, whose fitness landscape is isomorphic to that
of OM = OM(1,...,1).
5 Prior to [12], fitness-dependent mutation rates had also been analyzed in immune
algorithms [87, 88], but no advantage of the parameter choices analyzed could be shown.

6 Theory of Parameter Control for Discrete Black-Box Optimization 283

For the (1+1) EA variant that chooses in every iteration the fitness-
dependent mutation rate p = 1/(LO(x)+1), where x denotes the solution that
undergoes modification, the expected optimization time decreases to around
(e/4)n2 ≈ 0.68n2. No other fitness-dependent mutation rate can achieve a
better expected optimization time.

In this result the expected optimization time of the fitness-dependent
(1+1) EA is almost 21% better than the expected optimization time of the
(1+1) EA with the standard mutation rate p = 1/n and about 11.7% better
than the 0.77n2 expected running time which the best static mutation rate,
p≈ 1.59/n, achieves.

6.4.3.2 Fitness-Dependent Mutation Rates for the (1+λ) EA on
OneMax

Interestingly, the question of how to best control the mutation rate during
the optimization process gained relevance with the establishment of black-box
complexity as a measure for the best possible running time that any random-
ized search heuristic of a certain type can achieve (see Chapter 3 of this book
for a survey of publications on this complexity notion). By comparing ex-
isting algorithms with the theoretically best possible performance, one can
judge how well suited a given approach is. Unsurprisingly, the best-possible
algorithms take into account the state of the optimization process, and adjust
their parameters accordingly.

In this context and, more precisely, in the context of analyzing lower
bounds for the performance of unbiased parallel evolutionary algorithms (see
Section 3.7.2 for a more detailed description of the motivation) Badkobeh,
Lehre, and Sudholt analyzed in [10] the optimal fitness-dependent mutation
rate for the (1 + λ) EA on OneMax. The main result is summarized by the
following theorem.

Theorem 6.4.3 (Theorems 3 and 4 in [10]). For λ ≤ e
√

n the
(1 + λ) EA that uses in each iteration the mutation rate p(x) :=
max

{
1/n, lnλ

n ln(en/(n−OM(x)))

}
(where x denotes the parent individual held

in the memory at the beginning of the iteration) has an expected optimization
time on OneMax equal to Θ

(
n logn+ λn

logλ

)
.

This performance is the best possible among all unary unbiased black-box
algorithms that create λ offspring in parallel.

The performance of this fitness-dependent (1+λ) EA for many values of λ
is superior to the performance of the (1+λ) EA with the static mutation rates
considered so far, which is Θ(n logn+ λn log logn

logn) for a mutation rate p = c/n,
where c is a constant [34, 46], and Θ

(√
λn logn + λn

logλ

)
for p = ln(λ)/(2n)

and λ ∈ ω(1)∩nO(1) [33, Lemma 1.2].

284 Benjamin Doerr and Carola Doerr

In Section 6.5.2.3 we will see an example of a purely success-based adapta-
tion scheme which achieves the same expected performance as the (1+λ) EA
with a fitness-dependent mutation rate. More recently, a self-adaptive (1,λ)
EA has been designed, which also achieves the same bound. This algorithm
will be discussed in Section 6.7.

6.4.3.3 Fitness-Dependent Mutation Strengths for RLS on
OneMax

While the result in Section 6.4.3.2 is of asymptotic order only, one might
hope to get more precise results for selected values of λ. Unfortunately, the
precise relationship between function values and optimal mutation rates is
not known even in the very special case λ = 1. What is known, however, is
the following.

In [30] it was shown that the best possible running time on OneMax that
any unary unbiased black-box algorithm can achieve is n ln(n)−cn±o(n) for
a constant c between 0.2539 and 0.2665 (see Section 3.6 for a discussion of
unbiased black-box algorithms). It cannot be better by more than an additive
o(n) term than the expected optimization time attained by the RLS variant
that in every iteration chooses the mutation strength (i.e., the number of
bits to be flipped) in a way that maximizes the expected progress. By the
symmetry of the OneMax function, this drift-maximizing mutation strength
depends only on the fitness of the current best solution, and not on the
structure of this search point. More precisely, when ℓ different bits of the
search point x are flipped to create y, the expected progress E[max{OM(y)−
OM(x),0}] equals

ℓ∑
i=⌈ℓ/2⌉

(n−OM(x)
i

)(OM(x)
ℓ−i

)
(2i− ℓ)(n

ℓ

) . (6.4.1)

The drift-maximizing mutation strength ropt(x) is the value of ℓ that maxi-
mizes this expression.6

Theorem 6.4.4 (Theorem 9 in [30]). The expected optimization time E[T]
of the drift-maximizing algorithm with fitness-dependent mutation strengths
ropt(x) is n ln(n)−cn±o(n) for a constant c between 0.2539 and 0.2665. The
unary unbiased black-box complexity is smaller than E[T] by an additive term
of at most o(n).

Compared with RLS or the RLS variant using an optimized initialization
phase presented and analyzed in [65], the bound in Theorem 6.4.4 is smaller
6 No easy-to-interpret algebraic relationship between x and ropt(x) could be established
in [30], and an approximation of ropt(x) was therefore used in that publication. It was
shown, however, that this affects the overall performance by at most o(n) iterations.

6 Theory of Parameter Control for Discrete Black-Box Optimization 285

by an additive term between 0.138n± o(n) and 0.151n± o(n). For problem
dimensions ≤ 10,000, the advantage of the drift-maximizing algorithm over
classic RLS is around 2%.

In the language of fixed-budget computation as introduced by Jansen
and Zarges in [57], the drift-maximizing algorithm with a budget of at least
0.2675n iterations computes a solution with an expected fitness distance to
the optimum roughly 13% smaller than the output produced by RLS [30,
Section 6].

6.4.3.4 Fitness-Dependent Offspring Population Sizes in the
(1+(λ,λ)) Genetic Algorithm

All the results above concern the control of the mutation rate. A fitness-
dependent choice of the offspring population sizes was considered in [26] for
the (1 + (λ,λ)) GA on OneMax. Since this algorithm later gave rise to a
growing interest in parameter control (note that the conference version [25]
appeared before most of the other results mentioned in this section), we
describe this algorithm in more detail. Note in particular that, in contrast to
the purely mutation-based algorithms mentioned above, the (1 + (λ,λ)) GA
also uses crossover.

The (1+(λ,λ)) GA (Algorithm 6.2) works with a parent population of size
one. This population {x} is initialized with a search point chosen from {0,1}n
uniformly at random. The (1 + (λ,λ)) GA then proceeds in iterations, each
consisting of a mutation phase, a crossover phase, and a final elitist selection
step determining the new parent population.

In the mutation phase, a step size ℓ is chosen at random from the binomial
distribution Bin(n,p), where the parameter p is called the mutation rate of the
algorithm. Then, independently, λ offspring are created by flipping exactly
(i.e., pairwise different) ℓ random bits in x. In an intermediate selection step,
one best mutation offspring x′ is selected as the mutation winner. In the
crossover phase, again λ offspring are created, this time via a biased uniform
crossover between x and x′, taking each entry from x′ with probability c
only and taking the entry from x otherwise. Again, an intermediate selection
chooses one of the best crossover offspring y as the crossover winner. In the
final selection step, this y replaces x if its fitness is at least as large as the
fitness of x, i.e., if and only if f(y)≥ f(x) holds.

The (1 + (λ,λ)) GA thus has three parameters that need to be set prior
to any execution: the offspring population size λ, the mutation rate p,
and the crossover bias c. Using intuitive considerations, it was suggested
in [26] that p = λ/n and c = 1/λ should be used. With these choices,
the three-dimensional parameter space is reduced to a one-dimensional
one, and only λ needs to be set. In [26] it was shown that choosing
λ = Θ(

√
logn) yields an expected running time of O

(
max

{
n log(n)

λ ,λn
})

286 Benjamin Doerr and Carola Doerr

Algorithm 6.2: The (1 + (λ,λ)) GA maximizing a given function
f : {0,1}n → R with offspring population size λ, mutation rate p, and
crossover bias c. The mutation operator σℓ generates an offspring from
one parent by flipping exactly ℓ random bits (without replacement). The
crossover operator crossc performs a biased uniform crossover, taking bits
independently with probability c from the second argument.

1 Initialization: Choose x ∈ {0,1}n uniformly at random (u.a.r.);
2 Optimization: for t = 1,2,3, . . . do
3 Mutation phase:
4 Sample ℓ from Bin(n,p);
5 for i = 1, . . . ,λ do x(i)← σℓ(x);
6 Choose x′ ∈ {x(1), . . . ,x(λ)} with f(x′) = max{f(x(1)), . . . ,f(x(λ))} u.a.r.;
7 Crossover phase:
8 for i = 1, . . . ,λ do y(i)← crossc(x,x′);
9 Choose y ∈ {y(1), . . . ,y(λ)} with f(y) = max{f(y(1)), . . . ,f(y(λ))} u.a.r.;

10 Selection step: if f(y)≥ f(x) then x← y;

for the (1 + (λ,λ)) GA on the OneMax problem. This bound was later
improved to F ∗ = Θ(n

√
log(n) log log log(n)/ log log(n)) in [23]; this ex-

pected running time is attained for a slightly larger value of λ, namely
λ∗ = Θ(

√
log(n) log log(n)/ log log log(n)). Finally, [21] showed that the

suggested dependencies p = λ/n and c = 1/λ are asymptotically opti-
mal in the sense that any static parameter combination (p,c,λ) that
gives an expected running time of O(F ∗) needs to satisfy p = Ω(λ∗/n),
p = (1/n)exp(O(

√
log(n) log log log(n)/log log(n))), c = Θ(1/(pn)), and λ =

Θ(λ∗). No parameter combination can achieve an asymptotically better run-
ning time than Θ(F ∗).

The results mentioned above all concern static parameter values. In terms
of dynamic parameters, it had already been observed in [26] that a bet-
ter expected running time, namely a linear one, can be achieved by the
(1 + (λ,λ)) GA on OneMax if we allow the parameters to depend on the
function values. This linear expected performance was later shown to be
asymptotically optimal.

Theorem 6.4.5 (Theorem 8 in [26] and Sections 5 and 6.5 in [24]).
The expected optimization time of the (1+(λ,λ)) GA with p = λ/n, c = 1/λ,
and λ =

√
n/(n−f(x)) on OneMax is Θ(n), and this is asymptotically the

best possible among all dynamic parameter choices. For any static parameter
values (p,c,λ), the expected running time of the (1+(λ,λ)) GA on OneMax
is of order at least n

√
log(n) log log log(n)/ log log(n), and thus strictly larger

than linear.

In Section 6.5 we will discuss a success-based parameter control mechanism
that identifies and tracks good values for λ in an automated way.

6 Theory of Parameter Control for Discrete Black-Box Optimization 287

6.5 Success-Based Parameter Control

We have classified as success-based parameter control mechanisms all those
which change the parameters from one iteration to the next, based on the
outcome of the iteration. This includes, in particular, multiplicative update
rules which change parameters by constant factors depending on whether the
iteration was considered a success or not.

6.5.1 The One-Fifth Success Rule and Other
Multiplicative Success-Based Updates

Even the very early studies of evolution strategies used a simple, yet powerful
technique to adapt the parameters online. The so-called one-fifth success rule,
which was independently discovered in [19, 79, 82], suggests that one should
set the step size of an evolution strategy in such a manner that 1/5 of the
iterations lead to a fitness improvement. The idea behind this is that when
the success rate is higher, then most likely the step size is too small and time
is wasted on minor improvements; however, when the success rate is lower,
then time is wasted by waiting too long for an improvement. The value 1/5
was derived from some theoretical considerations about the performance of
the (1+1) evolution strategy on the sphere problem f : Rn→R,x 7→

∑n
i=1 x2

i .
Rechenberg showed that a success rate of about 20% yields an optimal ex-
pected gain for this problem (and also on another problem with a so-called
inclined ridge; see [79] for details).

The first implementations of this one-fifth success rule were not success-
based in our language, but rather observed the success rate over several itera-
tions and then adjusted the step size if a discrepancy from the target success
rate of 1/5 was detected. In [62], a simpler success-based implementation was
proposed. Here, the step size is multiplied by some number F > 1 in the case
of success and divided by F 1/4 in the case of no success. The hyper-parameter
F is called the update strength of the adaptation rule.

We next present two examples of success-based parameter control sug-
gested in the literature.

• Example 1: the one-fifth success rule applied to the (1+(λ,λ)) GA. It may
be surprising that a simple multiplicative success-based rule can work. We
therefore present an illustrated example, the self-adjusting (1+(λ,λ)) GA,
which was originally proposed in [26] and later formally analyzed on the
OneMax problem in [22]. We will describe this algorithm in more detail
in Section 6.5.2.1, but note here only that when the recommended depen-
dencies p = λ/n and c = 1/λ are used, the self-adjusting (1 + (λ,λ)) GA
requires one to set the offspring population size λ as the only parameter.
The value of λ is adapted based on the success of a full iteration, using the

288 Benjamin Doerr and Carola Doerr

implementation of the one-fifth success rule suggested in [62]. Figure 6.3
shows how well the optimal fitness-dependent value of the offspring pop-
ulation size λ suggested by Theorem 6.4.5 (smooth black curve) is ap-
proximated by this multiplicative success-based update rule (irredular red
curve). The uppermost (blue) curve shows the evolution of the current-best
fitness value, from which the optimal fitness-dependent mutation rate is
computed. Note that in this figure we show the optimal mutation rates per
iteration, each of which costs 2λ function evaluations. The update strength
F in this illustration was set to 1.5.

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000 1200 1400 1600 1800

 600

 700

 800

 900

 1000

λ f(
x
)

iteration

f(x)
λ

optimal choice of λ

Fig. 6.3 The application of the one-fifth success rule to the offspring population size λ
in the (1+(λ,λ)) GA on OneMax shows a very good fit to the optimal fitness-dependent
population size.

• Example 2: the (1,λ) EA with success-based offspring population size λ.
A different success-based parameter control was suggested in [48] for the
control of the offspring population size λ in a non-elitist (1,λ) evolution
strategy (ES). Motivated by a theoretical result that proves that in the
(1,λ) ES the so-called local serial progress is maximized when the expected
progress of the second best offspring created in one iteration is zero (this
result applies to any function f : Rn → R), the following multiplicative
success-based update rule for the offspring population size λ was suggested.
Denoting by x(t) the parent individual of the t-th iteration, by λ(t) the
selected offspring population size, and by x(t),1, . . . ,x(t),λ(t) the offspring
created in the t-th iteration, sorted by decreasing function values, the
offspring population size for the next iteration is set to

λ(t+1) := max

2,λ(t) exp

 −β(f(x(t),2)−f(x(t)))√∑λ(t)
i=1 (f(x(t,)i)−f(x(t)))2/(λ−1)

 ,

(6.5.1)

6 Theory of Parameter Control for Discrete Black-Box Optimization 289

where β ∈ (0,1) is a hyper-parameter that controls the speed of the adap-
tation. While this update mechanism, to the best of our knowledge, has
not been formally analyzed, it was shown in [48] to give good performance
on the hyperplane and the hypersphere problems.

6.5.2 Theoretical Results for Success-Based Parameter
Control

In this section, we describe the theoretical results known for success-based
based parameter control mechanisms. We note that some studies of hyper-
heuristics resemble closely a success-based parameter control. The reader can
find these in Section 6.8.3.

6.5.2.1 The Self-Adjusting (1+(λ,λ)) GA on OneMax and on
MaxSAT

We have seen in Theorem 6.4.5 that the (1+(λ,λ)) GA with mutation
rate p = λ/n, crossover bias c = 1/λ, and fitness-dependent population size
λ =

√
n/(n−f(x)) takes an expected number of Θ(n) function evaluations to

optimize a OneMax instance of problem dimension n. This is the asymptot-
ically best running time among all static and dynamic parameter choices. A
substantial drawback of this result is the rather complex dependence of λ on
the current best function value f(x). The question of whether this relation-
ship can be detected by a parameter control mechanism in an automated way
suggests itself. In fact, in [26] a success-based choice of λ had already been
suggested, and was shown to achieve a very similar empirical performance to
the fitness-dependent choice, across all tested problem dimensions n≤ 5,000.
In [24], the efficiency of this success-based variant of the (1+(λ,λ)) GA,
which we will describe in more detail below, could be formally proven.

Theorem 6.5.1 (Theorem 9 in [24]). The expected optimization time of
the self-adjusting (1+(λ,λ)) GA (Algorithm 6.3) with mutation rate p = λ/n,
crossover bias c = 1/λ, and a sufficiently small update strength F > 1 on
OneMax is Θ(n).

The success-based choice of the parameter λ uses the above-mentioned
implementation of the one-fifth success rule considered in [62]. That is, after
an iteration that leads to an increase in the best observed function value
(“success”), λ is reduced by a constant factor F > 1. If an iteration is not
successful, λ is increased by a multiplicative factor F 1/4. Consequently, after
a series of iterations with an average success rate of 1/5, this mechanism ends
up with the initial value of λ.

290 Benjamin Doerr and Carola Doerr

Algorithm 6.3: The self-adjusting (1+ (λ,λ)) GA with mutation prob-
ability p, crossover bias c, and update strength F

1 Initialization: Sample x ∈ {0,1}n uniformly at random (u.a.r.);
2 Initialize λ← 1;
3 Optimization: for t = 1,2,3, . . . do
4 Mutation phase:
5 Sample ℓ from Bin(n,p);
6 for i = 1, . . . ,λ do x(i)← σℓ(x);
7 Choose x′ ∈ {x(1), . . . ,x(λ)} with f(x′) = max{f(x(1)), . . . ,f(x(λ))} u.a.r.;
8 Crossover phase:
9 for i = 1, . . . ,λ do y(i)← crossc(x,x′);

10 Choose y ∈ {y(1), . . . ,y(λ)} with f(y) = max{f(y(1)), . . . ,f(y(λ))} u.a.r.;
11 Selection and update step:
12 if f(y) > f(x) then x← y; λ←max{λ/F,1};
13 if f(y) = f(x) then x← y; λ←min{λF 1/4,n};
14 if f(y) < f(x) then λ←min{λF 1/4,n};

Since p = λ/n, the value of λ is capped at n. Likewise, it is capped from
below at 1. The value of λ is allowed to be non-integral. Where an integer
is required (i.e., in lines 6, 7, 9, and 10 of Algorithm 6.3), λ is rounded
to the closest integer. That is, in these four lines, instead of λ we consider
⌊λ⌋= λ−{λ} if the fractional part {λ} of λ is less than 1/2, and we consider
⌈λ⌉= ⌊λ⌋+1 otherwise.

In the experiments conducted in [25] (see in particular Figure 4 there), all
update strengths F ∈ [1,2] worked well. While this indicates some robustness
of the result in Theorem 6.5.1 with respect to the F -value, it has been argued
in [24, Section 6.4] that update strengths F greater than 2.25 may lead to
an exponential expected optimization time on OneMax. A commonly used
value for F , also used in Auger’s implementation [7], is F = 1.5. This is also
the value with which Fig. 6.3 was created.

One may wonder, further, how important the relationship between the
two multiplicative updates, that is, the exponent 1/4 is. It was argued in [24,
Section 6.4] that a similar result to that in Theorem 6.5.1 is likely to hold for
a range of other exponents as long as the exponent is not too large. Hence, in
discrete optimization, there is no particular reason for a one-fifth rule (that
is, the exponent 1/4). This has also been observed in a recent study of image
composition, where a success-based one-kth success rule was used to adjust
the length of a random walk that was part of the mutation operator [75]. In
a set of initial experiments k = 9 seemed to be a suitable value, and was used
for empirical evaluations.

Being the first algorithm which can provably reduce the expected opti-
mization time by applying a success-based parameter control mechanism, the
self-adjusting (1 + (λ,λ)) GA has also been analyzed on other functions, by

6 Theory of Parameter Control for Discrete Black-Box Optimization 291

empirical and by theoretical means. In [26, Section 4], a promising empirical
performance for linear functions f : {0,1}n→R,x 7→

∑n
i=1 wixi with random

weights wi ∈ [1,2] and for so-called royal road functions with block size 5 had
already been reported. In [47], the self-adjusting (1 + (λ,λ)) GA was tested
on a number of combinatorial problems. In particular, for the maximum satis-
fiability problem, the self-adjusting (1+(λ,λ)) GA showed very good perfor-
mance, beaten only by the parameterless population pyramid proposed in the
same publication. Inspired by this result, a mathematical running-time ana-
lysis of the (1+(λ,λ)) GA on random satisfiability instances was conducted
in [14]. This confirmed that the (1+(λ,λ)) GA has better performance than
solely mutation-based algorithms (see, e.g., [37]). This work, however, also
showed that weaker fitness–distance correlation of the satisfiability instances
can lead to the effect that when offspring are created with a high mutation
rate, the algorithm has problems in determining the structurally better ones.
This difficulty can be overcome by imposing an upper limit on the population
size λ, which determines the mutation rate p = λ/n.

6.5.2.2 The (1+λ) EA with Success-Based Offspring Population
Size λ

For the (1 + λ) EA, the following success-based adaptation of the offspring
population size was suggested in [54, Section 5]. The offspring population size
λ is initialized to one. After each iteration, the number s of offspring having
a function value that is at least as large as that of the parent fitness is deter-
mined. When s = 0 (i.e., if the iteration has been unsuccessful), the offspring
population size λ is doubled, otherwise it is replaced by ⌊λ/s⌋. The intuition
for this adaptive choice of the offspring population is to have a value of λ
that is inversely proportional to the probability of creating an offspring that
replaces its parent. This algorithm, which we call the (1+{2λ,λ/s}) EA, was
not analyzed by mathematical means in [54], but showed encouraging em-
pirical performance on OneMax, LeadingOnes, and a benchmark function
called SufSamp.

The idea of a success-based offspring population size was taken up in [66],
where a theoretical analysis of two similar success-based update schemes was
performed. The first update scheme, the (1 + {2λ,1}) EA, doubles λ if no
strictly better search point can be identified and sets λ to one otherwise.
The second (1 + λ) EA variant, the (1 + {2λ,λ/2}) EA, also doubles λ if
no solution of quality better than the parent is found, and reduces λ to
max{1,⌊λ/2⌋} otherwise. While these schemes do not result in an improved
overall running time in terms of function evaluations, they are both able to
achieve a significant reduction of the parallel optimization time on selected
benchmark problems. That is, the average number of generations needed
before an optimal solution is evaluated for the first time is smaller than that

292 Benjamin Doerr and Carola Doerr

for classical sequential evolutionary algorithms, which do not perform any
evaluations in parallel. The precise results are as follows.

Function Algorithm E[T seq] E[T par]
OneMax (1 +{2λ,1}) EA Θ(n logn) O(n) [*]

(1 +{2λ,λ/2}) EA Θ(n logn) O(n)
LeadingOnes (1 +{2λ,1}) EA Θ(n2) Θ(n logn)

(1 +{2λ,λ/2}) EA Θ(n2) O(n)
unimodal with d different (1 +{2λ,1}) EA O(dn) O(d logn)

function values (1 +{2λ,λ/2}) EA O(dn) O(d + logn)
Jumpk, k ≥ 2 (1 +{2λ,1}) EA O(nk) O(n + k logn) [*]

(1 +{2λ,λ/2}) EA O(nk) O(n + k logn)
Table 6.1 Expected sequential and parallel running times of the (1+{2λ,λ/2}) EA and
the (1+{2λ,1}) EA on selected benchmark problems [66]. For the two bounds marked [*],
we have slightly improved the original bound of O(n logn) via an elementary argument;
see the proof below Theorem 6.5.2

Theorem 6.5.2 (Theorem 7 in [66] and the proof below for the re-
sults marked

[
*
)
. in Table 6.1] The sequential and parallel expected running

times of the (1 + {2λ,λ/2}) EA and the (1 + {2λ,1}) EA satisfy the bounds
given in Table 6.1.

Proof. Using the classic fitness level method, the expected parallel run-
ning time of the (1 + {2λ,1}) EA on OneMax was bounded from above
by 2

∑n−1
i=1 log(2en

n−i) in [66]. This expression was bounded further by
2n log(2en) = O(n logn). However, a closer look reveals that, with Stirling’s
formula, we easily obtain

2
n−1∑
i=1

log
(2en

n− i

)
≤ 2log

((2en)n

n!

)
≤ 2log

((2en)n

(n/e)n

)
= 2log((2e2)n) = O(n).

This improved bound immediately carries over to the bound for Jumpk, k≥ 2,
where the expected parallel running time of the (1+{2λ,1}) EA is bounded
by the expected parallel running time on OneMax plus the time needed to
“jump” from the local optimum to the global one, which is of order at most
k logn. ⊓⊔

6.5.2.3 The Two-Rate (1+λ) EA with Success-Based Mutation
Rates

In the previous examples, we have studied different ways to control the off-
spring population size. We now turn our attention to a success-based adapta-
tion of the mutation rates in a (1 + λ) EA with a fixed offspring population

6 Theory of Parameter Control for Discrete Black-Box Optimization 293

size λ, which was introduced and analyzed in [33]. The (1 + λ) EA(2r,r/2)
stores a parameter r that controls the mutation rate. This parameter is ad-
justed after each iteration by the following mechanism. In each iteration, the
(1 + λ) EA(2r,r/2) creates λ/2 offspring by standard bit mutation with mu-
tation rate r/(2n), and it creates λ/2 offspring with mutation rate 2r/n. At
the end of the iteration a random coin is flipped. With probability 1/2, the
value of r is replaced randomly by either r/2 or 2r and with the remaining
probability of 1/2, it is set to the value that the winning individual in the
last iteration has been created with. Finally, the value of r is capped at 2 if
it is smaller, and at n/4 if it exceeds this value. Algorithm 6.4 summarizes
this two-rate (1+λ) EA variant.

Algorithm 6.4: The 2-rate (1 + λ) EA(2r,r/2) with adaptive mutation
probabilities and static population size for the maximization of a pseudo-
Boolean function f : {0,1}n→ R

1 Initialization: Sample x ∈ {0,1}n uniformly at random (u.a.r.);
2 Initialize r← rinit;
3 Optimization: for t = 1,2,3, . . . do
4 for i = 1, . . . ,λ/2 do
5 Create y(i) by flipping each bit in x independently with probability

r/(2n);
6 for i = λ/2 + 1, . . . ,λ do
7 Create y(i) by flipping each bit in x independently with probability 2r/n;

8 x∗← argmax{f(y(1)), . . . ,f(y(λ))} (ties broken u.a.r.);
9 if f(x∗)≥ f(x) then x← x∗;

10 With prob. 1/4 replace r by max{r/2,2}, with prob. 1/4 by min{2r,n/4}, and
with the remaining prob. by the rate with which x∗ has been created
(capped again at 2 and n/4);

Theorem 6.5.3 (Theorem 1.1 in [33]). Let λ = ω(1) and λ = nO(1). The
expected optimization time of the (1+λ) EA(2r,r/2) on OneMax is Θ(n logn+
nλ/ logλ).

By the result presented in Theorem 6.4.3 above, the Θ(n logn+nλ/ logλ)
expected running time achieved by the (1+λ) EA(2r,r/2) is the best possible
among all λ-parallel black-box algorithms.

6.5.2.4 Success-Based Mutation Strengths for the Multivariate
OneMax Problem

In [27], a success-based choice of the mutation strength was proven to be
very efficient for a multivariate generalization of the OneMax problem.

294 Benjamin Doerr and Carola Doerr

Concretely, the authors of [27] studied three different classes of generalized
OneMax functions. Denoting the size of the alphabet by r, the first class
contains, for all z ∈ [0..r−1]n, the functions OM(1)

z : [0..r−1]n→ [0..n];x 7→
|{i ∈ [1..n] | xi = zi}|, and the second all functions OM(2)

z : [0..r− 1]n →
[0..n(r−1)];x 7→

∑n
i=1 |xi−zi|, while the third class subsumes all rn functions

OM(3)
z : [0..r−1]n→ [0..n(r−1)];x 7→min{xi−(zi−r), |xi−zi|,(zi +r)−xi}.

Unlike all other settings considered in this chapter, [28] studied the minimiza-
tion of these OneMax generalizations. In our description below, we stick to
this optimization target, to ease comparison with the original publication.

The self-adjusting algorithm studied in [27] was an RLS variant, which
flips one coordinate in every iteration. For each coordinate i, a velocity vi

is stored, which denotes the mutation strength at this coordinate. When, in
iteration t, coordinate i is chosen for modification, the entry xi of the current
best solution x is replaced by xi−⌊vi⌋ with probability 1/2 and by xi +⌊vi⌋
otherwise. The entries in positions j ̸= i are not subject to mutation. The
resulting string y replaces x if its fitness is at least as good as that of x, i.e.,
if f(y) ≤ f(x) holds (we recall that we are aiming at minimizing f). If the
offspring y is strictly better than its parent x, i.e., if f(y) < f(x) holds, the
velocity vi in the i-th component is increased by multiplying it by a fixed
constant A > 1 and vi is decreased to bvi otherwise, where b < 1 is again
some fixed constant. If the value of vi drops below 1 or exceeds ⌊r/4⌋, it is
capped at these values.

Theorem 6.5.4 (Theorem 17 in [28]). For constants A,b satisfying 1 <
A ≤ 2, 1/2 < b ≤ 0.9, 2Ab− b−A > 0, A + b > 2, and A2b > 1, the expected
running time of RLSA,b on any of the generalized r-valued OneMax func-
tions OM(i)

z , i ∈ {1,2,3} and z ∈ [0..r− 1]n, is Θ(n(logn + logr)). This is
asymptotically the best possible among all comparison-based variants of RLS
and the (1+1) EA.

In this theorem, the update strengths can be chosen, for example, as A ∈
[1.6,2] and b = (1/A)1/4, imitating the above-mentioned interpretation of the
one-fifth success rule proposed in [62].

Using a result proven in [20], it was argued in [28, Section 6.1] that the
Θ(n(logn + logr)) expected running time of the self-adaptive RLS variant
is better by a multiplicative factor of at least logr than that of any RLS or
(1+1) EA variant using static step sizes. The optimality of the bound follows
from the simple information-theoretic Ω(n logr) lower bound which applies
to all comparison-based algorithms, while the Ω(n logn) lower bound applies
to any unary unbiased black-box algorithm (see Section 3.6 for a discussion
of unbiased black-box algorithms).

6 Theory of Parameter Control for Discrete Black-Box Optimization 295

6.5.2.5 Success-Based Migration Intervals for Parallel EAs in the
Island Model

A multiplicative success-based adaptation scheme has also been used to ad-
just the migration interval in a parallel (1+1) EA with a fixed number λ of
islands. Mambrini and Sudholt [73] applied the two schemes described in Sec-
tion 6.5.2.2 for the control of the offspring population size of the (1+ λ) EA
now to control the migration interval. In their parallel EA, every island has
its own migration interval, at the end of which it broadcasts its current best
solution to all of its neighbors. In the (2τi,1) variant of the parallel EA (Al-
gorithm 2 in [73]), improved solutions are always broadcast instantly, to all
neighboring islands, and the migration interval τi of the corresponding island
is set to one. It is set to one also if, during the migration interval, at least
one superior solution has migrated to the island. The migration interval is
doubled otherwise, i.e., if at the end of the migration period no strictly better
solution has been identified or migrated from a different island.

In the (2τi, τi/2) scheme (Algorithm 3 in [73]), the broadcast happens only
at the end of the migration interval, which is again doubled if no improved
solution could be identified nor migrated from another island, and halved
otherwise.

The (2τi, τi/2) scheme was analyzed for the complete graph topology, for
which all migration intervals τi are identical. For the (2τi,1) variant, [73]
proved results for general graph topologies with λ islands, as well as for a
few selected topologies such as a unidirectional ring, a grid, or a torus. The
results comprise upper bounds on the expected communication effort needed
to optimize general black-box optimization benchmarks; see Sections 4 and 5
in [73]. These bounds were then applied to the same benchmark functions
as those considered in Theorem 6.5.2. In some cases, including the complete
graph topology, the adaptive migration intervals were shown to outperform
any static choice in terms of expected communication effort, without (sig-
nificantly) increasing the expected parallel running time. Table 1 in [73]
summarizes the results for the selected benchmark problems. The bounds
proven in [73] are upper bounds, and the question of complementing these
with meaningful lower bounds seems to remain an open problem.

6.6 Learning-Inspired Parameter Control

In contrast to the success-based control mechanisms discussed in the previous
section, we call all those self-adjusting parameter control mechanisms which
are based on information obtained over more than one iteration learning-
inspired.

296 Benjamin Doerr and Carola Doerr

6.6.1 Adaptive Operator Selection

An important class of parameter control schemes takes inspiration from the
machine learning literature, and in particular from the multiarmed bandit
problem. These adaptive operator selection techniques7 maintain a portfolio
of k possible parameter values. At each step, they decide which of the pos-
sible parameter values to use next. To this end, they assign to each possible
parameter value a confidence value. This confidence value is supposed to be
an indicator of how suitable the corresponding value is at the given stage of
the optimization process. The confidence value can be, for example, an esti-
mator of the likelihood or of the magnitude of progress we would obtain from
running the algorithm with this value. These confidence values determine
or modify the probabilities of choosing the corresponding parameter value.
We present below three ways to implement this adaptive operator selection
principle.

What distinguishes the parameter control setting from the classically set-
ting considered in machine learning is the fact that the “rewards,” i.e., the
gain that we can obtain with a given value, can change drastically over time,
compared with the static (but random) reward typically investigated in the
machine learning literature. The non-static reward distributions change the
complexity of the algorithms and the theoretical analysis considerably. As
far as we know, the only theoretical stdy that rigorously proved an advan-
tage of learning-based parameter control is [29], which we shall discuss in
more detail in Section 6.6.2. Despite the promising empirical performance
of adaptive operator selection techniques, none of the techniques mentioned
below has established itself as a standard routine. Potential reasons for this
situation include the complexity of these techniques, the difficulty of finding
good hyper-parameters that govern the update rules, and a lack of theoretical
support.

• Probability matching. This technique is aimed at assigning the probabil-
ities proportionally to the confidence values, while maintaining for each
parameter value a minimum probability pmin of being sampled. Concretely,
in round t we choose the i-th parameter value with probability

pi
t := pmin +(1−kpmin) ci

t∑k
j=1 cj

t

,

where k is the total number of different parameter values from which we
can choose (the size of the portfolio), and cj

t is the confidence in parameter
value j at time t. After one iteration has been executed with the i-th
parameter value, its confidence value is updated to

7 The term “operator” is used because the adaptive operator selection mechanisms
were originally designed not only to choose between different parameter values but also
between different actions, such as different variation operators.

6 Theory of Parameter Control for Discrete Black-Box Optimization 297

ci
t+1 := (1−α)ci

t +αrt,

where rt denotes the (normalized) reward obtained in the t-th round and
0 < α < 1 is the hyper-parameter that determines the speed of the adapta-
tion. The confidence values of parameter values that have not been selected
in the t-th round are not updated.

• Adaptive pursuit. When larger portfolios are used, the previous mechanism
of choosing the operator with probability roughly proportional to the con-
fidence value might not give enough preference to the truly best choice. To
this end, a more “aggressive” update rule has been suggested: adaptive pur-
suit. This selection scheme uses the same confidence values as probability
matching, but applies a much more progressive update rule for the proba-
bilities. In adaptive pursuit, the probabilities of selection are obtained from
the probabilities of the previous iteration according to a “winner takes all”
policy. Concretely, the “best arm,” i.e., the parameter value with the high-
est confidence value, is assigned a probability of (1−β)pi∗

t +βpmax, while
for all other parameters the probability of being sampled is reduced to
pi

t+1 := (1−β)pi
t + βpmin. Empirical comparisons of probability matching

and adaptive pursuit are presented in [84]. In general, it seems that adap-
tive pursuit is more suitable for situations in which the quality differences
between the potential parameter values are small, but persistent.

• Upper confidence bound. The upper confidence bound (UCB) algorithm,
originally proposed in [6], plays an important role in machine learning, as
it is one of the few strategies that can be proven to behave optimally in
a classical operator selection problem. More precisely, the UCB algorithm
can be proven to achieve minimum cumulative regret in the multiarmed ban-
dit problem in which the reward of each “arm” follows a static probability
distribution. Interpreting the different “arms” as the different parameter
values that we want the algorithm to choose from, the UCB algorithm
chooses in every step the parameter value i that maximizes the expression

ER(i)+

√√√√c log

(
2
∑k

j=1 nj,t

ni,t

)
,

where ER(i) is an estimate of the expected reward of the i-th parameter
value, nj,t is the number of times the j-th parameter value has been chosen
in the first t iterations, and c is a hyper-parameter that determines the
bias between exploiting parameter values with high expected reward and
exploring parameter values that have not yet been tested very often. While
it is provably optimal in static settings, the UCB algorithm is rather se-
date, and thus not very well suited for environments that change gradually
over time – the typical situation encountered in the optimization of rather
smooth optimization problems. In the parameter control context, it there-
fore makes sense to replace nj,t by an index that counts the number of

298 Benjamin Doerr and Carola Doerr

occurrences in a given time interval only, instead of considering the whole
history (a sliding window; see [44] for a detailed discussion and experimen-
tal results on two discrete benchmark problems). In contrast, when the
environment changes abruptly, a combination of the UCB algorithm with
a statistical test that detects significant changes in the fitness landscape
has been shown to perform very well [17, 43].

6.6.2 Theoretical Results for Learning-Inspired
Parameter Control

The first, and so far only, theoretical study that rigorously analyzed a learning-
inspired parameter selection scheme is [29]. The algorithm proposed there
is a generalized version of RLS, which selects in every step the number of
bits to be flipped according to the following rule. With probability ε > 0 a
random one of the k possible mutation strengths 1, . . . ,k is chosen, and with
the remaining probability the algorithm greedily selects the parameter value
for which the expected progress (termed velocity in [29]) is maximized. The
expected progress is estimated by a time-discounted average of the progress
observed in the learning iterations. More precisely, the velocity of mutation
strength r at time t is defined via

vt[r] :=
∑t

s=1 1rs=r(1− δ)t−s(f(xs)−f(xs−1))∑t
s=1 1rs=r(1− δ)t−s

, (6.6.1)

where rs is the parameter value used in the s-th iteration, and the hyper-
parameter δ determines the speed of the adaptation process. The authors
of [29] refer to δ as the forgetting rate, inspired by the observation that the
reciprocal 1/δ of the forgetting rate is (apart from constant factors) the in-
formation half-life. Note here that, compared with [29], we have changed the
meanings of ε and δ, to be in line with the classical literature in machine
learning, where the algorithm in [29] would be classified as an ε-greedy selec-
tion scheme (meaning that with probability ε a random choice is made, and
otherwise a greedy choice).

The main theoretical result in [29] is a proof that, for suitably selected
hyper-parameters ε and δ, this algorithm essentially always uses the best pos-
sible mutation strength when run on OneMax. More precisely, it was shown
that in all but a fraction o(1) of the iterations the selected parameter value
achieves an expected progress that differs from the best possible progress by
at most some lower-order term. Consequently, the algorithm has the same op-
timization time (apart from an o(n) additive lower-order term) and the same
asymptotic 13% superiority in the fixed-budget perspective as the fastest al-
gorithm which can be obtained from these mutation strengths, which again

6 Theory of Parameter Control for Discrete Black-Box Optimization 299

comes arbitrarily close (by taking k large) to the performance of the hand-
crafted mutation strength schedule presented in Theorem 6.4.4.

Theorem 6.6.1 (Theorems 1 and 2 in [29]). Let T (rmax) be the mini-
mum expected running time that any randomized local search algorithm us-
ing a fitness-dependent mutation strength of at most rmax can achieve on
OneMax. Then the expected running time T of the ε-greedy RLS variant
presented in [29] with hyper-parameters ε = n−0.01, δ = n−0.99, and k = rmax
is T (rmax)+o(n).

In the fixed-budget perspective, the following holds. Let x
(t)
ε be the best so-

lution that the ε-greedy RLS variant with this parameter setting has identified
within the first t iterations. Similarly, let x

(t)
RLS be the best solution that the

classic RLS using 1-bit flips only has found within the first t iterations. For
t≥ 0.2675n, the expected Hamming distances to the optimum z satisfy

E[H(x(t)
ε ,z)]≤ (1+o(1))0.872E[H(x(t)

RLS,z)].

The hyper-parameters in this result were taken as one example where this
algorithm shows superior performance. As noted in [29], the particular choice
of these parameters is not overly critical. Clearly, ε has to be o(1/ logn) to
ensure that at most o(n) iterations are performed with a suboptimal mutation
strength. Likewise, δ has to be o(n) to ensure that information learned Ω(n)
iterations ago (and thus at a time when the velocities could be substantially
different) has no significant influence on the current decision.

In addition to this theoretical result, [29] also presented empirical results
for the LeadingOnes and the minimum spanning tree problem. These exper-
imental studies suggest that, for suitably chosen hyper-parameters ε, δ, and
k, the average optimization time of the ε-greedy RLS variant can be signifi-
cantly smaller than that of the (1+1) EA. It even outperforms, empirically,
RLS on LeadingOnes, and the RLS variant that always flips either one or
two random bits in the current best solution on the MST problem.

6.7 Self-Adaptation: Endogenous Parameter Control

As we have seen in the previous sections, an elegant way to overcome the
difficulty of finding the right parameters of an evolutionary algorithm and to
cope with the fact that the optimal parameter values may change during a
run of the algorithm is to let the algorithm optimize the parameters on the
fly. However, formally speaking, this is an even more complicated task, be-
cause we now have to design a suitable parameter-setting mechanism. While
a number of natural heuristics such as the one-fifth success rule have proven
to be effective in certain cases, it would be even more elegant not to add an
exogenous parameter control mechanism onto the algorithm, but rather to in-

300 Benjamin Doerr and Carola Doerr

tegrate the parameter control mechanism into the evolutionary process, that
is, to attach the parameter value to the individual (consequently, there is no
global parameter value, but each individual carries its own parameter value),
to modify it via (extended) variation operators, and to use the fitness-based
selection mechanism of the algorithm to ensure that good parameter values
become dominant in the population.

This self-adaptation of the parameter values has two main advantages.

• It is generic, that is, the adaptation mechanism is provided by the algo-
rithm, and only the representation of the parameter in the individual and
the extension of the variation operators has to be provided by the user.

• It allows existing algorithms and existing code to be reused.

Despite these advantages, self-adaptation is not used a lot in discrete evolu-
tionary optimization (unlike in continuous optimization) and, consequently,
there is also little theoretical work on this topic.

Self-adaptation for discrete evolutionary computation was proposed in the
seminal paper [8] by Bäck, which also contains a mathematical convergence
proof for the mutation rate (in the particular setting proposed there). Apart
from this result, only two publications on running-time analysis for self-
adapting parameter choices have appeared so far. Since these results, like
the paper by Bäck, are concerned with self-adaptive mutation rates, we dis-
cuss self-adaptation only for mutation rates in the following and note that
other parameters could be optimized via self-adaptation in a similar way.

6.7.1 Implementing Self-Adaptive Mutation Rates

To use self-adaptation for the mutation rate, the individuals (which are usu-
ally possible solution candidates) have to be extended to also contain “their”
mutation rate. In the purest possible form, as done by Bäck [8], this is im-
plemented via appending additional bits to the bit string which represents
the solution candidate. These additional bits encode in a suitable manner the
mutation rate. This pure form has the advantage that any standard variation
operator can be used directly on the extended individuals. The downside of
this approach is that non-binary data is artificially treated like binary deci-
sion variables.

It has been argued, for example in [28], that it can be preferable to encode
non-binary data in its original form and to modify it via data-specific varia-
tion operators. In the context of self-adaptation, the mutation rate has been
encoded as a floating-point number in]0,1[in [9, 64], which is mutated ac-
cording to a log-normal distribution. In the recent theoretical studies [18, 38],
only a discrete set of possible mutation rates was allowed. In [38], mutation
rates r/n, with r ∈ [1..n/2] being a power of two, were used. As a mutation,
the rate r/n was replaced by a random choice between (r/2)/n and (2r)/n.

6 Theory of Parameter Control for Discrete Black-Box Optimization 301

With either representation of the mutation rate, the extended mutation
operator (acting on the extended individuals) will always be such that first
the encoded mutation rate is mutated and then the core individual is mutated
with this new rate. This is necessary for the subsequent selection step to see
an influence of the new mutation rate and thus, hopefully, prefer individuals
with a more profitable mutation rate.

Finally, when designing a self-adaptive parameter optimization scheme,
one may want to prefer non-elitist algorithms. An elitist algorithm carries
the risk of getting stuck with individuals that have a high fitness, but a very
unprofitable mutation rate. In this situation, progress can only be made when
the mutation of the mutation rate in one iteration changes the rate to a value
that admits an improvement. In other words, it is not possible to change the
rate in several iterations if no improvement is made.

6.7.2 Theory for Self-Adaptive Mutation Rates

In the first publication analyzing self-adaptation through the running-time
analysis paradigm, Dang and Lehre [18] considered the following setting. They
used a simple non-elitist algorithm which, in each iteration, generates from
a population of λ individuals a new population of λ individuals. This is done
by independently selecting λ times an (extended) parent individual from the
current population, mutating it via the (extended) mutation operator, and
adding it to the new population. For the mutation rate, Dang and Lehre as-
sumed that there is only a finite setM of prespecified rates (for most results,
they took |M|= 2). The extended mutation operator first, with probability p,
which is a global parameter of the algorithm, replaces the current rate of the
individual by a random different one, and then mutates the core individual
via standard bit mutation with the new rate. For the selection operator, a
wide range of choices are subsumed in this publication, since the results are
phrased in terms of a parameter of the selection operator, namely the repro-
ductive rate. A selection operator (possibly depending on a fitness function
f) has a reproductive rate α if, for all populations P and each individual x of
the population, the expected number of times x is chosen in λ independent
applications of the selection operator is at most α. For example, always select-
ing a best individual from the population leads to α = λ, whereas a uniform
random selection gives α = 1.

For this setting, the following results were shown. If a mutation rate p1
satisfies p1 ≥ (lnα+δ)/n for some constant δ, then an algorithm that always
uses the rate p1 (equivalent to the case where M = {p1}) and random ini-
tialization needs with high probability an at least exponential time to reach
the optimum of any pseudo-Boolean function with a unique optimum (this
is Theorem 2 of [18] in the special case of |M|= 1).

302 Benjamin Doerr and Carola Doerr

If two rates are used, that is, M = {p1,p2}, and the mutation operator
chooses the current rate of the individual uniformly at random, then even if
only one of the rates satisfies the dangerous condition pi ≥ (lnα + δ)/n, the
above problem can remain: if p1 ≥ (lnα− ln(1 + δ1))/n, p2 ≥ (lnα− ln(1−
δ2))/n, and δ1/(δ1 + δ2) ≤ 1

2 − ε for constants δ1, δ2,ε > 0, then again an
at least exponential running-time results with high probability (Theorem 4
in [18]). This result again applies to any pseudo-Boolean function f : {0,1}n→
R that has a unique optimum.

The latter of these two results shows that randomly mixing a good and a
bad operator can be essentially as bad as using the bad operator alone. This is
not overly surprising, but points out the contrast with the following result for
a self-adaptive choice of the mutation rate. For a suitable example function f ,
it was proven that an algorithm with a suitably initialized population, with
tournament selection with tournament size 2, with population size λ≥ c ln(n),
and with a self-adaptive choice between the two mutation rates p1≥ ln(3) and
p2 = ln(3/2)−ε finds the optimum of f in a polynomial running time, whereas
using either of these two rates alone or randomly mixing between them leads
to an at least exponential running time with high probability.

As for almost all such examples, this one also is slightly artificial and needs
quite some assumptions, for example, that all λ individuals are initialized
to the unique local optimum. Nevertheless, this result demonstrates that
self-adaptation can outperform static parameter choices and random mixing.
The reason for this is that, as the proofs reveal, the self-adaptation is able
to find in a relatively short time the mutation rate which is most profitable
(as opposed to fixed parameter choices) and to remember it (as opposed to
random mixing).

Very recently, a less artificial example of the use of self-adaptation was
presented in [38]. There it was shown that the (1,λ) EA with a self-adaptive
choice of the mutation rate can achieve an asymptotically identical per-
formance to the self-adjusting (1 + λ) EA presented in [33] (see also Sec-
tion 6.5.2.3). In the self-adaptive setting of [38], the extended individuals store
their mutation rate, which is r/n for an integer r ∈ [32..n/64]. The extended
mutation operator first changes r to r/32 or 32r (uniform random choice) and
then performs standard bit mutation with the new mutation rate r/n. One of
the offspring with maximum fitness is selected as the new parent individual.
In the case of ties, individuals with a smaller rate are preferred, which creates
a small extra drift towards the usually recommended rates of order Θ(1/n).
It was shown that when λ ≥ (lnn)1+ε, this algorithm finds the optimum of
the OneMax function in an expected number of O(n/ logλ+(n logn)/λ) it-
erations, which is the asymptotically best possible running time for λ-parallel
algorithms (see Theorem 6.4.3, which we have cited from [10]).

6 Theory of Parameter Control for Discrete Black-Box Optimization 303

6.8 Hyper-Heuristics

Hyper-heuristics are search or optimization heuristics which, during the run
of an algorithm, choose in a possibly adaptive manner which low-level heuris-
tics to use. Since in some situations hyper-heuristics can closely resemble an
adaptive parameter choice, we describe in this section what is known about
such hyper-heuristics.

6.8.1 A Brief Introduction to Hyper-Heuristics

Hyper-heuristics either choose from a prespecified set of low-level heuristics
(selection hyper-heuristics) or try to generate low-level heuristics from exist-
ing components (generation hyper-heuristics). There is a considerable amount
of applied research on generation hyper-heuristics, for example, for schedul-
ing problems, packing problems, satisfiability, and the traveling salesman
problem. However, since there appears to be no theoretical work on gen-
eration hyper-heuristics and since, naturally, generation hyper-heuristics are
substantially different from parameter control mechanisms, we will not detail
this subarea further, and refer, as for all other topics incompletely covered
here, to the recent survey [13].

As is true in general for optimization heuristics, hyper-heuristics can
also be divided into construction hyper-heuristics and perturbation hyper-
heuristics. The former try to construct a solution from partial solutions. This
has led to interesting results, for example, in production scheduling, educa-
tional timetabling, and vehicle routing. Since constructing a solution from
partial solutions is necessarily a highly problem-specific approach, it is not
surprising that general theoretical results for this subarea do not yet exist.

In contrast, perturbation hyper-heuristics work, in a similar manner to
classical evolutionary algorithms, with complete solution candidates, which
are randomly modified in the hope of gaining superior solutions. Perturbation
selection hyper-heuristics have found numerous applications, among others,
in various scheduling contexts. The most common form of perturbative se-
lection hyper-heuristics is single-point search, which, in a fashion analogous
to (1 + λ) EAs, repeat creating one or more offspring from a single parent
and selecting the next parent from these offspring and the previous parent.
For such selection hyper-heuristics, some general mechanisms for choosing
the low-level heuristic that create the offspring have been proposed, see Sec-
tion 6.8.3.

As said above, selection hyper-heuristics are methods that select, during
the run of an algorithm, which one out of several prespecified simpler algo-
rithmic building blocks to use. When the different prespecified choices are
essentially identical apart from an internal parameter, then this selection
hyper-heuristic could equally well be interpreted as a dynamic choice of the

304 Benjamin Doerr and Carola Doerr

internal parameter. For example, when only the two mutation operators are
available that flip exactly one or exactly two bits, then a selection hyper-
heuristic choosing between them could also be interpreted as a randomized
local search heuristic using a dynamic choice of the number of bits it flips.
Conversely, some of the studies described previously could equally well be
described in the language of simple selection hyper-heuristics. In this section,
we follow the language used by the original authors and do not aim at drawing
a line between the different fields.

We now describe the main theoretical studies that have appeared in the
hyper-heuristics community, as long as they resemble dynamic parameter
control mechanisms, the main topic of this chapter.

6.8.2 Random Mixing of Low-Level Heuristics

6.8.2.1 Markov Chain Analyses

The first theoretical study of selection hyper-heuristics was conducted by He,
He, and Dong [49]. They considered a variant of the classic (1+1) EA which
in each iteration selects a mutation operator from a finite set of operators ac-
cording to a fixed probability distribution. In hyper-heuristics language, this
is a single-point selection heuristic using a mixed strategy. He et al. showed
that the asymptotic convergence rate and the asymptotic hitting time re-
sulting from any mixed strategy are not worse than those resulting from
exclusively using the worst of the given operators.

Some care is necessary when interpreting this result. The asymptotic hit-
ting time as defined in [49] is not the asymptotic order of magnitude of the
classical hitting time (the number of iterations until the optimum is gener-
ated), but the spectral radius ρ(N) of the fundamental matrix N = (I−T)−1

of the Markov chain describing the parent individual in a run of this single-
point heuristic, where I is the identity matrix and T is the transition matrix
restricted to the non-optimal search points. This asymptotic hitting time is
only loosely related to the classical hitting time. Denoting by Tx the classical
hitting time of this Markov chain (usually called the optimization time of the
EA) when started in the state x, then only the weak relation

Emin := min{E[Tx] | x∈Snonopt}≤ ρ(N)≤max{E[Tx] | x∈Snonopt}=: Emax

is known, where Snonopt is the set of all non-optimal search points. Conse-
quently, the asymptotic hitting time ρ(N) only provides a lower bound on
the worst-case expected hitting time Emax. Note that the best-case expected
hitting time Emin is often very small, as witnessed by search points x that are
very close to the optimum. Consequently, the lower bound for the worst-case
hitting time given by ρ(N) can be relatively weak. Nothing is known about

6 Theory of Parameter Control for Discrete Black-Box Optimization 305

how the asymptotic hitting time is related to the running time starting from
a random search point, which is the usual performance measure. For these
reasons, it is not clear how to translate the result of [49] into the classical
running-time analysis language.

6.8.2.2 Running-Time Analysis of Mixed Strategies

The first to conduct a running-time analysis for selection hyper-heuristics in
the classical methodology were Lehre and Özcan [67]. In [67, Theorem 3],
it was stated that the (1+1) EA8 using the mixed strategy of choosing in
each iteration the mutation operator randomly between the 1-bit-flip opera-
tor (with probability p) and the 2-bit-flip operator (with probability 1− p)
optimizes the OneMax function in an expected time of at most

min
{

n

p
(1+ ln(n)), n2

1−p

(
1− 1

n

)}
≤

{
n
p (1+ lnn) if p > 1+lnn

n+lnn ,
1

1−p n2 otherwise.
(6.8.1)

It appears to us that this result is not absolutely correct, since, for example, in
the case p = 0 the expected optimization time is clearly infinite: if the random
initial search point has an odd Hamming distance from the optimum, then
the optimum cannot be reached via 2-bit flips only. For similar reasons, the
expected running time has to be larger than in (6.8.1) for very small values
of p. We will therefore prove the following result.

Theorem 6.8.1. Consider the (1+1) EA with the mixed mutation strategy
of flipping a single random bit with probability p and flipping two (different)
random bits with probability 1− p. Let T be the running time (number of
iterations) of this algorithm on the OneMax benchmark function. If p > 0,
then

E[T]≤

{
n
p +n2 if p≤ 1

n
n
p

(
ln(np)+1+ ln(np)

np−1

)
if p > 1

n .

If p = 0, then with probability 1
2 the algorithm never finds the optimum (and

thus the expected running time E[T] is infinite).

Proof. For the case p = 0, we note that with probability exactly 1
2 the random

initial search point has an odd Hamming distance from the optimum.9 Since
2-bit flips change the Hamming distance by −2, 0, or +2, the algorithm can
never reach the optimum in this case.

8 We note that some authors prefer to call the algorithm used in [67] a variant of
randomized local search rather than an evolutionary algorithm, since it only creates
offspring within a bounded distance from the parent.
9 This well-known fact follows from the beautiful argument 0 = (1 − 1)n =∑n

i=0 1i(−1)n−i
(

n
i

)
.

306 Benjamin Doerr and Carola Doerr

Hence, let us assume p > 0 for the remainder of this proof. When the
current search point of the (1+1) EA has a Hamming distance of d≥ 1 from
the optimum, then the probability pd that one iteration ends with a better
search point is

pd = p
d

n
+(1−p) d(d−1)

n(n−1)
= d((1−p)d+np−1)

n(n−1)
.

Using p1 = p
n and pd ≥ d(d−1)

n(n−1) for all d≥ 2, the classic fitness level theorem
yields

E[T]≤
n∑

d=1
p−1

d

≤ n

p
+n(n−1)

n∑
d=2

1
d(d−1)

= n

p
+n2

(
1− 1

n

)2
≤ n

p
+n2.

Above, we have used the equation
∑n

d=2
1

d(d−1) = 1− 1
n , valid for all n ∈ N,

which can be shown easily by induction.
For p > 1

n , we also have the estimate

E[T]≤
n∑

d=1
p−1

d

= n(n−1)
n∑

d=1

1
d((1−p)d+np−1)

≤ n(n−1)
(

1
(n−1)p

+
∫ n

1

1
d((1−p)d+np−1)

dd

)
= n

p
+n(n−1)

(
− 1

np−1
ln
(

(1−p)d+np−1
d

))∣∣∣∣n
1

= n

p
+ n(n−1)

np−1

(
ln((n−1)p)− ln

(
n−1

n

))
≤ n

p
+n2 ln(np)

np−1
= n

p

(
1+ ln(np)

(
1+ 1

np−1

))
= n

p

(
ln(np)+1+ ln(np)

np−1

)
.

Note that for all p > 1
n we have ln(np) < np− 1. Hence the bound above is

less than n
p +n2 and thus stronger than the first bound. ⊓⊔

6 Theory of Parameter Control for Discrete Black-Box Optimization 307

Without giving full details, we remark that better results can be obtained
by using variable drift instead of the classic fitness level method. Since a 2-
bit flip giving a fitness improvement automatically improves the fitness by
exactly two, we have that the expected fitness gain in one iteration starting
with a search point with fitness distance d is

hd = p
d

n
+2(1−p) d(d−1)

n(n−1)
= d(2(1−p)d+np+p−2)

n(n−1)
.

Now the variable drift theorem for upper bounds on hitting times (see [60],
note that for processes in N0 the integration can be replaced by a summation)
gives E[T] ≤

∑n
d=1 h−1

d , which can be estimated in a similar fashion to the
term

∑n
d=1 p−1

d above. What is more interesting than the slightly improved
upper bound is that the variable drift theorem for lower bounds [32] gives
a very similar lower bound, namely E[T] ≥

∑n
d=3 h−1

d ; note again that for
integer-valued processes we can replace the integration with a summation.

The above results show that, for the classical benchmark function
OneMax, mixing the 1-bit-flip and 2-bit-flip operators in a random fash-
ion gives no improvement over exclusively using the 1-bit operator. In light
of the precise analysis of the performance of k-bit-flip operators on OneMax
in [30], this result is not very surprising. There, it was shown that the ex-
pected fitness gain is never maximized by flipping an even number of bits.
Also, from a fitness of (2

3 + o(1))n on, the 1-bit-flip operator is the only one
that maximizes the expected fitness gain.

6.8.2.3 Superiority of Mixed Strategies

To demonstrate the use of mixing operators, Lehre and Özcan [67] constructed
an example function GapPath, which has the property that the (1+1) EA
mixing 1-bit and 2-bit flips when initialized with x0 = (0, . . . ,0) can optimize
GapPath only when both the 1-bit-flip and the 2-bit-flip mutation opera-
tor are chosen with positive probability. Based on this result, several ways
to alternate between a low and a high p-value were discussed, including a
success-based reinforcement approach. While these ideas were shown to give
improvements over certain choices of p such as p = 1

n , they did not outperform
natural choices such as p = 1

2 or p = 1.
An example similar to GapPath was used to show that mixing 1-bit-flip

and 2-bit-flip operators can be necessary also in multi-objective optimiza-
tion [78].

We note that a more natural example of the need for mixing, without
being explicitly stated there, had already been considered by Neumann and
Wegener [76] (and a slightly more technical example had been given even
earlier by Giel and Wegener [45]). Neumann and Wegener [76] analyzed how
simple randomized search heuristics solve the minimum spanning tree prob-

308 Benjamin Doerr and Carola Doerr

lem in connected undirected graphs G = (V,E) having n := |V | vertices and
m := |E| edges with integral edge weights in [1..wmax]. They used the natural
representation that individuals are sets S = S(x) of edges represented via bit
strings x ∈ {0,1}E . As the fitness (to be minimized) of an individual, they
proposed

f(x) = M2(Cx−1)+M

 ∑
e∈S(x)

xe− (n−1)

+
∑

e∈S(x)

xew(e),

where M = n2wmax and Cx is the number of connected components of the
graph (V,{e ∈ E | xe = 1}). This fitness function punishes connected com-
ponents as first priority, then punishes the number of edges, and only then
prefers solutions with smaller total weight (we do not see that the punish-
ment of edges is necessary, but clearly it does no harm either). Besides the
(1+1) EA, Neumann and Wegener analyzed the performance of (in their
language) a variant of the randomized local search heuristic which, in each
iteration, either (uniform random choice) flips a single random bit or flips
two different random bits. In hyper-heuristics language, they thus considered
the same single-point selection hyper-heuristic with random mixing between
the 1-bit-flip and the 2-bit-flip operator as in [67] except that they fixed the
probability p to 1

2 .
Neumann and Wegener showed that this algorithm computes a minimum

spanning tree in an expected number of O(m2 log(nwmax)) iterations. It can
easily be seen, and has been shown in [80], that for this algorithm, the wmax
term in the running-time bound can be omitted, but we shall not care about
this usually small improvement in the following. Neumann and Wegener do
not make this explicit, but from their proofs it is clear that any other mix-
ing which uses both operators with constant probability would give the same
result. The reason why Neumann and Wegener used both 1-bit flips and
2-bit flips is that, obviously, all spanning trees are local optima of the fit-
ness function. Consequently, using 1-bit flips only carries the risk of getting
stuck in a local optimum forever. The parity argument used in the proof
of Theorem 6.8.1 shows also that when only the 2-bit-flip operator is used,
the algorithm has a constant probability (of exactly 1

2) of never reaching an
optimum.
Theorem 6.8.2 (analogous to Theorem 11 in [76]). Consider the
(1+1) EA with the mixed strategy of flipping one random bit (with proba-
bility p) and two different random bits (with probability 1− p), solving the
minimum spanning tree problem in connected undirected graphs having n ver-
tices, m edges, and integral edge weights in [1..wmax].
• If both p and 1− p are Ω(1), then the expected optimization time is

O(m2 log(nwmax)).
• If p = 0, then with probability 1

2 the algorithm never finds any spanning
tree.

6 Theory of Parameter Control for Discrete Black-Box Optimization 309

• If p = 1 and the input graph does not have the property that each span-
ning tree is a minimum spanning tree, then with positive probability the
algorithm never finds a minimum spanning tree.

Consequently, this algorithm solves the minimum spanning tree problem in
polynomial expected time if and only if p /∈ {0,1}, that is, if there is a true
mixing of the two mutation operators.

The publications [45, 76] showed that hyper-heuristics using random mix-
ing of mutation operators could, with equal justification, just be called evo-
lutionary algorithms using a possibly non-standard mutation operator. With
equal justification, one could declare the (1+1) EA or the (1 + λ) EA using
the classic standard bit mutation operator (flipping each bit independently
with probability 1

n) a single-point selection hyper-heuristic choosing the k-
bit-flip operator with probability exactly

(n
k

)
(1

n)k(1− 1
n)n−k. The same state-

ment (with a different probability distribution) is true when the heavy-tailed
mutation operator of [35] is used instead of standard bit mutation.

We end this section with a recent result giving an example where a large
number of mixings give asymptotically the same performance. In [4], the
plateau function Plateauk is defined by Plateauk(x) = OneMax(x) if
OneMax(x) ∈ [0..n− k]∪{n}, and Plateauk(x) = n− k if OneMax(x) ∈
[n−k+1..n−1]. This function thus agrees with the OneMax function except
that it has a large plateau of size N =

∑k
i=1
(n

i

)
= nk

k! + o(nk) around the
optimum. Consider the (1+1) EA randomly mixing the k mutation operators
which flip exactly 1,2, . . . ,k bits. Let p1,p2, . . . ,pk ∈ [0,1] with

∑k
i=1 pi = 1 be

the probabilities of selecting the corresponding operators (and let us view
these numbers as constants, that is, not depending on n). Assume p1 > 0 to
ensure that the algorithm surely converges. Then the expected optimization
time is E[T] = (1+o(1))N regardless of the values of p1, . . . ,pk.

6.8.3 Beyond Mixing: Advanced Selection
Mechanisms10

The first to conduct a theoretical analysis of more sophisticated selection
hyper-heuristics were Alanazi and Lehre [1]. Besides the simple random
10 Warning: all results described in this section use a different definition of the 2-bit-
flip operator, namely one where, independently and uniformly at random, i ∈ [1..n]
and j ∈ [1..n] are chosen and then first the i-th bit is flipped and then the j-th bit is
flipped. Consequently, this operator, with probability 1−1/n, flips two random different
bit positions. With probability 1/n, however, we have i = j and thus the two flipping
operations cancel and the offspring is identical to the parent. We do not see much reason
for the use of this alternative operator. We suspect (but have not checked this rigorously)
that all results presented in this section hold as well for the classic 2-bit-flip operator,
which flips two randomly chosen different bit positions (in other words, returns a random
search point with Hamming distance 2 from the parent).

310 Benjamin Doerr and Carola Doerr

heuristic (choosing a low-level heuristic uniformly at random each time, that
is, mixing with a uniform distribution), they considered the following classical
selection mechanisms.

• Random gradient: take a random low-level heuristic and repeat using it as
long as a true fitness improvement is obtained.

• Greedy: in each iteration, use all low-level heuristics in parallel and con-
tinue with a best search point generated by one of them (or the parent if
no offspring is at least as good as the parent).

• Permutation: generate initially a random cyclic order of the low-level
heuristics and then use them in that order. This mechanism can be seen as
a quasirandom analogue of the simple random heuristic (see [31] for a dis-
cussion of the use of quasirandomness in evolutionary computation). Alter-
natively, this hyper-heuristic can be viewed as a time-dependent parameter
control method. In fact, the time-dependent choices of the mutation rate
discussed in [39, 55], see Section 6.4.1, can be seen as special cases of this
hyper-heuristic.

Again for the choice between 1-bit flips and 2-bit flips, Alanazi and Lehre
proved upper and lower bounds on the expected optimization time on the
LeadingOnes benchmark function. While the results are relatively tight
(the corresponding upper and lower bounds deviate by at most a factor of
6 + o(1)), the intervals of possible running times intersect. Hence this first
running-time analysis for these advanced selection mechanisms does not yet
give a conclusive picture.

Given that the probabilities of finding a true improvement are very low in
this discrete optimization problem, one would expect that the four selection
mechanisms would all use the two operators in a very balanced manner and
thus lead to very similar running times. This was indeed the first set of results
in the remarkable work of Lissovoi, Oliveto, and Warwicker [69]. Building on
the precise analysis method of [12] instead of the fitness level method, they
showed that the expected running time for all four selection mechanisms is
1
2 ln(3)n2 + o(n2) ≈ 0.549n2. Consequently, the more complex heuristics do
not give a measurable performance gain over a simple randomized selection
of the operator, and all are worse than just using 1-bit flips, which is known
to give an expected running time of precisely 0.5n2.

Theorem 6.8.3 (Theorem 4.2 and Corollary 4.3 in [69]). The
(1+1) EA using one of the selection mechanisms simple random, random
gradient, greedy, or permutation to choose between the 1-bit-flip or the 2-bit-
flip operator optimizes the LeadingOnes function in an expected number of
1
2 ln(3)n2 +o(n2)≈ 0.549n2 iterations.

Lissovoi et al. [69] built on this strong result by proposing to use a slower
adaptation (a similar idea can be found already in [1], there, however, in
a very problem-specific manner and only with preliminary experimental re-
sults). For the random gradient method, they proposed to switch the low-level

6 Theory of Parameter Control for Discrete Black-Box Optimization 311

heuristic only after a phase of τ iterations. More precisely, the current low-
level heuristic is used for up to τ iterations. If an improvement is found,
immediately another phase with this operator starts. If a phase of τ itera-
tions does not see a fitness improvement, then a new phase is started with a
random operator.

For this generalized random gradient mechanism with a phase length of
τ = cn for a constant c, they showed (still for the LeadingOnes problem
and the 1-bit and 2-bit mutation operators) an expected running time of
g(c)n2 + o(n2), where g(c) is a constant depending on c only that tends
to ln(2)+1

4 ≈ 0.423 when c tends to infinity. Consequently, this new hyper-
heuristic outperforms the previously investigated ones when c is large enough.
As c tends to infinity, its performance approaches the best possible perfor-
mance that can be obtained from the two mutation operators, which is, as
also shown in [69], ln(2)+1

4 n2 + o(n2). The following variant of this result
appeared in the preprint [70].

Theorem 6.8.4 (Theorem 7 and Corollary 15 in [70]). Consider the
(1+1) EA using the generalized random gradient selection heuristic with
phase length τ ∈ ω(n) and τ ≤ cn ln(n), c < 1

2 , to choose between the 1-bit-flip
and the 2-bit-flip operator. Then this algorithm optimizes the LeadingOnes
function in an expected number of 1

4 (ln(2)+1)n2 +o(n2)≈ 0.423n2 iterations.
This is, apart from lower-order terms, the best running time which can be
achieved with these two mutation operators.

A similarly generalized variant of the greedy selection hyper-heuristic was
also found to improve over the classical selection heuristics, but appears not
to give the same good results as the generalized random gradient method.

The generalized random gradient heuristic was extended further in [36].
There, an operator was defined as successful (which leads to another phase
using this operator) if it leads to σ improvements in a phase of at most τ
iterations. Hence, in this language, the previous generalized random gradient
heuristic uses σ = 1. By using a larger value of σ, the algorithm is able to
take more robust decisions about what is a success. This was used in [36] to
determine the phase length τ in a self-adjusting manner. While the previous
work [69] does not state this explicitly, the choice of τ is crucial. A τ -value of
smaller asymptotic order than Θ(n) leads to typically no improvement within
a phase and thus reverts the algorithm to the simple random heuristic. A τ -
value of more than cn ln(n), where c is a suitable constant, results in both
operators being successful in most parts of the search space. Consequently,
the algorithm sticks to the first choice for a large majority of the optimization
process and thus does not profit from the availability of both operators.

Since the choice of τ is so critical, a mechanism that successfully adjusts
it to the right value is desirable. In [36], it was shown that by choosing
σ ∈Ω(log4 n)∩o(

√
n/ logn) – note that this is a quite wide range – the value

of τ can be easily adjusted on the fly via a multiplicative update rule. This
gives again the asymptotically optimal running time of Theorem 6.8.4.

312 Benjamin Doerr and Carola Doerr

6.9 Conclusion and Outlook

Recent years have seen a significant increase in our understanding of
parameter control. The results stemming from the theory community in-
dicate that success-based rules can easily lead to good parameter settings.
These rules are easy to find owing to their intuitive hyper-parameters: if we
conduct the update by multiplying the parameter by F in the case of success
and by F 1/(σ−1) in the case of failure, then F controls the speed of adapta-
tion and 1/σ is the intended rate of success (e.g., σ = 5 in the case of the
classical one-fifth success rule). It is also easy to observe whether such an
update rule works as desired or not: if the rate of success aimed at cannot be
obtained, then imbalance in the updates leads to an exponential growth or
shrinking of the parameter value. Therefore, we currently see no reason not
to try such a multiplicative update rule in a situation where one expects a
monotonic relation between a parameter and the success of an iteration.

The increased power of learning-based approaches (being able to gather
and exploit information obtained over many iterations) or self-adaptation
suggests that one should not ignore these; however, our current understanding
here is more limited. Indeed, we feel that making these directions more usable
is among the following open problems we want to mention.

• Theory for learning-inspired parameter control mechanisms. While there
has been considerable momentum for empirical studies of learning-inspired
parameter control mechanisms [17, 42, 44, 68, 84], these mechanisms still
lack a solid mathematical foundation. The only result that we are aware
of in this context is the (almost) optimality of the ε-greedy RLS vari-
ant presented in [29]; see Section 6.6.2 above. In addition to its intrinsic
motivation, this research direction will most probably result in a better
reconciliation of research activities in optimization and machine learning,
where many of the empirically tested techniques stem from.

• Understanding self-adaptation. While self-adaptation is massively used in
continuous evolutionary optimization, it only plays a marginal role in dis-
crete optimization. The general hope that the inclusion of the adaptive
process into the main evolutionary algorithm will easily automate the on-
the-fly control of parameters has not yet come true. The two, very recent,
theoretical studies of this topic suggest, however, that self-adaptation can
work. Therefore, extending these first studies towards a more profound
understanding of how to use self-adaptation in discrete evolutionary opti-
mization seems to be both a profitable and a feasible endeavor.

• Controlling more than one parameter. As indicated in Section 6.1, even for
static parameter settings we do not have many examples of running-time
bounds that depend on two or more parameters, with the exceptions of a
bound for the (1+λ) EA with mutation rate p = c/n proven in [46], a tight
running-time analysis for the (µ + λ) EA [5], and the three-dimensional
analysis of the (1+(λ,λ)) GA presented in [24]. For non-static parameter

6 Theory of Parameter Control for Discrete Black-Box Optimization 313

choices, the complexity of the analysis increases considerably, as the pa-
rameters often interact in a manner that is difficult to analyze. We are
not aware of any theoretical result addressing the control of two or more
parameters. According to [61], the empirical studies also focus mostly on
controlling a single parameter, while for the simultaneous adaptation of
two or more parameters only a few mechanisms have been tested.

Acknowledgements We thank Franziska Huth for providing Fig. 6.3. We thank
Thomas Bäck for useful feedback. This work was supported by a public grant as part of
the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH,
in a joint call with the Gaspard Monge Program for optimization, operations research,
and their interactions with data sciences.

314
B
enjam

in
D
oerr

and
C
arola

D
oerr

Algorithm Dynamic parameter Control scheme Function Results Reference Sec./Thm.
State-dependent parameter control schemes

(1+1) EA p time-dep. PathToJump O(n2 logn) [39, 55] Sec. 6.4.1
(µ + 1) EA p rank-based OneMax O(µn logn) [77] Thm. 6.4.1
(µ + 1) EA p rank-based f : {0,1}n→ R 7 ·3n [77] Thm. 6.4.1
(1+1) EA p fitness-dep. LeadingOnes 0.68n2 [12] Thm. 6.4.2
(1 + λ) EA p fitness-dep. OneMax Θ(n logn + nλ/ logλ) [10] Thm. 6.4.3

RLS step size ℓ fitness-dep. OneMax n ln(n)− cn±o(n) [30] Thm. 6.4.4
(1 + (λ,λ)) GA λ fitness-dep. OneMax Θ(n) [26] Thm. 6.4.5

Success-based parameter control schemes
(1 + (λ,λ)) GA λ one-fifth success rule OneMax Θ(n) [24] Thm. 6.5.1
(1 + (λ,λ)) GA λ one-fifth success rule MaxSAT O(max{n,(n logn)/(m

n)4+ε}) [14] Sec. 6.5.2.1
(1 + λ) EA λ {2λ,λ/2}, {2λ,1} see Table 6.1 [66] Thm. 6.5.2
(1 + λ) EA p 2-rate {2r,r/2} OneMax Θ(n logn + nλ/ logλ) [33] Thm. 6.5.3

RLS pos.-dep. step size ℓi Aℓi, bℓi r-ary OneMax Θ(n(logn + logr)) [28] Thm. 6.5.4
parallel (1+1) EA migration interval τ {2τ,τ/2}, {2τ,1} see Table 6.1 [73] Sec. 6.5.2.5
Learning-inspired parameter control schemes

RLS step size ℓ ε-greedy OneMax n ln(n)− cn±o(n) [29] Thm. 6.6.1
Endogeneous (self-adaptive) parameter control schemes

(λ,λ) EA p self-adaptation artificial example showing that self-a. can work [18] Sec. 6.7.2
(1,λ) EA p self-adaptation OneMax Θ(n logn + nλ/ logλ) [38] Sec. 6.7.2

Hyper-heuristics
RLS step size ℓ random mixing OneMax n

p (ln(np) + O(1)) for p > 1/n [67], Thm. 6.8.1 Thm. 6.8.1
RLS step size ℓ random mixing MST O(m2 log(nwmax)) [76] Thm. 6.8.2
RLS step size ℓ classic schemes LeadingOnes ≈ 0.549n2 [69] Thm. 6.8.3
RLS step size ℓ gen. rand. grad. LeadingOnes ≈ 0.423n2 [69] Thm. 6.8.4

RLS step size ℓ,
window τ

gen. rand. grad.,
(1 + o(1)) success rule LeadingOnes ≈ 0.423n2 [36] Sec. 6.8.3

Table 6.2 Summary of selected theoretical running-time bounds, sorted by parameter control scheme. We report the expected number of
function evaluations needed to identify an optimal solution, not the number of generations. For ease of comparison, we refer to the algorithms
considered in Section 6.8 as RLS variants, and not as (1+1) EAs. Abbreviations: Sec.=Section; Thm.=Theorem; fitness-dep.=fitness-dependent;
pos.-dep.=position-dependent; selaf-a.=self-adaptation; gen. rand. grad. = generalized random gradient

6 Theory of Parameter Control for Discrete Black-Box Optimization 315

References

[1] Alanazi, F., Lehre, P.K.: Runtime analysis of selection hyper-heuristics
with classical learning mechanisms. In: Proc. of Congress on Evolution-
ary Computation (CEC’14), pp. 2515–2523. IEEE (2014)

[2] Aleti, A., Moser, I.: A systematic literature review of adaptive parameter
control methods for evolutionary algorithms. ACM Computing Surveys
49, 56:1–56:35 (2016)

[3] Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.:
Model-based genetic algorithms for algorithm configuration. In: Proc. of
International Conference on Artificial Intelligence (IJCAI’15), pp. 733–
739. AAAI Press (2015)

[4] Antipov, D., Doerr, B.: Precise runtime analysis for plateaus. In: Proc.
of Parallel Problem Solving from Nature (PPSN’18), Lecture Notes in
Computer Science, vol. 11102, pp. 117–128. Springer (2018)

[5] Antipov, D., Doerr, B., Fang, J., Hétet, T.: Runtime analysis for the
(µ + λ) EA optimizing OneMax. In: Proc. of Genetic and Evolutionary
Computation Conference (GECCO’18), pp. 1459-1466. ACM (2018).

[6] Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the mul-
tiarmed bandit problem. Machine Learning 47, 235–256 (2002)

[7] Auger, A.: Benchmarking the (1+1) evolution strategy with one-fifth
success rule on the BBOB-2009 function testbed. In: Companion Ma-
terial for Proc. of Genetic and Evolutionary Computation Conference
(GECCO’09), pp. 2447–2452. ACM (2009)

[8] Bäck, T.: The interaction of mutation rate, selection, and self-adaptation
within a genetic algorithm. In: Proc. of Parallel Problem Solving from
Nature (PPSN’92), pp. 87–96. Elsevier (1992)

[9] Bäck, T., Schütz, M.: Intelligent mutation rate control in canonical ge-
netic algorithms. In: International Symposium on Foundations of Intelli-
gent Systems (ISMIS’96), Lecture Notes in Computer Science, vol. 1079,
pp. 158–167. Springer (1996)

[10] Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity
of parallel search. In: Proc. of Parallel Problem Solving from Nature
(PPSN’14), Lecture Notes in Computer Science, vol. 8672, pp. 892–901.
Springer (2014)

[11] Bartz-Beielstein, T., Flasch, O., Koch, P., Konen, W.: SPOT: A toolbox
for interactive and automatic tuning in the R environment. In: Proc.
of the 20. Workshop Computational Intelligence, pp. 264–273. Univer-
sitätsverlag Karlsruhe (2010)

[12] Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mu-
tation rates for the LeadingOnes problem. In: Proc. of Parallel Problem
Solving from Nature (PPSN’10), Lecture Notes in Computer Science, vol.
6238, pp. 1–10. Springer (2010)

316 Benjamin Doerr and Carola Doerr

[13] Burke, E.K., Gendreau, M., Hyde, M.R., Kendall, G., Ochoa, G., Özcan,
E., Qu, R.: Hyper-heuristics: a survey of the state of the art. Journal of
the Operational Research Society 64, 1695–1724 (2013)

[14] Buzdalov, M., Doerr, B.: Runtime analysis of the (1 + (λ,λ)) Genetic
Algorithm on random satisfiable 3-CNF formulas. In: Proc. of Genetic
and Evolutionary Computation Conference (GECCO’17), pp. 1343–1350.
ACM (2017)

[15] Carson, T., Impagliazzo, R.: Hill-climbing finds random planted bi-
sections. In: Proc. of Annual Symposium on Discrete Algorithms
(SODA’01), pp. 903–909. ACM/SIAM (2001). URL http://dl.acm.
org/citation.cfm?id=365411.365805

[16] Cervantes, J., Stephens, C.R.: Limitations of existing mutation rate
heuristics and how a rank GA overcomes them. IEEE Transactions
on Evolutionary Computation 13, 369–397 (2009)

[17] Costa, L.D., Fialho, Á., Schoenauer, M., Sebag, M.: Adaptive operator
selection with dynamic multi-armed bandits. In: Proc. of Genetic and
Evolutionary Computation Conference (GECCO’08), pp. 913–920. ACM
(2008)

[18] Dang, D.C., Lehre, P.K.: Self-adaptation of mutation rates in non-
elitist populations. In: Proc. of Parallel Problem Solving from Nature
(PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp. 803–813.
Springer (2016)

[19] Devroye, L.: The compound random search. Ph.D. dissertation, Purdue
Univ., West Lafayette, IN (1972)

[20] Dietzfelbinger, M., Rowe, J.E., Wegener, I., Woelfel, P.: Tight bounds
for blind search on the integers and the reals. Combinatorics, Probability
& Computing 19, 711–728 (2010)

[21] Doerr, B.: Optimal parameter settings for the (1 + (λ,λ)) genetic algo-
rithm. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’16), pp. 1107–1114. ACM (2016)

[22] Doerr, B., Doerr, C.: Optimal parameter choices through self-
adjustment: Applying the 1/5-th rule in discrete settings. In: Proc. of
Genetic and Evolutionary Computation Conference (GECCO’15), pp.
1335–1342. ACM (2015)

[23] Doerr, B., Doerr, C.: A tight runtime analysis of the (1+(λ,λ)) genetic
algorithm on OneMax. In: Proc. of Genetic and Evolutionary Computa-
tion Conference (GECCO’15), pp. 1423–1430. ACM (2015)

[24] Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices
for the (1+(λ,λ)) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

[25] Doerr, B., Doerr, C., Ebel, F.: Lessons from the black-box: Fast crossover-
based genetic algorithms. In: Proc. of Genetic and Evolutionary Com-
putation Conference (GECCO’13), pp. 781–788. ACM (2013)

[26] Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to design-
ing new genetic algorithms. Theoretical Computer Science 567, 87–104
(2015)

http://dl.acm.org/citation.cfm?id=365411.365805
http://dl.acm.org/citation.cfm?id=365411.365805

6 Theory of Parameter Control for Discrete Black-Box Optimization 317

[27] Doerr, B., Doerr, C., Kötzing, T.: Provably optimal self-adjusting step
sizes for multi-valued decision variables. In: Proc. of Parallel Problem
Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol.
9921, pp. 782–791. Springer (2016)

[28] Doerr, B., Doerr, C., Kötzing, T.: Static and self-adjusting mutation
strengths for multi-valued decision variables. Algorithmica 80, 1732–
1768 (2018). DOI 10.1007/s00453-017-0341-1. URL https://doi.org/
10.1007/s00453-017-0341-1

[29] Doerr, B., Doerr, C., Yang, J.: k-bit mutation with self-adjusting k out-
performs standard bit mutation. In: Proc. of Parallel Problem Solving
from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921,
pp. 824–834. Springer (2016)

[30] Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise
black-box analysis. In: Proc. of Genetic and Evolutionary Computation
Conference (GECCO’16), pp. 1123–1130. ACM (2016)

[31] Doerr, B., Fouz, M., Witt, C.: Quasirandom evolutionary algo-
rithms. In: Proc. of Genetic and Evolutionary Computation Confer-
ence (GECCO’10), pp. 1457–1464. ACM (2010). DOI 10.1145/1830483.
1830749. URL http://doi.acm.org/10.1145/1830483.1830749

[32] Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating
functions and variable drift. In: Proc. of Genetic and Evolutionary Com-
putation Conference (GECCO’11), pp. 2083–2090. ACM (2011)

[33] Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1+λ) evolutionary algo-
rithm with self-adjusting mutation rate. In: Proc. of Genetic and Evo-
lutionary Computation Conference (GECCO’17), pp. 1351–1358. ACM
(2017)

[34] Doerr, B., Künnemann, M.: Optimizing linear functions with the (1+λ)
evolutionary algorithm—different asymptotic runtimes for different in-
stances. Theoretical Computer Science 561, 3–23 (2015)

[35] Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algo-
rithms. In: Proc. of Genetic and Evolutionary Computation Confer-
ence (GECCO’17), pp. 777–784. ACM (2017). Full version available at
http://arxiv.org/abs/1703.03334

[36] Doerr, B., Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the run-
time analysis of selection hyper-heuristics with adaptive learning peri-
ods. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’18), pp. 1015–1022. ACM (2018).

[37] Doerr, B., Neumann, F., Sutton, A.M.: Time complexity analysis of evo-
lutionary algorithms on random satisfiable k-CNF formulas. Algorith-
mica 78, 561–586 (2017)

[38] Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive muta-
tion rates. In: Proc. of Genetic and Evolutionary Computation Confer-
ence (GECCO’18), pp. 1475–1482. ACM (2018).

[39] Droste, S., Jansen, T., Wegener, I.: Dynamic parameter control in sim-
ple evolutionary algorithms. In: Proc. of Foundations of Genetic Al-

https://doi.org/10.1007/s00453-017-0341-1
https://doi.org/10.1007/s00453-017-0341-1
http://doi.acm.org/10.1145/1830483.1830749
http://arxiv.org/abs/1703.03334

318 Benjamin Doerr and Carola Doerr

gorithms (FOGA’00), pp. 275–294. Morgan Kaufmann (2000). DOI
10.1016/B978-155860734-7/50098-6. URL https://doi.org/10.1016/
B978-155860734-7/50098-6

[40] Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evo-
lutionary algorithms. IEEE Transactions on Evolutionary Computation
3, 124–141 (1999)

[41] Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter
control in evolutionary algorithms. In: Parameter Setting in Evolution-
ary Algorithms, Studies in Computational Intelligence, vol. 54, pp. 19–46.
Springer (2007)

[42] Fialho, Á., Costa, L.D., Schoenauer, M., Sebag, M.: Extreme value based
adaptive operator selection. In: Proc. of Parallel Problem Solving from
Nature (PPSN’08), Lecture Notes in Computer Science, vol. 5199, pp.
175–184. Springer (2008)

[43] Fialho, Á., Costa, L.D., Schoenauer, M., Sebag, M.: Dynamic multi-
armed bandits and extreme value-based rewards for adaptive operator
selection in evolutionary algorithms. In: Proc. of Learning and Intelli-
gent Optimization (LION’09), Lecture Notes in Computer Science, vol.
5851, pp. 176–190. Springer (2009). URL https://doi.org/10.1007/
978-3-642-11169-3_13

[44] Fialho, Á., Costa, L.D., Schoenauer, M., Sebag, M.: Analyzing bandit-
based adaptive operator selection mechanisms. Annals of Mathematics
and Artificial Intelligence 60, 25–64 (2010). URL https://doi.org/10.
1007/s10472-010-9213-y

[45] Giel, O., Wegener, I.: Evolutionary algorithms and the maximum match-
ing problem. In: Proc. of Symposium on Theoretical Aspects of Com-
puter Science (STACS’03), pp. 415–426. Springer (2003)

[46] Gießen, C., Witt, C.: The interplay of population size and mutation
probability in the (1 + λ) EA on OneMax. Algorithmica 78, 587–609
(2017)

[47] Goldman, B.W., Punch, W.F.: Parameter-less population pyramid.
In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’14), pp. 785–792. ACM (2014)

[48] Hansen, N., Gawelczyk, A., Ostermeier, A.: Sizing the population with
respect to the local progress in (1,λ)-evolution strategies - a theoretical
analysis. In: Proc. of Congress on Evolutionary Computation (CEC’95),
pp. 80–85. IEEE (1995)

[49] He, J., He, F., Dong, H.: Pure strategy or mixed strategy? - An initial
comparison of their asymptotic convergence rate and asymptotic hitting
time. In: Proc. of Evolutionary Computation in Combinatorial Opti-
mization (EvoCOP’12), Lecture Notes in Computer Science, vol. 7245,
pp. 218–229. Springer (2012). DOI 10.1007/978-3-642-29124-1_19

[50] Henderson, D., Jacobson, S.H., Johnson, A.W.: The theory and prac-
tice of simulated annealing. In: F. Glover, G.A. Kochenberger (eds.)
Handbook of Metaheuristics, pp. 287–319. Springer (2003)

https://doi.org/10.1016/B978-155860734-7/50098-6
https://doi.org/10.1016/B978-155860734-7/50098-6
https://doi.org/10.1007/978-3-642-11169-3_13
https://doi.org/10.1007/978-3-642-11169-3_13
https://doi.org/10.1007/s10472-010-9213-y
https://doi.org/10.1007/s10472-010-9213-y

6 Theory of Parameter Control for Discrete Black-Box Optimization 319

[51] Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based opti-
mization for general algorithm configuration. In: Proc. of Learning and
Intelligent Optimization (LION’11), pp. 507–523. Springer (2011)

[52] Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An
automatic algorithm configuration framework. Journal of Artificial In-
telligence Research 36, 267–306 (2009)

[53] Impagliazzo, R.: Hill-climbing vs. simulated annealing for planted bi-
section problems. In: Proc. of the 4th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems
(RANDOM-APPROX’01), Lecture Notes in Computer Science, vol. 2129,
pp. 2–5. Springer (2001). DOI 10.1007/3-540-44666-4_2. URL https:
//doi.org/10.1007/3-540-44666-4_2

[54] Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring
population size in evolutionary algorithms. Evolutionary Computation
13, 413–440 (2005)

[55] Jansen, T., Wegener, I.: On the analysis of a dynamic evolutionary algo-
rithm. Journal of Discrete Algorithms 4, 181–199 (2006)

[56] Jansen, T., Wegener, I.: A comparison of simulated annealing with a
simple evolutionary algorithm on pseudo-Boolean functions of unitation.
Theoretical Computer Science 386, 73–93 (2007). DOI 10.1016/j.tcs.
2007.06.003. URL https://doi.org/10.1016/j.tcs.2007.06.003

[57] Jansen, T., Zarges, C.: Performance analysis of randomised search heuris-
tics operating with a fixed budget. Theoretical Computer Science 545,
39–58 (2014). URL https://doi.org/10.1016/j.tcs.2013.06.007

[58] Jerrum, M., Sinclair, A.: The Markov chain Monte Carlo method: An
approach to approximate counting and integration. In: D.S. Hochbaum
(ed.) Approximation Algorithms for NP-hard Problems, pp. 482–520.
PWS Publishing Co. (1997). URL http://dl.acm.org/citation.cfm?
id=241938.241950

[59] Jerrum, M., Sorkin, G.B.: Simulated annealing for graph bisection.
In: Proc. of Annual Symposium on Foundations of Computer Science
(FOCS’93), pp. 94–103. IEEE Computer Society (1993). DOI 10.
1109/SFCS.1993.366878. URL https://doi.org/10.1109/SFCS.1993.
366878

[60] Johannsen, D.: Random combinatorial structures and randomized search
heuristics. Ph.D. thesis, Universität des Saarlandes (2010)

[61] Karafotias, G., Hoogendoorn, M., Eiben, A.: Parameter control in evolu-
tionary algorithms: Trends and challenges. IEEE Transactions on Evo-
lutionary Computation 19, 167–187 (2015)

[62] Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumout-
sakos, P.: Learning probability distributions in continuous evolutionary
algorithms - a comparative review. Natural Computing 3, 77–112 (2004)

[63] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated
annealing. Science 220, 671–680 (1983)

https://doi.org/10.1007/3-540-44666-4_2
https://doi.org/10.1007/3-540-44666-4_2
https://doi.org/10.1016/j.tcs.2007.06.003
https://doi.org/10.1016/j.tcs.2013.06.007
http://dl.acm.org/citation.cfm?id=241938.241950
http://dl.acm.org/citation.cfm?id=241938.241950
https://doi.org/10.1109/SFCS.1993.366878
https://doi.org/10.1109/SFCS.1993.366878

320 Benjamin Doerr and Carola Doerr

[64] Kruisselbrink, J.W., Li, R., Reehuis, E., Eggermont, J., Bäck, T.: On
the log-normal self-adaptation of the mutation rate in binary search
spaces. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’11), pp. 893–900. ACM (2011)

[65] de Perthuis de Laillevault, A., Doerr, B., Doerr, C.: Money for noth-
ing: Speeding up evolutionary algorithms through better initializa-
tion. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’15), pp. 815–822. ACM (2015). URL http://doi.acm.org/
10.1145/2739480.2754760

[66] Lässig, J., Sudholt, D.: Adaptive population models for offspring popu-
lations and parallel evolutionary algorithms. In: Proc. of Foundations of
Genetic Algorithms (FOGA’11), pp. 181–192. ACM (2011)

[67] Lehre, P.K., Özcan, E.: A runtime analysis of simple hyper-heuristics:
to mix or not to mix operators. In: Proc. of Foundations of Genetic
Algorithms (FOGA’13), pp. 97–104. ACM (2013). DOI 10.1145/2460239.
2460249. URL http://doi.acm.org/10.1145/2460239.2460249

[68] Li, K., Fialho, Á., Kwong, S., Zhang, Q.: Adaptive operator selec-
tion with bandits for a multiobjective evolutionary algorithm based
on decomposition. IEEE Transactions on Evolutionary Computation
18, 114–130 (2014). DOI 10.1109/TEVC.2013.2239648. URL https:
//doi.org/10.1109/TEVC.2013.2239648

[69] Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis
of generalised selection hyper-heuristics for pseudo-Boolean optimisa-
tion. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’17), pp. 849–856. ACM (2017)

[70] Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: Hyper-heuristics can achieve
optimal performance for pseudo-boolean optimisation. Arxiv e-prints
1801.07546 (2018)

[71] Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in
Evolutionary Algorithms, Studies in Computational Intelligence, vol. 54.
Springer (2007)

[72] López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stüt-
zle, T.: The irace package: Iterated racing for automatic algorithm con-
figuration. Operations Research Perspectives 3, 43–58 (2016)

[73] Mambrini, A., Sudholt, D.: Design and analysis of schemes for adapting
migration intervals in parallel evolutionary algorithms. Evolutionary
Computation 23, 559–582 (2015). DOI 10.1162/EVCO_a_00153. URL
https://doi.org/10.1162/EVCO_a_00153

[74] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H.,
Teller, E.: Equation of state calculations by fast computing machines.
The Journal of Chemical Physics 21, 1087–1092 (1953)

[75] Neumann, A., Szpak, Z.L., Chojnacki, W., Neumann, F.: Evolutionary
image composition using feature covariance matrices. In: Proc. of the
Genetic and Evolutionary Computation Conference, (GECCO’17), pp.

http://doi.acm.org/10.1145/2739480.2754760
http://doi.acm.org/10.1145/2739480.2754760
http://doi.acm.org/10.1145/2460239.2460249
https://doi.org/10.1109/TEVC.2013.2239648
https://doi.org/10.1109/TEVC.2013.2239648
https://doi.org/10.1162/EVCO_a_00153

6 Theory of Parameter Control for Discrete Black-Box Optimization 321

817–824. ACM (2017). DOI 10.1145/3071178.3071260. URL http://
doi.acm.org/10.1145/3071178.3071260

[76] Neumann, F., Wegener, I.: Randomized local search, evolutionary algo-
rithms, and the minimum spanning tree problem. Theoretical Computer
Science 378, 32–40 (2007)

[77] Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-
based mutation - combining exploration and exploitation. In: Proc. of
Congress on Evolutionary Computation (CEC’09), pp. 1455–1462. IEEE
(2009)

[78] Qian, C., Tang, K., Zhou, Z.: Selection hyper-heuristics can provably
be helpful in evolutionary multi-objective optimization. In: Proc. of
Parallel Problem Solving From Nature (PPSN’16), Lecture Notes in
Computer Science, vol. 9921, pp. 835–846. Springer (2016). DOI
10.1007/978-3-319-45823-6_78

[79] Rechenberg, I.: Evolutionsstrategie. Friedrich Fromman Verlag (Günther
Holzboog KG), Stuttgart (1973)

[80] Reichel, J., Skutella, M.: On the size of weights in randomized search
heuristics. In: Proc. of Foundations of Genetic Algorithms (FOGA’09),
pp. 21–28. ACM (2009)

[81] Sasaki, G.H., Hajek, B.E.: The time complexity of maximum matching
by simulated annealing. Journal of the ACM 35, 387–403 (1988). DOI 10.
1145/42282.46160. URL http://doi.acm.org/10.1145/42282.46160

[82] Schumer, M.A., Steiglitz, K.: Adaptive step size random search. IEEE
Transactions on Automatic Control 13, 270–276 (1968)

[83] Sorkin, G.B.: Efficient simulated annealing on fractal energy landscapes.
Algorithmica 6, 367–418 (1991). DOI 10.1007/BF01759051. URL https:
//doi.org/10.1007/BF01759051

[84] Thierens, D.: An adaptive pursuit strategy for allocating operator proba-
bilities. In: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’05), pp. 1539–1546. ACM (2005)

[85] Wegener, I.: Simulated annealing beats metropolis in combinatorial opti-
mization. In: Proc. of International Colloquium on Automata, Languages
and Programming (ICALP’05), Lecture Notes in Computer Science, vol.
3580, pp. 589–601. Springer (2005)

[86] Witt, C.: Tight bounds on the optimization time of a randomized search
heuristic on linear functions. Combinatorics, Probability & Computing
22, 294–318 (2013)

[87] Zarges, C.: Rigorous runtime analysis of inversely fitness proportional
mutation rates. In: Proc. of Parallel Problem Solving from Nature
(PPSN’08), Lecture Notes in Computer Science, vol. 5199, pp. 112–122.
Springer (2008)

[88] Zarges, C.: On the utility of the population size for inversely fitness pro-
portional mutation rates. In: Proc. of Foundations of Genetic Algorithms
(FOGA’09), pp. 39–46. ACM (2009)

http://doi.acm.org/10.1145/3071178.3071260
http://doi.acm.org/10.1145/3071178.3071260
http://doi.acm.org/10.1145/42282.46160
https://doi.org/10.1007/BF01759051
https://doi.org/10.1007/BF01759051

Chapter 7
Analysis of Evolutionary Algorithms in
Dynamic and Stochastic Environments

Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

Abstract Many real-world optimization problems occur in environments
that change dynamically or involve stochastic components. Evolutionary al-
gorithms and other bio-inspired algorithms have been widely applied to dy-
namic and stochastic problems. This survey gives an overview of major theo-
retical developments in the area of runtime analysis for these problems. We
review recent theoretical studies of evolutionary algorithms and ant colony
optimization for problems where the objective functions or the constraints
change over time. Furthermore, we consider stochastic problems with various
noise models and point out some directions for future research.

7.1 Introduction

Real-world problems are often stochastic and may have dynamic components.
Evolutionary algorithms and other bio-inspired algorithmic approaches such
as ant colony optimization have been applied to a wide range of stochastic
and dynamic problems. The goal of this chapter is to give an overview of
recent theoretical developments in the area of evolutionary computation for
stochastic and dynamic problems in the context of discrete optimization.

Stochastic problems occur frequently in real-world applications owing to
unpredictable factors. A good example is the scheduling of trains. Schedules
give precise timings for when trains arrive and depart. However, the actual
departure and arrival times may be subject to delays due to various factors

Frank Neumann e-mail: frank.neumann@adelaide.edu.au · Mojgan Pourhas-
san e-mail: mojgan.pourhassan@adelaide.edu.au · Vahid Roostapour e-mail:
vahid.roostapour@adelaide.edu.au

Optimisation and Logistics, School of Computer Science, The University of Ade-
laide, Australia

323

frank.neumann@adelaide.edu.au
mojgan.pourhassan@adelaide.edu.au
vahid.roostapour@adelaide.edu.au

324 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

such as weather conditions and interfering schedules of other trains. When
evolutionary computation is used for the optimization of stochastic problems,
the uncertainty is usually reflected through a noisy fitness function. The
underlying fitness function for these problems is noisy in the sense that it
produces different results for the same input. Two major noise models, namely
prior noise and posterior noise, have been introduced and investigated in the
literature. In the case of prior noise, the solution is changed prior to the
evaluation of the given fitness function, whereas in the case of posterior noise
the solution is evaluated with the given fitness function and a value according
to a given noise distribution is added before returning the fitness value.

Dynamic problems constitute another important part of what occurs in
real-world applications. Problems can change over time owing to various com-
ponents becoming unavailable or available at a later point in time. Different
parts of the problem that can be subject to a change are the objective func-
tion and possible constraints of the given problem. In terms of scheduling
of trains, trains might become unavailable due to mechanical failures and it
might be necessary to reschedule the trains in the network in order to still
serve the demands of the customers well.

The area of runtime analysis has contributed many interesting studies
to the theoretical understanding of bio-inspired algorithms in this area. We
start by investigating popular benchmark algorithms such as randomized lo-
cal search (RLS) and the (1+1) EA on different dynamic problems. This
includes dynamic versions of OneMax, the classical vertex cover problem,
the makespan scheduling problem, and classes of the well-known knapsack
problem. Afterwards, we summarize main results for stochastic problems.
Important studies in this area have considered the OneMax problem and
investigated the runtime behavior of evolutionary algorithms with respect
to prior and posterior noise. Moreover, the influence of populations in evo-
lutionary algorithms for solving stochastic problems has been analyzed in
the literature, and we place particular emphasis on those studies. Further-
more, we review the performance of population-based algorithms on different
posterior noise functions.

Ant colony optimization (ACO) algorithms are another important type
of bio-inspired algorithm that have been used and analyzed for solving dy-
namic and stochastic problems. Due to their different way of constructing
solutions, based on sampling from the underlying search space by performing
random walks on a so-called construction graph, they have a different ability
to deal with dynamic and stochastic problems. Furthermore, an important
parameter in ACO algorithms is the pheromone update strength, which al-
lows one to determine how quickly previously good solutions are forgotten by
the algorithms. This parameter plays a crucial role when distinguishing ACO
algorithms from classical evolutionary algorithms. At the end of this chapter,
we present a summary of the results obtained on dynamic and stochastic
problems in the context of ACO.

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 325

This chapter is organized as follows. In Section 7.2, we summarize the dy-
namic and stochastic settings that have been investigated in the literature.
We present the main results obtained for evolutionary algorithms in dynamic
and stochastic environments in Section 7.3 and 7.4, respectively. We high-
light theoretical results on the behavior of ACO algorithms for dynamic and
stochastic problems in Section 7.5. Finally, we finish with some conclusions
and outline some future research directions.

7.2 Preliminaries

This section includes formal definitions of the dynamic and stochastic opti-
mization settings that are investigated in this chapter.

In dynamically changing optimization problems, some part of the problem
is subject to change over time. Usually changes to the objective function or
the constraints of the given problem are considered. The different problems
that have been studied from a theoretical perspective will be introduced in
the forthcoming subsections. In the case of stochastic optimization problems,
the optimization algorithm does not have access to the deterministic fitness
value of a candidate solution. Different types of noise that change the actual
fitness value have been introduced. The most important ones, prior noise and
posterior noise, will be introduced in Section 7.2.5.

The theoretical analysis of evolutionary algorithms for dynamic and stoch-
astic problems concentrates on the classical algorithms such as RLS and the
(1+1) EA. Furthermore, the benefit of population-based approaches has been
examined. These algorithms will be introduced in Section 7.2.6.

7.2.1 Dynamic OneMax Problem

Investigations started by considering a generalization of the classical
OneMax problem. In the OneMax problem, the number of ones in the
solution is the objective to be maximized. Droste [9] interpreted this problem
as maximizing the number of bits that match a given objective bit string.
Based on this, he introduced the dynamic OneMax problem, in which dy-
namic changes happen on the objective bit-string over time. An extended
version of this problem was defined by Kötzing et al. [21], where not only
bit strings are allowed, but also each position can take on integer values in
{0, . . . , r−1} for r ∈ N≥2. The formal definition of the problem follows.

Let [r] = {0, . . . , r−1} for r ∈N≥2, and x,y ∈ [r]. Moreover, let the distance
between x and y be

d(x,y) = min{(x−y) mod r,(y−x) mod r} .

326 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

The extended OneMax problem, OneMaxa : [r]n → R, where a is the
objective string defining the optimum, is given as:

OneMaxa(x) =
n∑

i=1
d(ai,xi).

The goal is to find and maintain a solution with minimum value of OneMaxa.
Given a probability value p, the dynamism that is defined on this prob-

lem is that each component i, 1 ≤ i ≤ n, of the optimal solution a changes
independently as follows:

ai =


(ai +1) mod r with probability p/2,

(ai−1) mod r with probability p/2,

ai with probability 1-p.

7.2.2 Linear Pseudo-Boolean Functions Under
Dynamic Uniform Constraints

Linear pseudo-Boolean functions play a key role in the runtime analysis of
evolutionary algorithms. Let x = x1x2 . . .xn be a search point in search space
{0,1}n, and wi, 1 ≤ i ≤ n positive real weights. A linear pseudo-Boolean
function f(x) is defined as:

f(x) = w0 +
n∑

i=1
wixi.

For simplicity and as done in most studies, we assume w0 = 0 in the follow-
ing. The optimization of a linear objective function under a linear constraint
is equivalent to the classical knapsack problem [20]. The optimization of a
linear objective function together with a uniform constraint has recently been
investigated in the static setting [15]. Given a bound B, 0 ≤ B ≤ n, a solu-
tion x is feasible if the number of 1-bits of the search point x is at most B.
The bound B is also known as the cardinality bound. We denote the num-
ber of 1-bits of x by |x|1 =

∑n
i=1 xi. The formal definition for maximizing a

pseudo-Boolean linear function under a cardinality bound constraint is given
by:

maxf(x)
such that |x|1 ≤B.

The dynamic version of this problem, referred to as the problem with a
dynamic uniform constraint, is defined in [33]. Here the cardinality bound

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 327

changes from B to some new value B∗. Starting from a solution that is
optimal for the bound B, the problem is then to find an optimal solution
for B∗. The re-optimization time of an evolutionary algorithm is defined as
the number of fitness evaluations that is required to find the new optimal
solution.

7.2.3 Dynamic Vertex Cover Problem

The vertex cover problem is one of the best-known NP-hard combinatorial
optimization problems. Given a graph G = (V,E), where V = {v1, . . . ,vn}
is the set of vertices and E = {e1, . . . ,em} is the set of edges, the goal is
to find a minimum subset of nodes VC ⊆ V that covers all edges in E, i.e.
∀e ∈ E,e∩VC ̸= ∅. In the dynamic version of the problem, an edge can be
added to or deleted from the graph.

As the vertex cover problem is NP-hard, it has been mainly studied in
terms of approximations. The problem can be approximated within a worst
case approximation ratio of 2 by various algorithms. One standard approach
to obtain a 2-approximation is to compute a maximal matching and take all
nodes adjacent to the chosen matching edges for the vertex cover. Starting
from a solution that is a 2-approximation for the current instance of the
problem, in the dynamic version of the problem the goal is to obtain a 2-
approximate solution for that instance of the problem after one dynamic
change. The re-optimization time for this problem refers to the time required
for the investigated algorithm to find a 2-approximate solution for the new
instance. This dynamic setting has been investigated in [30].

7.2.4 Dynamic Makespan Scheduling Problem

The makespan scheduling problem can be defined as follows. Given n jobs
and their processing times pi > 0, 1≤ i≤ n, the goal is to assign each job to
one of two machines M1 and M2 such that the makespan is minimized. The
makespan is the time that the busier machine takes to finish all assigned jobs.
A solution is represented by a vector x ∈ {0,1}n which means that job i is
assigned to machine M1 if xi = 0 and it is assigned to M2 if xi = 1, 1≤ i≤ n.
With this representation, the makespan of a given solution x is given by

f(x) = max

{
n∑

i=1
pi(1−xi),

n∑
i=1

pixi

}

and the goal is to minimize f . In the dynamic version of this problem, the
processing time of a job may change over time, but stays within a given

328 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

interval. In [28], the setting pi ∈ [L,U], 1≤ i≤ n, where L and U are a lower
and an upper bound on each processing time, was investigated. The analysis
concentrates on the time evolutionary algorithms need to produce a solution
where the two machines have a discrepancy of at most U . Dynamic changes
to the processing times of the jobs were investigated in two different settings.
In the first setting, an adversary is allowed to change the processing time of
exactly one job. In the second setting, the job to be changed is picked by an
adversary but the processing time of a job is altered randomly.

7.2.5 Stochastic Problems and Noise Models

We consider stochastic optimization problems where the fitness function is
subject to some noise. There are two main noise models that have been stud-
ied in the area of the theoretical analysis of evolutionary computation. Noise
that affects the solution before the evaluation is called prior noise. In this
case, the fitness function returns the fitness value of a solution that may differ
from the given solution because of the noise. Droste studied the effect of prior
noise which flips one randomly chosen bit of the given solution with probabil-
ity of p before each evaluation [10]. Note that the noise does not change the
solution, but it causes the fitness function to evaluate a solution with a noisy
bit flip. Other kinds of prior noise have also been considered. For example,
prior noise which flips each bit with the probability of p or which sets each
bit independently with a probability of p to 0 [17].

Another important type of noise is where the fitness of the solution is
changed after evaluation. This type of noise is called posterior noise or addi-
tive posterior noise. The noise, which commonly comes from a defined distri-
bution D, adds the value of a random variable sampled from D to the value
coming from the original fitness function [12, 14, 17].

In a noisy environment, the problem of finding the optimal solutions is
harder, as the noise misleads the search. The goal is to find an optimal solu-
tion for the original non noisy fitness function by evaluating solutions on the
fitness function affected by noise. However, it has been proven that simple
evolutionary algorithms behave very well when facing this kind of problem.
In addition to this, properties of stochastic settings that are hard for evolu-
tionary algorithms to deal with have also been studied [12].

We concentrate on stochastic problems with a fixed known solution length
that are subject to noise. We would like to mention, however, that there have
also been studies investigating the performance of evolutionary algorithms
with unknown solution length. This poses a different type of uncertainty
which we will not capture in this chapter. We refer the interested reader to
[2, 6].

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 329

Algorithm 7.1: RLS
1 The initial solution x is given;
2 while stopping criterion not met do
3 y ← flip one bit of x chosen uniformly at random;
4 if f(y)≥ f(x) then
5 x← y;

Algorithm 7.2: (1+1) EA
1 The initial solution x is given;
2 while stopping criterion not met do
3 y ← flip each bit of x independently with probability 1/n;
4 if f(y)≥ f(x) then
5 x← y;

7.2.6 Evolutionary Algorithms

Analyzing evolutionary algorithms often starts by investigating a standard
randomized local search approach and a simple (1+1) EA. Here we present
these algorithms in addition to a population-based (µ + λ) EA for which
results are summarized in Section 7.4.

A standard RLS (see Algorithm 7.1) starts with a bit string as the initial
solution, makes a new solution by flipping one bit of the current solution
uniformly at random at each iteration, and replaces the current solution with
the new solution if the new one is better in terms of fitness. The algorithm
repeats these steps, as long as the stopping criterion is not met.

The (1+1) EA (see Algorithm 7.2) is a simple evolutionary algorithm in
which the population consists of only one solution, and only one solution is
generated at each time step. This algorithm is quite similar to RLS, except
that multiple bit flips are allowed at each iteration. Instead of flipping one
bit uniformly at random, in this algorithm all bits of the current solution are
flipped with probability 1/n, where n is the size of the solution.

A classical question in the area of evolutionary computation is whether
populations help to achieve better results compared with algorithms working
at each time step with a single solution. The (µ + λ) EA (Algorithm 7.3) is
the population-based version of the (1+1) EA. In this algorithm, µ denotes
the size of the parent population. In each iteration, the algorithm creates λ
offspring by mutating λ parents which have been chosen uniformly at random
from the parent population. Finally, all the solutions from parents and off-
spring are evaluated and the µ best ones (in terms of fitness function) survive.
They constitute the parent population of the next generation.

One of the questions raised by using a population is the effect of a crossover
operator on the robustness. This has been investigated by Friedrich et

330 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

Algorithm 7.3: (µ+λ) EA
1 P is a set of µ uniformly chosen solutions;
2 while stopping criterion not met do
3 O←∅;
4 for i = 1 to λ do
5 pick x u.a.r. from P ;
6 y ← flip each bit of x independently with probability 1/n;
7 O←O∪y;
8 for x ∈ P ∪O do
9 evaluate f(x);

10 P ← µ f -maximal elements from P ∪O;

al. in [16]. To this end, they considered a framework consisting of one wide and
many narrow parallel paths, with equal distances, for solutions to achieve the
highest fitness value. The fitness grows more quickly along narrow paths and
a solution which is not located in one of the paths does not survive. It was
shown that algorithms with a higher recombination rate optimize through
the wide path, while narrow paths are more favored by algorithms with zero
recombination rate. A change that moves the framework along the x-axis will
cause the extinction of solutions on the narrow paths, however, solutions on
the wide path may survive. This shows the benefit of a crossover operation
for the robustness of algorithms using a population.

When analyzing evolutionary algorithms with respect to their runtime be-
havior, one considers the number of solutions that are produced until a solu-
tion of the desired quality has been achieved. The expected time to reach this
goal refers to the expected number of such solutions. The expected optimiza-
tion time refers to the expected number of solutions that are produced until
an optimal search point has been produced for the first time. When consider-
ing dynamic problems, we are often interested in the expected re-optimization
time of an algorithm. Starting with a good (or even optimal) solution for the
problem considered, the expected number of constructed solutions required
to obtain a solution of the same quality after a dynamic change has occurred
is analyzed.

7.3 Analysis of Evolutionary Algorithms on Dynamic
Problems

In this section, we summarize recent theoretical analyses that have been per-
formed on evolutionary algorithms dealing with dynamic optimization prob-
lems. In [33, 34], the efficiency of evolutionary algorithms for solving linear
pseudo-Boolean functions with a dynamic linear constraint was investigated.

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 331

Particular attention was paid to the OneMax problem. OneMax has been
the center of attention in some other related studies as well [9, 21]. We first
present the investigations that have been performed on this problem, and
then we give a summary of the results that have been obtained for linear
pseudo-Boolean functions under dynamic uniform constraints. Furthermore,
in this section we explain the analysis that has been carried out for the dy-
namic vertex cover problem and the makespan scheduling problem. Another
problem which has been investigated in the context of dynamic optimiza-
tion is the Maze problem for which evolutionary algorithms and ant colony
optimization algorithms have been theoretically studied [22, 25, 26]. The re-
sults on evolutionary algorithms and ACO algorithms for this problem are
presented in Section 7.3.5 and 7.5, respectively.

7.3.1 OneMax Under Dynamic Uniform Constraints

The first runtime analysis of evolutionary algorithms for a dynamic discrete
problem was presented by Droste [9]. In that article, the OneMax problem
was considered and the goal is to find a solution which has the minimum
Hamming distance to an objective bit string. A dynamic change, in that
publication, is changing one bit of the objective bit string, which happens
at each time step with probability p′ and results in the dynamic changes of
the fitness function over time. Droste found the maximum rate of dynamic
changes such that the expected optimization time of the (1+1) EA remains
polynomial for the problem studied. More precisely, he has proved that the
(1+1) EA has a polynomial expected runtime if p′ = O(log(n)/n), while for
any substantially larger probability the runtime becomes super polynomial.
It is worth noting that the results of that article hold even if the expected
re-optimization time of the problem is larger than the expected time until
the next dynamic change happens.

Using drift analysis, Kötzing et al. [21] reproved some of the results in [9].
Furthermore, they carried out theoretical investigations for the extended dy-
namic OneMax problem (see Section 7.2.1), in which each variable can take
on more than two values. They also carried out an anytime analysis (intro-
duced in [19]) and showed how closely the algorithm that they investigated
could track the dynamically moving target over time.

The optimization time of evolutionary algorithms for OneMax and the
general class of linear pseudo-Boolean function, under the dynamic uniform
constraint given in Section 7.2.2 was analyzed in [33, 34]. For now, we con-
centrate on OneMax with with a dynamic uniform constraint. The authors
of [33, 34] analyzed a standard (1+1) EA (Algorithm 7.2) and three other evo-
lutionary algorithms, which are presented in Algorithms 7.4, 7.5, and 7.6. The
results of their investigations are summarized in Table 7.1. The (1+1) EA
analyzed, uses the fitness function

332 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

Table 7.1 Upper bounds on the expected re-optimization times of evolutionary algo-
rithms on the OneMax problem with a dynamic uniform constraint.

(1 + 1) EA MOEA MOEA-S MOGA

O
(

n log
(

n−B
n−B∗

))
O
(

nD log
(

n−B
n−B∗

))
O
(

n log
(

n−B
n−B∗

))
O

(
min{

√
nD

3
2 , D2

√
n

n−B∗ }

)
if B < B∗

O
(

n log
(

B
B∗
))

O
(

nD log
(

B
B∗
))

O
(

n log
(

B
B∗
))

O

(
min{

√
nD

3
2 , D2

√
n

B∗ }

)
if B > B∗

f(1+1)(x) = f(x)− (n+1) ·max{0, |x|1−B∗}

introduced earlier in [15]. This gives a large penalty to infeasible solutions
by subtracting a term of (n + 1) for each unit of constraint violation. This
implies that every infeasible solution is worse than any feasible one. The
penalty of this fitness function guides the search towards the feasible region
and does not allow the (1+1) EA to accept an infeasible solution after a
feasible solution has been found for the first time.

Shi et al. [33, 34] used multiplicative drift analysis [8] to investigate the
behavior of the algorithms that they studied. The potential function that
they used for analyzing the (1+1) EA on OneMax with a dynamic uniform
constraint is |x|0, when B ≤ B∗. Here, the initial solution, denoted by xorg,
is feasible, and the algorithm needs to increase the number of ones of the
solution until the cardinality bound B∗ is reached. In this situation, the drift
on |x|0 is Ω(|x|0/n) for the (1+1) EA. Using multiplicative drift analysis, the
expected number of generations to reach a solution x∗ with |x∗|0 = n−B∗ is

O
(

n log
(
|xorg|0
|x∗|0

))
= O

(
n log

(
n−B

n−B∗

))
.

For the situation where B ≥ B∗, the initial solution is infeasible and the
number of ones of the solution needs to decrease (and possibly increase again,
if the last move to the feasible region has decreased |x|1 to less than B∗). The
potential function considered in this situation is |x|1 and the drift on that is
Ω(|x|1/n), giving an expected re-optimization time of O

(
n log

(
B

B∗
))
.

The second algorithm that the authors investigated is the Multi-Objective
Evolutionary Algorithm (MOEA) (see Algorithm 7.4). Here, dominance of
solutions is defined with respect to the vector-valued fitness function

fMOEA(x) = (|x|1,f(x)).

A solution y dominates a solution z with respect to fMOEA (y⪰ z) iff |y|1 =
|z|1 and f(y)≥ f(z). Furthermore, y strictly dominates z (y≻ z) iff y⪰ z and
f(y) > f(z). The algorithm keeps at most one individual for each Hamming

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 333

Algorithm 7.4: MOEA; Assuming B ≤B∗. [33]
1 P ← an initial solution;
2 while stopping criterion not met do
3 Choose x ∈ P uniformly at random;
4 Obtain y from x by flipping each bit of x with probability 1/n;
5 if (B∗≥|y|1≥B)∧ (∄w ∈ P : w ≽MOEA y) then
6 P ← (P ∪{y})\{z ∈ P | y ≻MOEA z};

Algorithm 7.5: MOEA-S; Assuming B ≤B∗. [33]
1 P ← an initial solution;
2 while stopping criterion not met do
3 Choose x ∈ P uniformly at random;
4 Obtain y from x by flipping bit one bit xi, i ∈ {1, . . . ,n} chosen u.a.r.;
5 if ∀z ∈ P : y ∥MOEA−S z then
6 P ← P ∪{y}
7 if (B∗ ≥ |y|1 ≥B)∧ (∃z ∈ P : y ≽MOEA-S z) then
8 z← y;

weight between B and B∗. Let D = |B∗−B|, then the size of the population P
is at most D+1. The analysis shows that this population size slows down the
re-optimization process for the OneMax problem. For the case where B < B∗

and B > B∗, the potential functions that Shi et al. [33] used for analyzing
this algorithm were M = minx∈P |x|0 and M = maxx∈P |x|1, respectively. The
analysis is similar to their analysis of the (1+1) EA, except that the drift on
M is Ω(M

n·D). The D in the denominator comes from the fact that selecting
the individual x with minimum |x|0 for B < B∗ (or minimum |x|1 for B >
B∗) from the population happens at each iteration with probability at least

1
D+1 . Using multiplicative drift analysis, they obtained an upper bound of
O
(

nD log
(

n−B
n−B∗

))
for B < B∗ and an upper bound of O

(
nD log

(
B
B∗
))

for
B > B∗.

The third algorithm investigated is a variant of MOEA named MOEA-
S shown in Algorithm 7.5. In this algorithm only single-bit flips are allowed
and a different definition for dominance is used. The new notion of dominance
does not let the population size grow to a size larger than 2. If B ≤ B∗, for
two bit strings y,z ∈ {0,1}n we have:

• y dominates z, denoted by y ≽MOEA−S z if at most one value among |y|1
and |z|1 equals B∗ or B∗−1, and (|y|1 > |z|1)∨ (|y|1 = |z|1∧f(y)≥ f(z));

• y dominates z, denoted by y ≽MOEA−S z if both |y|1, |z|1 ∈ {B∗,B∗−1},
and |y|1 = |z|1∧f(y)≥ f(z).

This implies that y and z are incomparable, denoted by y ∥MOEA−S z, iff
|y|1 = B∗ and |z|1 = B∗−1 or vice versa.

334 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

Algorithm 7.6: MOGA; Assuming B ≤B∗ [33], Concept from [5].
1 P ← {x}, x an initial solution;
2 while stopping criterion not met do

/* Mutation phase. */
3 Choose x ∈ P uniformly at random;
4 Choose ℓ according to Bin(n,p);
5 for i = 1 to λ do
6 x(i)← mutateℓ(x);

7 V = {x(i) | x(i) is valid};
8 if V ̸= ∅ then
9 Choose x′ ∈ V uniformly at random;

10 else x′← x;

/* Crossover phase. */
11 for i = 1 to λ do
12 y(i)← crossc(x,x′);

13 M = {y(i) | y(i) is ≽MOEA-maximal ∧|y(i)|1 = |x|1 + 1};
14 if M = {y} then
15 y′← y;
16 else y′← x;

/* Selection phase. */
17 if (B∗ ≥ |y′|1 ≥B)∧ (∄w ∈ P : w ≽MOEA y′) then
18 P ← (S∪{y′})\{z ∈ S | y′ ≻MOEA z};

For B > B∗, a similar definition of dominance is given by switching the
dependency of |y|1 ≥ |z|1 on the number of 1-bits to |y|1 ≤ |z|1. The re-
sults of MOEA-S are obtained by observing that this algorithm behaves like
RLS on OneMax. It was shown that the expected re-optimization time for
OneMax with a dynamic uniform constraint is O

(
n log

(
n−B
n−B∗

))
if B < B∗

and O
(
n log

(
B
B∗
))

if B > B∗.
Shi et al. [33] have also introduced a multi-objective variant of the (1 +

(λ + λ)) GA [5] (MOGA, Algorithm 7.6), which is the fourth algorithm that
they analyzed for OneMax with a dynamically changing uniform constraint.
In this algorithm, the same notion of dominance as in MOEA is used, and
the population size can grow to D +1. Having a solution x, at each iteration
λ offspring are generated by the mutation operator, which flips l = Bin(n,p)
random bits of x, where p is the mutation probability. The offspring that have
a 0 flipped to 1 (or a 1 flipped to 0) are considered to be valid for B∗ > B
(or for B∗ < B, respectively). One of the valid offspring (if it exists), x′, is
then used in the crossover phase, in which it is recombined with the parent
solution λ times. For a crossover probability c, the crossover operator creates
a bit string y = y1y2 · · ·yn, where each bit yi,1≤ i≤ n, is chosen to be xi with

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 335

probability c, and x′
i otherwise. The algorithm selects the best solution y with

Hamming weight one larger than the Hamming weight of x. The solution y
is added to the population if it meets the cardinality constraint and is not
dominated by any other solution in the population.

It was proved that this algorithm solves the OneMax problem with a
dynamically changing uniform constraint in expected time

O

(
min

{√
nD

3
2 ,D2

√
n

n−B∗

})
if p = λ

n , c = 1
λ , λ =

√
n/(n−|x|1) for B∗ > B, and in expected time

O

(
min

{√
nD

3
2 ,D2

√
n

B∗

})
if λ =

√
n/|x|1 for B∗ < B [34]. The key argument behind these results is

to show that there is a constant probability of producing a valid offspring in
the mutation phase, and then show that there is a constant probability of
generating a solution y in the crossover phase that is the same as x except for
one bit, which is flipped from 0 to 1 for B∗ > B and from 1 to 0 for B∗ < B.

7.3.2 Linear Pseudo-Boolean Functions Under
Dynamic Uniform Constraints

The classical (1+1) EA and three multi-objective evolutionary algorithms
were investigated in [33] for re-optimizing linear functions under dynamic
uniform constraints. The general class of linear constraints on linear problems
leads to exponential optimization times for many evolutionary algorithms [15,
37]. Shi et al. [33] considered the dynamic setting given in Section 7.2.2 and
analyzed the expected re-optimization time of the evolutionary algorithms
investigated. This section includes the results that they obtained, in addition
to the proof ideas of their work.

The algorithms that were investigated in their work, have already been
presented in Section 7.3.1 and the results are summarized in Table 7.2. The
(1+1) EA (Algorithm 7.2) uses the following fitness function which was in-
troduced by Friedrich et al. [15] (and is similar to the fitness function for
OneMax in Section 7.3.1):

f(1+1)(x) = f(x)− (nwmax +1) ·max{0, |x|1−B∗}

Here, wmax = maxn
i=1 wi denotes the maximum weight, and the large penalty

for constraint violations guides the search towards the feasible region.

336 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

Table 7.2 Upper bounds on the expected re-optimization time of evolutionary algo-
rithms on linear functions with a dynamic uniform constraint.

(1 + 1) EA MOEA MOEA-S MOGA

O(n2 log(B∗ wmax)) O(nD2) O(n logD) O(nD2)

Shi et al. [33] investigated this setting similarly to the analysis of OneMax
under dynamic uniform constraints (Section 7.3.1). The main difference is
that for a non optimal solution with B∗ 1-bits, an improvement is not possible
by flipping a single bit. A 2-bit flip that flips a 1 and a 0 may be required,
resulting in an expected re-optimization time of O

(
n2 log(B∗ wmax)

)
.

The second investigated algorithm, MOEA, uses the fitness function
fMOEA and the notion of dominance defined in Section 7.3.1. Unlike the
re-optimization time of this algorithm for the OneMax problem, whose up-
per bound is worse than the upper bound for the (1+1) EA; for general
linear functions the upper bounds obtained for MOEA are smaller than the
ones obtained for the (1+1) EA. The reason is that the algorithm is allowed
to keep one individual for each Hamming weight between the two bounds in
the population. This avoids the necessity for a 2-bit flip. To reach a solution
that is optimal for cardinality A + 1, the algorithm can use the individual
that is optimal for cardinality A and flip the 0-bit whose weight is maximal.
This happens in an expected number of at most en(D +1) iterations, where
D = |B∗−B|. As there are D +1 different cardinality values between the two
bounds, the expected time to reach the optimal solution with cardinality B∗

is O(nD2).
MOEA-S (Algorithm 7.5) was also analyzed for linear functions with a

dynamically changing uniform constraint. It uses single bit flips and the pop-
ulation includes at most two solutions: one with Hamming weight at most
B∗− 1 and one with Hamming weight B∗. With this setting, long waiting
times for selecting a certain individual of the population are avoided. The
algorithm starts with one solution in the population. It was shown that in
time O(n logD) the population consists of one solution with Hamming weight
B∗− 1 and one with Hamming weight B∗. Then the authors of [33] used a
potential function to measure the difference of the current population from
an optimal solution with Hamming weight B∗. The potential is given by the
number of 0-bits in the two solutions that need to be set to 1 in order to
obtain an optimal solution. Using multiplicative drift analysis with respect
to the potential function, they proved that the expected re-optimization time
of the algorithm is O(n logD).

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 337

The fourth algorithm that was analyzed in [33] was MOGA (Algo-
rithm 7.6). The authors showed that, when an optimal solution of Hamming
weight A < B∗ was chosen for reproduction, an optimal solution for Hamming
weight A + 1 is produced with probability Ω(n−1/2) in the next generation,
if p = λ

n , c = 1
λ and λ =

√
n. Since there are D +1 different Hamming weights

to consider, and each iteration of the algorithm constructs O(λ) = O(
√

n)
solutions, the expected re-optimization time is upper bounded by O(nD2).

7.3.3 The Vertex Cover Problem

The common representation for solving the vertex cover problem by means
of evolutionary algorithms is the node-based representation [11, 23, 29, 31].
A different representation, the edge-based representation, was suggested and
analyzed in [18] for the static vertex cover problem. In this representation a
search point is a bit string x∈ {0,1}m, where m denotes the number of edges
in the given graph G = (V,E). For a given search point x, E(x) = {ei ∈ E |
xi = 1} is the set of edges chosen. The cover set induced by x, denoted by
VC(x), is the set of all nodes that are adjacent to at least one edge in E(x).

Three variants of RLS and the (1+1) EA were investigated. These in-
cluded one node-based approach and two edge-based approaches. The node-
based approach and one of the edge-based approaches use a standard fitness
function,

f(s) = |VC(s)|+(|V |+1) · |{e ∈ E|e∩VC(s) = ∅}|,

in which each uncovered edge obtains a large penalty of |V |+ 1. In [18],
an exponential lower bound for finding a 2-approximate solution to the static
vertex cover problem with these two approaches using the fitness function
f was shown. Furthermore, considering the dynamic vertex cover problem,
Pourhassan et al. [30] proved that there exist classes of instances of bipartite
graphs where dynamic changes on the graph lead to a bad approximation
behavior.

The third variant of an evolutionary algorithm that Jansen et al. [18]
investigated, was an edge-based approach with a specific fitness function.
The fitness function fe has a very large penalty for common nodes among
selected edges. It is defined as

fe(s) = |VC(s)|+(|V |+1) · |{e ∈ E | e∩VC(s) = ∅}|
+ (|V |+1) · (m+1) · |{(e,e′) ∈ E(s)×E(s) | e ̸= e′,e∩e′ ̸= ∅}|.

This fitness function guides the search towards a matching, and afterwards
to a maximal matching. In other words, whenever the algorithms find a match-
ing, then they do not accept a solution that is not a matching, and whenever

338 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

it finds a matching that induces a node set with k uncovered edges, then it
does not accept a solution with k′ > k uncovered edges. It is well known that
taking all the nodes belonging to the edges of a maximal matching for a given
graph results in a 2-approximate solution to the vertex cover problem.

The variant of RLS and the (1+1) EA work with the edge-based repre-
sentation and the fitness function fe. Note that search points are bit strings
of size m, and the probability of flipping each bit in the (1+1) EA is 1/m.
Jansen et al. [18] have proved that RLS and (1+1) EA with the edge-based
approach find a maximal matching which induces a 2-approximate solution
to the vertex cover problem in expected time O(m logm), where m is the
number of edges.

The behavior of RLS and the (1+1) EA with this edge-based approach
was investigated for the dynamic vertex cover problem (see Section 7.2.3)
in [30]. It was proved in [30] that, starting from a 2-approximate solution
for a current instance of the problem, in expected time O(m) RLS finds a
2-approximate solution after a dynamic change of adding or deleting an edge.
The authors of that paper investigated the situations for adding an edge and
removing an edge separately. For adding an edge, they showed that the new
edge either is already covered and the maximal matching stays a maximal
matching, or is not covered by the current edge set and the current edge
set is a matching that induces a solution with one (the new edge) uncovered
edge. Since the number of uncovered edges does not grow in this approach
and the algorithm selects the only uncovered edge with probability 1/m, a
maximal matching is found in expected m steps. This argument also holds
for the (1+1) EA, but the probability of selecting the uncovered edge and
having no other mutations with this algorithm is at least 1/(em). Therefore,
the expected re-optimization time for the (1+1) EA after a dynamic addition
is also O(m).

When an edge is deleted from the graph, if it was selected in the solution,
a number of edges can be uncovered in the new situation. All these uncov-
ered edges were covered by the two nodes of the removed edge, and can be
partitioned into two sets, U1 and U2, such that all edges in each set share a
node. Therefore, if the algorithm selects one edge from each set (if any exist),
the induced node set becomes a vertex cover again. It will again be a max-
imal matching and therefore a 2-approximate solution. On the other hand,
no other one-bit flips in this situation can be accepted, because they either
increase the number of uncovered edges, or make the solution become a non
matching. With RLS, in which only one-bit flips are possible, the probabilities
of selecting one edge from U1 and U2 at each step are |U1|

m and |U2|
m , respec-

tively. Therefore, in expected time O(m) one edge in each set is selected by
the algorithm.

The analysis for the (1+1) EA dealing with a dynamic deletion is more
complicated, because multiple-bit flips can happen. In other words, it is pos-
sible to deselect an edge and uncover some edges in the same step as when
an edge in U1 or U2 is being selected to cover some other edges. An upper

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 339

bound of O(m logm) was shown in [30] for the expected re-optimization time
for the (1+1) EA after a dynamic deletion, which is the same as the expected
time to find a 2-approximate solution with that algorithm, starting from an
arbitrary solution.

7.3.4 Makespan Scheduling

Makespan scheduling is another problem which has been considered in a
dynamic setting [28]. It is assumed that the processing time of job i, for 1≤ i≤
n, is pi ∈ [L,U], where L and U are lower and upper bounds, respectively, on
the processing time of a job. The ratio between the upper bound and the lower
bound is denoted by R = U/L. The runtime performance of the (1+1) EA
and RLS was studied in terms of finding a solution with a good discrepancy
and it was assumed that there is no stopping criterion for the algorithms
except achieving such a solution. The discrepancy d(x) of a solution x is
defined as

d(x) =

∣∣∣∣∣
(

n∑
i=1

pi(1−xi)

)
−

(
n∑

i=1
pixi

)∣∣∣∣∣ .
Note that a solution that has a smaller discrepancy also has a smaller
makespan. Moreover, the proofs benefit from an important observation about
the fuller machine (the machine which is loaded more heavily and determines
the makespan). The observation is about the minimum number of jobs of the
fuller machine in terms of U and L:

• every solution has at least ⌈(P/2)/U⌉ ≥ ⌈(nL/2)/U⌉ = ⌈(n/2)(L/U)⌉ =
⌈(n/2)R−1)⌉ jobs on the fuller machine, where P =

∑n
i=1 pi.

Two dynamic settings were studied for this problem. The first one is called
the adversary model. In this model, a strong adversary is allowed to choose
at most one arbitrary job i in each iteration and change its processing time
to a new pi ∈ [L,U]. It was proven that, independently of initial solution and
the number of changes made by the adversary, RLS obtains a solution with
discrepancy at most U in an expected time of O(nmin{logn, logR}). In the
case of RLS, the number of jobs on the fuller machine increases only when the
fuller machine is switched. Otherwise, the solution increases the makespan
and will not be accepted by the algorithm. This fact is the basis of the proof.
It was proved that if the fuller machine switches (either because of an RLS
step, which moves a single job between machines, or because of a change that
the adversary makes), then a solution with discrepancy at most U is found
in steps before and after the switch.

The proof for the (1+1) EA is not as straightforward as for RLS, since
the (1+1) EA may switch multiple jobs between the machines in one muta-
tion step. However, it was shown that the number of incorrect jobs on the

340 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

fuller machine, which should be placed on the other machine to decrease the
makespan, has a drift towards zero. Using this argument, it was shown that
the (1+1) EA will find a solution with discrepancy at most U in expected
time O(n3/2). Whether better upper bounds such as O(n logn) are possible
is still an open question.

In the same dynamic setting, recovering a discrepancy of at most U was
also studied for both RLS and the (1+1) EA. It was assumed that the al-
gorithm had already achieved or had been initialized with a solution with
a discrepancy of at most U and the processing time of a job changed after-
wards. By applying the multiplicative drift theorem to the changes in the
discrepancy and using the fact that the discrepancy will change by at most
U −L, it was proven that the (1+1) EA and RLS recover a solution with a
discrepancy of at most U in an expected time of O(min{R,n}).

The makespan scheduling problem was also studied in another dynamic
setting. In this model, which was called the random model, it is assumed
that all job sizes are in {1, . . . ,n}. In each dynamic change, the adversary
chooses one job i and its value changes from pi to pi−1 or pi +1, each with
a probability of 1/2. The only exceptions are pi = n and pi = 1, for which the
value changes to pi = n−1 and pi = 2, respectively. Overall, this setting has
less adversarial power than the adversary model owing to the randomness
and the changes by only 1 involved.

Let the random variable Xi denote the random processing time of job i
at any point in time. The following lemma proves that no large gap exists in
the values of processing times which are randomly chosen for jobs.

Lemma 7.3.1 (Lemma 4 in [28]). Let ϕ(i) := |{Xj |Xj = i∧j ∈{1, . . . ,n}}|
where i ∈ {1, . . . ,n}, be the frequency of jobs of size i. Let

G := max{l | ∃i : ϕ(i) = ϕ(i+1) = · · ·= ϕ(i+ l) = 0}

be the maximum gap size, i.e. the maximum number of intervals with zero
frequency everywhere. Then, for some constant c > 0,

Pr(G≥ l)≤ n2−cl.

This lemma states that, for any constant c > 0 and gap size G ≥ c′ logn
with a sufficiently large c′, there is no gap of size G with probability at least
1−n ·n−c−1 = 1−n−c. This probability was counted as a high probability in
this study.

When the discrepancy is larger than G, it was proven that it decreases
by at least one if two jobs swap between the fuller and the emptier machine.
Furthermore, the maximum possible discrepancy for an initial solution is n2

when all jobs have a processing time of n and are placed on one machine.
Finally, it was proven that regardless of the initial solution, the (1+1) EA
obtains with high probability a discrepancy of at most O(logn) after a one-
time change in time O(n4 logn).

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 341

The previous result considered the worst-case initial solution. However,
it was proven that if the initial solution is generated randomly, then its ex-
pected discrepancy is Θ(n

√
n) and it is O(n

√
n logn) with high probability.

Thus, with a random initial solution, the (1+1) EA obtains a discrepancy of
O(logn) after a one-time change in time O(n3.5 log2 n) with high probability.

The two results on the (1+1) EA and in the random model are for a
one-time change. In the extreme case, however, the processing time of a job
may increase or decrease by one in each step, which makes it hard to obtain
a discrepancy of O(logn), unlike the other results in this setting. Although,
by using the results for the adversary model and assuming that R = U = n,
it is possible to find a solution with a discrepancy of at most n. In the final
theorem of this study, it was proven that independently of the initial solu-
tion and the number of changes, the (1+1) EA and RLS obtain a solution
with discrepancy of at most n in expected time O(n3/2) and O(n logn), re-
spectively. In addition, it was shown that the expected ratio between the
discrepancy and the makespan is 6/n. This was done by considering that a
solution of discrepancy at most n is obtained together with a lower bound
on the makespan. The expected sum of all processing times is n(n+1)/2 and
it is at least n2/3 + n with a probability of 1−2−Ω(n). Hence, the expected
makespan is at least n2/6+n/2. Furthermore, if the sum of processing times
is less than n2/3+n, then the ratio is at least n/n since the processing times
are at least one. Hence, if n is not too small, the ratio is bounded from above
by

6
n
− 3

n
+2−Ω(n) ≤ 6

n
.

7.3.5 The MAZE Problem

The dynamic pseudo-Boolean function Maze, proposed in [22], consists of
n + 1 phases of t0 = kn3 logn iterations. During the first phase, the function
is equivalent to OneMax. In the next n phases, all bit strings except two,
still have a value equivalent to OneMax. The two different bit strings, for
each phase p, are 0p1n−p and 0p−11n−p+1, which have fitness values with
an oscillating pattern: for two iterations out of three, these two bit strings
are assigned values n + 2 and n + 1, respectively, and at the third iteration,
this assignment is reversed. Note that during the last phase, Maze behaves
similarly to Trap. The formal definition of Maze follows:

Maze(x,t) =


n+2 if t > (n+1) · t0 ∧x = 0n,

n+2 if t > t0 ∧x = OPT(t),
n+1 if t > t0 ∧x = ALT(t),
OneMax(x) otherwise,

342 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

where

OPT(t) =

{
OPT⌊t/t0⌋ if t ̸= 0 mod 3,

ALT⌊t/t0⌋ otherwise,

ALT(t) =

{
ALT⌊t/t0⌋ if t ̸= 0 mod 3,

OPT⌊t/t0⌋ otherwise,
OPTp = 0p1n−p for p≤ n,

ALTp = 0p−11n−p+1 for p≤ n.

While it was shown in [22] that a (1+1) EA loses track of the optimum
for this problem and requires with high probability an exponential amount
of time to find the optimum, Lissovoi and Witt [25] proved that the opti-
mum of the Maze function extended to finite alphabets, can be tracked by
a (µ+1) EA when the parent population size µ is chosen appropriately and
a genotype diversity mechanism is used.

In another publication [26], the behavior of parallel evolutionary algo-
rithms was studied on the Maze problem. In this analysis, it was proved
that both the number of independent sub-populations (or islands), λ, and
the length of the migration intervals, τ , influence the results. When τ is
small, particularly for τ = 1, migration occurs too often, and the algorithm
behaves similarly to the (1+λ) EA and fails to track Maze efficiently for
λ = O(n1−ε), where ε is an arbitrary small positive constant. But, with a
proper choice of τ , more precisely τ = t0, where t0 is the number of itera-
tions in each phase in the definition of the Maze problem, and a choice of
λ = Θ(logn), the algorithm is able to track the optimum of Maze efficiently.

The analysis of the (µ+1) EA and parallel evolutionary algorithms on
the Maze problem shows that both these algorithms have limitations on
tracking the optimum. The (µ+1) EA not only exploits the small number of
individuals among which the optimum oscillates, but also requires genotype
diversity and a proper choice of µ. On the other hand, the positive results
obtained for parallel evolutionary algorithms on the Maze problem depend
on a careful choice of migration frequency. But, on the plus side, with parallel
evolutionary algorithms, the problem can be extended to a finite-alphabet
version.

7.4 Analysis of Evolutionary Algorithms on Stochastic
Problems

The performance of the (1+1) EA in noisy environment was considered by
Droste for the first time [10]. He proved that for prior noise which flips a

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 343

randomly chosen bit with probability p, the (1+1) EA is able to deal with
the noisy OneMax problem in polynomial time if and only if p = O(log(n)/n).
Otherwise, the optimization time for p = ω(log(n)/n) is super polynomial.

Recently, Gießen and Kötzing [17] considered the (1+1) EA together with
population-based evolutionary algorithms in different noisy environments.
They also reproved the results of Droste with new basic theorems and stud-
ied other types of prior and posterior noise against the (1+1) EA on the
OneMax problem.

The new prior noise models that have been analyzed recently are

(a) noise which flips each bit independently with a probability of p;
(b) noise which assigns 0 to each bit independently with a probability of p.

The (1+1) EA is able to find the optimal solution of OneMax for both noise
models in polynomial time only if p = O(log(n)/n2), and the optimization
time grows super polynomially if p = ω(log(n)/n2).

The study also covered the impact of two types of posterior noise on the
performance of the (1+1) EA. It was stated that the OneMax problem
with additive posterior noise from a random variable D with a variance of
σ2 is tractable in polynomial time with the (1+1) EA if σ2 = O(log(n)/n).
In another case, if D is exponentially distributed with parameter 1, the
(1+1) EA is able to find the optimum only in super polynomial time. Fur-
thermore, an analysis of the behavior of the (1+1) EA on OneMax with
posterior noise coming from a random variable with a Gaussian distribution
D∼N (0,σ2) showed that it is able to deal with this noise in polynomial time
if σ2 ≤ 1/(4 logn). But if σ2 ≥ c/(4 logn) for any c > 1, then the (1+1) EA
finds the optimal solution of the noisy OneMax problem in super polynomial
time.

Following the studies in [10, 17], Dang-Nhu et al. recently proposed a more
general approach to analyzing the behavior on noisy problems [4]. The gen-
erality of their approach comes from the elements that they considered to
analyze the behavior of the algorithm. An apparent argument is that as the
process gets closer to the optimal point, the effect of the noise will become
more distracting in comparison to the contribution of the algorithm. The
first part of their analysis was to calculate the time to achieve the equilib-
rium point where the contribution of the algorithm and the noise damage
counterbalance in expectation. Afterwards, they considered the progress of
the undisturbed algorithm, from the equilibrium point to the optimum, in the
short period in which the noise does not impact on the results of comparisons.
Using this new approach, they found more precise results for the performance
of the (1+1) EA and (1+λ) EA on noisy OneMax and LeadingOnes.

In addition to runtime analysis, there are other measurements for ranking
the behavior of algorithms on noisy problems. The concept of regret, for ex-
ample, considers the progress of algorithms in approximating noisy optimal
solutions. Different definitions of regret and how they describe the perfor-
mance of algorithms have been discussed in [27]. To measure the approximate

344 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

solution achieved by an algorithm, Simple Regret (SRn) uses the solutions
of the nth iteration while Approximate Simple Regret (ASRn) considers the
closest solution to the optimum which has been produced up to the nth itera-
tion. Hence, algorithms that do not use elitism may have better performance
in terms of ASR in comparison to the SR measurement.

This section continues by considering studies of the influence of using a
population in evolutionary algorithms for problems with noisy fitness func-
tions. After this, some results on the performance of a population-based evo-
lutionary algorithm against different types of noises are presented. Finally, we
introduce an approach that modifies the algorithms by increasing the number
of fitness evaluations to deal with noise.

7.4.1 Influence of The Population Size

In this section, we consider the impact of using populations in evolutionary
algorithms for noisy problems. Gießen and Kötzing [17] studied this matter
by considering the (µ+1) EA and (1+λ) EA on the noisy OneMax problem.
We assume a noisy function f , and let (Xk)k≤n be a random variable taking
on the value of the noisy function f for a solution with exactly k ones. It is also
assumed that, ∀j : 0 < j < k < n, we have Pr(Xk < Xk+1)≤ Pr(Xj < Xk+1).
This means that when solutions are close, we are more likely to observe
confusion caused by noise. The analysis of the performance of the (µ+1) EA
on OneMax with prior noise is based on the following theorem.

Theorem 7.4.1 (Theorem 12 in [17]). Let µ be given, and suppose that
for each k ≤ n, Xk ∈ [k− 1,k + 1]. For each k < n, let Ak be the event that
when µ independent copies of Xk and one copy of Xk+1 are drawn and then
sorted, with ties being broken uniformly, the value of Xk+1 does not come out
least. If there is a positive constant c≤ 1/15 such that

∀k,n/4 < k < n : Pr(Ak)≥ 1− c
n−k

nµ
,

then the (µ+1) EA optimizes f in an expected number of O(µn logn) itera-
tions.

The proof of this theorem is based on the definitions of two events to show
that there is a positive drift on the number of ones in the best solution which
has k ones in the current step of the algorithm. The first event, E0, is the
event that the new solution has at least one bit with a value one more than
that in the current solution and it is not dominated by any other solutions,
even when the noise is considered. The other event, E1, is the situation where
the new solution has fewer ones than the current best solution, the current
best solution is unique, and it is ignored because of the noisy function. For

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 345

this case to happen, the best solution with k ones must be evaluated to
have k− 1 ones, and all other solutions must have at least k− 2 ones and
be evaluated to have at least k−1 ones because of the noisy function. After
this event, the number of ones in the best solution decreases at most by 2.
Considering the probability of each event, the drift on the number of ones in
the best solution is at least

n−k

eµn
−3c(n−k)

nµ
− 2c

nµ
.

Finally, since c≤ 1/15, and using multiplicative drift analysis, the theorem
is proven.

The above theorem was used to prove a corollary about the performance
of the (µ+1) EA on noisy OneMax the prior noise, i.e. noise which flips
a bit uniformly at random with probability p. It was proven that if µ ≥
12log(15n)/p, then the (µ+1) EA finds the optimum of OneMax in an ex-
pected number of O(µn logn) iterations. To be more specific, µ = 24log(15n)
is adequate to achieve such an expected time for p = 1/2.

Gießen and Kötzing also considered the performance of the (1+λ) EA
as another population-based evolutionary algorithm on the noisy OneMax
problem. In the (1+λ) EA, there exists an offspring population. The algo-
rithm produces an offspring with size λ by mutating the current best solution
λ times. Then, it chooses the best solution among the offspring and the parent
as the next best solution. Gießen and Kötzing proved an important theorem
to achieve their results on this topic. The theorem is as follows.

Theorem 7.4.2 (Theorem 14 in [17]). Let λ≥ 24logn and, for each k < n,
let Yk denote the maximum over λ observed values of Xk (belonging to inferior
individuals) and let Zk denote the maximum over at least λ/6 observed values
of Xk (belonging to better individuals). Suppose there is a q < 1 such that

∀k < n : Pr(Yk < Xk+1)≥ q (7.4.1)

and

∀k < n : Pr(Yk−1 < Zk)≥ 1− q

5
lλ

en+ lλ
. (7.4.2)

Then the (1+λ) EA optimizes f in O((n logn
λ + n)/q) iterations and needs

O((n logn+nλ)/q) fitness evaluations.

In this theorem, l is the number of zeros in the current best solution. To
prove the theorem, similar to Theorem 7.4.1, it was shown that the drift
on the number of ones is positive and equal to (q− 4q

5) lλ
en+lλ . Furthermore,

this theorem gives the sufficient conditions 7.4.1 and 7.4.2) on the noise to
demonstrate that it is tractable with the (1+λ) EA in a guaranteed expected
number of iterations.

346 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

As a corollary, for prior noise which flips a bit uniformly at random with
probability p, it was proven that the (1+λ) EA with λ≥max{12/p,24}n logn

optimizes OneMax in expected time O((n2 logn
λ + n2)/p). Let q = p/n. To

show that Equation 7.4.1 holds, it is enough to consider the event that the
solution with k ones (the current best solution) is evaluated to have more
ones. The complement of this event is a set of events where either there is no
noisy bit flip or the noise flips a zero bit, which leads to

Pr(Yk < Xk−1)≥ 1−
(

1−p+ pk

n

)
≥ p

n
= q.

With a similar consideration about the probability of improving at least
one of λ/6 of the solutions, it is observed that Equation 7.4.2 also holds and
the corollary is correct.

The other corollary of Theorem 7.4.2 is about non positive additive poste-
rior noise D that is evaluated to greater than −1 with a non zero probabil-
ity p. It was proven that with this noise, for λ ≥max{10e, −6log(n/p)

log(1−p) }, the
(1+λ) EA optimizes OneMax in time O((n logn+nλ)/p). The proof of this
corollary is a bit more tricky. Since D ≤ 0, we have Yk ≤ k and

Pr(Yk ≥Xk+1)≤ Pr(k ≥Xk+1) = Pr(D ≤−1) = 1−p.

This means that Pr(Yk < Xk+1)≥ p which fulfills the first condition of The-
orem 7.4.2. To consider the second condition, a similar complement technique
is used, i.e., calculating the probability of Yk−1≥Zk which is the complement
of Yk−1 < Zk. To satisfy Yk−1 ≥ Zk, all of the λ/6 solutions which have k

ones must be affected by noise with a value less than −1; thus λ≥ −6log(n/p)
log(1−p)

leads to the conclusion that Pr(Yk−1 ≥ Zk)≤ (1−p)λ/6 ≤ p/n. Finally, since
λ≥ 10e, the second condition of Pr(Yk−1 < Zk) has been proven to be satis-
fied; therefore, Theorem 7.4.2 holds.

7.4.2 Influence of Different Noise Distributions on the
Performance of Population-Based Evolutionary
Algorithms

Friedrich et al. [12, 14] considered the (µ+1) EA and additive posterior
noise with different distributions. They introduced the concept of ”graceful
scaling” to determine the performance of an algorithm against noise. An
algorithm scales gracefully with noise if there exists a parameter setting for
the algorithm such that it finds the optimum of the real fitness function when
evaluating the noisy one, in polynomial time.

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 347

They also introduced a sufficient condition for the (µ+1) EA not to be able
to deal with noise and to be unable to find the real optimum through the noisy
function. The condition is: if there are µ + 1 different values {d1, . . . ,dµ+1}
from the random variable D, Y is the minimum of {d1, . . . ,dµ} and

Pr(Y > dµ+1 +n)≥ 1
2(µ+1)

,

then the (µ+1) EA, with a polynomially bounded µ, will not evaluate the
optimum with high probability.

This theorem was used to analyze the performance of the (µ+1) EA with
µ = ω(1) and bounded from above by a polynomial, on noisy OneMax prob-
lems with different distributions. In this study it was proven that if the noise
comes from a Gaussian distribution with σ2 ≥ (na)2, for some a = ω(1), the
(µ+1) EA will not find the optimum in polynomial time with high probabil-
ity.

Furthermore, other noise distributions have were studied in [12]. The au-
thors analyzed a random variable D with a distribution that decays exponen-
tially. Here, the probability density function of D is as follows:

F (t) := Pr(D < t) = 1
2

ect if t≤ 0 and

F (t) := 1− 1
2

e−ct if t≥ 0,

for some constant c and variable t. The probability mass function p of D is
obtained by taking the derivative of F :

p(t) = F ′(t) = c

2
ect if t≤ 0 and

p(t) = c

2
e−ct if t≥ 0.

Note that this is a symmetric variant of an exponential distribution. It is
observed that p is symmetric around 0 which implies that the distribution of
D has mean 0.

The variance of D is calculated as follows:

Var(D) =
∫ +∞

−∞
t2p(t)dt = c

2

(∫ 0

−∞
t2ectdt+

∫ ∞

0
t2e−ctdt

)
= c

∫ 0

−∞
t2ectdt =

[
(2−2ct+ t2c2)ect

c3

]0

−∞

= 2
c2 =: σ2.

348 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

Now F (t) can be rewritten in terms of σ:

F (t) := 1
2

e
√

2 t
σ if t≤ 0 and

F (t) := 1− 1
2

e−
√

2 t
σ if t≥ 0.

In this setting, it was proven that if the variance is large (σ2 = ω(n2)), then
the (µ+1) EA will not find the optimum of the noisy OneMax problem. The
proof applies the condition mentioned above, and bounds Pr(Y > dµ+1 + n).
The idea is to consider a subset of events in which Y > dµ+1 +n holds. To this
end, points t0 and t1 are defined such that t0 < t1 and we have Pr(D < t0) and
Pr(D < t1) dependent on µ in such a way that Pr(D < t0) < Pr(D < t1) < 1/2.
This definition leads to the following events:

• A: The event that D < t0−n and t0 < Y .
• B: The event that t0−n < D < t1−n and t1 < Y

The fact that σ2 ≥ (na)2 for a = ω(1) helps to find the lower bounds for
the probabilities and results in Pr(Y > dµ+1)≥ 1

2(µ+1) . Hence, the (µ+1) EA
will not find the optimum of noisy OneMax if the noise comes from an
exponential distribution as defined.

The other noise distributions which were studied by Friedrich et al. [12]
were Truncated Distributions. It was proven that the (µ+1) EA scales grace-
fully with this kind of noise, which are generalizations of the uniform distri-
bution.

Definition 7.4.3 (Definition 7 in [12]). Let D be a random variable. If
there are k,q ∈R such that Pr(D > k) = 0 ∧ Pr(D ∈ (k−1,k])≥ q, then D is
called upper q-truncated. Analogously, D is called lower q-truncated if there
is are k,q ∈ R with Pr(D < k) = 0 ∧ Pr(D ∈ [k,k +1))≥ q.

Using this definition, it was proven that the (µ+1) EA obtains the op-
timum of noisy OneMax with a lower 2log(nµ)/µ-truncated noise distribu-
tion in expected O(µn logn) iterations. The proof uses multiplicative drift
and benefits from the fact that the best solution is never removed in the
first O(µn logn) iterations if any other point is evaluated in the minimal
bracket [k,k + 1). The first corollary of this result is that for an arbitrary
lower q-truncated noise, the (µ+1) EA with µ≥ 3−1 log(nq−1) evaluates the
optimum of noisy OneMax after expected O(µn logn) iterations.

Finally the last corollary in this study considered a uniform distribution on
[−r,r], which is lower 1/2r-truncated, as the noise function. In this manner,
by using the previous results, it was proven that the (µ+1) EA scales grace-
fully on OneMax with additive posterior noise from a uniform distribution
on [−r,r].

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 349

7.4.3 Resampling Approach for Noisy Discrete
Problems

In the previous sections, we have considered the behavior of evolutionary
algorithms for noisy problems. This section presents another approach to
dealing with such problems. Here, a modified version of an algorithm, which
has a known performance on the noise-free case, is investigated. Akimoto
et al. studied resampling methods to modify iterative algorithms and found
upper bounds on its performance according to the proven performance of
the known algorithm [1]. The framework that they presented suits EAs per-
fectly. In a resampling method, the evaluation of the noisy fitness function
for each solution is repeated k times. The algorithm then takes the average of
the k noisy values as the fitness value of the solution. Let Opt and k-Opt de-
note the original algorithm and the resampling modified version, respectively.
The parameter k can be fixed, or be adapted during the optimization pro-
cess. In [1], discrete optimization problems were classified into two different
categories: Either there is a known algorithm available that finds the optimal
solution in expected r(δ) fitness evaluations with probability 1−δ, or no such
algorithm is known. In the first case, k is chosen according to r(δ), and in
the second case, its value is set adaptively in each iteration.

We assume that additive Gaussian noise with variance σ2 is applied to the
fitness function. In the pre-known runtime case, it was proven that if we fix

kg = max
(

1,
⌈
32σ2

[
ln(2)− ln

(
1− (1− δ)1/r(δ)

)]⌉)
,

kg-Opt finds the optimum of the noisy function with probability at least(1−
δ)2 and the expected running time is

O

(
r(δ)max

(
1,σ2 ln

(
r(δ)

δ

)))
.

Let p denote the probability of the ratio of the noisy and real fitness values
of point x being at least 1/4. The proof first determines p ≤ 2exp

(
−k/42

2σ2

)
.

This leads to the probability of situations in which the noisy fitness value is
sufficiently close to the real one.

On the other hand, suppose there is no algorithm to solve the noise-free
problem. However, suppose that there is a known algorithm Opt′ which sat-
isfies the criterion Opt with probability at least 1− δ after n total fitness
evaluations in iteration n.

Let β > 1, and let

km =

⌈
32σ2

(
2(n+1)ln(n+1)β

δ

(∞∑
i=2

1
i ln(i)β

))⌉

350 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

be the number of resamplings of k-Opt′ in iteration m. It was proven that
k-Opt′ satisfies Q for the noisy problem with probability at least (1−δ)2 after
n iterations and the total number of fitness evaluations is

n∑
m=1

km = O(n lnn).

Amore general scenario (called the heavy tail scenario) was also considered.
Here, there is no assumption about the noise distribution, except that the
variance σ2 is finite and the distribution has mean zero. It was proven that
if we fix

kh = max(1,⌈16σ2/(1− (1− δ)r(δ))⌉),

kh-Opt solves the noisy problem with probability at least (1−δ)2 and the
expected runtime is

O

(
r(δ)max

(
1,σ2 r(δ)

δ

))
.

When no algorithm is known to find the optimum, then by using the
definition of Q, k-Opt′ with

km =

⌈
16σ2(n+1)ln(n+1)β

δ

∞∑
i=2

1
i ln(i)β

⌉
,

where β > 1, satisfies Q for any heavy tail noisy function with probability at
least (1− δ)2. The total number of fitness evaluation up to iteration n is

n∑
m=1

km = O(n2 ln(n)β).

Other studies have also considered the size of the resampling. Qian et
al. [32] showed that increasing the resampling size does not always decrease
the runtime of the algorithm. These authors proved that it takes expected
exponential time for the (1+1) EA to solve the noisy LeadingOnes problem
with p = 1, while using the resampling method with k = 4n4 logn/15 reduces
it to an expected polynomial time. Furthermore, they proved that if the
resampling method is applied with k = n5, then the expected running time
grows exponentially again.

Furthermore, the authors also investigated the OneMax problem with
segmented noise, which applies different types of noise according to the size
of the solution. They proved that the expected running time to solve the noisy
OneMax problem for the (1+1) EA with a fixed size resampling and the
(µ+1) EA with µ∈ poly(n) is exponential. However, using the (1+1) EA with
an adaptive resampling method solves the OneMax problem with segmented
noise in expected polynomial running time. For two individuals, this adaptive
resampling method uses the values of the noisy fitness functions to do the

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 351

e1,1

e1,0

e2,1

e2,0

e3,1

e3,0

e4,1

e4,0

e5,1

e5,0

v0 v1 v2 v3 v4 v5

Fig. 7.1 Construction graph for pseudo-Boolean optimization with n = 5 bits.

comparison only if the difference between the fitness values is within [3n,n4].
Otherwise, it uses the average of n5 fitness evaluations for each individual to
compare them.

7.5 Ant Colony Optimization

After having investigated evolutionary algorithms for dynamic and stochastic
problems, we now give a summary of the results obtained in the context of ant
colony optimization. ACO algorithms construct solutions for a given optimiza-
tion problem by performing random walks on a so-called construction graph.
The construction graph frequently used in pseudo-Boolean optimization is
shown in Figure 7.1. This random walk is influenced by so-called pheromone
values on the edges of the graph. At each time step, the pheromone values
induce a probability distribution on the underlying search space which is
used to sample new solutions for the given problem. Pheromone values are
adapted over time such that good components of solutions obtained during
the optimization process are reinforced. The idea is that this reinforcement
then leads to better solutions during the optimization process. An algorithm
which is frequently studied in theoretical investigations of pseudo-Boolean
maximization is MMAS (see Algorithm 7.7). This is a simplification of the
Max-Min Ant System introduced in [35]. The algorithm, which is given in Al-
gorithm 7.7, only uses one ant in each iteration. However, variants of MMAS
called λ-MMAS, where λ ants are used in each iteration, have also been
studied in the literature. Pheromone values are chosen within the interval
[τmin, τmax] where τmin and τmax are lower and upper bounds used in MMAS.
Furthermore, the update strength ρ plays an important role in the runtime
analysis of ACO algorithms. For MMAS, a large update strength such as
ρ = 1 often makes the MMAS algorithms considered similar to simple evolu-
tionary algorithms such as (1+1) EA. The considered algorithms are usually
analyzed with respect to the number of solutions until a given goal has been
achieved. As in the case of runtime analysis of evolutionary algorithms, one
is often interested in the expected number of solutions to reach the desired
goal.

352 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

Algorithm 7.7: MMAS
1 Set τ(u,v) = 1/2 for all (u,v) ∈ E.;
2 Construct a solution x∗.;
3 Update pheromones w.r.t. x∗.;
4 for forever do
5 Construct a solution x;
6 if f(x)≥ f(x∗) then
7 x∗ := x;
8 Update pheromones w.r.t. x∗

7.5.1 Dynamic Problems

Kötzing and Molter [22] compared the behavior of the(1+1) EA and MMAS
on the Maze problem. The Maze problem has an oscillating behavior of
different parts of the function and these authors have shown that MMAS is
able to track this oscillating behavior if ρ is chosen appropriately, i.e. ρ =
θ(1/n), whereas (1+1) EA loses track of the optimum with probability close
to 1.

In the case of dynamic combinatorial optimization problems, dynamic
single-source shortest path problems have been investigated in [24]. Given
a destination node t ∈ V , the goal is to compute for any node v ∈ V \ t a
shortest path from v to t. The set of these single-source shortest paths can
be represented as a tree with root t, and the path from v to t in that tree
gives a shortest path from v to t. The authors investigated different types
of dynamic change for variants of MMAS. They first investigated MMAS
and showed that this algorithm can effectively deal with one time changes,
and built on investigations in [36] for the static case. They showed that the
algorithm is able to recompute single-source shortest paths in an expected
number of O(ℓ∗/τmin + ℓ ln(τmax/τmin)/ρ) iterations after a one change has
happened. The parameter ℓ denotes the maximum number of arcs in any
shortest path to node t in the new graph and ℓ∗ = min{ℓ, logn}. The result
shows that MMAS is able to track dynamic changes if they are not too fre-
quent. Furthermore, these authors presented a lower bound of Ω(ℓ/τmin) in
the case where ρ = 1 holds. Afterwards, periodic local and global changes were
investigated. In the case of the local changes investigated, λ-MMAS with a
small λ is able to track periodic local changes for a specific setting. For global
changes, a setting with oscillation between two simple weight functions was
introduced, where an exponential number of ants would be required to make
sure that an optimal solution is sampled with constant probability in each
iteration.

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 353

7.5.2 Stochastic Problems

In stochastic environments, ACO algorithms have been analyzed for example
benchmark functions and the stochastic shortest paths problem.

Thyssen and Sudholt [3] started the runtime analysis of ACO algorithms
in stochastic environments. They investigated the single-destination short-
est path (SDSP) problem where edge weights are subject to noise. For each
edge e, the noise model returns a weight of (1 + η(e,p, t)) ·w(e) instead of
the exact real weight w(e). This implies that the weight w(e) of each edge
e is increased according to the noise model. They considered a variant of
MMAS for the shortest path problem introduced in [36]. They started by
characterizing a noise model for which the algorithm can discover shortest
paths efficiently. In the general setting, they examined algorithms in terms of
approximations. The results depend on how much non optimal paths differ at
least from optimal ones. More precisely, they showed that if for each vertex
v ∈ V and some α > 1 it holds that every non optimal path has length at
least (1+α ·E(η(optv))) ·optv, then the algorithm finds an α-approximation
in time proportional to α/(α−1) and other standard ACO parameters such
as pheromone bounds and pheromone update strengths. Here, optv denotes
the value of a shortest path from v to the destination t and E(η(optv)) de-
notes the expected random noise on all edges of this path. Furthermore, for
independent gamma distributions along the edges, they have showed that the
algorithm may need exponential time to find a good approximation. Doerr
et al. [7] extended these investigations of the stochastic SDSP problem. They
considered a slight variation of MMAS for the stochastic SDSP which always
reevaluates the best so-far solution when a new solution for comparison is
obtained. This allows the MMAS version to easily obtain shortest paths in
the stochastic setting.

Friedrich et al. [13] considered MMAS with a fitness-proportional pherom-
one update rule on linear pseudo-Boolean functions. They showed that the
algorithm scales gracefully with noise, i.e., the runtime depends only linearly
on the variance of the Gaussian noise. In contrast to this many of the noise
settings considered are not solvable by simple evolutionary algorithms such
as the (1+1) EA [10]. This points out a clear benefit of using ant colony
optimization for stochastic problems.

7.6 Conclusions

Evolutionary algorithms have been extensively used to deal with dynamic
and stochastic problems. We have given an overview of recent results regard-
ing the theoretical foundations of evolutionary algorithms for dynamic and
stochastic problems in the context of rigorous runtime analysis. Various re-
sults for dynamic problems in the context of combinatorial optimization for

354 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

problems such as makespan scheduling and minimum vertex cover have been
summarized, and the benefits of different approaches to dealing with such
dynamic problems have been pointed out. In the case of stochastic problems,
the impact of the amount of noise and how population-based approaches are
beneficial for coping with noisy environments have been summarized.

While all these studies have greatly contributed to the understanding of
the basic working principles of evolutionary algorithms and ant colony opti-
mization in dynamic and stochastic environments, analyzing the behaviorof
these algorithms on complex problems remains highly open. Furthermore, un-
certainties often change over time and are therefore dynamic. Therefore, it
would be very interesting to analyze the behavior of evolutionary algorithms
for problems where uncertainties change over time. For future research, it
would also be interesting to examine environments that are both dynamic
and stochastic, as many real-world problems have both properties at the
same time.

References

[1] Akimoto, Y., Morales, S.A., Teytaud, O.: Analysis of runtime of opti-
mization algorithms for noisy functions over discrete codomains. Theor.
Comput. Sci. 605, 42–50 (2015)

[2] Cathabard, S., Lehre, P.K., Yao, X.: Non-uniform mutation rates for
problems with unknown solution lengths. In: H. Beyer, W.B. Langdon
(eds.) Foundations of Genetic Algorithms, 11th International Workshop,
FOGA 2011, Schwarzenberg, Austria, January 5-8, 2011, Proceedings,
pp. 173–180. ACM (2011)

[3] Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.): Parallel Problem Solving from Nature - PPSN XII - 12th Inter-
national Conference, Taormina, Italy, September 1-5, 2012, Proceedings,
Part I, Lecture Notes in Computer Science, vol. 7491. Springer (2012)

[4] Dang-Nhu, R., Dardinier, T., Doerr, B., Izacard, G., Nogneng, D.: A
new analysis method for evolutionary optimization of dynamic and noisy
objective functions. In: H.E. Aguirre, K. Takadama (eds.) Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO 2018,
Kyoto, Japan, July 15-19, 2018, pp. 1467–1474. ACM (2018)

[5] Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing
new genetic algorithms. Theor. Comput. Sci. 567, 87–104 (2015)

[6] Doerr, B., Doerr, C., Kötzing, T.: Solving problems with unknown solu-
tion length at (almost) no extra cost. In: S. Silva, A.I. Esparcia-Alcázar
(eds.) Proceedings of the Genetic and Evolutionary Computation Con-
ference, GECCO 2015, Madrid, Spain, July 11-15, 2015, pp. 831–838.
ACM (2015)

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 355

[7] Doerr, B., Hota, A., Kötzing, T.: Ants easily solve stochastic shortest
path problems. In: T. Soule, J.H. Moore (eds.) Genetic and Evolutionary
Computation Conference, GECCO ’12, Philadelphia, PA, USA, July 7-
11, 2012, pp. 17–24. ACM (2012)

[8] Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Al-
gorithmica 64(4), 673–697 (2012)

[9] Droste, S.: Analysis of the (1+1) EA for a dynamically changing
ONEMAX-variant. In: Evolutionary Computation, 2002. CEC ’02. Pro-
ceedings of the 2002 Congress on, vol. 1, pp. 55–60 (2002)

[10] Droste, S.: Analysis of the (1+1) EA for a noisy onemax. In: K. Deb,
R. Poli, W. Banzhaf, H. Beyer, E.K. Burke, P.J. Darwen, D. Dasgupta,
D. Floreano, J.A. Foster, M. Harman, O. Holland, P.L. Lanzi, L. Spector,
A. Tettamanzi, D. Thierens, A.M. Tyrrell (eds.) Genetic and Evolution-
ary Computation - GECCO 2004, Genetic and Evolutionary Computa-
tion Conference, Seattle, WA, USA, June 26-30, 2004, Proceedings, Part
I, Lecture Notes in Computer Science, vol. 3102, pp. 1088–1099. Springer
(2004)

[11] Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approx-
imating covering problems by randomized search heuristics using multi-
objective models. Evolutionary Computation 18(4), 617–633 (2010)

[12] Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: Graceful scaling
on uniform versus steep-tailed noise. In: J. Handl, E. Hart, P.R. Lewis,
M. López-Ibáñez, G. Ochoa, B. Paechter (eds.) Parallel Problem Solving
from Nature - PPSN XIV - 14th International Conference, Edinburgh,
UK, September 17-21, 2016, Proceedings, Lecture Notes in Computer
Science, vol. 9921, pp. 761–770. Springer (2016)

[13] Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: Robustness of ant
colony optimization to noise. Evolutionary Computation 24(2), 237–254
(2016)

[14] Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The compact
genetic algorithm is efficient under extreme gaussian noise. IEEE Trans.
Evolutionary Computation 21(3), 477–490 (2017)

[15] Friedrich, T., Kötzing, T., Lagodzinski, G., Neumann, F., Schirneck, M.:
Analysis of the (1+1) EA on subclasses of linear functions under uniform
and linear constraints. In: C. Igel, D. Sudholt, C. Witt (eds.) Proceed-
ings of the 14th ACM/SIGEVO Conference on Foundations of Genetic
Algorithms, FOGA 2017, Copenhagen, Denmark, January 12-15, 2017,
pp. 45–54. ACM (2017)

[16] Friedrich, T., Kötzing, T., Sutton, A.M.: On the robustness of evolv-
ing populations. In: J. Handl, E. Hart, P.R. Lewis, M. López-Ibáñez,
G. Ochoa, B. Paechter (eds.) Parallel Problem Solving from Nature -
PPSN XIV - 14th International Conference, Edinburgh, UK, September
17-21, 2016, Proceedings, Lecture Notes in Computer Science, vol. 9921,
pp. 771–781. Springer (2016)

356 Frank Neumann, Mojgan Pourhassan and Vahid Roostapour

[17] Gießen, C., Kötzing, T.: Robustness of populations in stochastic envi-
ronments. Algorithmica 75(3), 462–489 (2016)

[18] Jansen, T., Oliveto, P.S., Zarges, C.: Approximating vertex cover using
edge-based representations. In: F. Neumann, K.A.D. Jong (eds.) Foun-
dations of Genetic Algorithms XII, FOGA ’13, Adelaide, SA, Australia,
January 16-20, 2013, pp. 87–96. ACM (2013)

[19] Jansen, T., Zarges, C.: Evolutionary algorithms and artificial immune
systems on a bi-stable dynamic optimisation problem. In: D.V. Arnold
(ed.) Genetic and Evolutionary Computation Conference, GECCO ’14,
Vancouver, BC, Canada, July 12-16, 2014, pp. 975–982. ACM (2014)

[20] Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer
(2004)

[21] Kötzing, T., Lissovoi, A., Witt, C.: (1+1) EA on generalized dynamic
onemax. In: J. He, T. Jansen, G. Ochoa, C. Zarges (eds.) Proceedings of
the 2015 ACM Conference on Foundations of Genetic Algorithms XIII,
Aberystwyth, United Kingdom, January 17 - 20, 2015, pp. 40–51. ACM
(2015)

[22] Kötzing, T., Molter, H.: ACO beats EA on a dynamic pseudo-boolean
function. In: C.A.C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia,
M. Pavone (eds.) Parallel Problem Solving from Nature - PPSN XII
- 12th International Conference, Taormina, Italy, September 1-5, 2012,
Proceedings, Part I, Lecture Notes in Computer Science, vol. 7491, pp.
113–122. Springer (2012)

[23] Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms and
the vertex cover problem. Algorithmica 65(4), 754–771 (2013)

[24] Lissovoi, A., Witt, C.: Runtime analysis of ant colony optimization on
dynamic shortest path problems. Theor. Comput. Sci. 561, 73–85 (2015)

[25] Lissovoi, A., Witt, C.: MMAS versus population-based EA on a family
of dynamic fitness functions. Algorithmica 75(3), 554–576 (2016)

[26] Lissovoi, A., Witt, C.: A runtime analysis of parallel evolutionary algo-
rithms in dynamic optimization. Algorithmica 78(2), 641–659 (2017)

[27] Morales, S.A., Cauwet, M., Teytaud, O.: Analysis of different types of
regret in continuous noisy optimization. In: T. Friedrich, F. Neumann,
A.M. Sutton (eds.) Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference, Denver, CO, USA, July 20 - 24, 2016, pp. 205–
212. ACM (2016)

[28] Neumann, F., Witt, C.: On the runtime of randomized local search and
simple evolutionary algorithms for dynamic makespan scheduling. In:
Q. Yang, M. Wooldridge (eds.) Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, pp. 3742–3748. AAAI Press (2015)

[29] Oliveto, P.S., He, J., Yao, X.: Analysis of the (1+1) -ea for finding ap-
proximate solutions to vertex cover problems. IEEE Trans. Evolutionary
Computation 13(5), 1006–1029 (2009)

7 Evolutionary Algorithms in Dynamic and Stochastic Environments 357

[30] Pourhassan, M., Gao, W., Neumann, F.: Maintaining 2-approximations
for the dynamic vertex cover problem using evolutionary algorithms. In:
S. Silva, A.I. Esparcia-Alcázar (eds.) Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2015, Madrid, Spain,
July 11-15, 2015, pp. 903–910. ACM (2015)

[31] Pourhassan, M., Shi, F., Neumann, F.: Parameterized analysis of multi-
objective evolutionary algorithms and the weighted vertex cover prob-
lem. In: J. Handl, E. Hart, P.R. Lewis, M. López-Ibáñez, G. Ochoa,
B. Paechter (eds.) Parallel Problem Solving from Nature - PPSN XIV -
14th International Conference, Edinburgh, UK, September 17-21, 2016,
Proceedings, Lecture Notes in Computer Science, vol. 9921, pp. 729–739.
Springer (2016)

[32] Qian, C., Bian, C., Yu, Y., Tang, K., Yao, X.: Analysis of noisy evolution-
ary optimization when sampling fails. In: H.E. Aguirre, K. Takadama
(eds.) Proceedings of the Genetic and Evolutionary Computation Con-
ference, GECCO 2018, Kyoto, Japan, July 15-19, 2018, pp. 1507–1514.
ACM (2018)

[33] Shi, F., Schirneck, M., Friedrich, T., Kötzing, T., Neumann, F.: Reop-
timization times of evolutionary algorithms on linear functions under
dynamic uniform constraints. In: P.A.N. Bosman (ed.) Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO 2017,
Berlin, Germany, July 15-19, 2017, pp. 1407–1414. ACM (2017)

[34] Shi, F., Schirneck, M., Friedrich, T., Kötzing, T., Neumann, F.: Reop-
timization time analysis of evolutionary algorithms on linear functions
under dynamic uniform constraints. Algorithmica (2018)

[35] Stützle, T., Hoos, H.H.: MAX-MIN ant system. Future Generation
Comp. Syst. 16(8), 889–914 (2000)

[36] Sudholt, D., Thyssen, C.: Running time analysis of ant colony optimiza-
tion for shortest path problems. J. Discrete Algorithms 10, 165–180
(2012)

[37] Zhou, Y., He, J.: A runtime analysis of evolutionary algorithms for con-
strained optimization problems. IEEE Trans. Evolutionary Computation
11(5), 608–619 (2007)

Chapter 8
The Benefits of Population Diversity in
Evolutionary Algorithms: A Survey of
Rigorous Runtime Analyses

Dirk Sudholt

Abstract Population diversity is crucial in evolutionary algorithms to en-
able global exploration and to avoid poor performance due to premature
convergence. This chapter reviews runtime analyses that have shown bene-
fits of population diversity, either through explicit diversity mechanisms or
through naturally emerging diversity. These analyses show that the benefits
of diversity are manifold: diversity is important for global exploration and
the ability to find several global optima. Diversity enhances crossover and
enables crossover to be more effective than mutation. Diversity can be cru-
cial in dynamic optimization, when the problem landscape changes over time.
And, finally, it facilitates the search for the whole Pareto front in evolution-
ary multiobjective optimization.

The analyses presented rigorously quantify the performance of evolution-
ary algorithms in the light of population diversity, laying the foundation for a
rigorous understanding of how search dynamics are affected by the presence
or absence of population diversity and the use of diversity mechanisms.

8.1 Introduction

Evolutionary algorithms (EAs) are popular general-purpose metaheuristics
inspired by the natural evolution of species. By using operators such as mu-
tation, recombination, and selection, a multiset of solutions — the popula-
tion — is evolved over time. The hope is that this artificial evolution will
explore vast regions of the search space and yet use the principle of “survival
of the fittest” to generate good solutions for the problem at hand. Count-
less applications as well as theoretical results have demonstrated that these
algorithms are effective on many hard optimization problems.

Dirk Sudholt
Department of Computer Science, University of Sheffield, Sheffield, United Kingdom

359

360 Dirk Sudholt

A key distinguishing feature from other approaches such as local search
or simulated annealing is the use of a population of candidate solutions. The
use of a population allows evolutionary algorithms to explore different areas
of the search space, facilitating global exploration. It also enables the use of
recombination, where the hope is to combine good features of two solutions.

A common problem in evolutionary algorithms is premature convergence:
the population collapses to copies of the same genotype, or more generally,
a set of very similar genotypes, before the search space has been explored
properly. In this case there is no benefit from having a population; in the worst
case, the evolutionary algorithm may behave like a local search algorithm, but
with an additional overhead from maintaining many similar solutions.

What we want instead is a diverse population that contains dissimilar
individuals to promote exploration. The benefits of diversity are manifold:

Global exploration. A diverse population is generally well suited for
global exploration, as it can explore different regions of the search space,
reducing the risk of the whole population converging to local optima of
low fitness.

Facilitating crossover. Often, a diverse population is required for
crossover to work effectively. Crossing over two very similar solutions will
result in an offspring that is similar to both parents, and this effect can
also be achieved by mutation. Many problems where crossover is essential
do in fact require a diverse population.

Decision making. A diverse population provides a diverse set of solutions
for a decision maker to choose from. This is particularly important in
multi-objective optimization as there are often trade-offs between different
objectives, and the goal is to provide a varied set of solutions for a decision
maker.

Robustness. A diverse population reduces the risk of getting stuck in a
local optimum of bad quality. It is also robust with regard to uncertainty,
such as noisy fitness evaluations or changes to the fitness function in cases
where the problem changes dynamically. A diverse population may be able
to track moving optima efficiently or to maintain individuals on different
peaks, such that when the global optimum changes from one peak to an-
other, it is easy to rediscover the global optimum.

In the long history of evolutionary computation, many solutions have been
proposed to maintain or promote diversity. These range from controlling di-
versity through balancing exploration and exploitation via careful parameter
tuning and designing selection mechanisms carefully, to explicit diversity-
preserving mechanisms that can be embedded in an evolutionary algorithm.
The latter include techniques such as eliminating duplicates, using subpopu-
lations with migration as in island models, and niching techniques that try
to establish niches of similar search points and prevent niches from going
extinct. Niching techniques include fitness sharing (where similar individuals
are forced to “share” their fitness, i.e., their real fitness is reduced during

8 The Benefits of Population Diversity in Evolutionary Algorithms 361

selection), clearing (where similar individuals can be “cleared” away by set-
ting their fitness to a minimum value), and deterministic crowding (where
offspring compete directly against their parents), to name just a few.

For more extensive surveys of diversity-preserving mechanisms we refer
the reader to recent surveys by Shir [53], Črepinšek, Liu, and Mernik [10],
and Squillero and Tonda [54]. Details of the diversity mechanisms surveyed
here will be presented in the respective sections.

Many of these techniques work either on the genotypic level, i.e., trying to
create a diverse set of bit strings, or on a phenotypic level, trying to obtain
different phenotypes, taking into consideration some mapping from genotypes
to phenotypes. For instance, for functions of unitation (functions that depend
only on the number of 1-bits in the bit string), the genotype is a bit string,
but the phenotype is given by the number of 1-bits. Diversity mechanisms
can focus on genotypic or phenotypic diversity.

Given the plethora of mechanisms to be applied, it is often not clear what
the best strategy is. Which diversity mechanisms work well for a given prob-
lem, which do not, and, most importantly, why? In particular, the effects
such mechanisms have on search dynamics and performance are often not
well understood.

This chapter reviews rigorous theoretical runtime analyses of evolutionary
algorithms where diversity plays a key role, in order to address these questions
and to develop a better understanding of the search dynamics in the presence
or absence of diversity.

The goal of runtime analysis is to estimate the random or expected time
until an evolutionary algorithm has met a particular goal, by rigorous mathe-
matical study. Goals can include finding a global optimum, finding a diverse
set of optima, or, specifically in the context of multi-objective optimization,
finding the Pareto front of Pareto-optimal solutions. The results help us to get
insight into the search behavior of evolutionary algorithms in the presence or
absence of diversity, and how parameters and explicit diversity mechanisms
affect performance. They highlight in particular which diversity mechanisms
are effective for particular problems, and which are ineffective. More impor-
tantly, they explain why diversity mechanisms are effective or ineffective, and
how to design the most effective evolutionary algorithms for the problems
considered.

The presentation of these results is intended to combine formal theorems
with informal explanations in order to make it accessible to a broad audience,
while maintaining mathematical rigor. Instead of presenting formal proofs, we
focus on key ideas and insights that can be drawn from these analyses. The
reader is referred to the original papers for rigorous proofs and further details.
In many cases we present only selected results from the papers surveyed, or
results that are simplified towards special cases for reasons of simplicity, and
the original publications contain further and/or more general results.

The outline of this chapter is as follows. After some preliminaries in Sec-
tion 8.2, we first review the use of diversity-preserving mechanisms for en-

362 Dirk Sudholt

hancing global exploration in mutation-based evolutionary algorithms in Sec-
tion 8.3. Section 8.4 then reviews the benefits of diversity for the use of
crossover in genetic algorithms. Section 8.5 reviews the benefits of diversity
mechanisms in dynamic optimization, where only a few results are available
to date. Section 8.6 presents a recent, novel approach, using diversity metrics
to design parent selection mechanisms that speed up evolutionary multiob-
jective optimization by picking parents that are most effective for spreading
the population on the Pareto front. We finish with conclusions in Section 8.7.

This chapter is not meant to be comprehensive; in fact, there are several
further runtime analyses not surveyed in this chapter. These include island
models with crossover [47, 61], achieving diversity through heterogeneous
island models and how this helps for SetCover [45], or achieving diver-
sity through a tailored population model as in the case of all-pairs shortest
paths [16]. Another popular diversity mechanism is ageing: restricting the
lifespan of individuals to promote diversity. There are several runtime analy-
ses of ageing mechanisms [26, 31, 32, 49]; however, these are being reviewed in
Zarges’ chapter [65], in Section 10.3. This chapter focuses on single-objective
optimization, though diversity is a very important topic in multi-objective
optimization (see, e.g., the work of Horoba and Neumann [27]). We present
only one recent study of multiobjective optimization in Section 8.6, and refer
to Brockhoff’s survey [3] for a review of further theoretical results.

There are also a few very recent papers that appeared after this chapter
was written. These include runtime analyses of probabilistic crowding and
restricted tournament selection on TwoMax [9] and an empirical comparison
of diversity mechanisms on multimodal example problems [8]. The interested
reader is referred to Covantes Osuna’s PhD thesis [5].

8.2 Preliminaries

The rigorous runtime analysis of randomized search heuristics is a challeng-
ing task, as these heuristics have not been designed to support an analysis.
For that reason, we mostly consider bare-bones algorithms to facilitate a
theoretical analysis. Furthermore, enhancing a bare-bones evolutionary algo-
rithm with a diversity mechanism allows us to compare different diversity
mechanisms in a clear-cut way, keeping the baseline algorithm as simple as
possible.

The algorithms presented here do not use a specific stopping criterion, as
we are interested in the random time for achieving a set goal. This time is
generally referred to as the runtime, or running time. The most common goal
is finding a global optimum, and the first hitting time of a global optimum is
called the optimization time. In other cases we aim to find all global optima,
or the whole Pareto front in a multi-objective setting.

8 The Benefits of Population Diversity in Evolutionary Algorithms 363

Gao and Neumann [23] provided an alternative approach using rigorous
runtime analysis: they considered the task of maximizing diversity amongst
all search points with a given minimum quality. Although this is a very
interesting study that has inspired subsequent runtime analyses [12], it is
considered out of the scope of this survey.

Unless mentioned otherwise, we assume a binary search space where n
denotes the problem size, that is, the length of the bit string. We use 0n and
1n to indicate the all-zeros and the all-ones strings, respectively, and, more
generally, blocks of bits of some value. Further, |x|1 denotes the number of
ones in a bit string x, and |x|0 denotes the number of zeros.

In the following, we say that an event occurs with high probability if its
probability is at least 1−n−Ω(1), and an event occurs with overwhelming
probability if its probability is at least 1−2−Ω(nε) for some ε > 0.

8.3 How Diversity Benefits Global Exploration

We first review runtime analyses where explicit diversity mechanisms were
used to improve the ability of evolutionary algorithms to explore the search
space and to find global optima. The first such study was presented by
Friedrich, Hebbinghaus, and Neumann [21], who compared a genotypic and a
phenotypic diversity mechanism on an artificially constructed problem. Here,
we review results from subsequent work [7, 22, 50] in Section 8.3.1 that focuses
on the bimodal problem TwoMax instead. TwoMax has a simple structure,
but it is very challenging to evolve a population that contains both optima.
The diversity mechanisms considered for TwoMax include avoiding geno-
type duplicates, avoiding fitness duplicates, deterministic crowding, fitness
sharing (in two variants), and clearing.

In Section 8.3.2, we review theoretical analyses of island models [39, 40]:
these use subpopulations that communicate via migration, and can be run
effectively on parallel hardware.

8.3.1 Diversity Mechanisms on TwoMax: A Simple
Bimodal Function

The function TwoMax (see Fig. 8.1) is a function of unitation, that is, the
fitness value depends only on the number of 1-bits:

TwoMax(x) := max

{
n∑

i=1
xi,n−

n∑
i=1

xi

}
.

364 Dirk Sudholt

#onesn/2
0

n

n/2 n

Fig. 8.1 Sketch of the function TwoMax with n = 30.

The fitness landscape consists of two hills with symmetric slopes, one for
maximizing the number of ones and the other for maximizing the number
of zeros. These sets are also referred to as branches. In [22], an additional
fitness value for 1n was added to distinguish between a local optimum 0n

and a unique global optimum. Here we use the original function with two
global optima as also used in [7, 50], and measure the time needed in order
to find both optima. The presentation of the results in [22] has been adapted
to reflect this change.

TwoMax is an ideal benchmark function for studying diversity mecha-
nisms as it is simply structured, hence facilitating a theoretical analysis, and
it is hard for EAs to find both optima, as they have the maximum possible
Hamming distance. The TwoMax function appears in well-known combi-
natorial optimization problems. For example, the VertexCover bipartite
graph analyzed by Oliveto, He, and Yao [48] consists of two branches, one
leading to a local optimum and the other to the minimum cover. Another
function with a similar structure is the Mincut instance analyzed by Sud-
holt [58].

8.3.1.1 No Diversity Mechanism

In order to obtain a fair comparison of different diversity-preserving mecha-
nisms, we keep one algorithm fixed as much as possible. The basic algorithm,
the (µ+1) EA shown in Algorithm 8.1, has already been investigated by
Witt [64].

The (µ+1) EA uses uniform random parent selection and elitist selection
for survival. As parents are chosen uniformly at random, the selection pressure
is quite low. Nevertheless, the (µ+1) EA is not able to maintain individuals
on both branches for a long time. We now show that if µ is not too large,
the individuals on one branch typically become extinct before the top of the
branch is reached. Thus, the (µ+1) EA is unlikely to find both optima and
the expected time for finding both optima is very large.

Theorem 8.3.1 (adapted from Theorem 1 in [22]). The probability that
the (µ+1) EA with no diversity-preserving mechanism and µ = o(n/logn)

8 The Benefits of Population Diversity in Evolutionary Algorithms 365

Algorithm 8.1: (µ+1) EA
1 t← 0
2 Initialize P0 with µ individuals chosen uniformly at random.
3 while termination criterion not met do
4 Choose x ∈ Pt uniformly at random.
5 Create y by flipping each bit in x independently with probability 1/n.
6 Choose z ∈ Pt with worst fitness uniformly at random.
7 if f(y)≥ f(z) then
8 Pt+1 = Pt \{z}∪{y}
9 else

10 Pt+1 = Pt

11 t← t + 1

finds both optima of TwoMax in time nn−1 is o(1). The expected time for
finding both optima is Ω(nn).

The idea of the proof is to consider the first point in time where one
optimum is found. Without loss of generality, we assume that this is 0n.
From there, one of two possible events may happen: another individual with
genotype 0n can enter the population or the other optimum, 1n, can be found.
The former event can occur if an individual with genotype 0n is selected as
a parent and no bit is flipped during mutation. The more copies of the 0n

optimum are contained in the population, the larger the probability of this
event becomes. On the other hand, in order to create 1n, a mutation has to
flip all 0-bits in the parent (and no 1-bits). If the population size is small,
copies of 0n tend to take over the whole population before a mutation can
create 1n. If this happens, the (µ+1) EA has to flip n bits to create 1n

from 0n, which has probability n−n. Even considering nn−1 generations, the
probability of this enormous jump happening is still o(1), that is, it converges
to 0.

8.3.1.2 Avoiding Genotype Duplicates

A simple way to enforce diversity within the population is not to allow geno-
type duplicates. We study a mechanism used by Storch and Wegener [55],
where, in the “if” statement of the (µ+1) EA, the condition “and y /∈ Pt”
is added; see Algorithm 8.2. Note that here and in the following we only
show the main loop, as the initialization steps are the same for all (µ+1) EA
variants.

This mechanism ensures that the population always contains µ different
genotypes (modulo possible duplicates occurring during initialization). How-
ever, this mechanism is not powerful enough to explore both branches of
TwoMax.

366 Dirk Sudholt

Algorithm 8.2: (µ+1) EA avoiding genotype duplicates
1 while termination criterion not met do
2 Choose x ∈ Pt uniformly at random.
3 Create y by flipping each bit in x independently with probability 1/n.
4 Choose z ∈ Pt with worst fitness uniformly at random.
5 if f(y)≥ f(z) and y /∈ Pt then
6 Pt+1 = Pt \{z}∪{y}
7 else
8 Pt+1 = Pt

9 t← t + 1

Theorem 8.3.2 (adapted from Theorem 2 in [22]). The probability that
the (µ+1) EA with genotype diversity and µ = o(n1/2) finds both optima of
TwoMax in time nn−2 is at most o(1). The expected time for finding both
optima is Ω(nn−1).

The idea of the proof is similar to that of Theorem 8.3.2; however, we
cannot rely on copies of one optimum, 0n, taking over the population, as
duplicates of 0n are prevented from entering the population. The algorithm
can still generate individuals similar to 0n, for example by choosing 0n as a
parent and flipping a single 0-bit to 1. As mutations can flip any of n bits,
the algorithm can easily create a population containing 0n and many search
points with only a single 1-bit that are at least as fit as the current best
search points on the other branch. If the population size is µ = o(n1/2), the
population is likely to be taken over by such search points before the other
optimum, 1n, is found. Note that our arguments rely on 0n being selected as
a parent, and there is only one individual with genotype 0n. This leads to a
more restrictive condition on µ (µ = o(n1/2)) compared with the setting of
no diversity mechanism (µ = o(n/logn)).

We conclude that avoiding genotype duplicates does create diversity in the
population in the sense of different genotypes, but this kind of diversity is
too weak for finding both optima of TwoMax, as there we need to evolve
individuals on both branches.

8.3.1.3 Fitness Diversity

Avoiding genotype duplicates does not help much to optimize TwoMax as
individuals from one branch are still allowed to spread on a certain fitness
level and take over the population. A more restrictive mechanism is to avoid
fitness duplicates, i.e., multiple individuals with the same fitness. Such a
mechanism has been defined and analyzed by Friedrich, Hebbinghaus, and
Neumann [21] for plateaus of constant fitness. In addition, this resembles the
idea of fitness diversity proposed by Hutter and Legg [28].

8 The Benefits of Population Diversity in Evolutionary Algorithms 367

Algorithm 8.3: (µ+1) EA with fitness diversity
1 while termination criterion not met do
2 Choose x ∈ Pt uniformly at random.
3 Create y by flipping each bit in x independently with probability 1/n.
4 if there exists z ∈ Pt such that f(y) = f(z) then
5 Pt+1 = Pt \{z}∪{y}
6 else
7 Choose z ∈ Pt with worst fitness uniformly at random.
8 if f(y)≥ f(z) then
9 Pt+1 = Pt \{z}∪{y}

10 else
11 Pt+1 = Pt

12 t← t + 1

The (µ+1) EA with fitness diversity avoids the situation where multiple
individuals with the same fitness are stored in the population. If at some
time t a new individual x is created with the same fitness value as a preexisting
one y ∈ Pt, then x replaces y (see Algorithm 8.3).

The following theorem proves that if the population is not too large, then
with high probability the individuals climbing one of the two branches will
be extinguished before any of them reaches the top.

Theorem 8.3.3 (adapted from Theorem 3 in [22]). The probability that
the (µ+1) EA with fitness diversity and µ ≤ nO(1) finds both optima1 of
TwoMax in time 2cn, c > 0 being an appropriate constant, is at most o(1).
The expected time for finding both optima is 2Ω(n).

The intuitive reason why this mechanism fails is that, once the population
has reached one optimum, without loss of generality 0n, the population has
a tendency to spread on the branch leading to that optimum, until the whole
population is contained on that branch. During this time there may be com-
petition between the two branches: whenever one branch creates an offspring
on the same branch, it may remove an individual of the same fitness on the
opposite branch. This competition is biased towards the branch leading to 0n,
though, as that branch can use “downhill” mutations, that is, mutations flip-
ping only one of the many 0-bits, whereas the opposite branch may have to
rely on much rarer “uphill” mutations, that is, flipping only one of the rare
0-bits. The proof defines a potential function that captures the progress in
this competition and shows that the branch that reaches its optimum first is
likely to make individuals on the other branch go extinct.

1 Owing to the fitness diversity mechanism, and since, in contrast to [22], we consider
here a TwoMax variant with two global optima, the population can never actually
contain both optima. To set a meaningful target, here we also consider cases where the
union of the current population and a new offspring contains both optima.

368 Dirk Sudholt

Algorithm 8.4: (µ+1) EA with deterministic crowding
1 while termination criterion not met do
2 Choose x ∈ Pt uniformly at random.
3 Create y by flipping each bit in x independently with probability 1/n.
4 if f(y)≥ f(x) then
5 Pt+1 = Pt \{x}∪{y}
6 else
7 Pt+1 = Pt

8 t← t + 1

8.3.1.4 Deterministic Crowding

The main idea behind deterministic crowding is that offspring directly com-
pete with their parents. In genetic algorithms with crossover, pairs of parents
are formed, recombined, and mutated, and then the resulting offspring com-
petes with one of its parents, replacing it if it is no worse.

We consider this mechanism in the absence of crossover, where offspring
compete with their only parent. Then the population contains µ lineages that
evolve independently (see Algorithm 8.4).

For sufficiently large populations, the algorithm can easily reach both
global optima.

Theorem 8.3.4 (adapted from Theorem 4 in [22]). The (µ+1) EA with
deterministic crowding and µ ≤ nO(1) reaches on TwoMax a population
consisting of only global optima in expected time O(µn logn). In that case the
population contains both global optima with probability at least 1−2−µ+1.

The probability of 1− 2−µ−1 follows from the fact that all µ lineages
evolve independently, and that for each, once a global optimum is found, 0n

and 1n are each found with probability 1/2. So, when one lineage that reaches
a global optimum is fixed, the probability that the other µ− 1 lineages all
reach the same optimum is 2−µ+1. The time bound is not immediate, as the
(µ+1) EA picks a lineage to evolve further uniformly at random, so different
lineages may receive different numbers of mutation steps. However, it is not
difficult to show that the mutation steps are fairly concentrated around their
expectation, leading to an upper time bound of O(µn logn).

8.3.1.5 Fitness Sharing

Fitness sharing [44] derates the real fitness of an individual x by an amount
that represents the similarity of x to other individuals in the population.
The similarity between x and y is measured by a so-called sharing function
sh(x,y) ∈ [0,1], where a large value corresponds to large similarities and a
value of 0 implies no similarity. The idea is that if there are several copies of

8 The Benefits of Population Diversity in Evolutionary Algorithms 369

Algorithm 8.5: (µ+1) EA with fitness sharing
1 while termination criterion not met do
2 Choose x ∈ Pt uniformly at random.
3 Create y by flipping each bit in x independently with probability 1/n.
4 Choose z ∈ Pt with worst fitness uniformly at random.
5 Let P ′

t := Pt∪{y}.
6 if f(y,P ′

t)≥ f(z,P ′
t) then

7 Pt+1 = Pt \{z}∪{y}
8 else
9 Pt+1 = Pt

10 t← t + 1

the same individual in the population, these individuals have to share their
fitness. As a consequence, selection is likely to remove such clusters and to
keep the individuals apart. We define the shared fitness of x in the population
P and the fitness f(P) of the population as

f(x,P) = f(x)∑
y∈P sh(x,y)

and f(P) =
∑
x∈P

f(x,P),

respectively. It is common practice to use a so-called sharing distance σ such
that individuals only share fitness if they have a distance less than σ. Given
some distance function d, a common formulation for the sharing function is

sh(x,y) = max{0,1− (d(x,y)/σ)α},

where α is a positive constant that regulates the shape of the sharing func-
tion. We use the standard setting α = 1 and, following Mahfoud [44], we
set the sharing distance to σ = n/2 as this is the smallest value allowing
discrimination between the two branches. As TwoMax is a function of uni-
tation, we allow the distance function d to depend on the number of ones:
d(x,y) :=

∣∣|x|1− |y|1∣∣. Such a strategy is known as phenotypic sharing [44].
Our precise sharing function is then

sh(x,y) = max

{
0, 1−2

∣∣|x|1−|y|1∣∣
n

}
.

There are different ways of performing selection according to the shared
fitness, differing in the way the reference population P in the shared fitness
f(x,P) is chosen. In the following, we will review runtime analyses for two
different variants of fitness sharing. The most common usage of fitness shar-
ing is to consider the shared fitness according to the union of parents and
offspring; see Algorithm 8.5.

370 Dirk Sudholt

Oliveto, Sudholt, and Zarges [50] showed that a population size of µ = 2
is not sufficient to find both optima, and that the performance is even worse
than for deterministic crowding with µ = 2. The following theorem states
that, with a probability greater than 1/2, the (2+1) EA will end up with both
individuals in the same optimum, leading to an exponential running time from
there. This performance is worse than for deterministic crowding, for which
the probability of finding both optima is exactly 1/2 (see Theorem 8.3.4).

Theorem 8.3.5 (Theorems 1 and 2 in [50]). The (2+1) EA with fitness
sharing will, with probability 1/2+Ω(1), reach a population with both members
in the same optimum, and then the expected time for finding both optima from
there is Ω(nn/2).

However, with probability Ω(1) the algorithm will find both optima in time
O(n logn).

The reason for the failure probability of 1/2 + Ω(1) is that the algorithm
typically gets stuck on one branch if both initial search points are on the
same branch (which happens with probability around 1/2) or if the search
points are initialized on different branches but one search point has a much
higher fitness than the other. In that case the effect of fitness sharing is not
strong enough, and the less fit individual will be replaced if the fitter one
creates an offspring similar to itself.

If the population is initialized with two search points on different branches
and with similar fitness, fitness sharing ensures that, with high probability,
individuals on both branches survive. The reason is that whenever one parent
creates an offspring on its branch, fitness sharing derates the fitness of both
parent and offspring in such a way that the less fit one will be removed and
the individual on the opposite branch survives.

For population sizes µ≥ 3, fitness sharing becomes much more effective.

Theorem 8.3.6 (Theorem 3 in [50]). For any population size µ ≥ 3, the
(µ+1) EA with fitness sharing will find both optima of TwoMax in expected
time O(µn logn).

The analysis reveals a very interesting behavior. If all search points are
initialized on one branch, the population starts to climb up that branch.
But once a sufficiently large overall fitness value has been obtained (at the
latest when two individuals have found an optimum), then these high-fitness
individuals develop a sufficiently large critical mass that the effect of fitness
sharing starts to become evident, and the population shows a very different
behavior. From this point in time on, the population starts expanding towards
lower fitness values and the individuals with the smallest and the largest
numbers of 1-bits always survive. While the whole population may start to
climb up one branch, at some point in time the individual with the lowest
fitness starts to be repelled and makes its way back down, eventually reaching
the other branch and climbing up to find the other optimum.

8 The Benefits of Population Diversity in Evolutionary Algorithms 371

We can conclude that fitness sharing works for the (µ+1) EA with popula-
tion sizes µ≥ 3, but when larger offspring populations2 are considered, it can
have undesirable effects: if a cluster of individuals creates too many offspring,
sharing decreases the shared fitness of all individuals in the cluster, and the
cluster may go extinct.

In a similar vein, the population can even lose all global optima. In a
(2+λ) EA with λ≥ 6, if the population contains two copies of the same global
optimum, and then a generation creates λ−2 clones and two individuals with
Hamming distance 1 to the optimum, the latter two individuals will have a
higher shared fitness and form the new population.

The following result shows that even with a small offspring population size
of λ = 2, the (µ+λ) EA can fail.

Theorem 8.3.7 (Theorem 4 in [50]). With probability 1 − o(1) the
(2+2) EA with fitness sharing will, at some point in time, reach a popu-
lation with both members in the same optimum. The expected time for finding
both optima from there is Ω(nn/2).

In order to avoid these problems, early runtime analyses of fitness shar-
ing [20, 22, 57] used fitness sharing in a different sense. They set up a com-
petition between populations instead of individuals: the (µ+1) EA variant
considers the union of the parent population and the offspring population,
P ′

t and then selects the subset P ∗ ⊂ P ′
t of size µ that maximizes f(P ∗). This

makes sense as the goal is to evolve a population of high population fitness.
Friedrich et al. [22] showed that the (µ+1) EA with a population-level im-

plementation of fitness sharing can efficiently find both optima on TwoMax.

Theorem 8.3.8 (adapted from Theorem 5 in [22]). The (µ+1) EA with
fitness sharing and µ ≥ 2 finds both optima on TwoMax in expected time
O(µn logn).

The reason for this efficiency is as follows. If we imagine all parents and
the new offspring on a scale of the number of 1-bits, the individuals with
the smallest and the largest number of ones have the largest distance to all
individuals in the population. Therefore, fitness sharing makes these outer
individuals very attractive in terms of shared fitness, and hence these indi-
viduals are taken over to the next generation. This holds even if an outer
individual has the worst fitness in the population; the best possible popula-
tion that can be formed from parents and offspring will create individuals
with a minimum and a maximum number of ones.

Hence the minimum number of ones in the population can never increase,
and the maximum number of ones can never decrease. Both quantities can be
improved whenever the outer individuals perform a hill-climbing step towards
2 The (µ+λ) EA is a variant of the (µ+1) EA that creates λ offspring in parallel and
then selects the µ best according to f(·,P ′

t), where P ′
t is the union of all µ parents and

λ offspring, breaking ties towards preferring offspring.

372 Dirk Sudholt

Algorithm 8.6: Clearing procedure
input :A population P
output :Fitness values after clearing f ′ for all x ∈ P .

1 Let f ′ = f .
2 Sort P according to decreasing f ′ values.
3 for i := 1 to |Pt| do
4 if f ′(P [i]) > 0 then
5 winners← 1.
6 for j := i + 1 to |P | do
7 if f ′(P [j]) > 0 and d(P [i],P [j]) < σ then
8 if winners < κ then
9 winners← winners + 1

10 else
11 f ′(P [j])← 0

their respective optima. Performing a hill-climbing task towards both 0n and
1n yields the expected time of O(µn logn).

A drawback of this design is that to find a population P ∗ that maximizes
the population fitness, one needs to consider up to

(µ+λ
µ

)
different candidate

populations of size µ. In the case of λ = 1 this is µ+1 combinations, but for
large µ and λ this strategy is prohibitive.

8.3.1.6 Clearing

Clearing is a niching method that uses a similar principle to fitness sharing.
While fitness sharing can be regarded as sharing resources evenly between
similar individuals, clearing assigns these resources only to the best individ-
ual in each niche. Such an individual is referred to as a winner. All other
individuals have their fitness set to 0 (or, more generally, to a value lower
than the lowest fitness value in the search space).

Niches are established as in fitness sharing by using a clearing radius σ that
determines up to which distance individuals will be considered to belong to
the same niche. Each niche supports up to κ winners, where κ is a parameter
called the niche capacity. The decision about which individuals are winners
and which of them have their fitness cleared is made in a greedy procedure,
shown in Algorithm 8.6. The individuals are first sorted in order of decreas-
ing fitness. Then the clearing procedure processes individuals in this order.
For each individual, if it has not been cleared, it is declared a winner. The
procedure iterates through all remaining individuals (i.e., those with lower or
equal fitness) that have not been cleared yet and that are within a clearing
distance of σ, adding them to its niche until κ winners have been found, and
clearing all remaining such individuals.

8 The Benefits of Population Diversity in Evolutionary Algorithms 373

Algorithm 8.7: (µ+1) EA with clearing
1 while termination criterion not met do
2 Choose x ∈ Pt uniformly at random.
3 Create y by flipping each bit in x independently with probability 1/n.
4 Compute the fitness f ′ after clearing of all individuals in Pt∪{y} according

to the clearing procedure.
5 Choose z ∈ Pt with worst fitness after clearing uniformly at random.
6 if f ′(y)≥ f ′(z) then
7 Pt+1 = Pt \{z}∪{y}
8 else
9 Pt+1 = Pt

10 t← t + 1

Clearing is a powerful mechanism, as it allows both exploitation and explo-
ration: it allows winners to find fitness improvements, while at the same time
enabling cleared individuals to tunnel through fitness valleys. In fact, cleared
individuals are agnostic to the fitness landscape as they always have the worst
possible fitness. Hence cleared individuals can explore the landscape by per-
forming random walks. As we will show, this allows the algorithm to escape
from local optima with even very large basins of attraction. The (µ+1) EA
with clearing is shown in Algorithm 8.7.

Covantes Osuna and Sudholt [7] considered the performance of the
(µ+1) EA with clearing for two choices of the dissimilarity measure d. When
d is chosen to be the Hamming distance, we refer to this as genotypic clearing.
When we choose the phenotypic distance as the difference in the number of
ones, d(x,y) := ||x|1−|y|1|, this strategy is referred to as phenotypic clearing.

With phenotypic clearing and a clearing radius σ = 1, every number of ones
represents its own niche. If the population size is large enough to contain all
niches, the population can easily spread throughout all niches. In the case of
TwoMax, this means that both optima will have been found. In fact, this
argument even extends to finding an optimum for all functions of unitation,
as one of the niches will contain all global optima. The expected time for the
population to spread across all niches is O(µn logn), which is the same time
bound as for fitness sharing and deterministic crowding.

Theorem 8.3.9. Let f be a function of unitation and let σ = 1, µ≥ (n+1) ·κ.
Then the expected optimization time of the (µ+1) EA with phenotypic clearing
on f is O(µn logn).

For genotypic clearing we have to consider larger niches, as otherwise each
niche just consists of a single search point, and genotypic clearing essentially
amounts to avoiding duplicates in the population (see Theorem 8.3.2). The
most natural choice is σ = n/2 as for fitness sharing, as this is allows us to
distinguish the two branches. For this setting, we have the following perfor-
mance guarantee.

374 Dirk Sudholt

Theorem 8.3.10. The expected time for the (µ+1) EA with genotypic or
phenotypic clearing, with µ ≥ κn2/4, µ ≤ nO(1), and σ = n/2 to find both
optima on TwoMax is O(µn logn).

The idea behind the proof is to consider the situation after one of the
optima has been reached, and once the population contains κ copies of that
optimum. It is easy to show that the expected time until this happens, or
both optima are found, is bounded by O(µn logn).

We then consider a potential function that describes the state of the cur-
rent population: the sum of the Hamming distances of all individuals to the
optimum. Note that the phenotypic and genotypic distances to an optimum
(0n or 1n) are the same, and hence the analysis holds for both phenotypic
and genotypic clearing. Imagine the situation when all individuals are close
to the optimum. Then any mutation is likely to create an offspring that is
further away from the optimum. Thus, mutation has a tendency to increase
the potential.

Selection will then remove one of the non-winner individuals uniformly at
random. There is a small bias, introduced by selection, towards remaining
close to the winner. This is down to the fact that losers in the population do
not evolve in complete isolation. The population always contains κ copies of
the winner that may create offspring and may prevent the population from
venturing far away from it. In other words, there is a constant influx of search
points descended from winners.

All in all, mutation and selection yield opposite biases. The bias induced by
selection decreases as the fraction of winners κ/µ decreases. If the population
size µ is large enough with respect to κ and n, i.e., µ≥ κn2/4, the potential
shows a positive expected change until it reaches a value from which, by the
pigeon-hole principle, we can conclude that at least one individual must have
reached a distance at least n/2 from the winners.

From there, a new niche is created, and the other optimum can easily be
found by hill climbing. The overall time is bounded by O(µn logn).

Note that the condition µ ≥ κn2/4 is a sufficient condition, and a quite
steep requirement compared with that for fitness sharing, which works with
constant population sizes µ. On the other hand, clearing works with geno-
typic distances, whereas fitness sharing has only been proved to work with
phenotypic distances. A further advantage of clearing is that it also works
on variants of TwoMax with different slopes, whereas the analysis of fitness
sharing is sensitive to the absolute fitness values.

8.3.2 Diversity in Island Models

The presentation in this subsection is partly taken from this author’s theory-
flavored survey of parallel evolutionary algorithms [60].

8 The Benefits of Population Diversity in Evolutionary Algorithms 375

Algorithm 8.8: Scheme of an island model with migration interval τ

1 Initialize a population made up of subpopulations or islands,
P (0) = {P (0)

1 , . . . ,P
(0)
m }.

2 t← 1.
3 while termination criterion not met do
4 for each island i do in parallel
5 if t mod τ = 0 then
6 Send selected individuals from island P

(t)
i to selected neighboring

islands.
7 Receive immigrants I

(t)
i from islands for which island P

(t)
i is a

neighbor.
8 Replace P

(t)
i by a subpopulation resulting from a selection among

P
(t)
i and I

(t)
i .

9 Produce P
(t+1)
i by applying reproduction operators and selection to P

(t)
i .

10 t← t + 1

Island models are popular ways of parallelizing evolutionary algorithms:
they consist of subpopulations that may be run on different cores, and that
coordinate their searches by using migration, communicating selected search
points, or copies thereof, to other islands. These solutions are then consid-
ered for inclusion on the target island in a further selection process. Island
models communicate on a communication topology, a directed graph that
connects the islands, and migration involves sending solutions to all neigh-
boring islands. Often periodic migration is used: migration happens every τ
iterations, where τ is a parameter called the migration interval.

This way, islands can communicate and compete with one another. Islands
that have got stuck in low-fitness regions of the search space can be taken
over by individuals from more successful islands. This helps to coordinate the
search, focus on the most promising regions of the search space, and use the
available resources effectively. The islands also act as an implicit diversity
mechanism: between migrations, islands evolve independently, and the flow
of genetic information in the whole system is slowed down, compared with
having one large population. This can help to increase diversity and to prevent
or at least delay premature convergence. Note that the flow of information
can be tuned by tuning the migration interval τ , the migration topology, and
other parameters such as the number of individuals to be migrated or the
policies (selection schemes) for emigration and immigration. Algorithm 8.8
shows the general scheme of a basic island model.

Common topologies include unidirectional rings (rings with directed edges
in only one direction), bidirectional rings, torus or grid graphs, hypercubes,
scale-free graphs [14], random graphs [24], and complete graphs. Fig. 8.2
sketches some of these topologies. An important characteristic of a topol-
ogy T = (V,E) is its diameter: the maximum number of edges on any shortest

376 Dirk Sudholt

path between two vertices. Formally, diam(T) = maxu,v∈V dist(u,v) where
dist(u,v) is the graph distance, the number of edges on a shortest path from u
to v. The diameter gives a good indication of the time needed to propagate
information throughout the topology. Rings and torus graphs have large di-
ameters, while hypercubes, complete graphs, and many scale-free graphs have
small diameters.

Fig. 8.2 Sketches of common topologies: a unidirectional ring, a torus, and a complete
graph. Other common topologies include bidirectional rings, where all edges are undi-
rected, and grid graphs, where the edges wrapping around the torus are removed.

8.3.2.1 A Royal Road for Island Models

Lässig and Sudholt [38, 39] presented a first example where communication
makes the difference between exponential and polynomial running times, in a
typical run. They constructed a family of problems called LOLZn,z,b,ℓ, where
a simple island model, with all islands running (1+1) EAs, finds the optimum
in polynomial time with high probability. This holds for a proper choice of
the migration interval and any migration topology that is not too sparse. In
contrast, both a single, large population as in the (µ+1) EA and independent
islands (each running a (1+1) EA, or even when they also run a (µ+1) EA)
need exponential time with high probability.

The basic idea of this construction is as follows. First, imagine a bit string
where the fitness describes the length of the longest prefix of bits with the
same value. Generally, a prefix of i leading ones yields the same fitness as a
prefix of i leading zeros; for example, 111010 and 000110 both have fitness 3.
However, the maximum possible fitness that can be attained by leading zeros
is capped at some threshold value z. This means that, in the long run, gath-
ering leading ones is better than gathering leading zeros. The former leads
to an optimal value, while the latter leads to a local optimum that is hard to
escape from.

8 The Benefits of Population Diversity in Evolutionary Algorithms 377

The effect on an EA is as follows. In the beginning, the EA typically has
to make a decision whether to collect leading ones (LO) or leading zeros
(LZ). This holds not only for the (1+1) EA but also for a (not too large)
panmictic population, as genetic drift will lead the whole population to either
leading ones or leading zeros. After a significant prefix has been gathered, this
decision gradually becomes irreversible, as many bits in the prefix need to
be flipped at the same time to switch from leading ones to leading zeros or
vice versa. So, with probability close to 1/2, the EA will end up finding an
optimum by gathering leading ones, and again with probability close to 1/2
its population will get stuck in a hard local optimum.

To further increase the difficulty for EAs, this construction is repeated on
several blocks of the bit string that need to be optimized one-by-one. Each
block has length ℓ. Only if the right decision towards leading ones is made
for the first block can the block be filled with further leading ones. Once the
first block contains only leading ones, the fitness depends on the prefix in the
second block, and a further decision between leading ones and leading zeros
needs to be made. Only if the EA makes all decisions correctly can it find a
global optimum. Table 8.1 illustrates the definition of the problem.

Table 8.1 Examples of solutions for the function LOLZ with four blocks and z = 3,
along with their fitness values. All blocks have to be optimized from left to right. The
sketch shows in red all bits that are counted in the fitness evaluation. Note how, in x3, in
the third block only the first z = 3 zeros are counted. Further 0-bits are ignored. The only
way to escape from this local optimum is to flip all z 0-bits in this block simultaneously

x1 11110011 11010100 11010110 01011110 LOLZ(x1) = 4
x2 11111111 11010100 11010110 01011110 LOLZ(x2) = 10
x3 11111111 11111111 00000110 01011110 LOLZ(x3) = 19

So, the problem requires an EA to make several decisions in succession. The
number of blocks, b, is another parameter that determines how many decisions
need to be made. Panmictic populations will sooner or later make a wrong
decision and get stuck in some local optimum. If b is not too small, the same
holds for independent runs. The results presented in [39] are summarized as
follows; the second statement follows from the first one and the union bound.

Theorem 8.3.11. Consider the (µ+1) EA with µ ≤ cn/(logn) for an arbi-
trary constant c > 0 on LOLZn,z,b,ℓ with z = ω(logb), bℓ ≤ n, and z < ℓ.
With probability at least 1−e−Ω(z)−2−b the (µ+1) EA does not find a global
optimum within nz/3 generations.

The same holds when s independent subpopulations, each running a
(1+1) EA or (µ+1) EA as specified above, are considered; then the prob-
ability bound becomes 1−se−Ω(z)−s2−b.

378 Dirk Sudholt

However, an island model can effectively communicate the right decisions
about blocks to other islands. Islands that have got stuck in a local optimum
can be taken over by other islands that have made the correct decision. These
dynamics make up the success of the island model, as it can be shown to
find global optima with high probability. A requirement is, though, that the
migration interval is carefully tuned so that migration transmits only the right
information. If migration happens before the symmetry between leading ones
and leading zeros is broken, it might be that islands with leading zeros take
over islands with leading ones. We also need the topology to be able to spread
the right information quickly enough. A topology G is called well-expanding if
there is a constant ε > 0 such that the following holds: for every subset V ′⊆ V
with |V ′| ≤ |V |ε, we have |N(V ′)| ≥ (2+ε)|V ′|. Lässig and Sudholt [39] gave
the following result.

Theorem 8.3.12. Consider an island model where each island runs a
(1+1) EA with migration on a well-expanding migration topology with
τ = n5/3 and µ = nΘ(1) subpopulations, accepting a best search point from all
immigrants and the resident individual. Let the function LOLZn,z,b,ℓ be pa-
rameterized according to ℓ = 2τ/n = 2n2/3, z = ℓ/4 = n2/3/2, and b≤ n1/6/16.
If the migration counter t starts at τ/2 = n5/3/2, then with overwhelming
probability the algorithm finds a global optimum within O(bℓn) = O(n2) gen-
erations.

The analysis is quite technical, but the main ideas can be summarized
as follows. All islands optimize LOLZ by fixing bits from left to right, and
at approximately the same pace. The migration interval is tuned such that
between two migrations all islands will be starting to optimize the same new
block, excluding islands that have got stuck on previous blocks. Assume for
the moment that islands make decisions independently about the new block
(we will discuss this assumption below). Then, in expectation, half the islands
will get stuck in local optima, reducing the number of “good” islands still on
track towards finding the global optimum. Once this number has dropped
below |V |ε, the properties of the topology ensure that these “good” islands
propagate their information to sufficiently many other islands (many of which
will be stuck in local optima) to ensure that a critical mass of “good” islands
always survives, until a global optimum is found eventually.

An interesting finding is how islands do in fact make independent or nearly
independent decisions about new blocks. After all, during migration, genetic
information about all future blocks is transmitted. Hence, after migration,
many islands share the same genotype on all future blocks. This is a real
threat, as this dependence might imply that all islands make the same decision
after moving on to the next block, compromising diversity.

However, under the conditions for the migration interval, there is a period
of independent evolution following migration, before any island moves on to
a new block. During this period of independence, the genotypes of future
blocks are subjected to random mutations, independently for each island.

8 The Benefits of Population Diversity in Evolutionary Algorithms 379

After some time, the distribution of bits on these future blocks will resemble
a uniform distribution. This shows that independence can be gained by the
use of periods of independent evolution. One could say that the island model
combines the advantages of two worlds: independent evolution and selection
pressure through migration. The island model is only successful because it
can use both migration and periods of independent evolution.

8.3.2.2 Island Models for Eulerian Cycles

We now also give a simple and illustrative example from combinatorial op-
timization to show how island models can be beneficial through providing
diversity. Lässig and Sudholt [40] considered island models for the Eulerian
cycle problem. Given an undirected Eulerian graph, the task is to find an
Eulerian cycle, i.e., a traversal of the graph on which each edge is traversed
exactly once. This problem can be solved efficiently by tailored algorithms,
but it has served as an excellent test bed for studying the performance of
evolutionary algorithms [17–19, 46].

Instead of bit strings, the representation of the problem used by Neu-
mann [46] is based on permutations of the edges of the graph. Each such
permutation gives rise to a walk: starting with the first edge, a walk is the
longest sequence of edges such that two subsequent edges in the permutation
share a common vertex. The walk encoded by the permutation ends when the
next edge does not share a vertex with the current one. A walk that contains
all edges represents an Eulerian cycle. The length of the walk gives the fitness
of the current solution.

Neumann [46] considered a simple instance that consists of two cycles of
equal size, connected by one common vertex v∗ (see Fig. 8.3). This instance is
interesting, as it represents a worst case for the time until an improvement is
found. This is with respect to randomized local search (RLS) working on this
representation. RLS works like the (1+1) EA, but it uses only local mutations.
As the mutation operator, it uses jumps: an edge is selected uniformly at
random and then it is moved to a (different) target position chosen uniformly
at random. All edges in between the two positions are shifted accordingly.

On the instance considered, RLS typically starts constructing a walk
within one of these cycles, either by appending edges to the end of the walk
or by prepending edges to the start of the walk. When the walk extends to
v∗ for the first time, a decision needs to be made. RLS can extend the walk
to the opposite cycle (see Fig. 8.3). In this case RLS can simply extend both
ends of the walk until an Eulerian cycle is formed. The expected time until
this happens is Θ(m3), where m denotes the number of edges.

But, if another edge in the same cycle is added at v∗, the walk will evolve
into one of the two cycles that make up the instance. It is not possible to
add further edges to the current walk unless the current walk starts and ends
in v∗. However, the walk can be rotated so that the start and end vertex of

380 Dirk Sudholt

v∗

v∗ v∗ v∗

Fig. 8.3 Sketch of the graph G′. The top shows a configuration where a decision at v∗

has to be made. The three configurations below show the possible outcomes. All these
transitions happen with equal probability, but only the one on the bottom right leads
to a solution where rotations are necessary.

the walk is moved to a neighboring vertex. Such an operation takes expected
time Θ(m2). Note that the fitness after a rotation is the same as before.
Rotations that take the start and end closer to v∗ are as likely as rotations
that move it away from v∗. The start and end of the walk hence performs
a fair random walk, and Θ(m2) rotations are needed on average in order to
reach v∗. The total expected time for rotating the cycle is hence Θ(m4).

Summarizing, if RLS makes the right decision, then an expected time
Θ(m3) suffices in total. But, if rotations become necessary, the expected
time increases to Θ(m4). Now consider an island model with λ islands run-
ning RLS. If islands evolve independently for at least τ ≥ m3 generations,
all the decisions above are made independently, with high probability. The
probability of making a wrong decision is 1/3; hence, with λ islands, the
probability that all islands make the wrong decision is 3−λ, leading to the
following result.

Theorem 8.3.13. The island model running RLS on λ≤mO(1) islands, with
τ ≥m3 and an arbitrary topology, optimizes G′ in expected O(m3 +3−λ ·m4)
generations.

The choice λ := log3 m yields an expectation of Θ(m3), and every value
up to log3 m leads to a superlinear and even exponential speedup, compared
with the time Θ(m4) for a single island running RLS.

Interestingly, this good performance only holds if migration is used rarely,
or if independent runs are used. If migration is used too frequently, the island
model rapidly loses diversity. If T is any strongly connected topology and
diam(T) is its diameter, we have the following.

Theorem 8.3.14. Consider the island model with an arbitrary strongly con-
nected topology T running RLS with jumps on each island. If τ ·diam(T) ·

8 The Benefits of Population Diversity in Evolutionary Algorithms 381

λ = O(m2), then the expected number of generations on G′ is at least
Ω(m4/(logλ)).

If τ · diam(T) ·λ = O(m2), then there is a constant probability that the
island that first arrives at a decision at v∗ propagates this solution throughout
the whole island model, before any other island can make an improvement.
This results in an expected running time of Ω(m4/ log(λ)). This is almost
Θ(m4), even for very large numbers of islands. The speedup is therefore
logarithmic in the number of islands at best, or even worse.

This natural example shows that the choice of the migration interval can
make a difference between exponential and logarithmic speedups.

8.4 How Diversity Benefits Crossover

Now we look at examples where diversity enhances the use of crossover in
evolutionary algorithms. In a population where all individuals are very simi-
lar, crossover is unlikely to be effective, as it will create an offspring that is
similar to both of its parents. This effect can also be achieved by mutation.
Therefore, many examples where crossover is essential require some form of
diversity mechanism for crossover to work effectively.

In the following, we review several of these examples, from the very first
constructed examples to problems from combinatorial optimization, and even
simple hill-climbing problems, where crossover provides a noticeable speedup.
In some cases the diversity is due to explicit diversity mechanisms; in others,
diversity can emerge naturally from independent variations.

Most of the algorithms discussed in this section fit into the scheme de-
scribed in Algorithm 8.9. Unless stated otherwise, parent selection is per-
formed uniformly at random. With a crossover probability pc, crossover is
performed; this can be uniform crossover or k-point crossover. In any case,
mutation is performed with a mutation rate of p, which is assumed to be the
default value p = 1/n unless stated otherwise. In the replacement selection,
µ individuals with the best fitness are selected for survival. If there are ties,
a specific tie-breaking rule can be used; the default is to break ties uniformly
at random.

8.4.1 Real Royal Road Functions for Crossover

Jansen and Wegener [30] were the first to provide an example function for
which it could be rigorously proved that a simple genetic algorithm (GA)
with crossover takes expected polynomial time, whereas all (µ+λ) evolution-
ary algorithms using only standard bit mutation need exponential time with
overwhelming probability.

382 Dirk Sudholt

Algorithm 8.9: Scheme of a (µ+λ) GA with mutation rate p and
crossover with crossover probability pc for maximizing f : {0,1}n→ R

1 Initialize population P of size µ ∈ N uniformly at random.
2 while optimum not found do
3 Let P ′ = ∅.
4 for i = 1, . . . ,λ do
5 Choose p ∈ [0,1] uniformly at random.
6 if p≤ pc then
7 Select two parents x1,x2.
8 Let y := crossover(x1,x2).
9 else

10 Select a parent y.
11 Flip each bit in y independently with probability p.
12 Add y to P ′.
13 Let P contain the µ best individuals from P ∪P ′; break ties according to a

specified tie-breaking rule.

Their steady-state GA with population size µ can be regarded as a special
case of Algorithm 8.9 with λ = 1, referred to as the (µ+1) GA in the following,
using a tie-breaking rule that eliminates an individual with the largest number
of duplicates in P ∪P ′.3 The latter is equivalent to breaking ties towards
including individuals with the fewest duplicates in P ∪P ′.

Jansen and Wegener [30] defined two classes of functions that they called
real royal road functions: one for one-point crossover and one for uniform
crossover. We focus on the one for one-point crossover as it is conceptually
simpler. Denoting by b(x) the length of the longest block consisting of ones
only (e.g., b(100111011) = 3), the function class Rn is defined as (assuming
n/3 ∈ N)

Rn(x) =


2n2 if x = 1n,
n|x|1 + b(x) if |x|1 ≤ 2n/3,
0 otherwise.

The function contains a strong gradient in the region of search points with
at most 2n/3 ones. The function also contains a fitness valley of fitness 0
that needs to be crossed to reach the optimum, 1n. Moreover, the function
encourages an evolutionary algorithm to evolve search points with 2n/3 ones
and a maximum block length of 2n/3. This is to allow crossover to combine
two such blocks to create the optimum 1n, for instance by crossing over two
parents 12n/30n/3 and 0n/312n/3 that have large blocks in different positions.

We give a simplified version of Jansen and Wegener’s result, as their work
includes an additional parameter that specifies the length m of the fitness

3 In [30], the replacement selection stops without altering P if the fitness of the offspring
is smaller than the fitness of the worst individual in P . Our algorithm is equivalent as in
this case the offspring will be added to and immediately removed from the population.

8 The Benefits of Population Diversity in Evolutionary Algorithms 383

valley, which is fixed at m = n/3 here. Note that the population size µ and
the crossover probability pc can be functions of the problem size n.
Theorem 8.4.1 (simplified from Theorem 3 in [30]). Let pc ≤ 1−ε for
some 0 < ε < 1, and µ ≥ 2n/3 + 1. Then the expected optimization time of
the (µ+1) GA breaking ties towards including individuals with the fewest
duplicates in P ∪P ′ on Rn is O(µn3 + (µ logµ)n + µ2/pc). For the typical
case where pc is a positive constant and µ = O(n), the bound is O(n4).

The proof is a beautiful application of the so-called method of typical
runs [62, Section 11], where a run is divided into phases that reflect the typical
behavior of the algorithm. Then the expected time for completing each phase
is estimated separately, using arguments most appropriate to that phase.
Jansen and Wegener [30] showed that in expected time O(µn) the popula-
tion reaches a state where all search points have 2n/3 ones (or the optimum
is found beforehand). From there, the algorithm can focus on maximizing the
maximum block length b(x). In the next expected O(n2 log(n) + (µ logµ)n)
generations the algorithm evolves a population where all search points x have
the maximum block length b(x) = 2n/3 (or the optimum has been found).

Once such a population has been reached, we can rely on the diversity
mechanism taking effect: since then all search points have the same fitness,
selection for replacement is based solely on the number of duplicates in the
population. There are only 2n/3 + 1 different genotypes with 2n/3 ones and
a block length of 2n/3:

12n/30n/3, 012n/30n/3−1, 0212n/30n/3−2, . . . ,0n/312n/3.

The population size µ is large enough to be able to store all these search points.
Hence, once a particular genotype is created, the population will always retain
such a genotype until the optimum is found. Using appropriate 2-bit flips, it
is possible to create novel genotypes. The expected time until the population
contains all the above genotypes is O(µn3).

Once the population contains the genotypes 12n/30n/3 and 0n/312n/3, if
these are selected as parents, one-point crossover can easily create 1n by
choosing a cutting point in the middle third of the bit string. The expected
time for this event is O(µ2/pc), and summing all expected times yields the
claimed bound.

8.4.2 Coloring Problems

Fischer and Wegener [20] presented another example where a diversity mech-
anism enhances crossover for a combinatorial problem. They considered a
simple variant of the Ising model, a well-known model of ferromagnetism
that is NP-hard to solve in its general case. Here we consider an easy spe-
cial case where vertices of an undirected graph can have one of two states,

384 Dirk Sudholt

0 and 1 (also referred to as “colors”), and it is beneficial to color two neigh-
boring vertices with the same color. Then the fitness function corresponds to
the number of monochromatic edges, and all colorings where all connected
components have the same color are global optima.

The problem is an interesting test bed for evolutionary algorithms because
subgraphs of the same color can be regarded as “building blocks” of optimal
solutions. The inherent symmetry in the problem implies that competing
building blocks may emerge, and evolutionary algorithms can get stuck in
difficult local optima, depending on the graph.

For bipartite graphs, the problem is equivalent to the well-known Graph
Coloring problem or, more specifically, to the 2-coloring problem where the
goal is to color the graph with 2 colors such that no two adjacent vertices have
the same color, and the fitness function is the number of correctly colored
vertices. The reason is that there is a simple bijection between the Ising model
and Graph Coloring: flipping all colors of one set of the bipartition turns
all monochromatic edges into bichromatic edges, hence turning a solution for
the Ising model into a Graph Coloring solution of the same fitness, and
vice versa. All results derived for the Ising model variant described above also
hold for the 2-coloring problem, if the underlying graph is bipartite.

Fischer and Wegener [20] studied ring graphs (or cycle graphs) where the
i-th vertex is a neighbor of vertices i−1 and i+1 (identifying vertex 0 with
vertex n), and observed that the fitness landscape contains a large number
of plateaus. A search point such as 0001111000 contains blocks of bits with
the same color, for example a block of four 1-bits. A mutation flipping only
the first or the last bit of such a block can shorten the block; a mutation
flipping only the last bit before the block or the first bit following the block
can enlarge it. Those mutations are fitness-neutral (i.e., do not change the
fitness) unless some block disappears, which leads to an increase in fitness.
The main results from [20] are as follows. Note that rings with an even number
of vertices are bipartite, allowing us to add statements about 2-coloring.

Theorem 8.4.2 (adapted from Theorems 4 and 5 in [20]). The expected
optimization time for the (1+1) EA on the Ising model and the 2-coloring
problem on rings with even n is O(n3). This bound is asymptotically tight
when one starts with two blocks of length εn and (1− ε)n, 0 < ε < 1/2 a
constant.

The main observation is that the length of any block follows a fair random
walk (apart from boundary states), with a large self-loop probability as the
probability of changing the length of the block considered is Θ(1/n). From
the setting described above with two blocks, it takes Θ(n2) of these changes
for some block to disappear, which results in a global optimum.

The use of a simple GA with fitness sharing, however, is able to find a
global optimum in expected time O(n2).

8 The Benefits of Population Diversity in Evolutionary Algorithms 385

Theorem 8.4.3. Consider a (2+2) GA as a variant of Algorithm 8.9 that
with probability pc = 1/2 applies two-point crossover once to create two off-
spring and uses fitness sharing with sharing radius σ = n to select two search
points from amongst parents and offspring that maximizes the shared fitness
of the population. The expected number of fitness evaluations until this GA
finds an optimum for the Ising model and the 2-coloring problem on rings
with even n is bounded by O(n2).

The main observation is that fitness sharing turns plateaus into gradients,
as it rewards the creation of dissimilar individuals. The GA then efficiently
creates two complementary individuals (e.g., through 1-bit flips), and then
two-point crossover is able to invert whole blocks, provided that the cutting
points are chosen between two blocks, for example turning 00110010 into
00001100 by replacing the bits in bold with the values from the complemen-
tary parent.

A similar but more drastic effect was also shown for coloring complete
binary trees [57]. Here, subtrees of the same color represent building blocks
of good solutions. The problem is much harder than coloring rings, as it
contains difficult local optima, for example when the two subtrees of the root
are colored with different colors.

The present author showed that all algorithms in a large class of
(µ+λ) EAs, with arbitrary mutation rates, need at least expected time 2Ω(n)

to find a global optimum. In contrast, the (2+2) GA with fitness sharing
finds an optimum in expected polynomial time.

Theorem 8.4.4. Consider the (2+2) GA with fitness sharing described in
Theorem 8.4.3. The expected optimization time for the Ising model and the
2-coloring problem on a complete binary tree with n vertices is bounded by
O(n3).

The analysis shows that fitness sharing again encourages an increase in the
Hamming distance between the two current search points, x and y. In the
case where x and y are complementary, two-point crossover can effectively
substitute subtrees to increase the fitness. The challenge lies in showing that
complementary search points evolve, and how they do so. In contrast to rings,
binary trees do not contain any plateaus, and hence it is not always possible
to increase the Hamming distance without compromising on fitness. Inter-
estingly, a case distinction according to the function H(x,y) + f(x) + f(y)
shows that if this function is small then there are accepted 1-bit flips that
increase the real fitness, possibly at the cost of decreasing the Hamming dis-
tance H(x,y). But, if the function is large, there are accepted 1-bit flips that
increase the Hamming distance at the expense of the real fitness. There is
a “gray area” in between, where more complex operations (mutation and/or
crossover) are required; however, these steps have probability Ω(1/n2), lead-
ing to the overall time bound of O(n3).

In this scenario, even though fitness sharing can maximize diversity at
the expense of the real fitness, it turns out to be an effective strategy, as

386 Dirk Sudholt

the diversity of complementary search points can be exploited efficiently by
crossover.

8.4.3 Diversity and Crossover Speed Up Hill Climbing

Diversity and crossover also prove useful in a very natural and well-known
setting, albeit with smaller speedups compared with the examples seen so
far. The simple problem OneMax is the most studied problem in the theory
of randomized search heuristics. It can be regarded as a simple hill-climbing
task, as a mutation flipping a single 0-bit to 1 increases the fitness. It can also
be seen as a problem where ones are “building blocks” of the global optimum,
and the algorithm has to assemble all building blocks to find the optimum.
This perspective is related to the so-called “building block hypothesis,” an
attempt to explain the advantage of crossover, as GAs with crossover can
combine building blocks of good solutions. Yet it has been surprisingly hard
to come up with natural examples and rigorous proofs to cement or refute
this hypothesis.

This author [56, 59] showed that the (µ+λ) GA with the duplicate-based
tie-breaking rule is twice as fast as the fastest evolutionary algorithm using
only standard bit mutation (modulo small-order terms).

Theorem 8.4.5 (simplified from Theorems 1 and 4 in [56]4). Let n≥ 2
and let c > 0 be a constant. Every evolutionary algorithm that uses only
standard bit mutation with mutation rate p = c/n to create new solutions has
an expected optimization time of at least ec

c ·n lnn · (1− o(1)) on OneMax
and every other function with a unique optimum.

The expected optimization time of the (µ+λ) GA breaking ties towards
including individuals with the fewest duplicates in P ∪P ′, with 0 < pc < 1
constant, mutation probability p = c/n, and µ,λ = o((logn)/(log logn)), on
OneMax is at most ec

c·(1+c) ·n lnn · (1+o(1)).

Modulo small-order terms, this is a speedup of 1 + c, which is 2 for c = 1,
reflecting the default mutation rate p = 1/n.

The idea behind the proof is to make a case distinction for all possible
populations, according to the current best-so-far fitness and the diversity in
the population, and then to upper bound the expected time spent in all these
cases.

If a population contains individuals of different fitness values, the individ-
uals of current best-so-far fitness i quickly take over the population (or an
improvement of the best-so-far fitness is found). Owing to our restrictions on

4 We remark that the results in [56] hold for much larger ranges of the mutation rate p
and arbitrary parent selection mechanisms that do not disadvantage individuals with
higher fitness.

8 The Benefits of Population Diversity in Evolutionary Algorithms 387

the population sizes µ,λ, the total time across all best-so-far fitness values
is o(n logn). If the population consists of µ identical genotypes of fitness i,
this state will be left for good if either a fitness improvement is found, or a
different individual with the same fitness is created. In the latter case, the
diversity mechanism in the tie-breaking rule ensures that this diversity will
never get lost (unless an improvement is found).

This diversity can be created by a fitness-neutral mutation that flips the
same number of 0-bits to 1 as it flips 1-bits to 0. Such a multi-bit flip would be
irrelevant for mutation-only evolutionary algorithms. But when crossover is
used, it can exploit the diversity created in this way by choosing two parents
with equal fitness but different genotypes, and creating a surplus of ones on
the bit positions where the two parents differ. Creating such a surplus is very
likely; the probability of such an event is at least 1/4, irrespective of the
Hamming distance between the two parents. The time the algorithm spends
evolving a diverse population is negligible compared with the time spent in
a state where all individuals are identical.

The expected time is thus dominated by the time spent trying to leave
states where all genotypes are identical. Compared with mutation-based evo-
lutionary algorithms, the creation of diversity offers another route towards
fitness improvements as crossover rapidly exploits this diversity, creating im-
provements almost instantly.

Corus and Oliveto [4] recently showed that the choice of tie-breaking rule
is important for getting the above-mentioned speedup: when it is replaced
with a uniform tie-breaking rule, we still get a constant-factor speedup, but
the constant is worse.

Theorem 8.4.6 (simplified from Theorem 9 in [4]). The expected opti-
mization time of the (µ+1) GA with uniform tie-breaking, pc = 1, mutation
probability p = c/n, and 3≤ µ = o((logn)/(log logn)), on OneMax is at most

ec

c·(1+c/3) ·n lnn · (1+o(1)).

For the standard mutation rate of 1/n, the previous speedup of 2 in The-
orem 8.4.5 now becomes a factor of 4/3. This constant is the best possible
under mild assumptions [4, Theorem 11].

8.4.4 Overcoming Fitness Valleys with Naturally
Emerging Diversity and Crossover

In Section 8.4.3 we have seen that diversity and crossover can speed up hill
climbing on OneMax by a constant factor. Now we consider the task of over-
coming fitness valleys in order to solve multimodal problems. We specifically
focus on the problem class Jumpk, the first example function where crossover
was proven to be beneficial [29]:

388 Dirk Sudholt

Jumpk(x) =

{
k + |x|1 if |x|1 = n or |x|1 ≤ n−k,

n−|x|1 otherwise.

In this problem, GAs have to overcome a fitness valley such that all local
optima have n−k ones and thus a Hamming distance k to the global optimum,
1n. Jansen and Wegener [29] showed that while mutation-only algorithms
such as the (1+1) EA require expected time Θ(nk), a simple (µ+1) GA with
crossover needs only time O(µn2k3 +4k/pc). This time is O(4k/pc) for large k,
and hence significantly faster than for mutation-only GAs.

The factor 4k/pc results from the fact that, if the population contains
pairs of parents that do not share a common 0-bit, then uniform crossover
can set all the k + k = 2k bits where exactly one parent has a 1 to 1 in
the offspring, with probability 2−2k = 4−k. Hence the expected time for a
successful crossover that creates the optimum is bounded by 4k/pc. Note that
two such parents have the largest possible Hamming distance, 2k, between
local optima, and hence populations typically achieve the maximum possible
diversity between many pairs of parents. A drawback of the analysis in [29]
is that it requires an unrealistically small crossover probability pc ≤ 1/(ckn),
for a large constant c > 0.

Kötzing, Sudholt, and Theile [37] later refined these results towards a
crossover probability pc ≤ k/n, which is still unrealistically small. Both ap-
proaches focus on creating a maximum Hamming distance between local op-
tima through a sequence of lucky mutations, relying on crossover to create
the optimum once sufficient diversity has been created. The arguments break
down if crossover is applied frequently. Hence, these analyses do not reflect
the typical behavior in GA populations with constant crossover probabilities
pc = Θ(1) as used in practice.

We now review recent results from Dang et al. [11] where realistic crossover
probabilities were considered, at the cost of a smaller (but still significant)
speedup. Previous work [29, 37] relied on independent mutations provid-
ing diversity, and regarded crossover as potentially harmful, as the effect
of crossover on diversity was not well understood. This led to a worst-case
perspective on crossover: previous proofs considered mutation to build up di-
versity over time, like a house of cards, with the worst-case assumption being
that one unexpected application of crossover would destroy the buildup of
diversity, collapsing the house of cards, and the buildup of diversity had to
restart from scratch. This view is backed up by a negative result [37, Theo-
rem 8], showing that if only crossover with pc = Ω(1) is used, but no mutation
following crossover, diversity reduces quickly, leading to inefficient running
times for small population sizes (µ = O(logn)).

In [11] a different perspective was offered, an approach loosely inspired
by population genetics: the paper showed that crossover, when followed by
mutation, can actually be very beneficial in creating diversity. Note that the
perspective of crossover creating diversity is common in population genet-
ics [34, 63]. A frequent assumption is that crossover mixes all alleles in a

8 The Benefits of Population Diversity in Evolutionary Algorithms 389

population, leading to a situation called linkage equilibrium, where the state
of a population is described by the frequency of alleles [1].

The main result can be stated as follows.

Theorem 8.4.7 (Theorem 6 in [11], simplified for k ≥ 3). The expected
optimization time of the (µ+1) GA with pc = 1 and µ ≤ κn, for some con-
stant κ > 0, on Jumpk, 3≤ k = o(n), is O(nk/µ+nk−1 log(µ)).

For µ = κn, the bound simplifies to O(nk−1 logn), a speedup of order
Ω(n/logn) compared with the expected time of Θ(nk) for the (1+1) EA [29].

The analysis shows that, on Jumpk, diversity emerges naturally in a popu-
lation: the interplay of crossover, followed by mutation, can serve as a catalyst
for creating a diverse range of search points out of few different individuals.
Consider the situation where all individuals in the population are local op-
tima with n−k ones, and assume pessimistically that there is no diversity: all
individuals are identical. In the following, we refer to a collection of identical
individuals with n− k ones as a species. Mutation is able to create a new
species, for instance by flipping a single 0-bit and a 1-bit. This new species
can grow in size, or become extinct over time.

Crossing over two individuals from different species can easily create a
surplus of ones, where the offspring has n−k+1 ones. The following mutation
now creates a local optimum if it flips a 1-bit back to 0. Note that here there
are n− k + 1 ones to choose from, each leading to a different species. This
means that, once mutation has created a small amount of diversity, crossover
and mutation can work together in this way to create a burst of diversity
that has a good chance of prevailing for a long time, before the population
loses all diversity or the global optimum is found.

In the proof of Theorem 8.4.7, the size of the largest species is taken as a
potential function: if the size of the largest species is µ, there is no diversity,
but if it is bounded away from µ, it is easy to select two parents from different
species with uniform parent selection. The size of the largest species behaves
like an almost fair random walk, and the population has a good chance of
spending long periods of time in states where the size of the largest species
is small. In these situations, when two parents from different species are
selected, crossover has a chance to create a surplus of 1-bits, and then the
global optimum can be found by flipping the at most k−1 remaining 0-bits
to 1.

This argument also shows that speedups can be achieved from small
amounts of diversity; in contrast to previous work [29, 37] it is not neces-
sary to rely on a maximum Hamming distance between parents emerging.

A further finding in [11] is that increasing the mutation rate to p = (1+δ)/n
for an arbitrarily small constant δ > 0 turns the almost fair random walk
describing the size of the largest species into an unfair random walk that
is biased towards increased diversity. In other words, larger mutation rates
facilitate the emergence and maintenance of diversity in this setting. This

390 Dirk Sudholt

Table 8.2 Overview of the main results of [11, 12] (Theorems 8.4.7 and 8.4.8), restricted
to 3≤ k = o(n). Most bounds come with mild restrictions on k,µ, or pc; see [11, 12] for
details. The second column shows simplified bounds, assuming a choice of µ and pc that
yields the best possible upper bound
Mechanism General µ, pc Best µ, pc
None, p = 1/n O(nk/µ + nk−1 logµ) O(nk−1 logn)
None, p = (1 + δ)/n O(µ2 + nk−1) O(nk−1)
Duplicate elimination O(µ2n + nk−1) O(nk−1)
Duplicate minimization O(µn + nk−1) O(nk−1)
Deterministic crowding O(µn + n logn + ne5kµk+2) O(n logn + ne5k2k)
Convex hull max. O(µn2 logn + 4k/pc) O(n2 logn + 4k)
Hamming distance max. O(n logn + µ2kn log(µk) + 4k/pc) O(n logn + nk logk + 4k)
Fitness sharing O(n logn + µ2kn log(µk)) O(n logn + nk logk + 4k)
Island model O(n logn + µ2kn + µ24k) O(n logn + kn + 4k)

leads to the following improved upper bound, which for reasonably small µ
gives a speedup of order n over the expected time of the (1+1) EA.

Theorem 8.4.8 (Theorem 10 in [11], simplified for k ≥ 3). The
(µ+1) GA with mutation rate (1+δ)/n, for a constant δ > 0, and a population
size µ ≥ ck ln(n) for a sufficiently large constant c > 0, has for 3 ≤ k = o(n)
an expected optimization time O(µ2 +nk−1) on Jumpk.

8.4.5 Speeding Up Fitness Valley Crossing with
Explicit Diversity Mechanisms

The performance of the (µ+1) GA on Jumpk can be further improved by
using explicit diversity mechanisms in the tie-breaking rule of the (µ+1) GA.
This was studied by Dang et al. [12], and the main results are summarized
in Table 8.2. For comparison, the table also contains results reviewed in Sec-
tion 8.4.4 for uniform tie-breaking, where no diversity mechanism is used.

The different mechanisms (except for the island model) appear only in the
tie-breaking rule; they are described as follows, along with the main ideas
behind their analysis.

Duplicate elimination always chooses an individual for removal that has
duplicates in the population, if duplicates exist. Otherwise, it removes an
individual uniformly at random. The analysis shows that after O(µ2n)
generations in expectation, there will only be (1−Ω(1))µ duplicates in
the population, and this property will be maintained forever. Then the
probability of picking nonidentical parents is Ω(1). Then, as argued in
Section 8.4.4, crossover followed by mutation can find the optimum with
probability Ω(nk−1), as crossover creates a surplus of 1-bits with proba-

8 The Benefits of Population Diversity in Evolutionary Algorithms 391

bility Ω(1) and then mutation has to flip at most k−1 bits to reach the
optimum.

Duplicate minimization is the familiar rule that breaks ties towards in-
cluding individuals with the fewest duplicates in P ∪P ′. Here it is easy
to show that the size of the largest species decreases to (1−Ω(1))µ in
expected time O(µn). Then we apply the trail of thought for duplicate
elimination.

Deterministic crowding, in the case of fitness ties, always removes the
parent if the offspring was created by mutation only, or one of the two par-
ents chosen uniformly at random if the offspring was created by crossover
and mutation. The analysis follows the approach of [37], relying on a se-
quence of events that evolves in a pair of search points that have a max-
imum Hamming distance of 2k. Then there is a reasonable chance that
uniform crossover will create the optimum by crossing over these parents
and setting all differing bits to 1.

Convex hull maximization breaks ties towards maximizing the convex
hull of the population, which is the set of search points that can be pro-
duced from uniform crossover of any two parents. More precisely, we max-
imize the convex hull by maximizing the number of bit positions where
the population contains both a 0 and a 1 in some individual. The ana-
lysis, similar to that in [23], shows that in expected time O(µn2 logn) a
maximum amount of diversity is created, where all of the µk ≤ n zeros
in the population occupy different bit positions. Then any two (different)
parents have maximum Hamming distance 2k, and the optimum can be
constructed with probability pc ·4−k (as argued earlier).

Hamming distance maximization breaks ties towards maximizing the
total Hamming distance between all pairs of search points. Similarly to
convex hull maximization, we reach a population of maximum diversity
in expected time O(µ2kn log(µk)). Repeating the arguments from there
yields the claimed bound.

Fitness sharing, with a sharing radius of δ ≥ 2k in the setting of popula-
tions with equal fitness, turns out to be equivalent to maximizing the total
Hamming distance between pairs of search points, and hence the previous
analysis carries over.

The island model uses a particular topology called the single-receiver
model [61], where µ islands run a (1+1) EA independently, and there
is a single receiver island that in every generation chooses two islands
uniformly at random, copies their current search points, and performs a
uniform crossover on these. The analysis shows that, when we fix any two
islands, these islands will either have zeros in different positions or will,
in expectation, reduce the number of bit positions where they have a zero
in common. Once the islands have no zero in common, the receiver island
has a good chance to create the optimum when crossing over individuals
from these two islands.

392 Dirk Sudholt

The island model with the single-receiver topology was introduced in [61],
and the paper relied on this diversity mechanism to prove that a constructed
royal road function with a building-block structure could be solved efficiently
by crossover. It was also used in [47], where it was shown that crossover during
migration can be effective for constructed functions as well as for instances of
the Vertex Cover problem. We refer the reader to [47, 61] and the survey [60,
Section 46.5.4] for details.

8.5 How Diversity Benefits Dynamic Optimization

Another very important use of population diversity is to ensure good per-
formance in dynamic optimization, where the problem can change over time.
Diversity can ensure that the population is able to keep track of global op-
tima, or to rediscover global optima when different local optima change their
fitness and another local optimum becomes the new global optimum.

The runtime analysis of dynamic evolutionary optimization is still in its
very infancy, with only a few results available (e.g., [13, 33, 35, 36, 42, 51, 52]).

8.5.1 Diversity Mechanisms for Balance

Oliveto and Zarges [51] considered diversity mechanisms for the dynamic
function Balance [52].

Definition 8.5.1 (Balance [52]). Let a,b ∈ {0,1}n/2 and x = ab ∈ {0,1}n.
Then

Balance(x) =


n3 if LO(a) = n/2,else
|b|1 +n ·LO(a) if n/16 < |b|1 < 7n/16,else
n2 ·LO(a) if |a|0 >

√
n,else

0 otherwise,

where |x|1 =
∑n/2

i=1 xi, |x|0 = n/2−|x|1 is the number of zeros, and LO(x) :=∑n/2
i=1
∏i

j=1 xj counts the number of leading ones.

For the majority of search points, the function gives hints to maximize
the number of ones in the suffix (also referred to as the OneMax part), and
even stronger hints to maximize the number of leading ones in the prefix (the
leading-ones part). All search points with a maximum of n/2 leading ones
are global optima; however, the function also contains two traps and a fitness
valley of fitness 0 that separates the traps from the region of global optima.

8 The Benefits of Population Diversity in Evolutionary Algorithms 393

The upper trap contains all search points with more than 7n/16 ones, and
the lower trap contains all search points with fewer than n/16 ones.

The function was used in a dynamic framework where, every τ generations,
for a change frequency parameter τ , the roles of zeros and ones in the suffix
are reversed, so that the fitness gradient switches between maximizing and
minimizing the number of ones in the OneMax part. Unless stated otherwise,
the arguments given below assume that the number of ones is maximized.

Oliveto and Zarges [51] showed that a (µ+1) EA with no diversity mecha-
nism tends to fail on Balance, as the whole population is likely to run into
one of the traps.

Theorem 8.5.2. If τ > 20µn and µ≤ n1/2−ε, then the expected time for the
(µ+1) EA to optimize Balance is at least nΩ(

√
n). If τ > 38µn3/2 and µ≤

n1/2−ε, then the (µ+1) EA requires at least nΩ(
√

n) steps with overwhelming
probability.

The intuitive reason for this poor performance is that it is easier to opti-
mize OneMax than it is to maximize the number of leading ones, and the
algorithm only needs to come moderately close to the OneMax (or Zero-
Max) optimum to fall into a trap. With low frequencies of change, this is
very likely to happen.

The authors of [51] investigated how far this poor performance can be
mitigated by using diversity-preserving mechanisms such as the ones studied
for TwoMax in [22]. The main results are explained in the following.

Genotype diversity, that is, preventing genotype duplicates from being
accepted, is too weak to affect the main search behavior; the (µ+1) EA still
tends to run into traps.

Theorem 8.5.3. For the (µ+1) EA with genotype diversity (Algorithm 8.2),
the results in Theorem 8.5.2 apply.

Deterministic crowding does not help: recall that deterministic crowding is
based on offspring competing against their direct parents, and hence (since no
crossover is used) the (µ+1) EA evolves µ independent lineages. Each lineage
still has a high probability of running into a trap; hence, for polynomial
population sizes and low frequencies of change, there is a high probability
that the whole population will be led into a trap.

Theorem 8.5.4. With overwhelming probability, the (µ+1) EA using de-
terministic crowding and µ ≤ nO(1) requires exponential time to optimize
Balance if τ > 8eµn.

Fitness diversity as in Algorithm 8.3 turns out to perform a lot better: it
can find the optimum efficiently for all values of τ . This is surprising as this
mechanism showed the worst performance for TwoMax [22].

Theorem 8.5.5. Let µ > n−2(
√

n−1). Then, with overwhelming probability,
the (µ+1) EA with fitness diversity optimizes Balance in time O(µn3) for
arbitrary τ ≥ 0.

394 Dirk Sudholt

The proof shows that, as the population size is quite large, the (µ+1) EA
is able to “fill up” both traps in the sense that the algorithm will eventually
contain individuals representing all fitness values inside a trap, and then no
other point in the trap will be accepted. This then allows the algorithm to
evolve a lineage leading to the global optimum, avoiding the trap.

Finally, Oliveto and Zarges [51] considered a variant of the (µ+1) EA
with population size µ = 2 combining fitness sharing (with α = 1 and sharing
radius σ = n) and deterministic crowding: in the selection step, the shared
fitness of the current population is compared against the shared fitness of the
population where the offspring replaces its parent, and the latter population
is selected if its shared fitness is no smaller. Instead of standard bit mutation,
local mutations are used that flip exactly one bit chosen uniformly at random,
as done in RLS. The resulting algorithm is referred to as the (2+1) RLS.

The (2+1) RLS is efficient with probability close to 1/2.

Theorem 8.5.6. With probability at least 1/2−e−Ω(n), the (2+1) RLS with
fitness sharing and crowding finds the optimum of Balance in time O(n2)
for arbitrary τ ≥ 0.

The analysis observes, similarly to [57] reviewed earlier in Section 8.4.2,
that the function H(x,y)+f(x)+f(y) for current search points x, y decides
whether H(x,y) can be increased at the expense of fitness, or whether the
fitness can be increased at the expense of the Hamming distance. Bit flips
in the OneMax part of Balance only change the fitness by 1. If H(x,y) +
f(x) + f(y) > 2n, such bit flips are accepted if and only if they increase the
Hamming distance. If H(x,y) + f(x) + f(y) < 2n, such bit flips are accepted
if and only if they increase the fitness.

Now, a fitness larger than 2n is easily achieved if, at initialization, x and
y have a total of at least two leading ones. This happens with probability at
least 1/2, and then the (2+1) RLS will always have a fitness larger than 2n.
Then any bit flips in the OneMax part will be accepted only if they increase
the Hamming distance H(x,y). With high probability there will be many bit
positions i where xi = 1,yi = 0 and many bit positions j where xj = 0,yj = 1.
These values will never change, and hence the OneMax part of any search
point will never meet the extreme values corresponding to a trap. The leading-
ones part will be optimized, as it has a much larger impact on the fitness,
leading to a global optimum in the claimed time.

However, the algorithm can also fail badly with constant probability, get-
ting stuck in a local optimum from which there is no escape.

Theorem 8.5.7. Let τ > 12n + 1. With a probability bounded from below by
a constant, the (2+1) RLS with fitness sharing and crowding requires infinite
time to optimize Balance.

This statement can be shown by observing that with constant probability,
the fitness will remain below 2n, hence maximizing the number of ones in
the OneMax part, while one of the search points reaches the upper trap.

8 The Benefits of Population Diversity in Evolutionary Algorithms 395

Then the fitness will always be larger than 2n, which makes the algorithm
maximize the Hamming distance and hence drives the other search point into
the lower trap. Here the algorithm gets stuck, as the traps cannot be left and
local mutations cannot create the global optimum from a trap.

An interesting conclusion when contrasting the performance of diversity
mechanisms on TwoMax [22] and Balance [51] is that mechanisms that
perform well on one function may not perform well on the other. Fitness diver-
sity shows the worst performance guarantees for TwoMax, but it performs
the best on Balance. Deterministic crowding performs well on TwoMax,
but performs poorly on Balance. Fitness sharing performs the best on
TwoMax, but is only effective on Balance with constant probability, and
otherwise fails badly.

8.5.2 Island Models for the Maze Function

Lissovoi andWitt [43] presented another example where diversity mechanisms
prove useful in dynamic optimization. They showed that island models can
help to optimize the dynamic function Maze, introduced earlier by Kötzing
and Molter [36]. The function Maze changes in phases of t0 steps. In the first
phase, the function is equivalent to OneMax. In the next n phases, higher
fitness values are assigned to two search points on a shortest Hamming path
from 1n to 0n, in an oscillating pattern. Every two iterations out of three,
0i1n−i receives fitness n+2, while the previous point on the path, 0i−11n−i+1,
receives fitness n + 1. Every three iterations, the fitness values of these two
points are reversed. In every phase, the index i increases by 1. All other search
points always retain their OneMax value; hence, whenever an algorithm loses
track of the path, it is likely to be led back into 1n. The optimum can only be
reached if an algorithm tracks the moving optimum on the whole Hamming
path, eventually reaching 0n after n phases. We refer to [36, 43] for formal
definitions of Maze.

The (1+1) EA fails badly on Maze [36] and the same holds for a (1+λ) EA
with a moderate offspring population size, as shown in the following theorem.
The reason is that in every phase there is a constant probability that the
algorithm will maintain the previous point on the path, 0i−11n−i+1, and will
fall off the path once the next phase starts.

Theorem 8.5.8. The (1+λ) EA with λ = O(n1−ε), for any constant ε > 0,
will with high probability lose track of the optimum of Maze, i.e., with high
probability it will require an exponential number of iterations to construct the
final optimum.

In sharp contrast, a simple island model running λ (1+1) EAs is effective
on Maze, even with a much smaller number λ of offspring created in each
generation.

396 Dirk Sudholt

Theorem 8.5.9. An island model with λ = c logn islands, where c is a suffi-
ciently large constant, with each island running a (1+1) EA, and migration
on a complete topology occurring during the first iteration of every phase (i.e.,
with migration interval τ = t0), is able to find the optimum of Maze with
phase length t0 = kn3 logn in polynomial time with high probability.

The intuitive reason is that each island on the path has a constant proba-
bility of ending the phase in 0i−11n−i+1 and a constant probability of ending
it in 0i1n−i. In the latter case, these islands will still be on the path once the
index i has increased at the start of the next phase. There is a high probabil-
ity that at least one island will still be on the path, and its fitness will be no
less than that of all the other islands. Hence migration will ensure that all
islands that may have fallen off will be put back onto the path.

Note that the choice of the migration interval aligns with the time interval
t0 for dynamic changes, such that at the time of migration, the search points
further up on the path have a higher fitness. If migration occurs at other
points in time, island models with O(logn) islands may still fail on Maze [43,
Theorem 14].

8.6 Diversity-Based Parent Selection

All the results surveyed so far use diversity mechanisms in the environmental
selection, i.e., to decide which search points are allowed to survive to the next
generation. Here we present recent work by Covantes Osuna et al. [6], who
suggested using diversity mechanisms in the parent selection in the context
of evolutionary multiobjective optimization.

Well-established multiobjective evolutionary algorithms (MOEAs) such as
NSGA-II [15], SPEA2 [2], and IBEA [66] have two basic principles driven
by selection. First of all, the goal is to push the current population close to
the “true” Pareto front. The second goal is to “spread” the population along
the front such that it is well covered. The first goal is usually achieved by
dominance mechanisms between the search points or by indicator functions
that prefer nondominated points. The second goal involves the use of diversity
mechanisms. Alternatively, indicators such as the hypervolume indicator play
a crucial role in obtaining a good spread of the different solutions of the
population along the Pareto front.

In the context of evolutionary multi-objective optimization (EMO), parent
selection is usually uniform, whereas offspring selection is based on dominance
and the contribution of an individual to the diversity of the population. The
paper [6] shows that diversity mechanisms can also be highly beneficial when
embedded into the parent selection mechanisms in EMO. The goal is to speed
up the optimization process of an EMO algorithm by selecting individuals
that have a high chance of producing beneficial offspring. The idea is to
use a diversity metric, such as the hypervolume contribution or the crowding

8 The Benefits of Population Diversity in Evolutionary Algorithms 397

distance contribution, and to preferably select parents with a higher diversity
score. The hypervolume describes the area that is dominated by points in
the population; the hypervolume contribution describes the contribution a
search point x makes to the hypervolume, i.e., the difference between the
hypervolume of the whole population P and that of the population P \{x}
without x. The crowding distance is a well-known measure from NSGA-II;
it is based on the distances in objective space to the search points with the
closest objective values, considering each objective separately.

The main assumption is that individuals with a high diversity score are
located in poorly explored or less dense areas of the search space, so that the
chances of creating new nondominated individuals are better than in areas
where there are several individuals. In this sense the new parent selection
schemes focus on individuals where the neighborhood is not fully covered
and, in consequence, force reproduction in those areas and lead to the spread
of the population over the search space.

We consider two well-known pseudo-Boolean functions {0,1}n→ N2 with
two objectives. For

OneMinMax(x1, . . . ,xn) :=

(
n−

n∑
i=1

xi,

n∑
i=1

xi

)
,

the aim is to maximize the numbers of zeros and ones at the same time. For

LOTZ(x1, . . . ,xn) :=

 n∑
i=1

i∏
j=1

xj ,

n∑
i=1

n∏
j=i

(1−xj)

 ,

the goal is to simultaneously maximize the numbers of leading ones and
trailing zeros.

OneMinMax has the property that every single solution represents a
point in the Pareto front and that no search point is strictly dominated by
another one. The goal is to cover the whole Pareto front, i.e., to compute a set
of individuals that contains for each i, 0≤ i≤ n, an individual with exactly
i ones. In the case of LOTZ, all non-Pareto-optimal decision vectors only
have Hamming neighbors that are better or worse, but never incomparable
to them. This fact facilitates the analysis of population-based algorithms,
which certainly cannot be expected from other multiobjective optimization
problems. Note that the Pareto front for LOTZ is given by the set of n + 1
search points {1i0n−i | 0≤ i≤ n}.

We consider the Simple Evolutionary Multiobjective Optimizer (SEMO),
shown in Algorithm 8.10, which is popular for theoretical analyses owing
to its simplicity. The paper [6] also contains results for a variant, GSEMO,
which uses standard bit mutations instead of local mutations. For simplicity,
we present only results for SEMO in this survey.

398 Dirk Sudholt

Algorithm 8.10: SEMO
1 Choose an initial solution s ∈ {0,1}n uniformly at random.
2 Determine f(s) and initialize P := {s}. while not stopping do
3 Choose s uniformly at random from P .
4 Choose i ∈ {1, . . . ,n} uniformly at random.
5 Define s′ by flipping the i-th bit of s.
6 if s′ is not dominated by any individual in P then
7 Add s′ to P , and remove all individuals weakly dominated by s′ from P .

The following theorem summarizes results from [6, 25, 41] on the perfor-
mance of SEMO.
Theorem 8.6.1. The expected time for SEMO to cover the whole Pareto
front on OneMinMax and LOTZ is Θ(n2 logn) and Θ(n3), respectively.

The expected time is larger by a factor of Θ(n) than the expected time
of the (1+1) EA for optimizing any single objective. The reason for SEMO
being slower is that, once the Pareto front has been reached, only the search
points with a maximum objective value, when chosen as parents, can expand
the Pareto front further. All other choices of parents lead to the creation of
an offspring whose objective values are already represented in the population.
Once the population has grown to a linear size µ = Θ(n), the probability of
selecting a parent that allows SEMO to progress is only Θ(1/n), i.e., most
steps are wasted. This leads to the additional factor of order n compared
with the (1+1) EA.

Diversity-based parent selection using either the hypervolume contribution
or the crowding distance contribution can improve these running times. The
parent selection mechanisms considered use one of these diversity metrics
to select parents according to processes that favor higher diversity: sorting
the population according to the ranks of the diversity metric and picking
the i-th ranked individual with probability proportional to 2−i (exponential
scheme) or 1/i2 (power-law scheme), or using tournament selection based
on the diversity score with tournament size µ (i.e., the current size of the
population). Here, the tournament is picked with replacement; hence search
points can be picked multiple times or be excluded from the tournament.
Theorem 8.6.2. Consider diversity-based parent selection using either the
hypervolume contribution or the crowding distance contribution and selecting
parents according to the exponential or power-law scheme, or according to a
tournament with tournament size µ.

Then the expected time for SEMO with diversity-based parent selection to
cover the whole Pareto front on OneMinMax and LOTZ is O(n logn) and
O(n2), respectively.

The proofs show that the expected time for SEMO is bounded from above
by O((n logn)/pgood) and O(n2/pgood), respectively, where pgood is (a lower

8 The Benefits of Population Diversity in Evolutionary Algorithms 399

bound on) the probability of selecting a parent that has a Hamming neighbor
whose objective vector is on the Pareto front, but not yet represented in the
population. The diversity score assigns the highest values to the search points
with maximum objective values. However, the extreme points 0n and 1n may
themselves not be “good” search points; if the Pareto front has reached one
“end” of the search space, SEMO still may need to expand in the other di-
rection. All of the parent selection mechanisms mentioned have a probability
of Ω(1) of selecting the individual with the highest diversity rank, but they
also have a probability of Ω(1) of selecting the second best (and third best)
individual. Hence, even if the population does contain 0n or 1n, the parent
selection is still able to find a “good” parent to expand the Pareto front
efficiently. Hence pgood = Ω(1) and the claimed bounds follow.

8.7 Conclusions

Maintaining and promoting diversity in evolutionary algorithms is a very im-
portant task. Surveys of diversity mechanisms [10, 53, 54] reveal a multitude
of approaches to enhancing and promoting diversity, yet it is often unclear
which of these mechanisms perform well, and why.

We have surveyed rigorous runtime analyses of evolutionary algorithms
with explicit diversity mechanisms, ranging from avoiding genotype or fit-
ness duplicates, deterministic crowding, fitness sharing, and clearing to island
models. Other studies have shown that diversity can also emerge naturally,
without any explicit mechanisms, through independent mutations, phases
of independent evolution in the context of island models, or, in the case of
Jumpk, through the interplay of different operators such as crossover followed
by mutation and selection.

We have seen that diversity can be highly beneficial for enhancing the
global exploration capabilities of evolutionary algorithms. It can enable
crossover to work effectively, it can improve performance and robustness
in dynamic optimization, and it is vital for evolutionary multiobjective opti-
mization. In many cases diversity mechanisms can be highly effective for the
problems considered, speeding up the expected or typical optimization time
by constant factors, polynomial factors, or even exponential factors.

Comparing results for TwoMax, Jumpk, and Balance, we found that
diversity mechanisms that are effective for one problem may be ineffective for
other problems, and vice versa. The analyses have rigorously quantified per-
formance to demonstrate these effects. More importantly, they have laid the
foundation for a rigorous understanding of how search dynamics are affected
by the presence or absence of population diversity and the introduction of
diversity mechanisms.

400 Dirk Sudholt

Acknowledgements The author would like to thank Edgar Covantes Osuna and an
anonymous reviewer for helpful comments. This work originated from the Dagstuhl
seminar 17191, “Theory of Randomized Optimization Heuristics”; the author would like
to thank the organizers and participants for inspiring discussions.

References

[1] N. Barton and T. Paixão. Can quantitative and population genetics help
us understand evolutionary computation? In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO ’13), pages 1573–
1580, 2013.

[2] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler. Multiobjective genetic
programming: reducing bloat using SPEA2. In Proceedings of the 2001
Congress on Evolutionary Computation (CEC 2001), volume 1, pages
536–543, 2001.

[3] D. Brockhoff. Theoretical aspects of evolutionary multiobjective opti-
mization. In Theory of Randomized Search Heuristics–Foundations and
Recent Developments. World Scientific Publishing, 2011.

[4] D. Corus and P. S. Oliveto. Standard steady state genetic algorithms
can hillclimb faster than mutation-only evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 22(5):720–732, 2017.

[5] E. Covantes Osuna. Theoretical and Empirical Evaluation of Diversity-
preserving Mechanisms in Evolutionary Algorithms: On the Rigorous
Runtime Analysis of Diversity-preserving Mechanisms in Evolutionary
Algorithms. PhD thesis, University of Sheffield, 2018.

[6] E. Covantes Osuna, W. Gao, F. Neumann, and D. Sudholt. Speeding up
evolutionary multi-objective optimisation through diversity-based par-
ent selection. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO ’17), pages 553–560. ACM, 2017.

[7] E. Covantes Osuna and D. Sudholt. Analysis of the clearing diversity-
preserving mechanism. In Proceedings of Foundations of Genetic Algo-
rithms (FOGA 2017), pages 55–63. ACM Press, 2017.

[8] E. Covantes Osuna and D. Sudholt. Empirical analysis of diversity-
preserving mechanisms on example landscapes for multimodal optimi-
sation. In Parallel Problem Solving from Nature (PPSN ’18), pages
207–219. Springer, 2018.

[9] E. Covantes Osuna and D. Sudholt. Runtime analysis of probabilistic
crowding and restricted tournament selection for bimodal optimisation.
In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2018), pages 929–936. ACM, 2018.

[10] M. Črepinšek, S.-H. Liu, and M. Mernik. Exploration and exploitation in
evolutionary algorithms: A survey. ACM Computing Surveys, 45(3):35:1–
35:33, 2013.

8 The Benefits of Population Diversity in Evolutionary Algorithms 401

[11] D.-C. Dang, T. Friedrich, T. Kötzing, M. S. Krejca, P. K. Lehre, P. S.
Oliveto, D. Sudholt, and A. M. Sutton. Escaping local optima using
crossover with emergent diversity. IEEE Transactions on Evolutionary
Computation, 22(3):484–497.

[12] D.-C. Dang, T. Friedrich, M. S. Krejca, T. Kötzing, P. K. Lehre, P. S.
Oliveto, D. Sudholt, and A. M. Sutton. Escaping Local Optima with
Diversity-Mechanisms and Crossover. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2016), pages 645–652.
ACM Press.

[13] D.-C. Dang, T. Jansen, and P. K. Lehre. Populations can be essential
in tracking dynamic optima. Algorithmica, 78(2):660–680, 2017.

[14] M. De Felice, S. Meloni, and S. Panzieri. Effect of topology on diversity
of spatially-structured evolutionary algorithms. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO ’11), pages
1579–1586. ACM, 2011.

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evo-
lutionary Computation, 6(2):182–197, 2002.

[16] B. Doerr, E. Happ, and C. Klein. Crossover can provably be useful in
evolutionary computation. Theoretical Computer Science, 425(0):17–33,
2012.

[17] B. Doerr, N. Hebbinghaus, and F. Neumann. Speeding up evolution-
ary algorithms through asymmetric mutation operators. Evolutionary
Computation, 15:401–410, 2007.

[18] B. Doerr and D. Johannsen. Adjacency list matchings—an ideal geno-
type for cycle covers. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’07), pages 1203–1210. ACM Press,
2007.

[19] B. Doerr, C. Klein, and T. Storch. Faster evolutionary algorithms by
superior graph representation. In First IEEE Symposium on Foundations
of Computational Intelligence (FOCI ’07), pages 245–250. IEEE, 2007.

[20] S. Fischer and I. Wegener. The one-dimensional Ising model: Mutation
versus recombination. Theoretical Computer Science, 344(2–3):208–225,
2005.

[21] T. Friedrich, N. Hebbinghaus, and F. Neumann. Rigorous analyses of
simple diversity mechanisms. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO ’07), pages 1219–1225. ACM
Press, 2007.

[22] T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt. Analysis of diversity-
preserving mechanisms for global exploration. Evolutionary Computa-
tion, 17(4):455–476, 2009.

[23] W. Gao and F. Neumann. Runtime analysis for maximizing population
diversity in single-objective optimization. In Proc. of GECCO ’14, pages
777–784, 2014.

402 Dirk Sudholt

[24] M. Giacobini, M. Tomassini, and A. Tettamanzi. Takeover time curves
in random and small-world structured populations. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO ’05),
pages 1333–1340. ACM Press, 2005.

[25] O. Giel and P. K. Lehre. On the effect of populations in evolutionary
multi-objective optimisation. Evolutionary Computation, 18(3):335–356,
2010.

[26] C. Horoba, T. Jansen, and C. Zarges. Maximal age in randomized search
heuristics with aging. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’09), pages 803–810, 2009.

[27] C. Horoba and F. Neumann. Approximating Pareto-Optimal Sets Using
Diversity Strategies in Evolutionary Multi-Objective Optimization, pages
23–44. Springer Berlin Heidelberg, 2010.

[28] M. Hutter and S. Legg. Fitness uniform optimization. IEEE Transac-
tions on Evolutionary Computation, 10:568–589, 2006.

[29] T. Jansen and I. Wegener. On the analysis of evolutionary algorithms—a
proof that crossover really can help. Algorithmica, 34(1):47–66, 2002.

[30] T. Jansen and I. Wegener. Real royal road functions—where crossover
provably is essential. Discrete Applied Mathematics, 149:111–125, 2005.

[31] T. Jansen and C. Zarges. Analyzing different variants of immune in-
spired somatic contiguous hypermutations. Theoretical Computer Sci-
ence, 412(6):517–533, 2011.

[32] T. Jansen and C. Zarges. On the role of age diversity for effective aging
operators. Evolutionary Intelligence, 4(2):99–125, 2011.

[33] T. Jansen and C. Zarges. Evolutionary algorithms and artificial immune
systems on a bi-stable dynamic optimisation problem. In Proceedings of
the 2014 Annual Conference on Genetic and Evolutionary Computation
(GECCO ’14), pages 975–982. ACM, 2014.

[34] N. L. Komarova, E. Urwin, and D. Wodarz. Accelerated crossing of
fitness valleys through division of labor and cheating in asexual popula-
tions. Scientific Reports, 2012.

[35] T. Kötzing, A. Lissovoi, and C. Witt. (1+1) EA on generalized dynamic
onemax. In Proceedings of the 2015 ACM Conference on Foundations of
Genetic Algorithms (FOGA ’15), pages 40–51. ACM, 2015.

[36] T. Kötzing and H. Molter. ACO beats EA on a dynamic pseudo-boolean
function. In Parallel Problem Solving from Nature (PPSN XII), pages
113–122. Springer Berlin Heidelberg, 2012.

[37] T. Kötzing, D. Sudholt, and M. Theile. How crossover helps in pseudo-
Boolean optimization. In Proceedings of the 13th Annual Genetic and
Evolutionary Computation Conference (GECCO 2011), pages 989–996.
ACM Press, 2011.

[38] J. Lässig and D. Sudholt. The benefit of migration in parallel evolution-
ary algorithms. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO 2010), pages 1105–1112. ACM Press, 2010.

8 The Benefits of Population Diversity in Evolutionary Algorithms 403

[39] J. Lässig and D. Sudholt. Design and analysis of migration in parallel
evolutionary algorithms. Soft Computing, 17(7):1121–1144, 2013.

[40] J. Lässig and D. Sudholt. Analysis of speedups in parallel evolutionary
algorithms and (1+λ) EAs for combinatorial optimization. Theoretical
Computer Science, 551:66–83, 2014.

[41] M. Laumanns, L. Thiele, and E. Zitzler. Running time analysis of mul-
tiobjective evolutionary algorithms on pseudo-boolean functions. IEEE
Transactions on Evolutionary Computation, 8(2):170–182, 2004.

[42] A. Lissovoi and C. Witt. On the utility of island models in dynamic opti-
mization. In Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, GECCO ’15, pages 1447–1454, New York,
NY, USA, 2015. ACM.

[43] A. Lissovoi and C. Witt. A runtime analysis of parallel evolutionary
algorithms in dynamic optimization. Algorithmica, 78(2):641–659, 2017.

[44] S. W. Mahfoud. Niching methods. In T. Bäck, D. B. Fogel, and
Z. Michalewicz, editors, Handbook of Evolutionary Computation, pages
C6.1:1–4. Institute of Physics Publishing and Oxford University Press,
Bristol, New York, 1997.

[45] A. Mambrini, D. Sudholt, and X. Yao. Homogeneous and heterogeneous
island models for the set cover problem. In Parallel Problem Solving
from Nature (PPSN 2012), volume 7491 of LNCS, pages 11–20. Springer,
2012.

[46] F. Neumann. Expected runtimes of evolutionary algorithms for the Eule-
rian cycle problem. Computers & Operations Research, 35(9):2750–2759,
2008.

[47] F. Neumann, P. S. Oliveto, G. Rudolph, and D. Sudholt. On the effec-
tiveness of crossover for migration in parallel evolutionary algorithms. In
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2011), pages 1587–1594. ACM Press, 2011.

[48] P. S. Oliveto, J. He, and X. Yao. Population-based evolutionary algo-
rithms for the vertex cover problem. In Proceedings of the IEEE Congress
on Evolutionary Computation (CEC ’08), pages 1563–1570, 2008.

[49] P. S. Oliveto and D. Sudholt. On the runtime analysis of stochastic
ageing mechanisms. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2014), pages 113–120. ACM Press,
2014.

[50] P. S. Oliveto, D. Sudholt, and C. Zarges. On the runtime analysis of
fitness sharing mechanisms. In 13th International Conference on Parallel
Problem Solving from Nature (PPSN 2014), volume 8672 of LNCS, pages
932–941. Springer, 2014.

[51] P. S. Oliveto and C. Zarges. Analysis of diversity mechanisms for opti-
misation in dynamic environments with low frequencies of change. The-
oretical Computer Science, 561:37–56, 2015.

[52] P. Rohlfshagen, P. K. Lehre, and X. Yao. Dynamic evolutionary optimi-
sation: an analysis of frequency and magnitude of change. In Proceedings

404 Dirk Sudholt

of the 2009 Genetic and Evolutionary Computation Conference (GECCO
’09), pages 1713–1720. ACM Press, 2009.

[53] O. M. Shir. Niching in evolutionary algorithms. In G. Rozenberg,
T. Bäck, and J. N. Kok, editors, Handbook of Natural Computing, pages
1035–1070. Springer, 2012.

[54] G. Squillero and A. Tonda. Divergence of character and premature con-
vergence: A survey of methodologies for promoting diversity in evolu-
tionary optimization. Information Sciences, 329:782–799, 2016. Special
issue on Discovery Science.

[55] T. Storch and I. Wegener. Real royal road functions for constant popu-
lation size. Theoretical Computer Science, 320:123–134, 2004.

[56] D. Sudholt. How crossover speeds up building-block assembly in genetic
algorithms. Evolutionary Computation, 25(2):237–274.

[57] D. Sudholt. Crossover is provably essential for the Ising model on trees.
In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’05), pages 1161–1167. ACM Press, 2005.

[58] D. Sudholt. Hybridizing evolutionary algorithms with variable-depth
search to overcome local optima. Algorithmica, 59(3):343–368, 2011.

[59] D. Sudholt. Crossover speeds up building-block assembly. In Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO
2012), pages 689–696. ACM Press, 2012.

[60] D. Sudholt. Parallel evolutionary algorithms. In J. Kacprzyk and
W. Pedrycz, editors, Handbook of Computational Intelligence, pages 929–
959. Springer, 2015.

[61] R. A. Watson and T. Jansen. A building-block royal road where crossover
is provably essential. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’07), pages 1452–1459. ACM, 2007.

[62] I. Wegener. Methods for the analysis of evolutionary algorithms on
pseudo-Boolean functions. In R. Sarker, X. Yao, and M. Mohammadian,
editors, Evolutionary Optimization, pages 349–369. Kluwer, 2002.

[63] D. B. Weissman, M. W. Feldman, and D. S. Fisher. The rate of fitness-
valley crossing in sexual populations. Genetics, 186:1389–1410, 2010.

[64] C. Witt. Runtime analysis of the (µ+1) EA on simple pseudo-Boolean
functions. Evolutionary Computation, 14(1):65–86, 2006.

[65] C. Zarges. Theoretical foundations of immune-inspired randomized
search heuristics for optimisation. In B. Doerr and F. Neumann, edi-
tors, Theory of Randomized Search Heuristics in Discrete Search Spaces.
Springer, 2019.

[66] E. Zitzler and S. Künzli. Indicator-based selection in multiobjective
search. In Proceedings of the Parallel Problem Solving from Nature -
PPSN VIII, pages 832–842. Springer Berlin Heidelberg, 2004.

Chapter 9
Theory of Estimation-of-Distribution
Algorithms

Martin S. Krejca and Carsten Witt

Abstract Estimation-of-distribution algorithms (EDAs) are general meta-
heuristics used in optimization that represent a more recent alternative to
classical approaches such as evolutionary algorithms. In a nutshell, EDAs
typically do not directly evolve populations of search points but build prob-
abilistic models of promising solutions by repeatedly sampling and selecting
points from the underlying search space. Recently, significant progress has
been made in the theoretical understanding of EDAs. This chapter provides
an up-to-date overview of the most commonly analyzed EDAs and the most
recent theoretical results in this area. In particular, emphasis is put on the
runtime analysis of simple univariate EDAs, including a description of typ-
ical benchmark functions and tools for the analysis. Along the way, open
problems and directions for future research are described.

9.1 Introduction

Optimization is one of the most important fields in computer science, with
many problems being NP-hard and thus not necessarily easy to solve. Hence,
heuristics play a major role, i.e., optimization algorithms that try to yield solu-
tions of good quality in a reasonable amount of time. Research over the past
decades has resulted in many good heuristics being developed for classical
NP-hard problems. Unfortunately, these heuristics are tailored with specific
problems in mind and exploit certain problem-specific properties in order to

Martin S. Krejca
Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
e-mail: martin.krejca@hpi.de
Carsten Witt
DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
e-mail: cawi@dtu.dk

405

martin.krejca@hpi.de
cawi@dtu.dk

406 Martin S. Krejca and Carsten Witt

save computation time. Thus, they cannot be used for problems that do not
feature these specific properties.

One alternative to problem-specific heuristics is general-purpose heuristics.
The information about the problem to be optimized that these algorithms
have access to is fairly limited, up to the point that they are only able to
compare the quality of different solutions relatively. This has the advantage
that the problem itself does not have to be formalized but only the quality of
a solution, as the problem formalization is communicated implicitly via the
quality measure to the algorithm. In turn, this results in great reusability of
these algorithms for different problems.

One such class of general-purpose heuristics is evolutionary algorithms
(EAs) [34]. EAs are characterized by creating new solutions from already
generated solutions. Oftentimes, many solutions are stored and only changed
(evolved) locally, preferably discarding bad solutions and saving good ones.
Such algorithms are EAs in the classical sense [60].

The concept of EAs can be broadened if we are less restrictive about
what is being evolved. A similar approach to changing solutions directly is to
instead change the procedure that generates the solutions in the first place.
Thus, a solution-generating mechanism is evolved. Algorithms following this
approach are called estimation-of-distribution algorithms (EDAs) [29, 37, 54,
55]. They are not EAs in the classical sense but can be considered EAs in the
broad sense, as just described.

EDAs have been used very successfully in real-world applications [29, 37,
54, 55] and have recently gathered momentum in the theory community an-
alyzing EAs [10, 20, 22, 36, 38, 63, 66]. The aim of theoretically analyzing
EAs is to provide guarantees for the algorithms and to gain insights into their
behavior in order to optimize the algorithms themselves. Common guaran-
tees include the expected time until an algorithm finds a solution of sufficient
quality, the probability of doing so after a certain time, and the fact that the
algorithm is even able to find desired solutions.

In this chapter, we provide a state-of-the-art overview of the theoretical
results on EDAs for discrete domains, as that is their main field of applica-
tion. To the best of our knowledge, while continuous EDAs exist, no detailed
theoretical analyses have been conducted so far. We present the most com-
monly investigated EDAs and give an outline of the history of their analyses,
providing deep insights into some of the latest results. After reading this, the
reader should be familiar with EDAs in general, the current state of theoret-
ical research, and common tools used for the analyses.

In Section 9.2, we go more into detail about how EDAs work, we introduce
the scenario used in most theoretical papers, and we provide different ways of
classifying EDAs, stating the most commonly analyzed algorithms. Further,
we mention some tools that are often used when deriving results for EDAs.
Then, in Section 9.3, we give a short overview of the most commonly con-
sidered objective functions. In Section 9.4, we discuss the historically older
results of convergence analyses on EDAs. After that, in Section 9.5, we present

9 Theory of Estimation-of-Distribution Algorithms 407

more recent results on EDAs, which consider the actual runtime of an algo-
rithm. We end this article in Section 9.6 with some conclusions and open
problems.

9.2 Estimation-of-Distribution Algorithms

In general, EDAs are problem-agnostic optimization algorithms that store a
probabilistic model over the solution space. This model is the core part of
these algorithms. It implies a probability distribution over the solution space
and is iteratively refined, using samples. Ideally, the model converges to a
state that produces only optimal solutions.

Since EDAs make use of sample sets – called populations – they are quite
similar in this respect to EAs. However, the main difference is that EAs ex-
clusively store a population and progress using solely this information, by
varying samples – called individuals – from the population. Thus, they have
quite a local view of the solution space and advance locally. In contrast, the
probabilistic model of an EDA models most of the time the entire solution
space. Updates to the model are done using the old model as well as a popu-
lation. Hence, EDAs employ a more general view of the solution space than
do classical EAs.

The probabilistic model of an EDA is used as an implicit probability dis-
tribution over the solution space, instead of an explicit distribution. This is
usually done by constraining the distributions that can be modeled and by
factorizing them, i.e., by writing the distribution as a product of marginal
probabilities. Hauschild and Pelikan [29] distinguish between many different
classes of EDAs with respect to how strongly constrained the models are. An
advantage of factorizing a distribution is that it saves a lot of memory, since
an explicit distribution would make it necessary to store a probability for
each solution, which is not feasible. With a factorization, only the factors
have to be stored in memory. However, even then it is possible for the model
to grow to sizes exponential in the input [25].

As mentioned above, EDAs also use populations, like EAs, sampled from
their probabilistic model, in order to update that model. It is up to the EDA
to decide what to do with its population. However, all EDAs theoretically
analyzed so far have in common the fact that they always discard their pop-
ulation after every iteration, valuing the model higher than the population.

In the following, we first state the optimization domain for the EDAs
that we consider in this chapter. Then we discuss different classifications of
EDAs and name various algorithms that fall into the various classes. Last, we
mention the tools that are commonly used in the current theoretical research
on EDAs.

408 Martin S. Krejca and Carsten Witt

9.2.1 Scenario

As in the theory of EAs, theoretical analyses of EDAs consider mainly pseudo-
Boolean optimization, i.e., optimization of a function f : {0,1}n→ R, often
referred to as the fitness function. Conventionally, the function value of a bit
string xxx is called the fitness of xxx.

The aspect of an EDA being a general-purpose solver is modeled as a classi-
cal black-box setting, where the algorithm gains problem-specific information
only from querying the fitness function by inputting bit strings and receiving
their respective fitness. In this setting, mostly two different scenarios have
been of major interest.

Convergence analyses. In this historically older topic, EDAs have been
analyzed with respect to the convergence of their probabilistic model, i.e.,
if they succeed at all in optimizing certain fitness functions. We discuss
this scenario in more depth in Section 9.4.

Runtime analyses. A more recent trend is the analysis of an EDA’s run-
time on certain functions. In this scenario, the focus is on the number of
queries needed until an optimum or a solution of sufficient quality is sam-
pled, i.e., the first hitting time of an algorithm sampling such a solution.
Although sampling a desired solution can happen by chance, the analyses
usually entail that the probabilistic model of an EDA makes it very likely
for such a solution to be sampled again. Section 9.5 goes into detail about
this topic.

9.2.2 Classifications of EDAs

Arguably, the most straightforward way of classifying EDAs is with respect
to the power of their underlying probabilistic model. Univariate algorithms
use only a single variable in their model per problem variable.1 In contrast,
multivariate algorithms use more than a single variable to model a problem
variable. Thus, univariate EDAs are not able to capture dependencies between
problem variables, whereas multivariate EDAs are explicitly constructed to
do so.

Pelikan et al [55] give a more fine-grained classification of EDAs, differenti-
ating multivariate EDAs even further with respect to how many dependencies
can be captured by the underlying probabilistic model.

Note that the classification into univariate and multivariate EDAs does
not constrain the populations at all.

1 In our setting of pseudo-Boolean optimization, a problem variable is a position in a bit
string, i.e., one dimension of a hypercube.

9 Theory of Estimation-of-Distribution Algorithms 409

9.2.2.1 Univariate Algorithms

When optimizing a pseudo-Boolean function, univariate EDAs assume inde-
pendence of all of the n different bit positions to be optimized. Under this
assumption, every probability distribution can be factorized into a product
of n different probabilities pppi, collected together in a vector ppp of length n. A
bit string xxx is then sampled by choosing each bit xxxi to be 1 with probability pppi

and 0 otherwise. Since each pppi determines how frequently, in expectation, a 1
is sampled at position i, we call these probabilities frequencies, following the
common naming convention [22]. The vector ppp is then consequently called
the frequency vector.

n-Bernoulli-λ-EDA

Although the class of univariate EDAs does not limit the populations of
the algorithms in any way, the most commonly considered univariate EDAs
discard their entire population after every iteration. Thus, from a theoretical
point of view, a run of a univariate EDA can be modeled as a series (ppp(t))t∈N0
of frequency vectors over the number of iterations t. Usually, ppp(0) models the
uniform distribution by satisfying the condition that ppp

(0)
i = 1/2 for each i.

Friedrich et al [22] capture this class of univariate EDAs in a framework
called the n-Bernoulli-λ-EDA (Algorithm 9.1).

The n-Bernoulli-λ-EDA samples λ individuals in each iteration and per-
forms an update to its frequency vector, using the current frequency vector
as well as all of the just-sampled individuals and their respective fitnesses.
The function performing this update is called the update scheme and fully
characterizes the algorithm.

Note that we do not specify a termination criterion. In fact, determining
what a good criterion is may vary between different use cases of the algorithm.
When considering the expected runtime of these algorithms (Section 9.5), we
are interested in the number of fitness function evaluations until an optimal
solution is sampled for the first time.

In many EDAs, if a frequency is either 0 or 1, all bits sampled at the
respective position will be 0 or 1, respectively, and the update scheme will
not change the frequency anymore. To prevent this, the algorithm is usually
modified such that each frequency is only allowed to take values in an interval
[m,1−m] ⊂ [0,1], where m ∈ (0,1/2] is called a margin; the values m and
1−m are called borders. Usually, a margin of 1/n is chosen [7, 10, 50]. In a
scenario with a margin, line 8 of Algorithm 9.1 can be modified as follows:

foreach i ∈ {1, . . . ,n} do

ppp
(t+1)
i ←max

{
m, min

{
1−m, φ

(
ppp(t),

(
xxx,f(xxx)

)
xxx∈D

)
i

}}
;

2 Note that D is a multiset, that is, we allow duplicates.

410 Martin S. Krejca and Carsten Witt

Algorithm 9.1: n-Bernoulli-λ-EDA with a given update scheme φ, op-
timizing f

1 t← 0;
2 foreach i ∈ {1, . . . ,n} do ppp

(t)
i ← 1

2 ;
3 repeat
4 D←∅;
5 foreach j ∈ {1, . . . ,λ} do
6 xxx← offspring sampled with respect to ppp(t);
7 D←D∪{xxx}; 2

8 ppp(t+1)← φ
(
ppp(t),

(
xxx,f(xxx)

)
xxx∈D

)
;

9 t← t + 1;
10 until termination criterion met;

We will continue to give an overview of the most commonly theoretically
analyzed univariate EDAs and show how they fit into the n-Bernoulli-λ-EDA
framework. We present the algorithms without a margin although they are
commonly analyzed with a margin of 1/n.

Since many of the following examples do not make use of the entire pop-
ulation of size λ (the population size) but select a certain number µ (the
effective population size) of individuals according to their fitness values, we
denote the k-th-best individual as xxx(k), where 1 ≤ k ≤ µ; ties are broken
uniformly at random. Thus, xxx(1) denotes an individual with the best fitness.

UMDA

The arguably easiest update scheme is given by the univariate marginal dis-
tribution algorithm (UMDA; Algorithm 9.2) [49]. It samples λ individuals in
each iteration, of which µ of the best are chosen. Then, each frequency pppi

is set to the relative frequency of 1s at position i in the set of the µ best
individuals, regardless of the current frequency.

The update scheme of UMDA allows it to go from any valid frequency to
any other in a single step if not stuck. Thus, the difference of two consecutive
frequencies ppp

(t)
i and ppp

(t+1)
i can only be trivially bounded by roughly 1. We

call such a difference the step size of the algorithm.

PBIL

A variant of UMDA that has an adjustable step size is the population-based
incremental learning algorithm (PBIL; Algorithm 9.3) [4]. A frequency is up-
dated in a way similar to UMDA, but the new frequency is a convex combi-
nation with parameter ρ of the current frequency and the relative frequencies

9 Theory of Estimation-of-Distribution Algorithms 411

Algorithm 9.2: UMDA with population size λ, effective population
size µ, optimizing f

1 t← 0;
2 foreach i ∈ {1, . . . ,n} do ppp

(t)
i ← 1

2 ;
3 repeat
4 D←∅;
5 foreach j ∈ {1, . . . ,λ} do
6 xxx← offspring sampled with respect to ppp(t);
7 D←D∪{xxx};

8 foreach i ∈ {1, . . . ,n} do ppp
(t+1)
i ← 1

µ

∑µ

k=1 xxx
(k)
i ;

9 t← t + 1;
10 until termination criterion met;

of 1s at that position. Thus, the step size is now bounded by ρ, and UMDA
is a special case of PBIL with ρ = 1.

Algorithm 9.3: PBIL with population size λ, effective population size µ,
and learning rate ρ, optimizing f

1 t← 0;
2 foreach i ∈ {1, . . . ,n} do ppp

(t)
i ← 1

2 ;
3 repeat
4 D←∅;
5 foreach j ∈ {1, . . . ,λ} do
6 xxx← offspring sampled with respect to ppp(t);
7 D←D∪{xxx};

8 foreach i ∈ {1, . . . ,n} do ppp
(t+1)
i ← (1−ρ)ppp(t)

i + ρ
µ

∑µ

k=1 xxx
(k)
i ;

9 t← t + 1;
10 until termination criterion met;

MMASib

Another important univariate EDA is the max-min ant system with iteration-
best update (MMASib; Algorithm 9.4) [50], which is a special case of PBIL
where we set µ = 1, i.e., where we consider only the best individual in each
iteration. MMASib also falls into the general class of ant colony optimization
(ACO) algorithms [16]. Although ACO spans an entire research topic inde-
pendent of EDAs and is typically not considered to be an EDA, the process of
how it produces solutions iteratively can be viewed as refining a probabilistic
model. Thus, we view ACO as an EDA here.

412 Martin S. Krejca and Carsten Witt

ACO considers graphs whose edges are weighted with probabilities, called
pheromones. Additionally, the algorithm uses agents – called ants – that
traverse the graph and thus construct paths. At each vertex v, if a path
needs to be extended, an ant chooses an edge with a certain probability with
respect to the pheromones on all of the outgoing edges of v. After the data
of all ants has been collected, all pheromones decrease (they evaporate) and
then some are increased afterward, usually the ones that are part of the best
solutions constructed.

When pseudo-Boolean optimization is considered, a graph for ACO can be
modeled as a multigraph with n+1 vertices from 0 to n, each vertex having
exactly two outgoing edges to its direct successor (except for vertex n; see
Fig. 9.1). One of these edges is interpreted as a 0, and the other one as a 1.
Each solution is constructed by letting an ant traverse the graph starting at 0
and ending at n. The corresponding edges are then interpreted as a bit string
of length n. Note how the probability of choosing an edge corresponding to
a 1 is equal to an n-Bernoulli-λ-EDA’s frequency for that respective position.

e1,1

e1,0

e2,1

e2,0

e3,1

e3,0

e4,1

e4,0

e5,1

e5,0

v0 v1 v2 v3 v4 v5

Fig. 9.1 The ACO graph for pseudo-Boolean optimization with n = 5 bits.

MMASib is a variant of the max-min ant system algorithm [61] that only
makes an update with respect to the path of the best ant in each iteration,
using a classical update rule in ACO.

Algorithm 9.4: MMASib with population size λ and evaporation fac-
tor ρ, optimizing f

1 t← 0;
2 foreach i ∈ {1, . . . ,n} do ppp

(t)
i ← 1

2 ;
3 repeat
4 D←∅;
5 foreach j ∈ {1, . . . ,λ} do
6 xxx← offspring sampled with respect to ppp(t);
7 D←D∪{xxx};

8 foreach i ∈ {1, . . . ,n} do ppp
(t+1)
i ← (1−ρ)ppp(t)

i + ρxxx
(1)
i ;

9 t← t + 1;
10 until termination criterion met;

9 Theory of Estimation-of-Distribution Algorithms 413

cGA

An algorithm with a different approach is the compact genetic algorithm
(cGA; Algorithm 9.5) [27]. It samples exactly two individuals in each iteration
and compares their bit values componentwise. If the bits at position i are the
same, the frequency pppi is left unchanged. Otherwise, the frequency is adjusted
by ±1/K, where K is an algorithm-specific parameter, often referred to as
the population size, such that the probability of sampling the bit value of the
fitter individual is higher in the next iteration.

Algorithm 9.5: cGA with population size K, optimizing f

1 t← 0;
2 foreach i ∈ {1, . . . ,n} do ppp

(t)
i ← 1

2 ;
3 repeat
4 D←∅;
5 foreach j ∈ {1,2} do
6 xxx← offspring sampled with respect to ppp(t);
7 D←D∪{xxx};

8 foreach i ∈ {1, . . . ,n} do ppp
(t+1)
i ←max

{
0, min

{
1, ppp

(t)
i + 1

K

(
xxx(1)−xxx(2))}} ;

9 t← t + 1;
10 until termination criterion met;

9.2.2.2 Multivariate Algorithms

The class of multivariate EDAs consists of all algorithms that can use multiple
variables to model one problem variable and thus express dependencies. A
compact representation of such dependencies can be modeled as a directed
graph whose vertices are the variables and whose edges denote dependencies
among the variables. For each vertex, the probability distribution conditional
on all its adjacent vertices with an incoming edge (its parents) is stored.
This results in a factorization of the problem space that respects the given
dependencies. Multivariate EDAs can assume a certain dependency model
and learn only the respective (conditional) probabilities of the factorization,
or they can additionally try to learn a model that fits well to the samples.

The factorized distribution algorithm (FDA) [48] falls into the former cate-
gory. It assumes a factorization according to a so-called additively decompos-
able function (ADF), i.e., a function that is a sum of multivariate subfunctions.
For each set of variables per subfunction, FDA creates a metavariable, and
it expresses the objective function (the ADF) with respect to those metavari-
ables. In each iteration, it samples solutions with respect to the factorization,
selects a subset of them, and estimates the conditional probabilities based

414 Martin S. Krejca and Carsten Witt

on these samples. Note that FDA is a generalization of the update of UMDA
and coincides with it if no dependencies between the problem variables exist.

Another approach that also uses metavariables is the extended compact ge-
netic algorithm (ECGA) [28]. Differently from FDA, a metavariable of ECGA
represents multiple variables at once (i.e., it is assumed that such variables
are strongly correlated). In each iteration, the algorithm starts by placing
each problem variable into its own class. Then, it greedily merges two classes
such that a certain metric (the so-called Bayesian information criterion) is
maximized, using samples from the current model. If no further improvement
can be made, the merging process stops and the algorithm uses the newly
created model.

The easiest of the multivariate cases is the one where each variable can
be at most dependent on one other variable, i.e., a bivariate setting, and the
arguably easiest probabilistic model in such a setting is a path. This model
is used in the mutual-information-maximization input clustering (MIMIC)
algorithm introduced by De Bonet et al [11]. The idea of the underlying model
is to construct a path that minimizes the Kullback–Leibler divergence with
respect to the bivariate setting, i.e., to find a permutation that can explain
the sample data best. However, since there are n! possible permutations for n
variables, the authors of [11] suggest a greedy approach that makes use of the
empirical entropies, i.e., the entropies of the sample data. First, a variable
with minimum entropy is chosen as the start vertex of the path. Then, the
path is continued by choosing a node that has minimum conditional entropy
with respect to the currently last vertex in the path.

The bivariate marginal distribution algorithm (BMDA) [52] uses a some-
what similar approach. However, it does not consider paths as its model for
dependency graphs but rather a forest of rooted trees. In order to deter-
mine which variables are dependent on which other variables, the Pearson’s
chi-squared statistic is used as an indicator. If the indicator is too low, the cor-
responding variables are considered independent. The forest is then created
greedily very similarly to regular algorithms for maximum spanning trees:
iteratively, a vertex is added to one of the trees that has maximum Pearson
chi-squared value.

The Bayesian optimization algorithm (BOA) [53] is a very general multi-
variate EDA and constructs an arbitrary dependency graph with respect to a
metric of choice. If wanted, the degree of incoming edges, i.e., the number of
dependent variables, can be limited. Pelikan et al [53] proposed the Bayesian
Dirichlet metric as one possibility to determine the quality of a dependency
graph, and they stated that the general problem of finding an optimal graph is
NP-hard. Thus, they suggested greedy algorithms or heuristics for efficiently
creating good graphs.

9 Theory of Estimation-of-Distribution Algorithms 415

9.2.2.3 Other Classifications

Another approach to classifying EDAs is to differentiate them not by how
many dependencies they can model but by certain invariances that their
probabilistic models may have.

One such classification stems from the theory of EAs and was introduced
by Lehre and Witt [39]. These authors considered a new black-box complexity
known as unbiased black-box complexity in order to prove tighter lower bounds
for commonly analyzed EAs. This definition is so general that it applies to
any black-box algorithm optimizing pseudo-Boolean functions, thus including
EDAs.

Unbiased black-box complexity considers black-box algorithms optimizing
perturbations of the hypercube, where a perturbation is any isometric auto-
morphism of the hypercube.3 For example, cyclically shifting a bit string by
one position to the right and changing the value of the first bit in the result
is an isometric automorphism.

Given a fitness function and a perturbed variant of it, a black-box algo-
rithm is said to be unbiased if the queries to the black box in the perturbed
setting are the same as the queries in the unperturbed setting when inverted
with respect to the perturbation. Thus, an unbiased algorithm does not favor
certain positions over other positions or 1s over 0s, or vice versa, i.e., it has
no bias in this respect.

When considering general-purpose algorithms, unbiasedness is a nice prop-
erty to have, as it certifies that the algorithm has no bias with respect to the
encoding of the search space. However, when considering certain problems,
different values may have a strict, different meaning, such that unbiasedness
with respect to those values does not make sense.

All of the EDAs presented in Section 9.2.2.1 are unbiased when uniform
tie-breaking is used.

A seemingly similar but unrelated property that many EDAs feature is that
their probabilistic model does not change, in expectation, if all samples have
the same fitness, i.e., there is no signal from the fitness function. Friedrich
et al [22] called this property balanced, with respect to the n-Bernoulli-λ-EDA.
However, this property had already been considered before by Shapiro [58],
albeit with different terminology.

Although balancedness seems beneficial at first glance, it actually leads to
the probabilistic model converging to one of the corners of the hypercube [22,
58]. This is a general problem of martingales, i.e., random processes that do
not change in expectation, with a bounded range, which will eventually end
up at the bounds of their range. This means that balancedness implies a bias
toward outer regions of the hypercube, also called genetic drift [3], as this is
an inherent drift due to the genotypes of the sampled population. In order

3 The isometric automorphisms of the hypercube are all isomorphisms that permute any
positions and may change a value of x to 1−x at any position.

416 Martin S. Krejca and Carsten Witt

to overcome this bias and optimize successfully, the drift due to selection
introduced by the fitness function has to be larger than the genetic drift.

Different approaches have been suggested in order to prevent an EDA’s
probabilistic model from quickly converging to a corner of the hypercube.
Shapiro [58] proposed to reject updates made to the probabilistic model with
a probability equal to the ratio of going from one model to the other. This
has the advantage that the resulting implicit distribution is the uniform dis-
tribution over the hypercube. However, the transition probabilities have to
be known and computed in order to get the correct rejection probabilities.
Another approach proposed by Shapiro [58] and also by Friedrich et al [22]
is to introduce an artificial bias that counteracts the one introduced by the
balancedness.

In the context of balancedness, Friedrich et al [22] introduced another
concept, which they called stable. An n-Bernoulli-λ-EDA is stable if the limit
distribution of each frequency, when no fitness signal is received, is unimodal
with its maximum at 1/2. This means that a stable n-Bernoulli-λ-EDA has
a bias toward the center of the hypercube. These authors showed that this
concept is mutually exclusive with an n-Bernoulli-λ-EDA being balanced, as
such an EDA has a bias toward the corners of the hypercube. The stable
property is similar to the concept of an EDA’s limit distribution being the
uniform distribution, as considered by Shapiro [58].

9.2.3 Tools for Analyzing EDAs Theoretically

Most of the theoretical results on EDAs consider univariate algorithms, as
we explain in Section 9.5. Thus, tools that make use of independent events
are commonly used. However, that does not limit the use of these tools to
the univariate case. Especially, drift analysis, which we present later in this
section, can be applied in any setting.

Many proofs make use of classical probabilistic concentration bounds, such
as Markov’s inequality, Chebyshev’s inequality, or, most importantly, Cher-
noff bounds [44]. The latter are used very frequently, since the sampling pro-
cess of a univariate EDA is usually done independently of the other samples.
Thus, such a bound can be applied.

Since the theory of EDAs usually considers first hitting times, more spe-
cialized tools suited for that purpose are used as well. One such tool is the
coupon collector problem [45], which gives highly concentrated first-hitting-
time results if a certain number of events with low probability have to occur
to reach the target. For EDAs, this can be thought of as a certain number
of factors of the probabilistic model being at the wrong end of their spec-
trum, thus slowing down optimization, since they need to be changed for the
optimization process to succeed.

9 Theory of Estimation-of-Distribution Algorithms 417

Another tool for determining first hitting times, and the most prominent
one when looking at the theory of EAs and EDAs in general, is drift theory.
It is loosely akin to the potential method in complexity theory. To apply
drift theory, one needs to define a potential that maps the stochastic process
into the reals. Then, the expected difference between two consecutive steps
of the process is considered: the drift. This can be thought of as the expected
velocity of the process. If the drift can be bounded, the expected hitting time
of the process reaching a target is easily deducible, i.e., if there is a known
bias in the process toward a certain direction, the first hitting time can easily
be bounded.

We now state the three most commonly used drift theorems. The most
general theorem with respect to the prerequisites of the process – the additive
drift theorem (Theorem 9.2.1) – was stated by He and Yao [30]. However, the
ideas used date back to Wald’s equation [65].

Theorem 9.2.1 (additive drift [30, 31]). Let (Xt)t∈N0 be random vari-
ables over a bounded space S ⊆R≥0 containing 0, and let T = min{t |Xt = 0}.

If there is a constant δ > 0 such that, for all t < T , E[Xt−Xt+1 |Xt]≥ δ,
then

E[T |X0]≤ X0
δ

.

And if there is a δ > 0 such that, for all t < T , E[Xt−Xt+1 |Xt]≤ δ, then

E[T |X0]≥ X0
δ

.

The additive drift theorem can be applied when the expected difference
between two potentials is known. However, oftentimes it is easier to de-
termine the expected difference conditional on the current potential, i.e.,
E[Xt −Xt+1 | Xt]. Owing to the law of total expectation, a lower bound
on the conditional expected value is also a lower bound on the unconditional
one.

A theorem more suited to processes whose potential changes at least lin-
early with respect to the current potential is the following multiplicative drift
theorem.

Theorem 9.2.2 (multiplicative drift [14]). Let (Xt)T ∈N0 be nonnegative
random variables over R, each with finite expectation, and let T = min{t |
Xt < 1}.

If there is a constant δ > 0 such that, for all t < T , E[Xt−Xt+1 |Xt]≥ δXt,
then

E[T |X0]≤ 1+ lnX0
δ

.

The multiplicative drift theorem is not well suited if the difference in po-
tential is dependent on the current potential but not in a linear fashion. Such
cases are covered by the following variable drift theorem. However, note that

418 Martin S. Krejca and Carsten Witt

all these theorems assume that the difference in potential does not increase
when one gets closer to the goal.

Theorem 9.2.3 (variable drift [35, 43]). Let (Xt)t∈N0 be nonnegative
random variables over a bounded space S ⊆ R≥0 containing 1, each with
finite expectation, and let T = min{t |Xt < 1}.

If there exists a monotonically increasing function h : R≥0 → R≥0 such
that 1/h is integrable and, for all t < T , E[Xt−Xt+1 |Xt]≥ h(Xt), then

E[T |X0]≤ 1
h(1)

+
∫ X0

1

1
h(x)

dx.

The drift theorems above have been formulated in a simple, easy-to-read
form that covers the most typical scenarios in which they are applied. How-
ever, more general drift theorems can be obtained [40, 41]; for example, to
apply Theorem 9.2.1 in unbounded state spaces, to apply Theorems 9.2.2
and 9.2.3 with respect to arbitrary minimum states smin > 0 in the definition
of T instead of state 1, and to allow processes adapted to arbitrary stochastic
filtrations instead of the natural one implicit in the formulations above. These
generalizations come partly at the cost of more complicated theorem state-
ments, and sometimes require some additional technical assumptions about
the underlying stochastic process.

9.3 Common Fitness Functions

The most commonly analyzed pseudo-Boolean functions for EDAs are
OneMax [46] and LeadingOnes [56]. However, other functions have also
been analyzed [6, 7], with BinVal being the most prominent one of
them [17, 48].

OneMax counts the number of 1s in a bit string. Thus, the unique opti-
mum is the all-1s bit string:

OneMax(xxx) :=
n∑

i=1
xxxi. (9.1)

This function can be generalized to a class of functions, each having a target
bit string aaa – which denotes the unique global optimum – and yielding the
number of incorrectly set bits. Note that any unbiased algorithm, as intro-
duced in Section 9.2.2.3, behaves on OneMax exactly as on the generalized
version.

The OneMax function class is used to analyze how well an EDA performs
as a hill climber. The usual expected runtime of an EDA on this function is
Θ(n logn) [36, 38, 63, 66].

9 Theory of Estimation-of-Distribution Algorithms 419

Whereas OneMax is oftentimes considered to be the easiest pseudo-
Boolean function, BinVal is said to be the hardest [17]. In contrast to
OneMax, where all bits are equally weighted, BinVal uses exponentially
scaled weights on its bit positions:

BinVal(xxx) :=
n∑

i=1
2n−ixxxi. (9.2)

That means that BinVal represents value of a bit string interpreted as a
binary unsigned integer.

Since the sum of all powers of 2 up to an exponent j is less than 2j,
BinVal can be interpreted as a lexicographic order on the hypercube, where
lexicographically greater bit strings have a better fitness.

As with OneMax, in its general form, the global optimum of BinVal is
any bit string aaa, and the fitness of any bit string is the weight of the respective
index if the bit value is the same as that of aaa, and it is 0 otherwise.

LeadingOnes yields the number of consecutive 1s in a bit string, starting
from the left:

LeadingOnes(xxx) :=
n∑

i=1

i∏
j=1

xxxj . (9.3)

As with OneMax, the unique global optimum is the all-1s bit string. In
its general version, the function yields the number of consecutively correctly
chosen bits with respect to a fixed permutation π and a target bit string aaa.

LeadingOnes is used to analyze how an EDA copes with dependencies
between the bits. The known expected runtime of certain EDAs on this func-
tion is O(n2) [10], which is compliant with the usual upper bound for EAs
on this function [1].

9.4 Convergence Analyses

The earliest theoretical studies of EDAs focused mostly on their convergence,
and were similar in style to the research that had been done for evolutionary
algorithms in the 1990s [56, 64]. More precisely, it was studied how an algo-
rithm behaves in the limit t→∞, i.e., if the algorithm is allowed to run for
an arbitrary amount of time. If optimal solutions will be found in this limit,
the algorithm is considered effective.

Almost all convergence analyses of EDAs consider univariate models. An
early publication by Höhfeld and Rudolph [32] studied the vector of frequen-
cies ppp(t) in PBIL using a Markov chain model and rigorously proved that
if µ = 1 < λ and ρ > 0, it will converge in expectation to some solution
xxx∗ = (xxx∗

1, . . . ,xxx∗
n); more precisely, E[ppp(t)

i]→ xxx∗
i as t→∞. This solution need

not be an optimal one but may correspond to a local optimum to which

420 Martin S. Krejca and Carsten Witt

the search process is led in the very first steps. If the fitness function f is
a linear pseudo-Boolean function, then in fact E[ppp(t)

i]→ xxx∗
i with respect to

the optimal solution xxx∗. This includes classical benchmark functions such as
OneMax. However, as pointed out by Shapiro [58], convergence in expecta-
tion does not imply that PBIL eventually will sample the optimum of such
functions. In fact, genetic drift may lock frequencies to values that make it
impossible to sample the optimum.

PBIL was also theoretically analyzed by González et al [26] using a dynam-
ical systems model. Convergence of the model to local optima of the fitness
functions was proven for µ = 1, and it was argued that the actual PBIL will
resemble the model if ρ is chosen sufficiently close to 0. Hence, the approach
does not make predictions for high learning rates ρ, in particular, it excludes
the special case of ρ = 1 as used in UMDA.

Several subsequent publications have considered UMDA and its general-
ization FDA. Mühlenbein and Mahnig [47] also used an approach similar
to dynamical systems theory to derive a quantitative statement about the
behavior of the frequencies in FDA and UMDA over time. In fact, both
fitness-proportionate and the usual truncation selection (take the best µ out
of λ individuals) were considered. Specifically, for the classical UMDA on
OneMax, they derived the result that, roughly,

ppp
(t+1)
i ≈ ppp

(t)
i + I√

n

√
ppp

(t)
i

(
1−ppp

(t)
i

)
, (9.1)

where I is the so-called selection intensity, which is determined from the ratio
µ/λ and can be thought of as being constant. By solving a differential equa-
tion, the formula can be turned into an approximation to the expected fre-
quency at time t. Interestingly, (9.1) resembles a rigorous statement about the
drift of the frequencies that was recently proven in [66] and is crucial for upper
bounds on the runtime; see a more detailed discussion in Section 9.5.2.1.

A more comprehensive convergence study of FDA was done by Mühlenbein
and Mahnig [48]. As a general assumption, the FDA is instantiated with
the correct decomposition of an additively decomposable function f(x) =∑k

i=1 f(Xj), where Xj ⊂{1, . . . ,n}, into its subfunctions. Then the algorithm
will compute a probabilistic model, comprising unconditional and conditional
frequencies from the sampled search points. Strong results are obtained if
a fitness-proportionate selection scheme called Boltzmann selection is used.
Under some assumptions about the initial population, the algorithm will
converge to a distribution that is uniform on the set of optimal solutions. The
drawback of this result is that Boltzmann selection is computationally very
expensive. For the usual truncation selection, results building on simplifying
assumptions were obtained. Moreover, using infinite-population models, the
paper derived quantitative statements similar to (9.1) about the time for a
frequency of UMDA to converge to its optimum value, regarding OneMax
and BinVal.

9 Theory of Estimation-of-Distribution Algorithms 421

In the 2000s, rigorous convergence proofs of FDA (including UMDA) with
fitness-proportionate [72] and truncation selection [71] followed. To study the
regions of convergence and their stability, this research was supplemented by
a fixed-point analysis for UMDA and FDA with 2-tournament selection in
[70]. It turns out that FDA, given an appropriate decomposition of a non-
linear function, converges under milder assumptions about the starting pop-
ulation than UMDA. Roughly, this indicates that a multivariate model, as
used in FDA, can be superior to a univariate model, to which UMDA is re-
stricted. However, the analyses in [70–72] also make the assumption of an
infinite population size, which was very common in early convergence analy-
ses of nature-inspired algorithms [64]. Infinite populations simplify the ana-
lysis, since certain stochastic effects leading to a deviation from the expected
behavior, so-called fluctuations such as genetic drift, vanish under this as-
sumption. Often this type of analysis has been accompanied by experiments,
which support the validity of the statements for finite population sizes also.
Theoretically motivated research often demands rigorous statements that also
hold for finite populations, see the following sections on runtime analysis.

A more recent publication by Wu and Kolonko [68] presented a conver-
gence analysis of a so-called generalized cross-entropy optimization algorithm.
The algorithm generalizes PBIL by adding so-called feasibility information
to elements of the search space. This information corresponds to the heuris-
tic information used in ACO [15]. It was shown, for constant ρ and under
different assumptions about the feasibility information, that the algorithm
may stagnate in suboptimal points owing to genetic drift. However, for a
time-dependent update scheme, almost sure convergence to a set of solutions
that may include optimal points was proven. Finally, an initial runtime ana-
lysis on LeadingOnes was presented. However, this specific result has been
superseded by more detailed analyses in a follow-up paper [69], discussed
below.

To conclude this overview of convergence analyses, we mention a very
recent publication by Ollivier et al [51]. They introduced the information-
geometric optimization (IGO) algorithm, which is a very general EDA frame-
work derived from three invariance properties: invariance under the parame-
terization of the search space, invariance under the parameterization of the
probabilistic model, and invariance under monotone transformations of the
fitness function. This means that IGO does not care about the encoding of
the search space, the probabilistic model, or absolute fitness values. These au-
thors showed that IGO results in a general EDA that encompasses PBIL and
cGA when it is used on the discrete hypercube, considering Poisson binomial
distributions. Further, they considered a time-continuous infinite-population
version of IGO, which they called IGO flow, in the setting of linear pseudo-
Boolean optimization and proved that it always converges to the optimum if
the probabilistic model is not ill-initialized, i.e., none of the probabilities are
initialized such that sampling the optimum is impossible.

422 Martin S. Krejca and Carsten Witt

9.5 Runtime Analyses

In contrast to convergence results as described in Section 9.4, the focus of
runtime analyses is the number of iterations until an algorithm samples a solu-
tion of sufficient quality for the first time, usually an optimum. Normally, the
analyses consider both the expected number of iterations and concentration
results.

In this section, we first give an in-depth overview of the history of runtime
analyses on EDAs, ending with a very detailed discussion of the most recent
results. These results are summarized in Table 9.1. Then, we consider noisy
scenarios, i.e., scenarios where the fitness function is perturbed by some kind
of noise, usually as an additive term to the original fitness. In this setting,
every time a solution is evaluated, the noise is drawn again and independently
of any prior noise, and the goal is to optimize the underlying unperturbed
function despite the noise.

9.5.1 Early Results

We start with a discussion of the first publications addressing runtime aspects
of EDAs, which date back to the early 2000s. Although some of the runtime
bounds proven in these publications can now be improved with state-of-the-
art methods, the analyses already point out typical scenarios and challenges
in the runtime behavior of EDAs, in particular regarding genetic drift. Also
they give insights into fundamental properties of EDAs that distinguish them
from other nature-inspired algorithms such as EAs.

9.5.1.1 First Steps Towards Runtime Analyses

As pointed out above, rigorous runtime analyes must avoid the infinite-
population model and derive statements for populations of finite size. How-
ever, the finiteness comes at a cost: if very small populations are used, there is
a high risk of genetic drift and premature convergence in suboptimal regions
of the search space. In a series of publications, Shapiro [57–59] addressed
sources of genetic drift in EDAs, quantified its impact, and proposed mea-
sures to avoid it. In [58], he pointed out that the probability distribution
evolved by an EDA may converge to suboptimal points and, using a dynam-
ical systems approach, determined

√
n as the minimum population size for

UMDA to avoid genetic drift on the OneMax problem, and even exponen-
tial sizes for Needle. Later, Sudholt and Witt [63] and Krejca and Witt [36]
gave rigorous proofs of the fact that genetic drift can happen up to popula-
tion sizes of O(

√
n logn) in cGA and UMDA. Alternatively, for PBIL, the

learning rate ρ may be reduced to counteract genetic drift. Using a dynami-

9 Theory of Estimation-of-Distribution Algorithms 423

cal systems approach, Shapiro [57] derived the result that the learning rate
should be O(1/

√
n) and O(2−n) to avoid genetic drift on the OneMax and

Needle functions, respectively.
In [59], Shapiro also gave a rigorous theorem on the speed at which genetic

drift moves the probabilistic model belonging to a specific class of EDAs
called SML-EDA (including UMDA) into suboptimal regions. Also, a rigorous
bound Ω(2n/2/

√
n) was determined for the population size required to make

genetic drift on Needle unlikely.
Finally, in [58, p. 115], early conjectures about the runtime of UMDA ap-

peared. More precisely, the paper reported an experimental determination of
a runtime of Θ(λ

√
n) for UMDA on OneMax (given that λ is asymptoti-

cally larger than
√

n). This bound was rigorously proven in [66]. However, it
should be noted that Shapiro’s UMDA slightly differs from the standard.

9.5.1.2 First Runtime Analyses

The first rigorous runtime analysis of an EDA was given by Droste [17].
He considered cGA without borders and proved the general lower bound
Ω(K

√
n) for its expected runtime on all linear functions. Using classical drift

analysis and Chernoff bounds, Droste also proved the bound O(K
√

n) for
OneMax, using K = Ω(n1/2+ε), i.e., slightly above the threshold stated by
Shapiro [58]. This bound becomes O(n1+ε) for the smallest K covered by his
analysis. Finally, Droste argued that BinVal is more difficult to optimize
than OneMax and asymptotically most difficult within the class of linear
functions by proving that cGA without borders takes time O(Kn) with at
least constant probability on this function if K = Ω(n1+ε), and expected
time at least Ω(Kn). The upper bound is O(n2+ε) for the smallest possible
K allowed. However, the lower bound Ω(Kn) does not come with a minimum
value for K.

The results for OneMax were recently refined by Sudholt and Witt [63],
using more advanced tools. In particular, all of Droste’s upper bounds ap-
ply Chernoff bounds to show that genetic drift is unlikely; more precisely,
he showed that the probability of a frequency dropping below 1/3 during
the optimization is superpolynomially small. Using a negative drift theorem,
the upper bound was improved from O(n1+ε) to O(n logn) in [63]. See Sec-
tion 9.5.2.1 for more details. Regarding BinVal, a very recent analysis by
Witt [67] proved Droste’s conjecture that the function is harder to optimize
than OneMax, since the expected optimization time of cGA on BinVal is
Ω(n2) no matter how K is chosen. The idea of the analysis is to show, for
all K = o(n), that genetic drift will lock many frequencies to 0 before the
optimum can be found.

The results discussed in the previous two paragraphs are summarized in
the following theorem.

424 Martin S. Krejca and Carsten Witt

Theorem 9.5.1 ([17, 67]). Choosing K = n1+ε for some constant ε > 0,
the runtime of cGA without borders on BinVal is bounded by O(Kn) with
probability Ω(1). Moreover, the expected runtime of cGA with and without
borders on BinVal is bounded from below by Ω(min{n2,Kn}).

In the years following Droste’s seminal work, runtime analysis focused
more on UMDA and variants thereof. The first runtime analysis of a UMDA
variant was given by Chen et al [5], who studied the LeadingOnes function
and a modification called TrapLeadingOnes. An expected optimization
time of O(λn) of UMDA on LeadingOnes was derived under the so-called
no-random-error assumption, which is similar to an infinite-population model
and basically eliminates genetic drift. These authors also showed that Trap-
LeadingOnes, which starts out in the same way as LeadingOnes but re-
quires an almost complete change of the probabilistic model for the EDA to
reach the global optimum, yields expected exponential optimization time for
UMDA, using 2-tournament selection instead of the usual truncation selec-
tion. Moreover, a generalization of UMDA similar to PBIL was considered,
but it turned out that the strongest bounds apply for UMDA.

Strictly speaking, Chen et al [5] only derived runtime bounds for a model
of UMDA. In subsequent work [7], they therefore supplemented these with
a rigorous proof of the fact that UMDA, when appropriate borders for the
frequencies are used, with high probability requires superpolynomial time
to optimize TrapLeadingOnes. Similarly to Droste’s early work, Chernoff
bounds were applied to show that the frequencies do not deviate much from
their expected behavior, i.e., do not exhibit strong genetic drift. For the
Chernoff bounds to be sufficiently strong, unusually large population sizes
such as λ = Ω(n2+ε) are required.

This approach was successfully picked up and extended in a more compre-
hensive journal publication [8]. Using λ = Ω(n2+ε) again, the authors of [8]
showed that UMDA without borders optimizes LeadingOnes in time O(λn)
with overwhelming probability. Furthermore, the utility of appropriately set
frequency borders was shown on a modification called BVLO, where the
fitness landscape requires the frequency of the last bit to be changed from
one extremal value to the other one. Here, UMDA with borders has expected
polynomial runtime, whereas UMDA without borders will with overwhelming
probability be stuck at nonoptimal solutions.

Finally, using similar proof techniques, in particular Chernoff bounds,
Chen et al [6] presented a constructed example function called Substring,
on which simple EDAs and simple evolutionary algorithms behave fundamen-
tally differently. More precisely, it was proven that the (1+1) EA with any
mutation probability c/n, where c > 0 is constant, with overwhelming prob-
ability needs exponential time to find the optimum of the function, while
UMDA using λ = Ω(n2+ε) and λ/µ = O(1) finds with very high probability
the optimum in time O(λn). Specifically, it is beneficial for the optimization
that UMDA can sample search points with high variances as long as all fre-
quencies are close to 1/2. The (1+1) EA always samples with low variance in

9 Theory of Estimation-of-Distribution Algorithms 425

the vicinity of the best-so-far solution, which is detrimental with the specific
example function.

9.5.2 Recent Advances

Only very few runtime analyses of EDAs were published in the years 2010–
2014, most notably [50, 68]. Starting from 2015, this research area gained
significant momentum again (see, e.g., [10, 20, 21]). We now discuss the lat-
est results in runtime analysis of EDAs. They mostly consider the standard
benchmark function for EAs: OneMax. Using and advancing the toolbox for
the analysis, matching upper and lower bounds have been proven, giving a
tight runtime result that allows a direct comparison of the performance of
EDAs with other nature-inspired algorithms.

9.5.2.1 Upper Bounds for OneMax

Interestingly, early runtime analyses of EDAs focused more on variants of
LeadingOnes instead of OneMax, which is the most commonly consid-
ered example function in evolutionary computation. In fact, the first runtime
analysis of UMDA on OneMax was not published until 2015 [10]. A pos-
sible explanation is that the hierarchical structure of LeadingOnes makes
it more accessible to a runtime analysis than OneMax: if the best-so-far
LeadingOnes value is k and the frequencies of the first k bits all have
attained their maximum value, it is likely to sample only 1s there, which
is typically needed for an improvement of the best function value seen. In
contrast, there is no direct relationship between the OneMax value and fre-
quencies at specific bits. Also, modern runtime analyses of UMDA [10, 38]
reveal that a proof of runtime bounds for LeadingOnes can be relatively
short and simple once the case of OneMax has been understood.

Results for cGA and MMASib

Before we describe the advances made in the runtime analysis of UMDA in
more detail, we discuss the state of the art for the simpler EDAs MMASib and
cGA. As mentioned above, Droste [17] showed that cGA typically optimizes
OneMax in time O(n1+ε), using K = n1/2+ε. His variant of cGA does not
use any borders on the frequencies, which is why he used a comparatively
large K to make convergence of a frequency to 0 by genetic drift sufficiently
unlikely. More recent analyses of cGA and also other EDAs such as UMDA
mostly impose borders {1/n,1− 1/n} on the frequencies, as mentioned in
Section 9.2.2.1. Using a more careful analysis of the stochastic behavior of

426 Martin S. Krejca and Carsten Witt

frequencies, the classical O(n logn) runtime can be obtained, as shown in the
following summary of theorems.

Theorem 9.5.2 ([50, 63]). If ρ ≤ 1/(cn1/2 logn) for a sufficiently large
constant c > 0 and ρ ≥ 1/poly(n), then MMASib (with borders) optimizes
OneMax in expected time O(

√
n/ρ). For ρ = 1/(cn1/2 logn), the runtime

bound is O(n logn).
The expected optimization time of cGA (with borders) on OneMax with

K ≥ c
√

n logn for a sufficiently large c > 0 and K = poly(n) is O(
√

nK). This
is O(n logn) for K = c

√
n logn.

Theorem 9.5.2 makes statements for two slightly different EDAs but the
proofs of these statements follow roughly the same structure. Crucially, the
effect of genetic drift is bounded: in the given time bound, for example,
O(
√

nK) generations, the expected number of frequencies that drop be-
low 1/3 is proven to be polynomially small, for example, O(1/n2). Such a
statement is typically obtained from a negative drift theorem. Next, the drift
of frequencies towards 1 induced by selection (the so-called bias) is analyzed.
It turns out that this bias is at least proportional to the sampling variance
of the EDA: roughly, each frequency pppi increases by an expected amount
O
(
pppi(1−pppi)/(K

√∑n
j=1 pppj)

)
in each generation. An analysis of this variable

drift, using the variable drift theorem, then gives the desired runtime bound.
(As variable drift analysis was not available to Neumann et al [50], a unified
and simpler proof of the statement for MMASib was given in [63].) In the
unlikely event that a frequency has reached the wrong border 1/n owing to
genetic drift, an event of probability Ω(1/n) is sufficient to lift the frequency
again, which is absorbed into the total runtime owing to the low expected
number of such bad frequencies.

First Phase Transition Around
√

n logn

Theorem 9.5.2 requires K ≥ c
√

n logn. Recent research reveals that cGA
in fact exhibits a phase transition in the regime Θ(

√
n logn), similarly to

MMASib. If K ≤ c′√n logn for a sufficiently small constant c′ > 0, then ge-
netic drift will outweigh the drift due to selection such that a significant
number of frequencies will drop to the lower border. In this case, classical
arguments about coupon collector processes show that the runtime must be
at least Ω(n logn); see more arguments below, in Section 9.5.2.2, on lower
bounds. There are no upper bounds on the runtime of cGA and MMASib
in the regime corresponding to K ≤ c′√n logn, but it is conjectured that
bounds resembling the existing ones for UMDA (see Theorems 9.5.3 and 9.5.4
below) can be obtained if K ∈ [c1 logn,c2

√
n logn] for appropriate constants

c1, c2 > 0.

9 Theory of Estimation-of-Distribution Algorithms 427

Results for UMDA

We complete this discussion of upper bounds with a review of recent advance-
ments for UMDA. As mentioned, Dang and Lehre [10] were the first to prove
upper bounds for UMDA on OneMax. If λ ≥ c logn for a sufficiently large
constant c > 0 and λ≥ 13eµ/(1− c′) for an arbitrarily small constant c′ > 0,
then the expected runtime of UMDA on OneMax is O(nλ logλ). Hence,
plugging in the smallest value of λ allowed in the statement, the bound is
O(n logn log logn), i.e., slightly above the O(n logn) bound discussed above
with respect to cGA and MMASib.

Dang and Lehre used a powerful proof technique to obtain their bound.
Interestingly, the so-called level-based theorem [9], which was originally de-
veloped for the analysis of population-based evolutionary algorithms, can be
applied in this context. It was shown how the truncation selection of the
best µ out of λ individuals leads to a reasonable chance of improving the
best-so-far OneMax value and allows one to satisfy the other conditions
of the level-based theorem with certain parameter settings. As a side-result,
using the same proof technique, the bound O(nλ + n2) with respect to the
LeadingOnes function was also obtained. Somewhat unusually, these proofs
mostly consider populations instead of analyzing the values of single frequen-
cies. For this to work, it is necessary that a frequency vector can be translated
more or less unambiguously back into the population from which it was com-
puted. This is possible in UMDA but not even in the slight generalization
PBIL, where a frequency vector depends on the history of previous popula-
tions.

Obviously, the proof of the above-mentioned O(n logn log logn) bound im-
mediately raised the question of whether this was the best possible runtime
of UMDA on OneMax. Recently, two independent improvements of the
bound were presented. The first one, due to Lehre and Nguyen [38], builds
on a refinement of the level-based analysis, carefully using properties of the
Poisson–binomial distribution, and is summarized by the following theorem.
We emphasize that UMDA always refers to the algorithm with borders 1/n
and 1− 1/n on the frequencies, i.e., Algorithm 9.2 extended by a step that
narrows all frequencies down to the interval [1/n,1−1/n].

Theorem 9.5.3 ([38]). For some constant a > 0 and any constant c ∈ (0,1),
UMDA (with borders) with a parent population size a lnn ≤ µ ≤

√
n(1− c)

and an offspring population size λ≥ (13e)µ/(1−c) has expected optimization
time O(nλ) on OneMax.

Hence, Theorem 9.5.3 proves that the runtime of UMDA is O(n logn)
for an appropriate choice of the parameters. This is tight owing to the
recent lower bound Ω(n logn) discussed below in Section 9.5.2.2. Interest-
ingly, the set of appropriate choices for the O(n logn) behavior is confined
to λ = Θ(logn), which corresponds to a parameter choice below the above-
mentioned phase transition, i.e., a choice where the algorithm exhibits severe

428 Martin S. Krejca and Carsten Witt

genetic drift. Also, the theorem includes a limit on µ, which is exactly in the
regime of the phase transition. For greater values of µ and λ, Witt [66] in-
dependently derived runtime bounds (see the following theorem); this result
also includes the regime covered by Lehre and Nguyen [38], albeit with an
assumption about the ratio λ/µ.

Theorem 9.5.4 ([66]).

(a) Let λ = (1 + β)µ for an arbitrary constant β > 0 and let µ ≥ c
√

n logn
for some sufficiently large constant c > 0. Then the optimization time
of UMDA, both with and without borders, on OneMax is bounded from
above by O(λ

√
n) with probability Ω(1). For UMDA with borders, the

expected optimization time is also bounded in this way.
(b) Let λ = (1 + β)µ for an arbitrary constant β > 0 and let µ ≥ c logn for

a sufficiently large constant c > 0 as well as µ = o(n). Then the expected
optimization time of UMDA with borders on OneMax is O(λn). For
UMDA without borders, it is infinite with high probability if µ < c′√n logn
for a sufficiently small constant c′ > 0.

The two statements of Theorem 9.5.4 reflect the above-mentioned phase
transition. For µ≥ c

√
n logn, as required in the first statement, the behavior

is similar to that underlying Theorem 9.5.2 with respect to cGA and MMASib.
Frequencies move smoothly towards the upper border, and it is unlikely that
frequencies will exhibit genetic drift towards smaller values than 1/3. Hence,
it is unlikely as well that UMDA without borders will get stuck with fre-
quencies at 0. The runtime O(n logn) is obtained for λ = c

√
n logn for an

appropriately large constant c > 0.
The second statement of Theorem 9.5.4 applies to a case where genetic drift

is likely, but frequencies that have hit the lower border 1/n have a reasonable
chance to recover in the given time span, which is O(nλ) instead of only
O(
√

nλ) now. In fact, the analysis carefully considers the drift of frequencies
from the lower towards the upper border and analyzes the probability that a
frequency leaves its upper border again. To do so, a very careful analysis of
the bias introduced by selecting the best µ individuals is required. Without
such selection, a single frequency would correspond to a so-called martingale,
but, owing to selection, there is a small drift upwards, similarly to what we
described with respect to cGA above. Hence, the proof of Theorem 9.5.4
also gives insights into the stochastic process described by single frequencies.
It is more involved than that for cGA since UMDA can change frequencies
globally instead of only by ±1/K. The runtime O(n logn) can be obtained
again, this time for λ = c

√
n logn.

It is worth pointing out that Theorems 9.5.3 and 9.5.4 make nonoverlap-
ping statements. Theorem 9.5.4 also applies to λ above the phase transition
and describes a transition of O(nλ) to O(n

√
λ) in the runtime. However, it

crucially assumes λ = (1 + Θ(1))µ in both statements, an assumption that
was also useful in earlier analyses of EDAs [59] but restricts the generality of

9 Theory of Estimation-of-Distribution Algorithms 429

the statements. In contrast, Theorem 9.5.3 applies to settings such as µ = 1,
λ = c logn and shows the O(n logn) bound also for this somewhat extreme
choice of parameters.

We conclude this discussion of upper bounds by summarizing a recent
study by Wu et al [69], who presented the first runtime analysis of PBIL
(called the cross-entropy (CE) method in their paper). Using µ = n1+ε logn
for some constant ε > 0 and λ = ω(µ), they obtained the result that the run-
time of PBIL on OneMax is O(λn1/2+ε/3/ρ) with overwhelming probability.
Hence, if ρ = Ω(1), including the special case ρ = 1, where PBIL collapses to
UMDA, a runtime bound of O(n3/2+(4/3)ε logn) holds, i.e., slightly above
n3/2. In light of the detailed analyses of UMDA presented above, one may
conjecture that this bound is not tight even if ρ < 1 is used, i.e., PBIL actually
uses its learning approach to include solutions from several previous gener-
ations in the probabilistic model. In addition to that, a bound of the type
O(n2+ε) on LeadingOnes is obtained if ρ = Ω(1), µ = nε/2 and λ = Ω(n1+ε).
Technically, Wu et al [69] used concentration bounds such as Chernoff bounds
to bound the effect of genetic drift, as well as anti-concentration results, in
particular for the Poisson–binomial distribution, to obtain their statements.
All bounds hold with high probability only, since PBIL is formulated without
borders. Probably, using a more detailed analysis of genetic drift and apply-
ing modern drift theorems, the bound for LeadingOnes can be improved
to an expected O(n2) runtime for all ρ = Ω(1), provided that the classical
borders {1/n,1−1/n} are used.

9.5.2.2 Lower Bounds for OneMax

Deriving lower bounds on the runtime of EDAs is often more challenging
than deriving upper bounds. Roughly, most existing approaches show that
the probabilistic model is not sufficiently adjusted towards the set of optimal
solutions within a given time span. A relatively straightforward approach re-
lates the runtime to the strength of updates in the algorithm. With respect
to simple univariate algorithms such as cGA and UMDA, one can show that
frequencies do not increase by more than 1/K (with probability 1) or O(1/µ)
(in expectation, assuming λ = (1+Θ(1))µ) in a step. This naturally leads to
a lower bound of Ω(K) or Ω(µ), respectively, on the runtime on OneMax.
However, the bound is weak, as it pessimistically assumes that each genera-
tion changes frequencies in the right direction. More detailed analyses reveal
that cGA, in the early phases of the optimization process, has only a prob-
ability of O(1/

√
n) of performing a step where the two offspring differ in

fewer than two bits, i.e., the probability that the outcome of a certain bit
is relevant for selection is then only O(1/

√
n) [63]. Similar results can be

obtained for UMDA [36]. Thus, each bit only moves by up to an expected
amount of O(1/(K

√
n)) or O(1/(µ

√
n)), respectively, per generation. Then

a drift analysis translates this into the lower bounds Ω(K
√

n) and Ω(µ
√

n)

430 Martin S. Krejca and Carsten Witt

that appear in the following theorems. The first bound was already known
for cGA without borders from Droste’s work [17].

Theorem 9.5.5 ([63]). The optimization time of cGA (with borders) with
K ≤ poly(n) on OneMax is Ω(K

√
n + n logn) with high probability and in

expectation.

Theorem 9.5.6 ([36]). Let λ = (1 + β)µ for some constant β > 0 and λ ≤
poly(n). Then the expected optimization time of UMDA on OneMax is
Ω(µ
√

n+n logn) (both with and without borders).

Sudholt and Witt [63] also stated Theorem 9.5.5 in an analogous fashion
for MMASib, with the parameter K replaced by 1/ρ. As its working principle
is rather similar to that of cGA, we do not discuss MMASib further in this
section.

The lower bounds Ω(K
√

n) and Ω(µ
√

n) we have illustrated so far are
very weak if K and µ, respectively, are small. In fact, they can be even worse
than the bounds Ω(n/logn) that follow from black-box complexity [18]. Until
2016, it was not clear whether the runtime of these simple EDAs was also
bounded by Ω(n logn) or whether they could possibly optimize OneMax in
o(n logn) time and hence be faster than simple evolutionary algorithms. A
negative answer was given by the two above theorems, both of which also
contain an Ω(n logn) term.

The proof of the bound Ω(n logn) is technically demanding. It relies on
the following strategy:
(a) Show that with high probability several frequencies, for example

√
n of

them, reach the lower border before the optimum is sampled. This re-
quires a detailed analysis of the stochastic behavior of several dependent,
single frequencies instead of considering merely the sum Pt :=

∑n
i=1 ppp

(t)
i

of the frequencies, whose stochastic behavior is already quite well under-
stood and can relatively easily be analyzed by drift analysis, as sketched
in the paragraph following Theorem 9.5.2. In fact, in the detailed analysis
of single frequencies, it is even required to show that some frequencies
walk to the lower border while most other frequencies do not move up
too far to the upper border; otherwise one cannot rule out with suffi-
ciently high probability the possibility that the optimum is sampled in
the meantime.

(b) Once polynomially many frequencies have reached the lower border 1/n,
a so-called coupon collector effect arises. A relatively straighforward gen-
eralization of the coupon collector theorem [44, 45] to the case where still
polynomially many bits have to be corrected, where a correction is made
with probability at most 1/n, yields the following statement: Assume
cGA reaches a situation where at least Ω(nε) frequencies attain the lower
border 1/n. Then, with high probability and in expectation, the remain-
ing optimization time is Ω(n logn). The underlying modification of the
coupon collector theorem may be called folklore in probability theory,

9 Theory of Estimation-of-Distribution Algorithms 431

but is interesting for its own sake: collecting the last nε coupons takes
asymptotically the same time as collecting them all.
A major effort is required to flesh out the behavior sketched in item (a)

above. Roughly speaking, one exploits the fact that frequencies behave simi-
larly to a martingale and can walk to the lower border owing to genetic drift.
However, the effect of genetic drift is dependent on many factors. When
all frequencies have reached a border, genetic drift is much less pronounced
than in situations where many frequencies are close to the median value 1/2
(which is initially the case). To handle this dependency on time, it has to be
shown that some frequencies move unusually fast, which means faster than
the expected time, to the lower border while the majority of the frequencies
is still at a medium value. More precisely, the proofs approximate the hitting
time of the lower border by a normally distributed random variable, which is
not sharply concentrated around the mean and exhibits exactly the desired
reasonable probability of deviating from the mean. Additionally, the drift
analysis features a novel use of potential functions that smooth out the vari-
ances of the movements of frequencies, which would be place-dependent and
not applicable to the approximation by a normal distribution otherwise.

Second Phase Transition Around logn

Not much research has been done on very small values of the population
size λ and K in UMDA and cGA, corresponding to very large ρ in MMASib.
Neumann et al [50] gave an exponential bound on the runtime of MMASib
if ρ≥ c/ logn, indicating a second phase transition in behavior around logn.
Roughly speaking, if the set of possible values for a frequency becomes less
than logn, then the scale is too coarse for the probabilistic model to adjust
slowly towards the set of optimal solutions. For example, even after a fre-
quency has reached its maximum 1− 1/n once, an unlucky step may lead
to a drastic decline in frequency which, on average, cannot be recovered in
polynomial time. It is conjectured that cGA and UMDA will not optimize
OneMax in polynomial time either if K ≤ c logn or if λ≤ c logn, respectively,
for a small constant c > 0.

Major Open Problems

Even if we ignore the values below logn corresponding to the second phase
transition just mentioned, the lower bounds given in Theorems 9.5.5 and
9.5.6 still do not give a complete picture of the runtime of the algorithms on
OneMax. For example, for µ in the medium regime between the phase tran-
sitions, i.e., when µ is both ω(logn) and o(

√
n logn), it is not clear whether a

lower bound of the kind Ω(µn) (which would match the upper bound given
above in Theorem 9.5.4) or any other runtime ω(n logn) holds. It is an open

432 Martin S. Krejca and Carsten Witt

problem to prove tight bounds on the runtime of simple EDAs in this medium
regime. As usual, we expect analyses to be harder for UMDA than for cGA,
as the former algorithm can change frequencies in a global way, while the
latter only changes them locally by ±1/K.

Some progress on the way to tight bounds has been made very recently
by Lengler et al. [42], who proved a lower bound of Ω(K1/3n + n logn) on
the expected optimization time of the cGA if K = O(n1/2/(logn log logn)).
Hence, the expected optimization time will be Ω(n7/6/(logn log logn)) for
K = O(n1/2/(logn log logn)), while it is bounded from above by O(n logn) for
K = cn1/2 if c is chosen as a sufficiently large constant. Hence, the runtime
seems to depend in a multimodal way on K. Nevertheless, this still remains
a conjecture, since there are no upper bounds on the runtime of the cGA for
K = o(n1/2); there are only upper bounds for the UMDA if λ = o(n1/2) that
support this conjecture.

A summary of proven upper and conjectured bounds on the runtime of
UMDA on OneMax is displayed in Fig. 9.2. We believe that similar results
hold for cGA and MMASib, with λ replaced by K and 1/ρ, respectively.

λ0 logn
√

n logn

Runtime

Ex
po

ne
nt
ia
l(

co
n

je
ct

u
re

d
)

O(λn)

(proven) O(λ
√

n)

(proven)

Fig. 9.2 Picture of runtime bounds with UMDA on OneMax, assuming λ = (1 +
Θ(1))µ.

We have carried out experiments for UMDA on OneMax to gain some
empirical insights into the relationship between λ and the runtime. The algo-
rithm was implemented in the C programming language using the WELL512a
random number generator. The problem size was set to n = 2000, λ was in-
creased from 14 to 350 in steps of size 2, µ was set to λ/2, and, owing to the
high variance of the runs, especially for small λ, an average was taken over
3000 runs for every setting of λ. The left-hand side of Fig. 9.3 demonstrates
that the runtime in fact shows a multimodal dependence on λ. Starting from
very high values, it has a minimum at λ≈ 20 and then increases again up to
λ ≈ 70. Thereafter it falls again up to λ ≈ 280, and finally increases rather
steeply for the rest of the range. The right-hand side also illustrates that the
number of times the lower border is hit seems to decrease exponentially with

9 Theory of Estimation-of-Distribution Algorithms 433

λ. The phase transition where the behavior of frequencies turns from chaotic
into stable is empirically located somewhere between 250 and 300.

50 100 150 200 250 300 350

3.2

3.4

3.6

3.8

4

4.2

·104

λ

50 100 150 200 250 300 350

0

0.5

1

1.5

·105

λ

Fig. 9.3 Left-hand side: empirical runtime of UMDA on OneMax, right-hand side:
number of hits of lower border; for n = 2000, λ∈ {14,16, . . . ,350}, µ = λ/2, and averaged
over 3000 runs

9.5.2.3 New Advances in Tackling Genetic Drift

Genetic drift slows down optimization because it basically adds a random
signal to the objective function. One reason why this impacts the algorithms
is their myopic behavior: they have to perform an update to their frequencies
based only on information from the current iteration. Especially if this sample
size is small, such as for cGA or MMASib, the amount of information gained
during a single iteration may be too small to perform a sensible decision with
respect to the update.

In order to counteract such ill-informed updates, Doerr and Krejca [12]
proposed a new EDA that tries to reduce the number of incorrect frequency
updates by relying not only on information from a single iteration but also
information from multiple previous iterations. Their significance-based cGA
(sig-cGA) stores a frequency vector, like an n-Bernoulli-λ-EDA, but addition-
ally also stores a history Hi for each bit position i. In each iteration, only
two offspring are sampled, and the bits of the better individual are saved in
the respective histories. Then the algorithm checks, for each history, whether
a significance occurs, that is, whether the number of 1s or 0s saved is drasti-
cally more than expected when assuming that each 1 occurs with probability
pppi. The level of confidence can be regulated by a parameter called ε. If a
significance of 1s is detected at a position, the respective frequency is set to
1−1/n; if a significance of 0s is detected, the frequency is set to 1/n; other-
wise, the frequency is left unchanged. Overall, the algorithm uses only three

434 Martin S. Krejca and Carsten Witt

different frequency values: 1−1/n, 1/2, and 1/n, where 1/2 is used only as a
starting value – if a frequency once takes a value different from 1/2, it never
returns.

This significance-based approach allows sig-cGA, at the beginning of an
optimization, to keep frequencies at 1/2 until there is statistical proof that
another value would be more beneficial. Thus, it can be thought of as an algo-
rithm that is both balanced and stable.4 The usefulness of this approach was
shown by proving that this algorithm optimizes OneMax and LeadingOnes
both in time O(n logn) in expectation and with high probability, which has
not been proven for any other EA or EDA before [12].

9.5.3 Noisy Settings

In real-world optimization, the evaluation of a solution often involves a degree
of uncertainty due to inaccuracies in the evaluation process. We call this
uncertainty in the fitness noise. Since EDAs, as general-purpose heuristics,
build on this inaccurate information, it is interesting to analyze how they
perform when faced with noise.

Most EDA scenarios with noise consider ACO variants on single-
destination shortest-path problems, mostly not in the context of EDAs at
all [13, 19, 33, 62]. However, some results have analyzed pseudo-Boolean op-
timization [23, 24].

9.5.3.1 Combinatorial Optimization

Horoba and Sudholt [33] considered an acyclic weighted graph and were inter-
ested in finding a shortest path from each vertex to a single given destination.
The noise was modeled by drawing a random nonnegative value η per edge
weight w, possibly dependent on the edge, and its new weight w′ was de-
termined by w′ = w(1 + η). Thus, depending on the distribution of η, large
weights increase more than small weights. The algorithm of interest was an
ACO variant. This constructs paths from each node to the destination, using
the perturbed weights and choosing an edge with a probability related to
its pheromone value with respect to the pheromones of all competing edges.
The algorithm compares each constructed path with the currently best-so-far
solution per node without reevaluation. That means that the best-so-far so-
lutions, as well as their possibly perturbed weights, are stored and used for
lookup.

These authors provided instances in which the algorithm does not find a
desired approximation within polynomial time with high probability. This is
4 Since sig-cGA is not an n-Bernoulli-λ-EDA (owing to the histories that store data
from multiple iterations), the actual definitions of balanced and stable do not apply.

Table 9.1 Expected runtimes (number of fitness evaluations) of various EDAs until they first find an optimum for the three functions
OneMax (9.1), LeadingOnes (9.3), and BinVal (9.2)

Algorithm OneMax Constraints LeadingOnes Constraints BinVal Constraints
UMDA/PBIL5 Ω(λ

√
n + n logn)

(Thm. 9.5.6)
µ = Θ(λ),λ = O

(
poly(n)

)
O(nλ logλ+n2) [10] λ = Ω(logn),

µ = Θ(λ)
Unknown –

O(λn) (Thm. 9.5.3
and 9.5.4)

µ = Ω(logn)∩O(
√

n),λ = Ω(µ)
or µ = Ω(logn)∩o(n),µ = Θ(λ)

O(λ
√

n) (Thm. 9.5.4) µ = Ω(
√

n logn),µ = Θ(λ)
cGA/2-MMASib Ω

(√
n

ρ + n logn

)
(Thm. 9.5.5)

1
ρ = O

(
poly(n)

)
Unknown – Ω(min{n2,Kn})

(Thm. 9.5.1)6
None

O

(√
n

ρ

)
(Thm. 9.5.2) 1

ρ = Ω(
√

n logn)∩O
(
poly(n)

)
O(Kn)
(Thm. 9.5.1)6

K = n1+ε,
ε = Θ(1)

sig-cGA O(n logn) [12] ε > 12 O(n logn) [12] ε > 12 Unknown –

5 The results shown for PBIL are the results for UMDA, since the latter is a special case of the former. Wu et al [69] also analyzed PBIL but
with worse results.
6 This result was only proven for cGA.

436 Martin S. Krejca and Carsten Witt

due to the best-so-far solution not being reevaluated. Thus, if a nonoptimal
path is evaluated to be very good by chance, it will get reinforced many times,
making it more unlikely that the algorithm will sample other paths that, addi-
tionally, have to be evaluated even better. However, these authors also proved
that optimization will succeed if the noise follows the same distribution for
every edge.

Sudholt and Thyssen [62] extended the results of Horoba and Sudholt [33]
by considering a larger range of noise distributions, showing how long it takes
to approximate optimal solutions or even when optimization succeeds.

Doerr et al [13] considered a similar scenario to the one analyzed by Horoba
and Sudholt [33], the difference being that the weights of the graphs were
purely random, i.e., there was no groundtruth to rely on. This setting makes
it harder to define what an optimal solution actually is.

The authors of [13] first considered a multigraph consisting of two nodes
with multiple edges between those nodes. They called an edge preferred if
its probability of being shorter than any other edge from the same vertex
was at least 1/2 + δ, where δ > 0 is a constant, and they stated how this
scenario relates to armed-bandit settings. Using the same ACO algorithm
as Horoba and Sudholt [33] but reevaluating the best-so-far solution each
iteration, they gave an upper bound on the expected time until the pheromone
on the preferred edge was maximal. They then provided examples of weight
distributions that result in an edge being preferred. The paper concludes with
a more general graph setting that assumes that there exists an inductively
defined set of edges S, starting at a given node, such that each edge that
extends paths using edges from S is preferred. The authors of the paper gave
an upper bound, in the case where S is a tree, on the expected time until the
ACO variant considered maximizes the pheromones on all of the edges in S.

Feldmann and Kötzing [19] analyzed the same setting as Doerr et al [13]
but investigated another ACO variant: MMAS-fp. This algorithm does not
store best-so-far solutions but always makes an update with respect to the
current samples; however, the update is done with respect to each sample’s
fitness. Thus, good solutions yield larger changes in the update than bad
solutions. The authors of [19] explained the difference in this approach with
respect to those of Horoba and Sudholt [33] and Doerr et al [13] by saying
that MMAS-fp optimizes paths that are shortest in expectation. They proved
this claim by providing upper bounds on the expected number of iterations
until MMAS-fp finds expected shortest paths in graphs where, for each node,
the difference between the expected lengths of different outgoing edges can
be lower-bounded by a value δ > 0, which influences the runtime.

9.5.3.2 Pseudo-Boolean Optimization

Friedrich et al [23] (conference version [21]) also considered MMAS-fp, just
like Feldmann and Kötzing [19], but in the setting of optimizing linear pseudo-

9 Theory of Estimation-of-Distribution Algorithms 437

Boolean functions. The noise was mostly modeled as Gaussian additive pos-
terior noise, i.e., when evaluating the fitness of an individual, a normally
distributed random variable is added to the fitness, every time anew and
independently. Friedrich et al [23] showed that MMAS-fp scales gracefully
in this scenario. That means that, for every polynomially bounded variance
of the noise, there is a configuration of MMAS-fp such that the runtime is
polynomially bounded as well. Since the runtime results hold with high prob-
ability, by performing an uninformed binary search using restarts, the correct
variance of a problem with Gaussian noise can be guessed correctly within
polynomial time. Thus, MMAS-fp can be modified such that the runtime is,
with high probability, polynomial if the variance of the noise is.

Additionally, the authors of [23] extended their results to posterior noise
other than Gaussian. Further, they considered a prior noise model where,
before evaluating the fitness of an individual, a uniformly randomly chosen
bit is flipped. In both of these settings, they proved that the algorithm scales
gracefully.

Friedrich et al [24] (conference version [20]) also considered cGA under the
Gaussian additive posterior noise model. As for MMAS-fp, they proved that
the algorithm scales gracefully. Further, they showed that the (µ + 1) EA,
a commonly analyzed EA, does not scale gracefully. Both of the results of
Friedrich et al [23, 24] suggest that EDAs are inherently more tolerant to noise
than standard EAs, as the EDAs did not need to be modified to cope with
noise, except for choosing correct parameters. These authors also compared
the restart version of cGA with an approach that uses resampling in order to
basically remove the noise in the fitness, as described by Akimoto et al [2].
Since the number of resamples is closely tied to the noise’s variance, the cGA
variant using restarts instead of resampling emerges victorious.

9.6 Conclusions and Open Problems

We have given an overview of the state of the art in the theory of discrete
EDAs, where the most recent research surpasses convergence analyses and
instead deals with the runtime of especially simple univariate EDAs such as
cGA, UMDA, and PBIL. In this domain, increasingly precise results have
been obtained with respect to well-established benchmark problems such as
OneMax, but, as we have emphasized in this chapter, there are several open
problems even for this simple problem. In particular, a complete picture of
the runtime of the simple EDAs depending on their parameters is still miss-
ing. We think that further results for benchmark functions will give insight
into the right choice of specific EDAs, including the choice of parameters such
as the population size and the borders on the frequencies depending on the
problem characteristics. We also expect that this research will lead to runtime
results and advice on the choice of algorithms and parameters with respect

438 Martin S. Krejca and Carsten Witt

to more practically relevant combinatorial optimization problems. Here in
particular, noisy settings or, more generally, optimization under uncertainty
seem to represent scenarios where EDAs can outperform classical evolution-
ary algorithms. Also, the combinatorial structure may favor the application
of multivariate EDAs, a type of EDA for which almost no theoretical results
exist yet.

Acknowledgements Carsten Witt was supported by a grant from the Danish Coun-
cil for Independent Research (DFF-FNU 4002-00542). Support by the COST Action
15140 “Improving Applicability of Nature-Inspired Optimisation by Joining Theory and
Practice” (ImAppNIO) is also gratefully acknowledged.

References

[1] Afshani P, Agrawal M, Doerr B, Doerr C, Larsen KG, Mehlhorn K
(2013) The query complexity of finding a hidden permutation. In: Space-
Efficient Data Structures, Streams, and Algorithms – Papers in Honor
of J. Ian Munro on the Occasion of His 66th Birthday, pp 1–11, DOI
10.1007/978-3-642-40273-9_1

[2] Akimoto Y, Astete-Morales S, Teytaud O (2015) Analysis of runtime
of optimization algorithms for noisy functions over discrete codomains.
Journal of Theoretical Computer Science 605:42:50, DOI 10.1016/j.tcs.
2015.04.008

[3] Asoh H, Mühlenbein H (1994) On the mean convergence time of
evolutionary algorithms without selection and mutation. In: Proc. of
PPSN ’94, pp 88–97

[4] Baluja S (1994) Population-based incremental learning: A method for
integrating genetic search based function optimization and competitive
learning. Tech. Rep. CMU-CS-94-163, Carnegie Mellon University, Pitts-
burgh, PA

[5] Chen T, Tang K, Chen G, Yao X (2007) On the analysis of average time
complexity of estimation of distribution algorithms. In: Proc. of CEC ’07,
pp 453–460

[6] Chen T, Lehre PK, Tang K, Yao X (2009) When is an estimation of
distribution algorithm better than an evolutionary algorithm? In: Proc.
of CEC ’09, pp 1470–1477

[7] Chen T, Tang K, Chen G, Yao X (2009) Rigorous time complexity analy-
sis of univariate marginal distribution algorithm with margins. In: Proc.
of CEC ’09, pp 2157–2164

[8] Chen T, Tang K, Chen G, Yao X (2010) Analysis of computational time
of simple estimation of distribution algorithms. IEEE Transactions on
Evolutionary Computation 14(1):1–22

9 Theory of Estimation-of-Distribution Algorithms 439

[9] Corus D, Dang DC, Eremeev AV, Lehre PK (2017) Level-based analysis
of genetic algorithms and other search processes. IEEE Transactions on
Evolutionary Computation To appear, preprint at https://arxiv.org/
abs/1407.7663

[10] Dang D, Lehre PK (2015) Simplified runtime analysis of estimation of
distribution algorithms. In: Proc. of GECCO ’15, pp 513–518

[11] De Bonet JS, Isbell CL Jr, Viola PA (1997) MIMIC: Finding optima by
estimating probability densities. In: Proc. of NIPS ’96, pp 424–430

[12] Doerr B, Krejca MS (2018) Significance-based estimation-of-distribution
algorithms. In: Proc. of GECCO ’18, ACM Press, to appear

[13] Doerr B, Hota A, Kötzing T (2012) Ants easily solve stochastic shortest
path problems. In: Proc. of GECCO ’12, pp 17–24, DOI 10.1145/2330163.
2330167

[14] Doerr B, Johannsen D, Winzen C (2012) Multiplicative drift analysis.
Algorithmica 64(4):673–697, DOI 10.1007/s00453-012-9622-x

[15] Dorigo M, Stützle T (2004) Ant Colony Optimization. MIT Press
[16] Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search

strategy. Tech. Rep. 91–016, Dipartimento di Elettronica, Politecnico di
Milano, Milan, Italy

[17] Droste S (2006) A rigorous analysis of the compact genetic algorithm for
linear functions. Natural Computing 5(3):257–283, preliminary version
in GECCO ’05

[18] Droste S, Jansen T, Wegener I (2006) Upper and lower bounds for ran-
domized search heuristics in black-box optimization. Theory of Comput-
ing Systems 39:525–544

[19] Feldmann M, Kötzing T (2013) Optimizing expected path lengths with
ant colony optimization using fitness proportional update. In: Proc. of
FOGA ’13, pp 65–74, DOI 10.1145/2460239.2460246

[20] Friedrich T, Kötzing T, Krejca MS, Sutton AM (2015) The benefit of
recombination in noisy evolutionary search. In: Proc. of ISAAC ’15, pp
140–150

[21] Friedrich T, Kötzing T, Krejca MS, Sutton AM (2015) Robustness of
ant colony optimization to noise. In: Proc. of GECCO ’15, pp 17–24

[22] Friedrich T, Kötzing T, Krejca MS (2016) EDAs cannot be balanced and
stable. In: Proc. of GECCO ’16, pp 1139–1146, DOI 10.1145/2908812.
2908895

[23] Friedrich T, Kötzing T, Krejca MS, Sutton AM (2016) Robustness of ant
colony optimization to noise. Evolutionary Computation 24(2):237–254

[24] Friedrich T, Kötzing T, Krejca MS, Sutton AM (2017) The compact
genetic algorithm is efficient under extreme gaussian noise. IEEE Trans-
actions on Evolutionary Computation 21(3):477–490

[25] Gao Y, Culberson J (2005) Space complexity of estimation of dis-
tribution algorithms. Evolutionary Computation 13(1):125–143, DOI
10.1162/1063656053583423

https://arxiv.org/abs/1407.7663
https://arxiv.org/abs/1407.7663

440 Martin S. Krejca and Carsten Witt

[26] González C, Lozano J, Larrañaga P (2000) Analyzing the pbil algorithm
by means of discrete dynamical systems. Complex Systems 12(4):465–
479

[27] Harik G, Lobo FG, Goldberg DE (1998) The compact genetic algorithm.
IEEE Transactions on Evolutionary Computation pp 523–528

[28] Harik GR, Lobo FG, Sastry K (2006) Linkage learning via probabilistic
modeling in the extended compact genetic algorithm (ECGA). In: [54],
pp 39–61

[29] Hauschild M, Pelikan M (2011) An introduction and survey of estima-
tion of distribution algorithms. Swarm and Evolutionary Computation
1(3):111–128

[30] He J, Yao X (2001) Drift analysis and average time complexity of evo-
lutionary algorithms. Artificial Intelligence 127(1):57–85, DOI 10.1016/
S0004-3702(01)00058-3

[31] He J, Yao X (2004) A study of drift analysis for estimating computation
time of evolutionary algorithms. Natural Computing 3(1):21–35, DOI
10.1023/B:NACO.0000023417.31393.c7

[32] Höhfeld M, Rudolph G (1997) Towards a theory of population-based
incremental learning. In: Proc. of ICEC ’97, pp 1–5

[33] Horoba C, Sudholt D (2010) Ant colony optimization for stochastic
shortest path problems. In: Proc. of GECCO ’10, pp 1465–1472, DOI
10.1145/1830483.1830750

[34] Janusz Kacprzyk WP (ed) (2015) Springer Handbook of Computational
Intelligence. Springer, DOI 10.1007/978-3-662-43505-2

[35] Johannsen D (2010) Random combinatorial structures and randomized
search heuristics. PhD thesis, Universität des Saarlandes, Saarbrücken,
Germany and the Max-Planck-Institut für Informatik

[36] Krejca MS, Witt C (2017) Lower bounds on the run time of the univari-
ate marginal distribution algorithm on OneMax. In: Proc. of FOGA ’17,
pp 65–79, DOI 10.1145/3040718.3040724

[37] Larrañaga P, Lozano JA (2002) Estimation of Distribution Algorithms:
A New Tool for Evolutionary Computation, Genetic Algorithms and
Evolutionary Computation, vol 2. Springer

[38] Lehre PK, Nguyen PTH (2017) Improved runtime bounds for the uni-
variate marginal distribution algorithm via anti-concentration. In: Proc.
of GECCO ’17, pp 1383–1390, DOI 10.1145/3071178.3071317

[39] Lehre PK, Witt C (2010) Black-box search by unbiased variation. In:
Proc. of GECCO ’10, pp 1441–1448

[40] Lehre PK, Witt C (2014) Concentrated hitting times of randomized
search heuristics with variable drift. In: Proc. of ISAAC ’14, pp 686–697,
DOI 10.1007/978-3-319-13075-0

[41] Lehre PK, Witt C (2017) General drift analysis with tail bounds,
arXiv:1307.2559

9 Theory of Estimation-of-Distribution Algorithms 441

[42] Lengler J, Sudholt D, Witt C (2018) Medium step sizes are harmful for
the compact genetic algorithm. In: Proc. of GECCO ’18, ACM Press, to
appear

[43] Mitavskiy B, Rowe JE, Cannings C (2009) Theoretical analysis of local
search strategies to optimize network communication subject to preserv-
ing the total number of links. International Journal of Intelligent Com-
puting and Cybernetics 2(2):243–284, DOI 10.1108/17563780910959893

[44] Mitzenmacher M, Upfal E (2005) Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press

[45] Motwani R, Raghavan P (1995) Randomized Algorithms. Cambridge
University Press

[46] Mühlenbein H (1992) How genetic algorithms really work: Mutation and
hillclimbing. In: Proc. of PPSN ’92, pp 15–26

[47] Mühlenbein H, Mahnig T (1999) Convergence theory and applications
of the factorized distribution algorithm. Journal of Computing and In-
formation Technology 7:19–32

[48] Mühlenbein H, Mahnig T (1999) FDA – A scalable evolutionary algo-
rithm for the optimization of additively decomposed functions. Evolu-
tionary Computation 7(4):353–376, DOI 10.1162/evco.1999.7.4.353

[49] Mühlenbein H, Paass G (1996) From Recombination of Genes to the
Estimation of Distributions I. Binary Parameters. In: Proc. of PPSN ’96,
pp 178–187

[50] Neumann F, Sudholt D, Witt C (2010) A few ants are enough: ACO
with iteration-best update. In: Proc. of GECCO ’10, pp 63–70

[51] Ollivier Y, Arnold L, Auger A, Hansen N (2017) Information-geometric
optimization algorithms: A unifying picture via invariance principles.
Journal of Machine Learning Research 18:1–65

[52] Pelikan M, Mühlenbein H (1999) The bivariate marginal distribution
algorithm. In: Advances in Soft Computing, Springer, pp 521–535

[53] Pelikan M, Goldberg DE, Cantú-Paz E (1999) Boa: The bayesian opti-
mization algorithm. In: Proc. of GECCO ’99, pp 525–532

[54] Pelikan M, Sastry K, Cantú-Paz E (2006) Scalable Optimization via
Probabilistic Modeling: From Algorithms to Applications, Studies in
Computational Intelligence, vol 33. Springer

[55] Pelikan M, Hauschild M, Lobo FG (2015) Estimation of distribution
algorithms. In: [34], pp 899–928, DOI 10.1007/978-3-662-43505-2_45

[56] Rudolph G (1997) Convergence properties of evolutionary algorithms.
Verlag Dr. Kovač

[57] Shapiro JL (2003) The sensitivity of PBIL to its learning rate, and how
detailed balance can remove it. In: Proc. of FOGA ’02, pp 115–132

[58] Shapiro JL (2005) Drift and scaling in estimation of distribution
algorithms. Evolutionary Computation 13(1):99–123, DOI 10.1162/
1063656053583414

[59] Shapiro JL (2006) Diversity loss in general estimation of distribution
algorithms. In: Proc. of PPSN ’06, Springer, pp 92–101

442 Martin S. Krejca and Carsten Witt

[60] Simon D (2013) Evolutionary Optimization Algorithms. John Wiley &
Sons

[61] Stützle T, Hoos HH (2000) MAX–MIN ant system. Future generation
computer systems 16(8):889–914

[62] Sudholt D, Thyssen C (2012) A simple ant colony optimizer for stochas-
tic shortest path problems. Algorithmica 64(4):643–672, DOI 10.1007/
s00453-011-9606-2

[63] Sudholt D, Witt C (2016) Update strength in EDAs and ACO: How to
avoid genetic drift. In: Proc. of GECCO ’16, pp 61–68

[64] Vose MD (1999) The Simple Genetic Algorithm: Foundations and The-
ory. MIT Press

[65] Wald A (1944) On cumulative sums of random variables. The Annals of
Mathematical Statistics 15(3):283–296, DOI 10.1214/aoms/1177731235

[66] Witt C (2017) Upper bounds on the runtime of the univariate marginal
distribution algorithm on OneMax. In: Proc. of GECCO ’17, pp 1415–
1422, DOI 10.1145/3071178.3071216

[67] Witt C (2018) Domino convergence: why one should hill-climb on linear
functions. In: Proc. of GECCO ’18, ACM Press, to appear

[68] Wu Z, Kolonko M (2014) Asymptotic properties of a generalized cross-
entropy optimization algorithm. IEEE Transactions on Evolutionary
Computation 18(5):658–673, DOI 10.1109/TEVC.2014.2336882

[69] Wu Z, Kolonko M, Möhring RH (2017) Stochastic runtime analysis of
the cross-entropy algorithm. IEEE Transactions on Evolutionary Com-
putation 21(4):616–628, DOI 10.1109/TEVC.2017.2667713

[70] Zhang Q (2004) On stability of fixed points of limit models of univariate
marginal distribution algorithm and factorized distribution algorithm.
IEEE Transaction on Evolutionary Computation 8(1):80–93, DOI 10.
1109/TEVC.2003.819431

[71] Zhang Q (2004) On the convergence of a factorized distribution algo-
rithm with truncation selection. Complexity 9(4):17–23, DOI 10.1002/
cplx.20013

[72] Zhang Q, Mühlenbein H (2004) On the convergence of a class of esti-
mation of distribution algorithms. IEEE Transactions on Evolutionary
Computation 8(2):127–136

Chapter 10
Theoretical Foundations of
Immune-Inspired Randomized Search
Heuristics for Optimization

Christine Zarges

Abstract Artificial immune systems are a class of nature-inspired algorithms
based on the immune system of vertebrates. They have been used in a large
number of different areas of application, most prominently learning, classi-
fication, pattern recognition, and (function) optimization. In the context of
optimization, clonal selection algorithms are the most popular and constitute
an interesting and promising alternative to evolutionary algorithms. While
structurally similar, they offer very different features and capabilities. Over
the last decade, significant progress has been made in the theoretical foun-
dations of clonal selection algorithms. This chapter gives an overview of the
state of the art in the theory of artificial immune systems with a focus on op-
timization. It provides pointers to corresponding articles where more details
and proofs can be found.

10.1 Introduction

Artificial immune systems (AIS) are derived from various immunological the-
ories, namely the clonal selection principle [4], immune network theory [46],
and the danger theory [6]. Besides the natural tasks of anomaly detection
and classification, they are often applied to function optimization. In the lat-
ter context, most immune-inspired randomized search heuristics are based on
the clonal selection principle [4], a theory which describes the basic features
of an adaptive immune response to invading pathogens (antigens). The most
popular clonal selection algorithms to tackle optimization problems include
CLONALG [7], Opt-IA [21], the B-cell algorithm [47], and MISA [10]. All

Christine Zarges
Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB,
United Kingdom
e-mail: c.zarges@aber.ac.uk

443

c.zarges@aber.ac.uk

444 Christine Zarges

these algorithms are population-based. The input is usually represented by a
population of antigens; a population of immune cells represents candidate so-
lutions of the problem considered. Various aspects of clonal selection are used
in these immune-inspired algorithms, for example mutations of different types
of immune cells found in the immune system, resulting in a large number of
very different approaches that share a common biological inspiration. Many
of these algorithms resemble evolutionary algorithms from a structural point
of view. However, their concrete implementations are usually very different.

This chapter provides an overview of the state of the art in the theory of
immune-inspired randomized search heuristics in discrete search spaces. Most
theoretical studies so far have concentrated on pseudo-Boolean optimization
and classical example functions; however, some initial work on combinatorial
optimization (vertex cover, longest common subsequence) exists. We discuss
problem definitions, analytical frameworks, and common algorithms and op-
erators in the corresponding sections. However, note that we consider bit
strings of length n as the representation, x ∈ {0,1}n, and that x[i] denotes
the i-th bit in x (with i ∈ {0,1, . . . ,n−1}, denoting the leftmost position in
x by x[0] and the rightmost position by x[n−1]).

The main part of this chapter will concentrate on performance analyses
such as runtime analysis (where we are interested in the number of function
evaluations required to locate an optimal solution, called the optimization
time) and fixed-budget analysis (where we analyze the expected solution qual-
ity for a given budget of function evaluations). We therefore start with a brief
overview of other related publications: early theoretical work was particularly
concerned with Markov chain models of clonal selection algorithms and con-
vergence analyses, i.e., the study of whether a given algorithm is guaranteed
to converge to a global optimum for time t→∞. Based on Markov chain the-
ory, Villalobos-Arias et al. [56, 57] proved convergence of the multi-objective
clonal selection algorithm MISA [10] under the condition that the algorithm
maintains an elitist memory throughout the search process. Later, using a
similar approach, convergence results for the B-cell algorithm [47] based on a
Markov model for contiguous hypermutations were presented [8, 9]. Cutello
et al. [20] considered a more general framework of immune algorithms and
examined conditions sufficient for their convergence. They provided some
problem-independent upper bounds for their class of immune algorithms, but
pointed out that such analyses should be related to some problem class and
its characteristics in order to give useful insights. More recently, Hong and
Kamruzzaman [29] used martingale theory to prove convergence for a class
of elitist clonal selection algorithms. Timmis et al. [55] provided a survey of
early theoretical advances and pointed out that runtime analysis would be
much more useful than convergence analysis. The remainder of this chapter
will therefore concentrate on these more advanced results.

The vast majority of work to date has concentrated on AIS for optimiza-
tion. In this context, two defining aspects of AIS have been particularly con-
sidered: hypermutation operators (Section 10.2) and a diversity mechanism

10 Immune-Inspired Randomized Search Heuristics 445

called aging (Section 10.3). However, more recently, insights into the inter-
play between different operators have allowed the first analyses of “complete”
AIS as published in the literature (Section 10.4).

For the sake of completeness, we remark that theoretical studies in other
subareas of artificial immune systems exist. In the context of classification,
we refer the reader to the above-mentioned survey by Timmis et al. [55]
and more recent work by Elberfeld and Textor [24, 54] and Gu et al. [27].
Moreover, a relatively large number of surveys provide a comprehensive view
of the various application areas of artificial immune systems. They include
general overviews and introductions to the field [6, 22, 23, 53], as well as more
specialized surveys of, for example, optimization [1] and security [25].

10.2 Theoretical Analyses of Hypermutations

Mutation in AIS is very different from mutation in other randomized search
heuristics, for example evolutionary algorithms. While in evolutionary algo-
rithms generally moderate mutation probabilities are employed, AIS incorpo-
rates mutations at a high rate, so-called hypermutations. Different types of
immune-inspired mutation operators with roots in different (processes of the)
immune systems can be found in the literature. Among the most prominent
classes are inversely fitness-proportional mutations (Section 10.2.1), contigu-
ous hypermutations (Section 10.2.2), and hypermutations with mutation po-
tential (Section 10.2.3). We will discuss different variants of these operators
in the following.

All the results presented in this section consider immune-inspired muta-
tion operators in minimalistic algorithmic frameworks to study them in as
much isolation as possible. These frameworks include in particular the (1+1)
framework shown in Algorithm 10.1 and a simple population-based (µ + 1)
framework as described in Algorithm 10.2. The performance of hypermuta-
tion operators has particularly been compared with local search (flipping
exactly one random bit) and standard bit mutations (flipping each bit with
probability 1/n).

Algorithm 10.1: (1+1) framework
1 Choose x ∈ {0,1}n uniformly at random.
2 repeat
3 Create offspring y := mutate(x).
4 if f(y)≥ f(x) then
5 Set x := y.
6 until some termination criterion is met

446 Christine Zarges

Algorithm 10.2: (µ+1) framework
Parameters: Population size µ

1 Choose x1, . . . ,xµ ∈ {0,1}n independently, uniformly at random.
2 Let P := {x1, . . . ,xµ}.
3 repeat
4 Choose x ∈ P uniformly at random.
5 Create offspring y := mutate(x).
6 Choose z ∈ P with minimum fitness.
7 if f(y)≥ f(z) then
8 Let P = P\{z}∪{y}.
9 until some termination criterion is met

10.2.1 Inversely Fitness-Proportional Mutations

The idea of inversely fitness-proportional mutations derives directly from the
widely accepted clonal selection principle [4]. It aims to balance exploration
and exploitation of the search space by using an individual mutation rate
for each search point (immune cell) in the population, i.e., focusing on ex-
ploitation for good search points that are hopefully close to a local or global
optimum and focusing on exploration otherwise. As a result, search points
in “better” regions of the search space are only subject to small mutations,
while for search points located far away from optimal regions larger mutation
rates are used.

Inversely fitness-proportional mutation operators exist in both continuous
and discrete versions, but to the best of our knowledge theoretical studies so
far have concentrated on discrete settings or, more precisely, pseudo-Boolean
optimization. Here, the mutation rate is a function that depends on the (nor-
malized) fitness of a search point and determines the probability for each bit
in a given bit string to be mutated (see Algorithm 10.3). The relationship be-
tween mutation rate and fitness is not required to be inversely proportional
in a strict mathematical sense, but only needs to follow the rule that the
higher the fitness the smaller the mutation rate, and vice versa.

Algorithm 10.3: Inversely fitness-proportional mutations
Input: Search point x ∈ {0,1}n; fitness-dependent mutation rate p(v)
Output: Mutated search point x ∈ {0,1}n

1 Let v := normalize(f(x)) ∈ [0,1].
2 Let y := x.
3 for i := 0 to n−1 do
4 With probability p(v) set y[i] := 1−y[i].

10 Immune-Inspired Randomized Search Heuristics 447

Inversely fitness-proportional mutations are a key ingredient of
CLONALG [7]. For the case of maximization, the operator uses the inverse
of an exponential function to establish a relationship between the mutation
probability and the normalized fitness value v:

pCLONALG(v) = exp(−ρ ·v), (10.1)

where ρ is a so-called decay parameter that controls the smoothness of the
exponential function and needs to be set to a value appropriate for the prob-
lem considered. A similar operator with a slightly different parameterization
is used in Opt-AiNet [5], an immune-inspired algorithm based on immune
network theory [46]:

pOpt-AiNet(v) = exp(−v)/ρ. (10.2)

Here, the parameter ρ is not incorporated into the exponent of the exponential
function but rather used to scale its result, leading to a very different impact
of ρ on the optimization process [61].

Zarges [59, 61] examined the role of the decay parameter ρ for these two
operators on the OneMax problem in a simple (1+1) framework (see Algo-
rithm 10.1). Constant decay values ρ as well as values logarithmic and linear
in the length of the bit string were considered. Using, among others, drift
arguments, it was shown that both operators are very sensitive to parameter-
ization and, if parameterized inappropriately, very bad at hill-climbing.

For maximization problems, the standard normalization method [7] is to
divide the fitness by the best fitness in the current population or by the best
fitness seen so far. For a single search point, Zarges [59, 61] used the optimal
value of the fitness function considered instead and argued that using an
upper bound on the fitness would be appropriate if the optimal value was not
known. However, it was noted that using an upper bound leads to generally
larger mutation probabilities, while the use of the best current fitness reduces
them.

For CLONALG mutations, it was proven that, with overwhelming proba-
bility, the algorithm using constant and linear settings of ρ is unable to locate
the optimum of OneMax within a polynomial number of iterations. For a
constant ρ, this is because the mutation probabilities grow much too large to
be effective, while a linear ρ leads to exponentially small mutation rates, ren-
dering the algorithm unable to perform any search at all. In addition to these
two extreme cases, ρ = lnn was considered. It was noted that this parameter-
ization yields reasonable values for the mutation rate between 1/2 and 1/n.
While one can still observe a large negative drift for this setting (and con-
sequently the algorithm is unable to optimize OneMax in polynomial time
with high probability), the algorithm demonstrates much better performance
in practice, as the probability of not finding the optimum within a polyno-
mial number of iterations converges much more slowly to 1 than it does for

448 Christine Zarges

constant ρ. In fact, in experiments the performance was comparable to that
of standard bit mutations up to bit string lengths of about 105.

For Opt-AiNet mutations, a constant ρ results in roughly the same muta-
tion rates as already seen for the case of CLONALG, and thus the algorithm
is also not efficient on OneMax with this setting. However, using ρ = Θ(n)
yields mutation rates of Θ(1/n) for all possible fitness values. Thus, we get
an optimization time of Θ(n logn) for this case, which can easily be shown
by using fitness-level arguments and adapting previous analyses for standard
bit mutations.

Later, the CLONALG hypermutation operator was analyzed in a (µ +
1) framework (see Algorithm 10.2), using the current best fitness value for
normalization [60]. Setting ρ = lnn (as this leads to reasonable mutation
rates for OneMax [59]) and using fitness-level arguments, it was shown that
even a population size of 2 considerably improves the performance on the
OneMax problem and, more generally, a class of smooth integer functions
of unitation, i.e., a class of functions where the function value depends only
on the number of 1-bits in the bit string and neighboring points in the search
space have similar function values. A key insight for this result is that for
this parameterization the behavior of the current best search point in the
population mimics that of standard bit mutations.

A matching lower bound was proven by bounding the bandwidth of the
fitness values in the current population using inductive arguments and by
employing the technique of analyzing randomized family trees. Here, an im-
portant insight is that the rate of inversely fitness-proportional mutations
depends directly on the structure of the population or, more precisely, the
difference between the best and the worst fitness value. If this difference is
small enough, the expected number of flipping bits during a single iteration
can be bounded by a constant.

While fitness-dependent mutations are common in immune-inspired ran-
domized search heuristics, they have only recently emerged in the context of
evolutionary computation. For example, Oliveto et al. [51] analyzed a rank-
based mutation operator, an alternative to using normalized function values
to reduce the effect of large differences in absolute function values. Böttcher
et al. [2] derived an optimal adaptive mutation rate for the LeadingOnes
problem that has the form of an inversely fitness-proportional mutation rate,
psimple(v) = 1/(v + 1) with v = f(x). The same mutation rate is efficient for
the OneMax problem [61]. However, a Hamming-distance-based mutation
rate maximizing the probability of finding the global optimum of OneMax
in a single mutation step, i.e., pHamming(v) = v/n with v = n− f(x), yields
exponential optimization time.

Jansen and Zarges [43] considered inversely fitness-proportional mutations
in the context of fixed-budget analysis, where, instead of the expected time
needed for optimization, the expected performance within a given time frame
is analyzed. They showed that CLONALG mutations outperform local search
at the beginning of the run, but are eventually overtaken later in the run. This

10 Immune-Inspired Randomized Search Heuristics 449

insight was used to devise a hybrid algorithm that starts with CLONALG
mutations and switches to local search when progress stagnates. These results
are discussed in more detail in Section 5.5 of this book.

10.2.2 Contiguous Hypermutations

Contiguous hypermutations were introduced as part of the B-cell algo-
rithm [47]. They were inspired by the observation that mutation of B-cell
receptors (a type of immune cell) often focuses on specific regions of the
receptor. To mimic this behavior, the mutation operator first selects a con-
tiguous region of the search point’s representation and restricts the mutation
to this region. The use of contiguous hypermutations is limited to discrete
search spaces and employs a bit string representation. Mutation flips all bits
within the chosen region with a given probability r∈ [0,1] and does not change
any bit that is outside of this region. It has been noted that, depending on
its parameterization, this mutation operator can easily be trapped in local
optima [9, 37]: if r = 1, there might not exist a mutation leading from a local
to a global optimum. However, the following analyses consider this extreme
case only.

Jansen and Zarges [34, 37] considered three different variants of this hy-
permutation operator which differ in the way the contiguous mutation region
is determined. The original operator chooses a random starting position p
and a random length l of an interval to be mutated (see Algorithm 10.4). It
does not wrap around, and thus has a strong positional bias and strongly dif-
ferent mutation probabilities for mutations of single bits depending on their
location: bits towards the end of the bit string have a higher probability of
being mutated during a mutation. As such a bias is considered undesirable
unless it suits known problem characteristics, this observation motivates the
definition of a variant that wraps around and thus has no positional bias at
all (see Algorithm 10.5). A third variant selects random start and end points
for the mutation region (see Algorithm 10.6). Similarly to the original opera-
tor, this variant has a strong positional bias – here, bits towards the middle
of the bit string have a higher probability of being mutated. All three vari-
ants have in common that, in expectation, they flip a linear number of bits.
The probability of performing a single bit mutation is Θ(1/n2) in all three
cases (with the exception of the version that does not wrap around, where
the probability of flipping only the last bit is Θ(1/n)). This is considerably
smaller than the corresponding probability for standard bit mutations and
explains why contiguous hypermutations are also bad at simple hill-climbing.

However, they can have advantages when large mutations are needed: stan-
dard bit mutations perform specific b-bit mutations with probability Θ(1/nb),
while all three variants of contiguous hypermutation achieve this with proba-
bility O(1/n2). Jansen and Zarges [34, 37] investigated this in a rigorous way

450 Christine Zarges

Algorithm 10.4: Contiguous hypermutations, not wrapping around [8]
Input: Search point x ∈ {0,1}n; mutation probability r ∈ (0,1]
Output: Mutated search point x ∈ {0,1}n

1 Select p ∈ {0,1, . . . ,n−1} uniformly at random.
2 Select l ∈ {0,1, . . . ,n} uniformly at random.
3 for k := 0 to min{l−1,n−1−p} do
4 With probability r, invert the bit x[p + k].

Algorithm 10.5: Contiguous hypermutations, wrapping around [34]
Input: Search point x ∈ {0,1}n; mutation probability r ∈ (0,1]
Output: Mutated search point x ∈ {0,1}n

1 Select p ∈ {0,1, . . . ,n−1} uniformly at random.
2 Select l ∈ {0,1, . . . ,n} uniformly at random.
3 for i := 0 to l−1 do
4 With probability r set x [(p + i) mod n] := 1−x [(p + i) mod n].

Algorithm 10.6: Contiguous hypermutations, two hotspots [34]
Input: Search point x ∈ {0,1}n; mutation probability r ∈ (0,1]
Output: Mutated search point x ∈ {0,1}n

1 Select p1 ∈ {0,1, . . . ,n−1} uniformly at random.
2 Select p2 ∈ {0,1, . . . ,n−1} uniformly at random.
3 for k := min{p1,p2} to max{p1,p2} do
4 With probability r, invert the bit x[k].

by presenting different examples for functions where contiguous hypermuta-
tions are superior or inferior to the standard bit mutations typically used in
evolutionary algorithms in a simple (1+1) framework (see Algorithm 10.1).
Using fitness level and drift arguments, they showed that contiguous hyper-
mutations can drastically outperform standard bit mutations for a previously
know family of example functions that require mutations of many bits simul-
taneously,

CLOBb,k(x) = n ·

 k∑
h=1

n/(bk)∑
i=1

i·b−1∏
j=0

x

[
(h−1) · n

k
+ j

]−OneMax(x),

for b,k,n ∈ N with n/k ∈ N, n/(bk) ∈ N, and x ∈ {0,1}n. Here, contiguous
hypermutations yield an optimization time of O(n2 logn), while standard bit
mutations require time Θ(nb(l/b+lnk)). In addition, it was shown that con-
tiguous hypermutations do not necessarily lose a factor of Θ(n) on functions
where mutations of single bits are responsible for optimization: while this is
the case for OneMax, contiguous hypermutations lose at most a factor of
logn on LeadingOnes.

10 Immune-Inspired Randomized Search Heuristics 451

Jansen and Zarges [34, 37] investigated the role of initialization for con-
tiguous hypermutations and demonstrated that advantageous starting points
with large blocks of contiguous 0s (e.g., the all-zero bit string 0n) can speed
up optimization for this operator while having nearly no impact on stan-
dard bit mutations. However, whether this advantage, which is big in the
beginning where it is easy to make progress and decreases towards the end
where making progress is much harder, is sufficient to yield an asymptotically
smaller expected optimization time depends on how long this advantage can
be preserved during the optimization process. It is important to note that all
positive results rely on the extreme choice r = 1. Thus, it can be concluded
that contiguous hypermutations can only play out their strength if r is set
to some value at least close to 1.

Jansen and Zarges [43] later also considered contiguous hypermutations in
the context of fixed-budget analysis (see Section 5.5 of this book). Revisiting
negative results for immune-inspired hypermutations for the simple OneMax
function and the observation that careful initialization can speed up the op-
timization process [37], they demonstrated that contiguous hypermutations
can be much more efficient in the beginning of a run when progress is still
easy to achieve and, thus, given a limited budget of function evaluations,
such mutations can by far outperform a random local search operator. This
is mainly due to the fact that hypermutations are able to accumulate many
small steps into a single large one, while random local search needs to perform
those steps one after each other and thus needs time to catch up. This insight
helps to explain the success of seemingly inefficient mutation operators, as in
practice the length of a run is usually limited.

The above theoretical results were put into practice by designing a more
efficient hybrid search heuristic that applies contiguous hypermutations in
the beginning when they can be expected to be more beneficial, and switches
to local search when contiguous hypermutations start to become slow. Two
strategies to switch the mutation operator were investigated, one directly
based on the theoretical findings, the other using the expected progress of
the two operators adaptively in each iteration. Experiments showed that both
strategies yield noticeable improvements over simple local search if careful
initialization is performed, but that the more sophisticated adaptive strategy
does not yield any significant advantage. These results are discussed in more
detail in Section 5.5 of this book.

Other work on the analysis of contiguous hypermutations includes a run-
time and fixed-budget analysis for the highly multimodal HIFF (hierarchical
if and only if) problem by Jansen and Zarges [44] and later by Xia and
Zhou [58]. Jansen and Zarges [44] showed that under certain conditions con-
tiguous hypermutations can be successful hill-climbers. Using fitness-level
arguments, they showed that contiguous hypermutations in a simple (1+1)
framework (see Algorithm 10.1) solve HIFF in time O(n3 logn), while ran-
dom local search does not find an optimum with overwhelming probability.
Moreover, they demonstrated that contiguous hypermutations are not outper-

452 Christine Zarges

formed by random local search on HIFF for any given budget by performing
a fixed-budget analysis (see Section 5.5 of this book): for small budgets both
algorithms have roughly equal performance, but contiguous hypermutations
outperform random local search for moderately large budgets. This result
is somewhat counterintuitive as at the beginning, i.e., before reaching a lo-
cal optimum, HIFF can be optimized by simple hill-climbing – something
contiguous hypermutations are particularly bad at.

Xia and Zhou [58] additionally considered contiguous hypermutations on
Trap functions and the max-cut and minimum s-t-cut problems, again using
the simple (1+1) framework in Algorithm 10.1. They showed that Trap can be
optimized in time O(n2 logn) and considered a family of graphs for max-cut
that can be efficiently optimized using contiguous hypermutations but not
using standard bit mutations and a problem-specific local search operator.
A similar result was shown for a family of graphs for the minimum s-t-cut
problem.

Very recently, Corus et al. [11, 12] derived an easiest function for contigu-
ous hypermutations. Again using the insight that contiguous hypermutations
can have advantages on functions that require mutations of many bits simul-
taneously, they introduced the following fitness function.

Definition 10.2.1. Let L0∪̇L1∪̇L2∪̇ · · · ∪̇Ll = {0,1}n be a partition and let

MinBlocks(x) = l− i for x ∈ Li,

with l = ⌊n/2⌋+1, L0 = {1n}, L1 = {0n}, and Li = {x ∈ {0,1}n | x contains
i−1 different 1-blocks} for each i ∈ {2,3, . . . , l}.

MinBlocks has a unique global optimum, 1n, with fitness ⌊n/2⌋+1. The
second best bit string is 0n, with fitness l−1. Corus et al. [11, 12] presented
both runtime and fixed-budget analyses of contiguous hypermutations on this
function and showed that MinBlocks is indeed an easiest function using a
method introduced by He et al. [28]. The runtime of contiguous hypermuta-
tions embedded in a (1+1) framework (see Algorithm 10.1) on MinBlocks
is Θ(n2).

MinBlocks turns out to be an asymptotically hardest function for stan-
dard bit mutations. Owing to the symmetry of 0- and 1-bits, the (1+1) EA
(Algorithm 10.1 using standard bit mutations) will reach 0n (instead of 1n)
with probability 1/2. In this situation, it needs to flip all bits in a single
mutation, resulting in an expected optimization time of at least nn/2. This
is only smaller by a factor of at most 2 than the expected optimization time
of the (1+1) EA on its hardest function, Trap [28].

Finally, Corus et al. [11, 12] discussed a number of hybridizations of stan-
dard bit mutations and contiguous hypermutations. These allow one to com-
bine the advantages of the two operators, and yield optimal asymptotic per-
formance on both OneMax and MinBlocks.

10 Immune-Inspired Randomized Search Heuristics 453

Some analyses of contiguous hypermutations consider the mutation oper-
ator within the complete B-cell algorithm rather than a minimalistic frame-
work. We discuss these results later in Section 10.4.1.

10.2.3 Hypermutations with Mutation Potential

Hypermutations with mutation potential were introduced as a mutation op-
erator in Opt-IA [21]. The main idea behind this kind of mutation is to de-
termine the number of local mutation steps by a given function, the so-called
mutation potential. Mutation potentials exist in different flavors, for example
static, fitness-proportional, and inversely fitness-proportional. Moreover, they
can be restricted to certain regions of the bit string (hypermacromutation).

Algorithm 10.7 provides pseudocode of four different variants of this mu-
tation operator, defined for minimization problems. For a number M of local
mutation steps, the operator sequentially draws M not necessarily distinct
positions in the bit string and flips them independently. We distinguish a
TABU variant (where the operator is prevented from choosing a specific posi-
tion two or more times) and a non-TABU variant (where bits can be flipped
back in a later mutation step). Moreover, a mechanism often used in con-
junction with mutation potentials is the so-called “stop at first constructive
mutation” (FCM). Here, a fitness evaluation is performed after every single
mutation step and the mutation stops if an improvement has been found
(a so-called constructive mutation). It has been shown that the question of
whether local mutation steps may undo each other is far less important than
the use of the FCM mechanism [13, 18, 40]. We provide more detail in the
following.

Algorithm 10.7: Mutation with mutation potential M (minimization)
Input: Search point x ∈ {0,1}n; flags TABU and FCM
Output: Mutated search point x ∈ {0,1}n

1 Set y = x.
2 repeat
3 if TABU = 0 then
4 Select i ∈ {1, . . . ,n} uniformly at random (u.a.r.).
5 else
6 Select i ∈ {1, . . . ,n} u.a.r., i not previously chosen.
7 Invert the bit y[i].
8 if (FCM = 1) AND (f(y) < f(x)) then
9 BREAK

10 until M times

454 Christine Zarges

10.2.3.1 Inversely Fitness-Proportional Mutation Potentials

The first analysis of hypermutations with mutation potential was presented
by Jansen and Zarges [40]. They considered all four variants of this operator
for an inversely fitness-proportional mutation potential Mc(v), where c∈]0,1[
and fOPT is the minimum function value for the fitness function considered,
f : S→ R+:

Mc(v) = ⌈(1−fOPT/v) · c ·n⌉. (10.3)

Using the simple (1+1) framework (see Algorithm 10.1), they showed that
the FCM mechanism is crucial for the performance of mutation potentials
even on very simple optimization problems such as ZeroMin, the minimiza-
tion variant of OneMax. The main reason for this is that hypermutations
with mutation potential that do not make use of FCM basically perform a
random walk of length equal to the mutation potential – such a random walk
has hardly any chance of locating a specific search point (which can easily
be proven by using results for the gambler’s ruin problem). While adding
FCM considerably improves the optimization time, it loses a factor of n in
comparison with standard bit mutations: the expected optimization time of
Algorithm 10.1 using hypermutations with mutation potential on ZeroMin
is 2Ω(n) without FCM and Θ(n2 logn) with FCM. The upper bounds for the
algorithms with FCM were derived using fitness-layer arguments, while the
lower bound was obtained by Chernoff bounds and arguments from the clas-
sical ballot theorem for the non-TABU variant, and a careful analysis of the
underlying random walk for the TABU version.

Moreover, Jansen and Zarges [40] analyzed the ability of the original hy-
permutation operator with FCM to locate optima precisely and at a large
distance from other promising regions of the search space by considering a
previously introduced example function called Sp-Target (short path with
target). The main idea of this function is that the vast majority of the search
space guides the search heuristics towards a path with increasing function
values starting from the all-zero bit string 0n. The global optimum is a large
area with a minimum Hamming distance to the path.

A typical run of a search heuristic finds and climbs the path before finding
the optimal region. Thus, in order to be able to optimize this function, an al-
gorithm requires the ability to “jump” from the path into the global optimum.
It is known that standard bit mutations are unable to efficiently locate the
global optimum if the distance is ω(logn/ log logn). Jansen and Zarges [40]
proved that hypermutations with mutation potential yield an optimization
time of O(n3) provided that c in Mc(v) is chosen large enough.

More recently, Corus et al. [17] compared different variants of inversely
fitness-proportional mutation potentials based on Hamming distance and fit-
ness difference. They showed that a potential that increases exponentially
with the Hamming distance to the optimum (called MexpoHD) is most promis-
ing and argued that using Hamming distance instead of fitness difference

10 Immune-Inspired Randomized Search Heuristics 455

also comes with the advantage of robustness to scaling of the fitness func-
tion. In comparison with static mutation potentials, they showed a consider-
able speedup for all inversely fitness-proportional variants on standard uni-
modal example functions, for which the global optimum is known. In addition,
MexpoHD was considered in situations, where the global optimum is unknown.
Using the best found solution to estimate the mutation rate and combining
MexpoHD with hybrid aging (see Section 10.3.2), it was demonstrated that the
algorithm might not be able to identify new local optima on slopes that lead
away from previous ones. As a consequence, a symmetric version of MexpoHD
was introduced and shown to be effective on two well-known bimodal example
functions, Cliffd and TwoMax.

10.2.3.2 Static Mutation Potentials

Corus et al. [13, 18] presented a first detailed study of static mutation po-
tentials. They proved for a static mutation potential (where the number of
bits flipped is linear in the problem size, c ·n for constant c > 0) and the
TABU variant that unless the FCM mechanism is applied, hypermutations
with mutation potential require exponential expected time to optimize any
function with a polynomial number of optima. They argued that the search
point created by such hypermutations is uniformly distributed over all search
points with distance c ·n to the search point it was derived from. Since there
are exponentially many such search points, the probability of a specific out-
come is exponentially small. Corus et al. [13, 18] pointed out that this re-
sult could easily be extended to other types of mutation potential such as
inversely fitness-proportional [40] and fitness-proportional mutation poten-
tials [19]. In [18], the authors additionally suggested that it may be beneficial
to call a mutation “constructive” if the fitness is at least as good (instead of
strictly better) to improve the algorithm’s exploration capabilities.

Moreover, Corus et al. [13, 18] showed that the expected optimization
time if FCM is used is at most larger by a linear factor than the upper bound
obtained for random local search (with any neighborhood size) via fitness-
level arguments. This demonstrates that it is sufficient to analyze random
local search instead of hypermutations with such a mutation potential (which
is often easier) to achieve a valid upper bound on the expected optimization
time. Corus et al. [13, 18] showed that these bounds are tight for easy example
functions such as OneMax and LeadingOnes.

Finally, Corus et al. [13, 18] compared hypermutations with mutation po-
tential with standard mutation- and crossover-based evolutionary algorithms
on the Jumpk and Cliffd functions. They proved that their hypermutations
operator could exponentially speed up the process of escaping from local op-
tima, particularly in cases where the jump is hard to perform. However, the
upper bound on the expected optimization time was still exponential in the
distance between the local and the global optimum.

456 Christine Zarges

Very recently, Corus et al. [14, 16] presented an analysis for the NP-hard
number partitioning problem. They showed that, due to its ability to escape
from local optima, a simple artificial immune system using static hypermu-
tations with mutation potential is able to efficiently solve a class of problem
instances that are known to be hard for random local search and evolutionary
algorithms using standard bit mutations. More importantly, they proved that
such an artificial immune system is a randomised polynomial time approxima-
tion scheme (for ε = ω(n−1/2)), i.e., it guarantees an approximation ratio of
(1+ε) for any problem instance in expected time polynomial in the problem
size and exponential in 1/ε. The authors pointed out that, to the best of their
knowledge, this was the first time performance guarantees were proven for an
artificial immune system on a classical combinatorial optimization problem.

10.2.3.3 Variants of Mutation Potentials

Based on some of the above findings, novel variants of hypermutations with
mutation potential were introduced. Jansen and Zarges [40] proposed an im-
proved version of the mutation potential based on ranks that allows one to
parameterize the trade-off between efficiency in local search and the ability
to perform huge changes in a single mutation:

M̂c,ρ(vi) = ⌈(1−nρ/(nρ + i−1)) · c ·n⌉, (10.4)

where i is the rank of the fitness value considered among all fitness values in
the search space, and ρ controls the degree of mutation aversion the hypermu-
tation operator has. It was proven that for ρ > 1 the expected optimization
time on ZeroMin with FCM decreases to Θ(n logn+n3−ρ).

More recently, Corus et al. [15] proposed a “fast” variant of hypermuta-
tions with mutation potential, where instead of deterministically performing
a fitness evaluation after each bitflip, the fitness after the i-th bitflip is only
evaluated with probability roughly pi ≈ γ/i. In doing so, fewer function eval-
uations are “wasted” during the hypermutation process, particularly for easy
problems, for which local search strategies are efficient. The effectiveness of
two variants of this operator coupled with and without FCM was demon-
strated by analyzing problems that had been considered previously for hy-
permutations with mutation potential and Opt-IA (see Section 10.4.2) and
recommendations for setting the parameter γ were provided. Moreover, it
was demonstrated how upper bounds for “fast” hypermutations with muta-
tion potential could be derived from upper bounds for random local search
that were obtained via fitness-level arguments.

10 Immune-Inspired Randomized Search Heuristics 457

10.3 Theoretical Analyses of Aging Operators

Aging operators require that each search point in the population is equipped
with an individual age that is increased by 1 in each iteration of the search
heuristic. A maximum lifespan τ is introduced, and each search point with
an age exceeding τ is removed from the current population, making room for
new and perhaps more promising search points. The mechanism of aging is
thought of as increasing the diversity of the population and it is hoped that it
will be helpful for multimodal problems where simpler search heuristics may
get stuck in local optima.

Different variants exist, and static pure aging and stochastic aging have
both been used within Opt-IA [21]. Both strategies usually have in common
that the initial age of a new search point is set to 0 only if its function value is
strictly larger than the function value of the search point it was derived from
(the parent); otherwise, it inherits the age of this search point. This scheme
is intended to give an equal opportunity to each improving new search point
to explore the landscape effectively. Alternatively, each new search point can
be assigned age 0; however, this is more common in evolutionary computa-
tion [38].

In static pure aging, search points exceeding a predefined maximum lifes-
pan (maximum number of iterations) τ are removed from the population. In
stochastic aging, each search point x survives aging at the end of the iteration
with a probability pdie. In order to keep the size of the population constant
at a certain size µ, often new random search points with age 0 are introduced,
if necessary.

The publications reviewed in the following subsections consider different
kinds of aging in a minimal algorithmic framework by extending the (µ + 1)
framework introduced in Algorithm 10.2. The extended framework in Algo-
rithm 10.8 again uses a population of size µ. It works in rounds, where in
each round all search points grow older, one new search point is generated as
a random variation of existing search points, its age is decided, search points
that are too old are removed, and new randomly generated search points are
introduced to keep the number of search points constant at µ.

10.3.1 Static Pure Aging

In static pure aging, offspring inherit by default the age of their parent and
are only assigned age 0 if their function value is strictly larger than that of
their parents (see Algorithm 10.9). At the end of an iteration, search points
that exceed the maximum age τ are removed deterministically (see Algo-
rithm 10.10).

Horoba et al. [30] were the first to present a rigorous runtime analysis of
static pure aging in artificial immune systems and consider its most impor-

458 Christine Zarges

Algorithm 10.8: (µ+1) framework with aging
Parameters: Population size µ

1 Choose x1, . . . ,xµ ∈ {0,1}n independently, uniformly at random, and let
P := {x1, . . . ,xµ}.

2 for all x ∈ P do
3 Set x.age = 0.
4 repeat
5 for all x ∈ P do
6 set x.age = x.age+ 1. /* Growing older */
7 Choose x ∈ P uniformly at random.
8 Create offspring y := mutate(x). /* Variation */
9 Decide about the age of y. /* (see details) */

10 Remove search points due to age. /* (see details) */
11 if |P |> µ then
12 Remove one z ∈ P with minimum fitness. /* Removal */
13 else
14 Keep all search points in P .
15 Fill up P with random points until |P |= µ. /* Birth */

16 until some termination criterion is met

Algorithm 10.9: Static pure aging: age of offspring
Input: Parent x; offspring y

1 if f(y)≥ f(x) then
2 Set y.age := 0.
3 else
4 Set y.age := x.age.

Algorithm 10.10: Static pure aging: removal due to age
Input: Population P ; maximum lifespan τ

1 for all x ∈ P do
2 if x.age > τ then
3 Set P := P \{x}.

tant parameter: the maximum lifespan τ . They showed that the smaller the
maximum age, the more the search process resembles pure random search
and, thus, becomes ineffective. To be more precise, they demonstrated that τ
needs to be large enough to allow the algorithm to create a better offspring.
Considering a Ridge-like function that includes a number of gaps of size k,
they made their arguments more precise. They proved that, for such a func-
tion, τ needs to be sufficiently large in order for the algorithm to be successful,
by presenting a proof that considers a typical run of a simple algorithm using
static pure aging (see Algorithm 10.8) and standard bit mutations. Addition-

10 Immune-Inspired Randomized Search Heuristics 459

ally, a common lower bound of τ = ω(µn logµ) was derived – for smaller τ ,
the algorithm is unable to perform hill-climbing.

However, a maximum age that is too large severly limits the influence of
the operator, as fewer search points are subject to removal by age. Moreover,
there exist situations in which a small τ can prevent the algorithm under con-
sideration from getting trapped in parts of the search space that keep it away
from the global optimum. Again, this argument was made more precise by
constructing an example function and proving that it can only be optimized
efficiently using static pure aging if τ is sufficiently small.

Finally, it was shown that aging can be very sensitive to the maximum age
of a search point and that it may be difficult to set this appropriately, i.e.,
the appropriate age can be within a very narrow range. Horoba et al. [30]
demonstrated this by carefully devising a new example function by combining
the two previous functions.

Building upon this work, Jansen and Zarges [33, 38] compared static pure
aging with aging in evolutionary algorithms where new search points are
always assigned age 0. It was shown that new random search points that are
introduced during the birth phase typically have very low fitness and thus
die out quickly. Using well-known example functions, they demonstrated that
static pure aging is able to escape from local optima by recognizing stagnation
and performing a kind of restart; however, when there are plateaus of constant
function value, it mistakes the absence of progress in function values for
stagnation and thus is not able to perform a random walk on the plateau.
The performance of evolutionary aging is exactly opposite, i.e., it is not able
to escape local optima but it can perform a random walk on a plateau. Based
on these insights, a modified aging operator was introduced that provably
shares the advantages of both aging mechanisms (see Algorithm 10.11): while
the function values do not increase in both situations, being stuck in a local
optimum additionally means that no new search points are created.

Algorithm 10.11: Genotypic aging: age of offspring
Input: Parent x; offspring y

1 if f(y)≥ f(x) and y ̸= x then
2 Set y.age := 0.
3 else
4 Set y.age := x.age.

Later, Jansen and Zarges [35, 36, 39] analyzed the interplay of static pure
aging with the replacement strategy used. It was demonstrated that static
pure aging can achieve performance improvements that go beyond what
restarts can accomplish [35]. Since it is often stated in the literature that
aging increases the diversity within the population of search points, this is
an important step in understanding how and why aging can make an algo-

460 Christine Zarges

rithm more efficient. In this context, crossover plays an important role, as
the main effect shown is based on the recombination (k-point crossover) of a
local optimum and a randomly generated search point [35]. However, given
the original definition of static pure aging, it is unclear how the age of a new
search point is set in the case of more than one parent. Different strategies,
including setting the age to the age of the older parent and setting it to the
age of the better/worse parent, were introduced and analyzed in [36], where
it was pointed out that even subtle differences can have a huge impact on
the performance of the algorithm.

In [39], Jansen and Zarges argued that static pure aging can be subdi-
vided into an aging and a replacement strategy. While the aging strategy
determines the age of a new search point, the replacement strategy decides
how it is introduced into the population. Considering a number of differ-
ent implementations for both strategies, their interplay was analyzed. It was
shown that not only the maximum age but also diversity with respect to
age plays a key role and can make a difference between efficient and inef-
ficient optimization. Different strategies that use the age to remove one of
the search points with the worst function value from the population were
considered. To compare these aging and replacement strategies, an example
function was constructed and the performance for all possible combinations
of operators was analyzed. As age diversity is mainly determined by the inter-
play of the aging and the replacement strategies, a careful algorithm design
and description was considered crucial to obtaining meaningful results.

Very recently, Corus et al. [14, 16] considered an artificial immune sys-
tem using standard bit mutations and static pure aging in the context of the
NP-hard number partitioning problem. Similarly to their analysis for hyper-
mutations with mutation potential (see Section 10.2.3.2) they proved that
their artificial immune system is also able to efficiently solve the same “hard”
problem instances and constitutes a randomised polynomial time approxima-
tion scheme for the partitioning problem (for ε≥ 4/n).

10.3.2 Stochastic Aging

Stochastic aging usually uses the same mechanism as static pure aging to
decide the age of an offspring (see Algorithm 10.9); however, search points
are removed based on some probability pdie (see Algorithm 10.12).

Algorithm 10.12: Stochastic aging: removal due to age
Input: Population P ; probability of dying pdie

1 for all x ∈ P do
2 Set P := P \{x} with probability pdie.

10 Immune-Inspired Randomized Search Heuristics 461

Oliveto and Sudholt [52] presented the first theoretical analysis of stochas-
tic aging. They showed that, just like static pure aging, stochastic aging
can implicitly perform restarts but, more importantly, they also considered
the question of what aging can achieve beyond performing standard restarts.
They presented a framework for the analysis of stochastic aging using a given
probability pdie and showed that stochastic aging can be effective in a nat-
ural setting (i.e., without crossover, which is not usually found in artificial
immune systems) where restarts do not work.

Using the same classical example function that Jansen and Zarges [38]
used for static pure aging, they provided guidance for parameterization and
showed that stochastic aging as in Algorithm 10.12 is effective only for not
too large population sizes, as the probability of performing a restart (i.e., the
probability that all search points die roughly at the same time) is exponential
in the population size µ. To tackle this problem, a hybrid aging operator
(see Algorithm 10.13) combining ideas from static pure aging and stochastic
aging was introduced. Like static pure aging, it protects a search point from
dying for τ generations, but search points with an age larger than τ are
removed from the population with probability pdie. The efficiency of this
novel operator was demonstrated for example functions from the literature
in both dynamic and static environments. These results hold for arbitrary
population sizes. For the dynamic Balance function, it was shown that
hybrid pure aging enables the algorithm to escape from a local optimum if
all but one search point of the population die and, in the same iteration,
the surviving search point moves out of the local optimum – something that
an evolutionary algorithm using standard bit mutations is unable to achieve.
Moreover, it was shown that static pure aging is inefficient in the dynamic
setting considered. As a by-product of their analysis, Oliveto and Sudholt
also remarked that the parameter setting for hybrid pure aging is at the
opposite side of the spectrum from that for stochastic aging: while stochastic
aging requires a high probability of surviving (close to 1), hybrid pure aging
requires a low survival probability (Θ(1/µ)).

Algorithm 10.13: Hybrid pure aging: removal due to age
Input: Population P ; lifespan τ ; probability of dying pdie

1 for all x ∈ P do
2 if x.age > τ then
3 Set P := P \{x} with probability pdie

More recently, Corus et al. [13, 18] extended the analysis of Oliveto and
Sudholt [52] by considering the more general example function Cliffd. They
demonstrated that hybrid aging can be very efficient when coupled with lo-
cal as well as standard bit mutations. For local mutations, they proved an
expected optimization time of O(n logn) if the gap has linear size, i.e., when

462 Christine Zarges

the function is most difficult for evolutionary algorithms using standard bit
mutations. It is noted, that this asymptotically matches the lower bound for
all unbiased mutation-based randomised search heuristics to optimise any
function with a unique optimum [48]. For standard bit mutations, Corus et
al. [13, 18] proved an expected optimisation time of O(n1+ε), ε > 0 constant,
if the gap has linear size. The study was further expanded in [18] by adding a
genotype diversity mechanism (as proposed in the original Opt-IA). Here, it
was shown that the algorithm can still escape from the local optima provided
that the population size is not too large.

10.4 Theoretical Analyses of Complete AIS

While most of the theoretical work so far has considered only specific ingredi-
ents of artificial immune systems from the literature, some work has analyzed
complete AIS as used in applications. Early examples examined the B-cell al-
gorithm [47]. More recently, a study of Opt-IA [21] was presented. These
publications shed a more detailed light on the strengths and weaknesses of
immune-inspired approaches compared with other randomized search heuris-
tics such as evolutionary algorithms or random local search by examining
the interplay between different mechanisms. The following sections present
pseudocode for both algorithms considered in this way, and an overview of
the results obtained.

10.4.1 The B-Cell Algorithm

The B-cell algorithm (BCA; see Algorithm 10.14) uses a population of size µ,
generates λ clones for each member of the population, and applies standard
bit mutations to one random clone of each member and somatic contiguous
hypermutations to all clones. It applies plus-selection between each member
of the population and its clones. Jansen et al. [31] proposed a variant of the
BCA where contiguous hypermutations are only applied with some constant
probability 0 < p < 1 to the search point undergoing standard bit mutations.
Thus, in this version, one of the offspring is subject to standard bit mutations
with only probability 1−p. We call this variant BCA∗.

10.4.1.1 Vertex Cover

The work of Jansen et al. [31] constitutes the first runtime analysis of a
clonal selection algorithm from the literature without any simplifications. It

10 Immune-Inspired Randomized Search Heuristics 463

Algorithm 10.14: The B-cell algorithm (BCA)
Parameters: Population size µ; offspring population size λ;

mutation probability r ∈ (0,1]
1 Choose x1, . . . ,xµ ∈ {0,1}n independently uniformly at random (u.a.r.)
2 repeat
3 for i ∈ {1, . . . ,µ} do /* Clonal expansion */
4 for j ∈ {1, . . . ,λ} do
5 Set yi,j := xi.

6 for i ∈ {1, . . . ,µ} do /* Standard bit mutations */
7 Select j ∈ {1, . . . ,λ} u.a.r.
8 Perform SBM(yi,j).
9 for i ∈ {1,2, . . . ,µ} do /* Contiguous hypermutations */

10 for j ∈ {1,2, . . . ,λ} do
11 Perform CHM(yi,j). // see Algorithm 10.5

12 for i ∈ {1,2, . . . ,µ} do /* Selection */
13 if f(xi)≤max{f(yi,1), . . . ,f(yi,λ)} then
14 Set xi := yi,j , where f(yi,j) = max{f(yi,1), …, f(yi,λ)}, break ties

u.a.r.

15 until some termination criterion is met

considers the performance of the BCA and BCA∗ on the vertex cover problem
and compares it with known results for evolutionary algorithms.

In the vertex cover problem, we are given an undirected graph G = (V,E)
with a set V of n = |V | vertices and a set E of m = |E| edges. A cover is
a subset of nodes, V ′ ⊆ V , such that each edge e ∈ E is covered by at least
one node in V ′, i.e., e∩V ′ ̸= ∅. One is interested in finding a small cover,
i.e., a cover V ∗ ⊆ V such that no smaller subset of V can be a cover, i.e.,
∀V ′ ⊆ V : (|V ′|< |V ∗|)⇒ (∃e ∈ E : e∩V ∗ = ∅).

In their work, Jansen et al. [31] used the standard node-based represen-
tation for vertex cover that assumes that each x ∈ {0,1}n encodes the node
selection V (x) = {vi ∈ V | x[i] = 1}. For a bit string x that encodes a cover
V (x), we use its size |V (x)| as its fitness; otherwise, the number of edges
that are not covered is used as a penalty term, yielding the following fitness
function that is to be minimized:

f(x) =

{
|V (x)| if ∀e ∈ E : V (x)∩e ̸= ∅,
(|V |+1) · |{e ∈ E | V (x)∩e = ∅}| otherwise.

Since, for the BCA, it is easy to flip contiguous bits but difficult to si-
multaneously flip a few bits which are far apart, the mapping between a bit
in x and a node in V can have a significant influence on the performance
of the algorithm. Thus, Jansen et al. [31] suggested an ordering heuristic to
determine a suitable mapping instead of making an arbitrary choice. The
main idea behind this heuristic is that nodes that are close to each other and

464 Christine Zarges

share many neighbors are likely to be ordered together (see [31] for a formal
definition and illustrative examples).

Using this encoding, Jansen et al. [31] considered a sequence of increas-
ingly complex instances of the vertex cover problem that have been studied
as example instances for different kinds of randomized search heuristics to ex-
plore their limits. The simplest example (introduced by Friedrich et al. [26])
is a bipartite graph where a small set of nodes V1 (with size |V1| = εn) is
completely connected to a larger set of nodes V2 (with size |V2| = (1− ε)n).
The number of nodes n and the parameter ε that defines the imbalance in
the sizes of the two sets are parameters. Friedrich et al. [26] proved that the
(1+1) EA is easily caught in the local optimum and therefore is very ineffi-
cient with respect to expected optimization time. The same holds for random
local search. Both heuristics require the introduction of restarts when stuck
in a local optimum to become efficient on this problem instance [49]. The
BCA, with any polynomial population size µ and any not too large number
of clones (λ = O(1)), has expected optimization time O(µn2 logn) and does
not require restarts.

To make the difference between the (1+1) EA and the BCA more pro-
nounced, one can “amplify” the result by considering a number of copies of the
bipartite graph and adding a small number of additional edges to make the
graph connected. For this graph, the (1+1) EA has an exponential expected
optimization time even if it is equipped with an optimal restart strategy [50].
For a number l of copies of the bipartite graph, where each copy has h nodes
(so that the total graph has n = h · l nodes), the BCA has expected optimiza-
tion time O(µn2 (l +log(n))), again for any polynomial population size µ and
any not too large number of clones (λ = O(1)).

The (1+1) EA is not a very typical evolutionary algorithm, since it em-
ploys neither a proper population of solutions nor crossover. For evolutionary
algorithms making use of both, more complex vertex cover instances become
solvable. Oliveto et al. [49] proved that an evolutionary algorithm with a
population size of µ that applies crossover with a small probability pc is
able to find an optimal solution for a more complex vertex cover instance
in polynomial time with very high probability, namely in time O(µ2n/pc),
where the population size is at least µ ≥ n1+ε and the probability of apply-
ing crossover is at most pc ≤ 1/(µ

√
n logn). Note that the upper bound is

ω(n4.5 logn), which is far from being efficient from a practical point of view.
The (1+1) EA is provably very inefficient on this problem instance. The
BCA, on the other hand, finds an optimum for this instance in expected time
O(µn3), which can be as small as O(n3) if the population size µ is small
(µ = O(1)).

As seen in Section 10.2.2, contiguous hypermutations are a rather ineffi-
cient hill-climber, and thus so is the “pure” BCA. Using BCA∗ instead of the
BCA reduces the upper bound to O(µn2 logn), which becomes O(n2 logn)
for small population sizes (µ = O(1)). This modification improves the hill-
climbing abilities of the BCA considerably without compromising its search

10 Immune-Inspired Randomized Search Heuristics 465

capabilities in a significant way. We remark that for µ = O(1) and λ = O(1),
BCA∗ also improves the expected optimization times for OneMax and
LeadingOnes to Θ(n logn) and Θ(n2), respectively.

10.4.1.2 Longest Common Subsequence

A comparison similar to the one presented by Jansen et al. [31] for the vertex
cover problem has been performed for the longest common subsequence prob-
lem [41]. Here, Jansen and Zarges showed that the BCA outperforms a large
class of evolutionary algorithms using mutation and crossover on previously
introduced hard problem instances.

In the longest common subsequence problem, we are given a set of m
sequences of potentially different lengths over a common finite alphabet Σ,
i.e., X1,X2, . . . ,Xm ⊆Σ∗. By |Y | we denote the length of a sequence Y , i.e.,
|Y | = l for Y = y[1]y[2] · · ·y[l] ∈ Σl. A sequence Y = y[1]y[2] . . .y[l] ∈ Σl is
called a subsequence of a sequence X = x[1]x[2] · · ·x[n] ∈ Σn if there are in-
dices 0 < i1 < i2 < · · ·< il≤n such that y[j] = x[ij] holds for all j ∈ {1,2, . . . , l}.
The sequence of indices proving that Y is a subsequence of X need not be
unique. A sequence Y is a common subsequence of X1,X2, . . . ,Xm if it is a
subsequence of Xi for all i∈ {1,2, . . . ,m}. It is a longest common subsequence
if all common subsequences of X1,X2, . . . ,Xm do not have greater length.

Jansen and Zarges [41] used S = {0,1}n, where n is the length of a shortest
sequence in the input, as the search space. Let X1 = x[1]x[2] · · ·x[n] ∈ Σn

denote the letters in the sequence X1. For a search point s = s[1]s[2] · · ·s[n] ∈
{0,1}n, let I1 = {i1, i2, . . . , il} ⊆ {1,2, . . . ,n} (with i1 < i2 < · · · < il) denote
the positions of 1-bits in s, i.e., s[i] = 1 for all i ∈ I1 and s[i] = 0 for all
i∈ {1,2, . . . ,n}\I1. The search point s encodes the sequence x[i1]x[i2] · · ·x[il],
a subsequence of X1. Let c(s) denote the sequence encoded by s. If c(s) is
a subsequence of all X1,X2, . . . ,Xm, it encodes a feasible solution, otherwise
c(s) is infeasible. The all-zero bit string encodes a trivial empty solution.

We discuss only one of the three fitness functions considered in [41], as the
other two are either very complicated or merely of theoretical interest. The
function fMAX determines the maximum length k of a prefix of c(s) such
that c(s)(k) is a common subsequence of X1,X2, . . . ,Xm. This length minus
the length of the remaining suffix of c(s) is the function value:

MAX(c(s),X1,X2, . . . ,Xm)
= min{max{k | c(s)(k) is subsequence of Xi} | i ∈ {1, . . . ,m}},

fMAX(s)
= MAX(c(s),X1,X2, . . . ,Xm)− (|c(s)|−MAX(c(s),X1,X2, . . . ,Xm)).

466 Christine Zarges

Jansen and Zarges [41] considered four hard instances from the literature [32],
two for the theoretically motivated fitness function omitted here and two for
the other two (including the one defined above):

• EMAX:

X1 = 0(8/32)n1(24/32)n and X2 = 1(24/32)n0(5/32)n1(13/32)n,

where n is a multiple of 32;
• AMAX:

X1 = 0(1/l)n1((l−1)/l)n and X2 = 1((l−1)/l)n0(5/(8l))n1((4l−3)/(8l))n,

where l := ⌈(3/ε)− (1/2)⌉ for some ε > 0 constant and n a multiple of 8l.

It is known that a large class of evolutionary algorithms fails to locate an op-
timal solution of EMAX efficiently; for AMAX, this class even fails to approx-
imate an optimal solution up to a factor of 2−ε for any constant ε > 0 [32].

Jansen and Zarges [41] proved that the BCA is not efficient if random
initialization of the population is used; for AMAX, it also fails to find a good
approximation – just like evolutionary algorithms. However, they showed that
the BCA is very efficient if started with trivial empty candidate solutions.
For both EMAX and AMAX, the expected optimization time of the BCA is
O(µλn2 logn) for all settings of µ = nO(1), λ = nO(1) with µλ = ω(n logn).
The algorithm benefits from deterministic initialization because contiguous
hypermutations are able to introduce a linear number of 1-bits into a region
where they are needed in a single step. As a by-product of their analyses,
Jansen and Zarges [41] noted that the concrete choices of µ and λ make no
difference as long as µ ·λ remains unchanged – in evolutionary computation,
these choices usually have a very different effect.

While empirical observations for the longest common subsequence problem
indicate that evolutionary algorithms perform better if started with trivial
empty candidate solutions, this is not the case for the instances considered,
and deterministic initialization does not lead to an improved behavior.

10.4.1.3 Dynamic Optimization

The BCA and its variant BCA∗ have also been considered in the context
of dynamic optimization [42, 45]. Here, Jansen and Zarges particularly dis-
cussed why fixed-budget analysis is more appropriate for dynamic environ-
ments, where the limited time budget refers to the generations directly after
a change in the fitness landscape. They introduced a novel dynamic bistable
example function that exhibits phases of stability and rapid change. Moti-
vated by earlier results, they investigated whether artificial immune systems
have an advantage in situations of rapid change. A large number of concrete
theoretical results for different combinations of execution platforms and pa-

10 Immune-Inspired Randomized Search Heuristics 467

rameters of the fitness function were presented. The specific way the optimum
moves in the nonstable phases tends to be helpful for contiguous hypermu-
tations, but within the analytical framework no clear advantage could be
observed. The concrete contributions of [42, 45] are discussed in more detail
in Section 5.5 of this book.

10.4.2 Opt-IA

The name Opt-IA [21] encompasses several clonal selection algorithms follow-
ing similar ideas and using roughly the same operators. Just like the B-cell
algorithm, Opt-IA is mostly used in the context of optimization and uses
a bit string representation. We give a description of the algorithm’s bare
bones in Algorithm 10.15. For each search point in the population, a large
number of clones are created that are then subject to mutation. Usually a
static cloning operator is used, i.e., the number of clones is independent of
the fitness; however, some versions of Opt-IA employ some form of fitness-
dependent cloning, where a search point is selected for cloning with a proba-
bility that is proportional to its fitness (see [3] for an overview). Depending
on the specific variant used, Opt-IA uses two different types of mutation
operator: hypermutations with mutation potential and a form of contiguous
hypermutations (often called hypermacromutation). Usually, both mutation
operators are applied independently and separately to the clones. Opt-IA
additionally introduces the concept of aging to clonal selection algorithms,
as discussed in Section 10.3. Aging operators aim at increasing the diversity
within the population by removing “too old” search points. If aging results
in too few search points in the population, the population is filled up with
new random search points. Moreover, usually no duplicates are allowed in
the population.

Corus et al. [13, 18] considered the first runtime analysis of Opt-IA using
only hypermutations with a static mutation potential (where the number of
bits flipped is linear in the problem size, c ·n for constant c > 0), including the
FCM mechanism and ensuring that only distinct bits are flipped (TABU vari-
ant). Moreover, they replaced the standard static pure aging operator by hy-
brid aging, as introduced by Oliveto and Sudholt [52] (see Algorithm 10.13).

After considering standard example functions such as OneMax,
LeadingOnes, Cliffd, and Jumpk for this variant of Opt-IA (with and
without genotype diversity), the study highlights problems where the use
of the complete Opt-IA variant is crucial. For a carefully constructed novel
example function called HiddenPath, it was shown that Opt-IA with ap-
propriate parameterization has an expected polynomial optimization time,
while the algorithm missing either aging or hypermutations requires at least
superpolynomial time. To give a complete picture, the extension in [18] in-
troduced another class of functions (called HyperTrapy), for which, with

468 Christine Zarges

Algorithm 10.15: Opt-IA
Parameters: Population size µ; offspring population size λ;

mutation flags H,M
1 Choose P = {x1, . . . ,xµ} independently, uniformly at random (u.a.r.).
2 repeat
3 for i ∈ {1, . . . ,µ} do /* Clonal selection and expansion */
4 Generate λ clones of xi.
5 Place the clones in a clonal pool Ci = {yi,1, . . . ,yi,λ}.
6 CH

i = ∅. CM
i = ∅.

7 for j ∈ {1, . . . ,λ} do /* Affinity maturation */
8 if H then
9 ŷi,j ← Apply hypermutations with mutation potential to yi,j .

10 Add ŷi,j to CH
i .

11 if M then
12 ỹi,j ← Apply contiguous hypermutations to yi,j .
13 Add ỹi,j to CM

i .

14 Apply aging to P , CH
i , and CM

i . /* Metadynamics */
15 Set P = P ∪CH

1 ∪ . . .∪CH
µ ∪CM

1 ∪ . . .∪CM
µ . /* Selection */

16 if |P |> µ then
17 Keep the µ best search points from P , breaking ties u.a.r. and removing

duplicates.
18 else
19 Keep all search points in P .
20 Fill up P with random points until |P |= µ.
21 until some termination criterion is met

overwhelming probability, Opt-IA is inefficient, while the simple (1+1) EA
using standard bit mutations is efficient.

Corus et al. [13, 18] also considered a simple trap function, as such a
function was used when Opt-IA was originally introduced. They proved an
expected optimization time of O(µn2 logn) for τ = Ω(n2), c = 1, and λ =
1 and pointed out that this does not match the empirical results reported
in [19], where Opt-IA was unable to optimize trap functions for n > 50. It
was conjectured that this was due either to not using FCM or too small a
time budget.

In [15], Corus et al. analyzed Opt-IA using “fast” hypermutations with
mutation potential (see Section 10.2.3.3) on previously considered example
functions such as HiddenPath and Cliffd. The authors particularly pointed
out that, in order to effectively work with aging on Cliffd, it was crucial not
to use hypermutations with FCM as the FCMmechanism does not allow wors-
ening of the fitness value1. Thus, the operator performed all n mutation steps
and returned the best sampled search point instead of the first improved one.

1 This observation holds for both “classical” and “fast” hypermutations with mutation
potential.

10 Immune-Inspired Randomized Search Heuristics 469

Later, Corus et al. [17] demonstrated that their inversely fitness-proportional
mutation potential (see Section 10.2.3.1) together with aging was able to op-
timize Cliffd with d = Θ(n) in expected polynomial time even if FCM is
used.

10.5 Summary

In this chapter, we have provided an overview of the state of the art in
the theory of immune-inspired randomized search heuristics for optimization.
In this context, most algorithms are inspired by the so-called clonal selec-
tion principle, which describes the basic features of the adaptive immune
response. A large variety of different clonal selection algorithms have been
introduced, and over the last decade some significant progress has been made
on the theoretical foundations of such algorithms. Initially, most theoretical
studies concentrated on two defining aspects of artificial immune systems: hy-
permutation operators (inversely fitness-proportional mutations, contiguous
hypermutations, and hypermutations with mutation potential) and a diver-
sity mechanism called aging (static pure aging and stochastic aging). More
recently, insights into the interplay between different operators have allowed
the first analyses of “complete” artificial immune systems as published in the
literature – this particularly includes analyses of the B-cell algorithm and
Opt-IA.

Theoretical analyses have contributed to significant insights into the work-
ing principles of immune-inspired operators and algorithms. For example, a
common observation in the literature is that typical immune-inspired oper-
ators such as hypermutations and ageing allow to efficiently escape from
local optima – particularly when compared to evolutionary algorithms – but
may have difficulties during the exploitation phase. The introduction of fixed-
budget analysis (discussed in more detail in Chapter 5 of this book) has
particularly contributed to our understanding of their strengths and weak-
nesses. In many cases, these insights have contributed to the development of
improved versions of the operators or hybrid variants that combine immune-
inspired mechanisms with techniques used in evolutionary computation and
other randomized search heuristics. However, more research into the strengths
and weaknesses of immune-inspired algorithms is needed, particularly in the
context of combinatorial optimization. It would be interesting to see on what
kind of problems these algorithms excel over other nature-inspired random-
ized search heuristics such as evolutionary algorithms. It is also often argued
that immune-inspired algorithms are especially suited for multimodal or dy-
namic optimization problems. Further investigations in these directions are
promising directions for future research.

470 Christine Zarges

References

[1] Bernardino, H.S., Barbosa, H.J.C.: Artificial immune systems for op-
timization. In: R. Chiong (ed.) Nature-Inspired Algorithms for Opti-
misation, Studies in Computational Intelligence, vol. 193, pp. 389–411.
Springer (2009)

[2] Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive muta-
tion rates for the LeadingOnes problem. In: Proceedings of the 11th In-
ternational Conference on Parallel Problem Solving from Nature (PPSN
2010), Lecture Notes in Computer Science, vol. 6238, pp. 1–10. Springer
(2010)

[3] Brownlee, J.: Clonal selection algorithms. Tech. Rep. 070209A, Swin-
burne University of Technology, Victoria, Australia (2007)

[4] Burnet, F.M.: The Clonal Selection Theory of Acquired Immunity. Cam-
bridge University Press (1959)

[5] de Castro, L.N., Timmis, J.: An artificial immune network for multi-
modal function optimization. In: Proceedings of the Congress on Evolu-
tionary Computation (CEC 2002), pp. 699–704. IEEE Press (2002)

[6] de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Compu-
tational Intelligence Approach. Springer (2002)

[7] de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the
clonal selection principle. IEEE Transactions on Evolutionary Compu-
tation 6(3), 239–251 (2002)

[8] Clark, E.B.: A framework for modelling stochastic optimisation algo-
rithms with markov chains. Ph.D. thesis, University of York (2008)

[9] Clark, E.B., Hone, A., Timmis, J.: A Markov chain model of the B-
cell algorithm. In: Proceedings of the 4th International Conference on
Artificial Immune Systems (ICARIS 2005), Lecture Notes in Computer
Science, vol. 3627, pp. 318–330. Springer (2005)

[10] Coello, C.A.C., Cortés, N.C.: Solving multiobjective optimization prob-
lems using an artificial immune system. Genetic Programming and
Evolvable Machines 6(2), 163–190 (2005)

[11] Corus, D., He, J., Jansen, T., Oliveto, P.S., Sudholt, D., Zarges, C.: On
easiest functions for somatic contiguous hypermutations and standard
bit mutations. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO 2015), pp. 1399–1406. ACM (2015)

[12] Corus, D., He, J., Jansen, T., Oliveto, P.S., Sudholt, D., Zarges, C.:
On easiest functions for mutation operators in bio-inspired optimisation.
Algorithmica 78(2), 714–740 (2017)

[13] Corus, D., Oliveto, P.S., Yazdani, D.: On the runtime analysis of the
opt-IA artificial immune system. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2017), pp. 83–90. ACM
(2017)

[14] Corus, D., Oliveto, P.S., Yazdani, D.: Artificial immune systems can find
arbitrarily good approximations for the NP-hard partition problem. In:

10 Immune-Inspired Randomized Search Heuristics 471

Proceedings of the 15th International Conference on Parallel Problem
Solving from Nature (PPSN 2018), Part II, Lecture Notes in Computer
Science, vol. 11102, pp. 16–28. Springer (2018)

[15] Corus, D., Oliveto, P.S., Yazdani, D.: Fast artificial immune systems. In:
Proceedings of the 15th International Conference on Parallel Problem
Solving from Nature (PPSN 2018), Part II, Lecture Notes in Computer
Science, vol. 11102, pp. 67–78. Springer (2018)

[16] Corus, D., Oliveto, P.S., Yazdani, D.: Artificial immune systems can find
arbitrarily good approximations for the NP-hard number partitioning
problem. Artificial Intelligence 274, 180–196 (2019). In press. https:
//doi.org/10.1016/j.artint.2019.03.001

[17] Corus, D., Oliveto, P.S., Yazdani, D.: On inversely proportional hyper-
mutations with mutation potential. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2019). ACM (2019). In
press.

[18] Corus, D., Oliveto, P.S., Yazdani, D.: When hypermutations and ageing
enable artificial immune systems to outperform evolutionary algorithms.
Theoretical Computer Science (2019). In press. https://doi.org/10.
1016/j.tcs.2019.03.002

[19] Cutello, V., Nicosia, G., Pavone, M.: Exploring the capability of immune
algorithms: A characterization of hypermutation operators. In: Proceed-
ings of the 3rd International Conference on Artificial Immune Systems
(ICARIS 2004), Lecture Notes in Computer Science, vol. 3239, pp. 263–
276. Springer (2004)

[20] Cutello, V., Nicosia, G., Romeo, M., Oliveto, P.S.: On the convergence
of immune algorithms. In: Proceedings of the IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007), pp. 409–415.
IEEE (2007)

[21] Cutello, V., Pavone, M., Timmis, J.: An immune algorithm for protein
structure prediction on lattice models. IEEE Transactions on Evolution-
ary Computation 11(1), 101–117 (2007)

[22] Dasgupta, D. (ed.): Artificial Immune Systems and Their Applications.
Springer (1998)

[23] Dasgupta, D., Niño, L.F.: Immunological Computation: Theory and Ap-
plications. Auerbach (2008)

[24] Elberfeld, M., Textor, J.: Negative selection algorithms on strings with
efficient training and linear-time classification. Theoretical Computer
Science 412(6), 534–542 (2011)

[25] Fernandes, D.A.B., Freire, M.M., Fazendeiro, P.A.P., Inácio, P.R.M.: Ap-
plications of artificial immune systems to computer security: A survey.
Journal of Information Security and Applications 35, 138–159 (2017)

[26] Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approx-
imating covering problems by randomized search heuristics using multi-
objective models. Evolutionary Computation 18(4), 617–633 (2010)

https://doi.org/10.1016/j.artint.2019.03.001
https://doi.org/10.1016/j.artint.2019.03.001
https://doi.org/10.1016/j.tcs.2019.03.002
https://doi.org/10.1016/j.tcs.2019.03.002

472 Christine Zarges

[27] Gu, F., Greensmith, J., Aickelin, U.: Theoretical formulation and ana-
lysis of the deterministic dendritic cell algorithm. Biosystems 111(2),
127–135 (2013)

[28] He, J., Chen, T., Yao, X.: On the easiest and hardest fitness functions.
IEEE Transactions on Evolutionary Computation 19(2), 295–305 (2015)

[29] Hong, L., Kamruzzaman, J.: Convergence of elitist clonal selection algo-
rithm based on martingale theory. Engineering Letters 21(4), 181–184
(2013)

[30] Horoba, C., Jansen, T., Zarges, C.: Maximal age in randomized search
heuristics with aging. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2009), pp. 803–810. ACM (2009)

[31] Jansen, T., Oliveto, P.S., Zarges, C.: On the analysis of the immune-
inspired B-cell algorithm for the vertex cover problem. In: Proceed-
ings of the 10th International Conference on Artificial Immune Systems
(ICARIS 2011), Lecture Notes in Computer Science, vol. 6825, pp. 117–
131. Springer (2011)

[32] Jansen, T., Weyland, D.: Analysis of evolutionary algorithms for the
longest common subsequence problem. Algorithmica 57, 170–186 (2010)

[33] Jansen, T., Zarges, C.: Comparing different aging operators. In: Proceed-
ings of the 8th International Conference on Artificial Immune Systems
(ICARIS 2009), Lecture Notes in Computer Science, vol. 5666, pp. 95–
108. Springer (2009)

[34] Jansen, T., Zarges, C.: A theoretical analysis of immune inspired somatic
contiguous hypermutations for function optimization. In: Proceedings of
the 8th International Conference on Artificial Immune Systems (ICARIS
2009), Lecture Notes in Computer Science, vol. 5666, pp. 80–94. Springer
(2009)

[35] Jansen, T., Zarges, C.: Aging beyond restarts. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2010), pp.
705–712. ACM (2010)

[36] Jansen, T., Zarges, C.: On the benefits of aging and the importance of
details. In: Proceedings of the 9th International Conference on Artificial
Immune Systems (ICARIS 2010), Lecture Notes in Computer Science,
vol. 6209, pp. 61–74. Springer (2010)

[37] Jansen, T., Zarges, C.: Analyzing different variants of immune inspired
somatic contiguous hypermutations. Theoretical Computer Science
412(6), 517–533 (2011)

[38] Jansen, T., Zarges, C.: On benefits and drawbacks of aging strategies
for randomized search heuristics. Theoretical Computer Science 412(6),
543–559 (2011)

[39] Jansen, T., Zarges, C.: On the role of age diversity for effective aging
operators. Evolutionary Intelligence 4(2), 99–125 (2011)

[40] Jansen, T., Zarges, C.: Variation in artificial immune systems: Hyper-
mutations with mutation potential. In: Proceedings of the 10th Interna-

10 Immune-Inspired Randomized Search Heuristics 473

tional Conference on Artificial Immune Systems (ICARIS 2011), Lecture
Notes in Computer Science, vol. 6825, pp. 132–145. Springer (2011)

[41] Jansen, T., Zarges, C.: Computing longest common subsequences with
the B-cell algorithm. In: Proceedings of the 11th International Confer-
ence on Artificial Immune Systems (ICARIS 2012), Lecture Notes in
Computer Science, vol. 7597, pp. 111–124. Springer (2012)

[42] Jansen, T., Zarges, C.: Evolutionary algorithms and artificial immune
systems on a bi-stable dynamic optimisation problem. In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO 2014),
pp. 975–982. ACM (2014)

[43] Jansen, T., Zarges, C.: Reevaluating immune-inspired hypermutations
using the fixed budget perspective. IEEE Transactions on Evolutionary
Computation 18(5), 674–688 (2014)

[44] Jansen, T., Zarges, C.: Understanding randomised search heuristics.
lessons from the evolution of theory: A case study. In: Proceedings of
the 20th International Conference on Soft Computing (MENDEL 2014),
pp. 293–298 (2014)

[45] Jansen, T., Zarges, C.: Analysis of randomised search heuristics for dy-
namic optimisation. Evolutionary Computation 23, 513–541 (2015)

[46] Jerne, N.: Towards a network theory of the immune system. Annals of
Immunology 125C(1–2), 373–389 (1974)

[47] Kelsey, J., Timmis, J.: Immune inspired somatic contiguous hypermu-
tation for function optimisation. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2003), Lecture Notes
in Computer Science, vol. 2723, pp. 207–218. Springer (2003)

[48] Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorith-
mica 64(4), 623–642 (2012)

[49] Oliveto, P.S., He, J., Yao, X.: Analysis of population-based evolutionary
algorithms for the vertex cover problem. In: Proceedings of the Congress
on Evolutionary Computation (CEC 2008), pp. 1563–1570. IEEE Press
(2008)

[50] Oliveto, P.S., He, J., Yao, X.: Analysis of the (1+1)-EA for finding ap-
proximate solutions to vertex cover problems. IEEE Transactions Evo-
lutionary Computation 13(5), 1006–1029 (2009)

[51] Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-
based mutation – combining exploration and exploitation. In: Proceed-
ings of the Congress on Evolutionary Computation (CEC 2009), pp.
1455–1462. IEEE (2009)

[52] Oliveto, P.S., Sudholt, D.: On the runtime analysis of stochastic ageing
mechanisms. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO 2014), pp. 113–120. ACM (2014)

[53] Silva, G.C., Dasgupta, D.: A survey of recent works in artificial immune
systems. In: P.P. Angelov (ed.) Handbook on Computational Intelligence,
chap. Chapter 15, pp. 547–586. World Scientific (2016)

474 Christine Zarges

[54] Textor, J.: Efficient negative selection algorithms by sampling and ap-
proximate counting. In: Proceedings of the 12th International Confer-
ence on Parallel Problem Solving from Nature (PPSN 2012), Lecture
Notes in Computer Science, vol. 7491, pp. 32–41. Springer (2012)

[55] Timmis, J., Hone, A., Stibor, T., Clark, E.: Theoretical advances in
artificial immune systems. Theoretical Computer Science 403(1), 11–32
(2008)

[56] Villalobos-Arias, M., Coello, C.A.C., Hernández-Lerma, O.: Conver-
gence analysis of a multiobjective artificial immune system algorithm.
In: Proceedings of the 3rd International Conference on Artificial Im-
mune Systems (ICARIS 2004), Lecture Notes in Computer Science, vol.
3239, pp. 226–235. Springer (2004)

[57] Villalobos-Arias, M., Coello, C.A.C., Hernández-Lerma, O.: Asymptotic
convergence of some metaheuristics used for multiobjective optimization.
In: Proceedings of the 8th International Workshop on Foundations of
Genetic Algorithms (FOGA 2005), Lecture Notes in Computer Science,
vol. 3469, pp. 95–111. Springer (2005)

[58] Xia, X., Zhou, Y.: On the effectiveness of immune inspired mutation
operators in some discrete optimization problems. Information Sciences
426, 87–100 (2018)

[59] Zarges, C.: Rigorous runtime analysis of inversely fitness proportional
mutation rates. In: Proceedings of the 10th International Conference on
Parallel Problem Solving from Nature (PPSN 2008), Lecture Notes in
Computer Science, vol. 5199, pp. 112–122. Springer (2008)

[60] Zarges, C.: On the utility of the population size for inversely fitness
proportional mutation rates. In: Proceedings of the 10th International
Workshop on Foundations of Genetic Algorithms (FOGA 2009), pp. 39–
46. ACM Press (2009)

[61] Zarges, C.: Theoretical foundations of artificial immune systems. Ph.D.
thesis, TU Dortmund, Germany (2011)

Chapter 11
Computational Complexity Analysis of
Genetic Programming

Andrei Lissovoi and Pietro S. Oliveto

Abstract Genetic programming (GP) is an evolutionary computation tech-
nique to solve problems in an automated, domain-independent way. Rather
than identifying the optimum of a function as in more traditional evolu-
tionary optimization, the aim of GP is to evolve computer programs with
a given functionality. While many GP applications have produced human
competitive results, the theoretical understanding of what problem charac-
teristics and algorithm properties allow GP to be effective is comparatively
limited. Compared with traditional evolutionary algorithms for function opti-
mization, GP applications are further complicated by two additional factors:
the variable-length representation of candidate programs, and the difficulty
of evaluating their quality efficiently. Such difficulties considerably impact
the runtime analysis of GP, where space complexity also comes into play.
As a result, initial complexity analyses of GP have focused on restricted set-
tings such as the evolution of trees with given structures or the estimation
of solution quality using only a small polynomial number of input/output
examples. However, the first computational complexity analyses of GP for
evolving proper functions with defined input/output behavior have recently
appeared. In this chapter, we present an overview of the state of the art.

Andrei Lissovoi
Rigorous Research, Department of Computer Science, University of Sheffield, 211 Por-
tobello, Sheffield S1 4DP, UK.
e-mail: a.lissovoi@sheffield.ac.uk
Pietro S. Oliveto
Rigorous Research, Department of Computer Science, University of Sheffield, 211 Por-
tobello, Sheffield S1 4DP, UK.
e-mail: p.oliveto@sheffield.ac.uk

475

a.lissovoi@sheffield.ac.uk
p.oliveto@sheffield.ac.uk

476 Andrei Lissovoi and Pietro S. Oliveto

11.1 Introduction

Genetic programming (GP) is a class of evolutionary computation techniques
to evolve computer programs popularized by Koza [20]. GP uses genetic al-
gorithm mutation, crossover and selection operators adapted to work on pop-
ulations of program structures. Program fitness is evaluated using a training
set consisting of samples of program inputs and the corresponding correct
outputs. The goal of a GP system is to construct a program which, as well
as producing the correct outputs on the inputs included in the training set,
generalizes well to other possible inputs.

In standard tree-based GP, as popularized by Koza, programs are ex-
pressed as syntax trees rather than lines of code, with variables and con-
stants (collectively referred to as terminals) appearing as leaf nodes in the
tree, and functions (such as +, *, and cos) appearing as internal nodes. New
programs are produced by mutation (which makes some changes to a solu-
tion) or crossover (which creates new solutions by combining subtrees of two
parent solutions). Several other variants of GP exist that use different rep-
resentations than tree structures. Popular ones are Linear GP [1], Cartesian
GP [31], and Geometric Semantic GP (GSGP) [33]. Since most of the avail-
able computational complexity analyses focus on tree-based GP, this is where
we keep our focus in this chapter. Work on GSGP is an exception that we
will also consider [35].

One of the main points regarding GP made by Koza is that a wide variety
of different problems from many different fields can be recast as requiring the
discovery of a computer program that produces some desired output when
presented with particular inputs [20]. Ideally, this process of discovery could
take place without requiring a human to explicitly make decisions about
the size, shape, or structural complexity of the solutions in advance. Since
GP systems provide a way to search the space of computer programs for one
which solves (or approximates) the problem at hand, they are thus applicable
to a wide variety of problems, including those in artificial intelligence, ma-
chine learning, adaptive systems, and automated learning. GP has produced
human-competitive results and patentable solutions on a large number of
diverse problems, including the design of quantum computing circuits [51],
antennas [26], mechanical systems [24], and optical lens systems [22]. From
these results, Koza observes that GP may be especially productive in areas
where little information about the size or shape of the ultimate solution is
known, while large amounts of data and good simulators are available to
measure the performance of candidate solutions [21].

While there are many examples of successful applications of GP (see [21]
for an overview), the understanding of how such systems work and on which
problems they are successful is much more limited. Compared with tradi-
tional evolutionary algorithms for function optimization, GP applications are
further complicated by two additional factors: the variable-length represen-
tation of candidate programs, and the difficulty of evaluating their quality

11 Computational Complexity Analysis of Genetic Programming 477

efficiently, since it is prohibitive or even impossible to test programs on all
possible inputs. Such difficulties, naturally, impact the runtime analysis of
GP considerably, where space complexity also comes into play. As a result,
while nowadays the analysis of standard elitist [3, 4] and nonelitist genetic
algorithms [2, 39, 40] has finally become a reality, analyzing standard GP sys-
tems is far more prohibitive. Indeed, McDermott and O’Reilly [30] remarked
that “due to stochasticity, it is arguably impossible in most cases to make
formal guarantees about the number of fitness evaluations needed for a GP
algorithm to find an optimal solution.” Similarly to how the analysis of sim-
plified evolutionary algorithms (EAs) has gradually led to the achievement
of techniques that nowadays allow the analysis of standard EAs, Poli et al.
suggested that “computational complexity techniques being used to model
simpler GP systems, perhaps GP systems based on mutation and stochastic
hill-climbing” [48].

Following this guideline the first runtime analyses laying the groundwork
for better understanding of GP considered simplified algorithms primarily
based on mutation and hill-climbing (i.e., the (1+1) GP algorithm intro-
duced in [9]). However, further simplifications compared with applications of
GP in practice were necessary to deal with the additional difficulties intro-
duced by the variable length of GP solutions, the stochastic fitness function
evaluations when dynamic training sets were used, and the neighborhood
structure imposed by the GP mutation and crossover operations acting on
syntax trees. Indeed, Goldberg and O’Reilly observed that “the methodol-
ogy of using deliberately designed problems, isolating specific properties, and
pursuing, in detail, their relationships in simple GP is more than sound; it is
the only practical means of systematically extending GP understanding and
design” [13]. To this end, the first runtime analyses of GP considered the
time required to evolve particular tree structures rather than proper com-
puter programs. In particular, solution fitness was evaluated based on the
tree structure rather than by executing the evolved syntax tree. Problems be-
longing to this category are Order, Majority [9] and Sorting [56]. Even
in such simplified settings, the characteristic GP problem, bloat (i.e., the con-
tinuous growth of evolved solutions that is not accompanied by significant
improvements in solution quality), may appear.

In GP applications generally, either the set of all possible inputs is too large
to evaluate the exact solution quality efficiently, or not much of it is known
(i.e., only a limited amount of information about the correct input/output be-
havior is available). As a result, the performance of the GP system is usually
considered in the probably approximately correct (PAC) learning framework
[54], to show that the solution produced by the GP system generalizes well
to all inputs. Kötzing et al. isolated this issue when they presented the first
runtime analysis of a GP system in this framework [18]. They considered
the problem of learning the weights assigned to n bits of a pseudo-Boolean
function (i.e., the Identification problem), and proved that a simple GP

478 Andrei Lissovoi and Pietro S. Oliveto

system can discover the weights efficiently even if a limited sample of the
possible inputs is used to evaluate solution quality.

A more realistic problem where the program output, rather than structure,
is used as the basis for determining solution quality is the MAX problem [19],
originally introduced in [12]. The problem is to evolve a program which, given
some mathematical operators and constants (the problem admits no variable
inputs), outputs the maximum possible value subject to a constraint on pro-
gram size.

Only recently, the time and space complexity of the (1+1) GP has been
analyzed for evolving Boolean functions of arity n [25, 29]. Solution quality
was evaluated by comparing the output of the evolved programs with the
target function on all possible inputs, or on a polynomially sized training
set. The analyses show that while conjunctions of n variables can be evolved
efficiently (either exactly, using the complete truth table as the training set, or
in the PAC learning framework when smaller training sets are used), parity
functions of n variables cannot. These results represent the first rigorous
complexity analysis of a tree-based GP system for evolving functions with
actual input/output behavior.

We will also consider the theoretical work on GSGP, where the variation
operators used by the GP system are designed to modify program semantics
rather than program syntax.

This chapter presents an overview of the state of the art. It is structured
as follows. In Section 11.2, we introduce the (1+1) GP, the GP system
used for most of the available computational complexity analysis results.
In Section 11.3, we present an overview of the analyses of GP systems for
evolving tree structures with specific properties (the Order, Majority, and
Sorting problems). In Section 11.4, we present results where GP systems
evolve programs with limited functionality: the MAX problem is considered
in Subsection 11.4.1, and the Identification problem in Subsection 11.4.2.
Section 11.5 presents results for GP evolving proper Boolean functions of
arity n. Section 11.6 presents a brief overview of the computational complex-
ity results available for GSGP algorithms. Finally, Section 11.7 presents a
summary of the presented results and discusses the open directions for future
work.

11.2 Preliminaries

In this chapter, we will primarily consider the behavior of the simple
(1+1) GP algorithm (Algorithm 11.1), which represents programs using syn-
tax trees and uses the HVL-Prime operator (Algorithm 11.2) to perform
mutations. This algorithm maintains a population of one individual (initial-
ized either with an empty tree, or with a randomly generated tree), and at
each generation chooses between the parent and a single offspring generated

11 Computational Complexity Analysis of Genetic Programming 479

Algorithm 11.1: The (1+1) GP
1 Initialize a tree X
2 for t← 1,2, . . . do
3 X′←X
4 k← 1 + Poisson(1)
5 for i← 1, . . . ,k do
6 X′←HVL-Prime(X′)
7 if f(X′)≤ f(X) then
8 X←X′

Algorithm 11.2: The HVL-Prime mutation operator
Data: A binary syntax tree X.

1 Choose op ∈ {INS,DEL,SUB} uniformly at random
2 if X is an empty tree then
3 Choose a literal l ∈ L uniformly at random
4 Set l to be the root of X

5 else if op = INS then
6 Choose a node x ∈X uniformly at random
7 Choose f ∈ F,l ∈ L uniformly at random
8 Replace x in X with f
9 Set the children of f to be x and l, order chosen uniformly at random

10 else if op = DEL then
11 Choose a leaf node x ∈X uniformly at random
12 Replace x’s parent in X with x’s sibling in X

13 else if op = SUB then
14 Choose a node x ∈X uniformly at random
15 Choose a replacement l ∈ L, or f ∈ F uniformly at random
16 Replace x in X with l if x is a leaf node, or with f if x is an internal node

by HVL-Prime mutation. This simple algorithm had already been considered
in early comparative work between standard tree-based GP and iterated hill-
climbing versions of GP [42–44].

The HVL-Prime mutation operator, introduced in [9] and shown in Al-
gorithm 11.2 here, is an updated version of the HVL (hierarchical variable
length) mutation operator [42]. It is specialized to deal with binary trees and
is designed to perform similarly to bitwise mutation in evolutionary algo-
rithms. The original motivation for using the HVL-Prime operator was that
of making the smallest alterations possible to GP trees while respecting the
key properties of the GP tree search space: variable length and hierarchical
structure.

A single application of HVL-Prime selects uniformly at random one of
three suboperations – insertion, substitution, and deletion – to be applied at
a location in the solution tree chosen uniformly at random, selecting addi-
tional functions or terminals from the sets F and L of all available functions

480 Andrei Lissovoi and Pietro S. Oliveto

AND

x2 OR

x2 x3

SUB⇐

AND

x1 OR

x2 x3

INS⇒

AND

OR

x3 x1

OR

x2 x3

⇓DEL

OR

x2 x3

Fig. 11.1 HVL-Prime suboperations: substitution, insertion, and deletion.

and terminals as required. The suboperations are illustrated in Fig. 11.1: sub-
stitution can replace any node of the tree with another node chosen uniformly
at random from the set of terminals or the set of functions (if the replaced
node is a terminal or a function, respectively), insertion inserts a new leaf
and function node at a random location in the tree, and deletion can remove
a random leaf (replacing its parent with its sibling).

We note that for problems with trivial function or terminal sets (i.e.,
those that contain only one element), the substitution operator is typically
restricted to select only from among those nodes which can be replaced with
something other than their current content, avoiding the situation where the
only option is to substitute a function or terminal node with a copy of itself.
This restriction does not typically affect asymptotic complexity analysis re-
sults, as the only effect of allowing such substitutions is that approximately
1/6 of the HVL-Prime applications will not alter the current solution.

In this chapter, we refer to Algorithm 11.1, with k = 1 + Poisson(1), as
the (1+1) GP, differentiating it from the simpler local search variant which
always uses k = 1, which we call RLS-GP.1

(1+1) GP algorithms do not use crossover or populations. Instead, larger
changes to the current solution can be performed by multiple applications of
the HVL-Prime operator without evaluating the fitness of the intermediate
trees produced within an iteration. Since each application of HVL-Prime
selects a location in the tree that it will modify independently, it is possible
for this procedure to mutate the parent tree in several places, rather than
only modifying a single subtree (which would be the case for the standard
GP subtree mutation operator, which replaces a random subtree of the parent
program with a randomly generated subtree [47]).

1 In previous work, the name “(1 + 1) GP” was used for both algorithms, relying either
on explicitly specifying k or on using a suffix as in “(1 + 1) GP-multi” and “(1 + 1) GP-
single” to distinguish between the two variants. Our notation matches the conventions
for the runtime analysis of evolutionary algorithms [15, 41].

11 Computational Complexity Analysis of Genetic Programming 481

11.2.1 Bloat Control Mechanisms

Algorithm 11.1 depicts the nonstrictly elitist variant of the (1+1) GP, which
accepts offspring as long as they do not decrease the fitness of the current
solution. We use “(1+1) GP∗” (and equivalently “RLS-GP∗”) to refer to the
strictly elitist variant of the algorithm, which only accepts offspring which
have strictly better fitness when compared with the current solution.

The difference between the elitist and nonelitist variants is often significant
in how the algorithms cope with bloat problems. The (1+1) GP algorithm
operates with a variable-length representation of its current solution: as mu-
tations are applied, the number of nodes in the tree may increase or decrease.
Poli et al. defined bloat as “program growth without (significant) return in
terms of fitness” [47]. Bloat can reduce the effectiveness of GP, as larger pro-
grams are potentially more expensive to evaluate, can be hard to interpret,
and may reduce the effectiveness of the GP operators in exploring the solution
space. For example, if a large portion of the current solution is nonexecutable
(perhaps inside an if statement with a trivially false condition), mutations
applied inside that portion of the program would not alter its behavior, and
hence are not helpful in attempting to improve the program.

Common techniques used to control the impact of bloat include modifying
the genetic operators to produce smaller trees and considering additional
nonfitness-related factors when determining whether an offspring should be
accepted into the population. The latter can include imposing direct limits on
the size of the accepted solutions (by imposing either a maximum tree depth
or a maximum tree size limit), rejecting neutral solutions, or a parsimony
pressure approach [47], which prefers smaller solutions when the fitness values
of two solutions are equal.

Two bloat control approaches that frequently appear in theoretical analy-
ses of GP algorithms are lexicographic parsimony pressure and Pareto parsi-
mony pressure [27]. The former mechanism breaks ties between equal-fitness
individuals (e.g., in line 7 of Algorithm 11.1) by preferring solutions of smaller
size, whereas the latter treats fitness and solution size as equal objectives in
a multiobjective approach to optimization, making the GP system maintain
a population of individuals which do not Pareto-dominate each other.

11.2.2 Evaluating Solution Quality

In the GP problems analyzed in this chapter, the correct behavior of the
target program is known for all possible inputs. Additionally, in most of the
problems, the GP systems considered are able to evaluate program quality
on all possible inputs efficiently. Both of these assumptions simplify the ana-
lysis, but may not be practical in real-world applications of GP: the correct
output of the target function might only be known for a limited number of

482 Andrei Lissovoi and Pietro S. Oliveto

the possible inputs, and/or it might not be practical to evaluate the can-
didate solutions for all of the known inputs. Nevertheless, considering the
performance of GP in this setting represents an important first step: systems
which are unable to evolve a program with the desired behavior using a fitness
function which considers all possible inputs are unlikely to fare better when
using a limited approximation. Additionally, fully deterministic outcomes for
solution fitness comparisons simplify the analysis of the GP systems, allowing
their behavior to be described in greater detail.

When the exact fitness is not available, the performance of GP is analyzed
in the PAC learning framework [54]. This considers the expected performance
of the GP-evolved program on inputs it may not have encountered during
the optimization process. In this framework, GP evaluates solution fitness
by sampling input/output examples from a training set during the optimiza-
tion process, and the goal is to produce a program with a low generalization
error, i.e., with a good probability of producing correct output on any ran-
domly sampled solution, including ones that have not been sampled during
its construction. The number of samples used to compare the quality of solu-
tions is an important parameter in this setting, potentially trading evaluation
accuracy for time efficiency.

While a GP algorithm may evaluate solution fitness by relying on a static
training set of polynomial size, for instance chosen at random from the set of
all known inputs/outputs at the start of the optimization process, Poli et al.
noted that in some circumstances doing so “may encourage the population
to evolve into a cul-de-sac where it is dominated by offspring of a single
initial program which did well on some fraction of the training cases, but
was unable to fit the others” [47, Chapter 10]. To counteract this when the
amount of training set data available is sufficient, GP systems can also opt
to compare program quality on samples chosen from the available data for
each comparison [11]. The complexity of these subset selection algorithms
varies from simply selecting inputs/outputs at random (in the case of random
subset selection), through attempting to identify useful inputs/outputs based
on the current or previous GP runs (dynamic or historical subset selection),
to hierarchical combinations of these approaches [5].

11.3 Evolving Tree Structures

In this section, we review the computational complexity results concerning
the analysis of GP systems for the evolution of trees with specified properties,
rather than the evolution of programs with inputs and outputs. The specific
property that the evolved tree should satisfy depends on the problem class.
The possibility of calculating the fitness of candidate solution trees without
explicitly executing the program was regarded as a considerable advantage,

11 Computational Complexity Analysis of Genetic Programming 483

since more realistic problems were deemed to be far too difficult for initial
computational complexity analyses.

The earliest analysis of the evolution of tree structures considered two sep-
arable problems, called Order and Majority. These problems, originally
introduced by Goldberg and O’Reilly [13], were considered as “two much
simplified, but still insightful, problems that exhibit a few simple aspects of
program structure” [9]. Specifically, Order and Majority were introduced
as abstracted simplifications of the eliminative expression that takes place in
conditional statements (where the presence or absence of some element may
eliminate others from evaluation, e.g., by making it impossible for program
execution to reach the body of an if statement with an always false condition),
and of the accumulative expression present in many GP applications such as
symbolic regression (where the GP system is able to accumulate information
about the correct solution from the aggregate response of a large number
of variables), respectively. In particular, the Order problem was meant to
reflect conditional programs by making it impossible to express certain vari-
ables by inserting them at certain tree locations (representing portions of the
program which might not ever be executed), while Majority requires the
identification of the correct set of solution components out of all possible
sets. For both problems the fitness of a candidate solution is determined by
an in-order traversal of its syntax tree.

Neumann additionally introduced weighted variants of the Order and
Majority problems. In WOrder and WMajority, each pair of variables
xi,xi has a corresponding weight wi, which models the relative importance
of the component to the correctness of the overall solution [37]. The idea
behind these weighed variants to mimic the generalization of the complex-
ity analysis of evolutionary algorithms from OneMax to the class of linear
pseudo-Boolean functions [8, 41].

Another problem considered in the literature where the fitness of solutions
depends on tree structure rather than program execution is Sorting. In the
following three subsections, we review the state of the art concerning these
problems.

The analyses of the toy problems considered in this section have two main
aims. The first is to provide simplified settings that allow rigorous compu-
tational complexity analysis of GP systems by abstracting from the need of
evaluating solution quality on a training set. The second is to evaluate to
what extent bloat affects GP optimization on simplified problems with vari-
able length representation. Since bloat seems to be a ubiquitous problem in
GP, one expects it to appear also in the optimization process of the problems
presented in this section.

484 Andrei Lissovoi and Pietro S. Oliveto

11.3.1 The ORDER Problem

The Order problem, as originally introduced by Goldberg and O’Reilly [13],
is defined as follows.

Problem 11.3.1 (Order) F := {J}, L := {x1,x1, . . . ,xn,xn}.
The fitness of a tree X is the number of literals xi for which the positive

literal xi appears before the negative literal xi in the in-order parse of X.

J (for “join”) is the only available function in this problem, and the fitness
of a tree is determined by an in-order parse of its leaf nodes; this reduces the
importance of the tree structure in the analysis, making the representation
somewhat similar to a variable-length list. For example, a tree X with in-
order parse (x1,x4,x2,x1,x3,x6) has fitness f(X) = 3 because x1, x2, and x3
appear before their negations. Any tree that contains all the positive literals
and in which each negative literal xi that appears in the tree is preceded by
the corresponding positive literal xi has a fitness of n and is optimal.

Order was introduced as a simple problem that reflects the typical elimi-
native expressions that take place in conditional statements and other logical
elements of computer programs, where the presence of an element determines
the execution of one program branch rather than another. The overall idea
is that the conditional execution path is determined by inspecting whether
a literal or its complement appear first in the in-order leaf parse. The task
of the GP algorithm is to identify and appropriately position the conditional
functions to achieve the correct behavior.

Durrett et al. [9] proved that the (1+1) GP can optimize Order in ex-
pected time O(nTmax), where Tmax represents the maximum size the evolved
tree reaches throughout the optimization process. The exact result is stated
in the following theorem.
Theorem 11.3.2 ([9]). The expected optimization time of the strictly and
nonstrictly elitist cases of the RLS-GP and (1+1) GP algorithms on Order
is O(nTmax) in the worst case, where n is the number of variables xi and
Tmax denotes the maximum tree size at any stage during the execution of the
algorithm.

The proof idea uses standard fitness-based partition arguments. Given that
at most k variables are expressed correctly (i.e., the positive literal appears
before any instances of the corresponding negative literal in the in-order parse
of the GP tree), a lower bound of pk = Ω((n− k)2/(nmax(T,n))) may be
achieved on the probability of expressing an additional literal by an insertion
operation given that the GP tree contains exactly T leaf nodes. Then, by
standard waiting-time arguments, the expected number of iterations required
to improve the solution is 1/pk, and the expected time until all literals are
expressed is

∑n
k=1 1/pk.

The runtime bound stated in Theorem 11.3.2 depends on the tree size
Tmax. If, as often happens in GP applications, a bound on the maximum size

11 Computational Complexity Analysis of Genetic Programming 485

of the tree is imposed, then this bound is also a bound on Tmax. However,
if no restriction on the maximum tree size is imposed, then bounding the
maximum size of the tree is challenging. Nevertheless, if strict selection and
local mutations are used, then it can be shown that the tree does not grow
too much from its initialized size. The following corollary of Theorem 11.3.2,
which states this result precisely, is slightly more general than the one pre-
sented in [9].

Corollary 11.3.3. The expected optimization time of RLS-GP∗ on Order
is O(n2 +nTinit) if the tree is initialized with Tinit terminals.

Proof. RLS-GP∗ will accept only mutations which improve the fitness of the
current solution, and, as there are only n+1 possible fitness values, at most
n mutations can be accepted by the GP algorithm before the optimum is
found.

A single application of HVL-Prime cannot increase the size of the tree
by more than one leaf. Thus, Tmax ≤ Tinit +n, and applying Theorem 11.3.2
yields the desired runtime bound. ⊓⊔

It is still an open problem to bound Tmax for the (1+1) GP, or even for
RLS-GP where nonstrict selection is used. It has been conjectured [9] that
the same bound as in Corollary 11.3.3 should also hold for the (1+1) GP∗.
In general, Durrett et al. noted that the acceptance of neutral moves on
Order causes a “feedback loop that stimulates the growth of the tree” [9],
as there is a slight bias towards accepting insertions rather than deletions in
the problem, and larger trees create more opportunities for neutral insertions
to take place.

A subsequent experimental analysis performed by Urli et al. led those
authors to conjecture an O(Tinit + n logn) upper bound on the runtime [53],
which would imply, if correct, that the bound given in Corollary 11.3.3 is not
tight.

As shown in the following subsection, by using bloat control mechanisms,
more precise results have been achieved by exploiting more explicit control
of the tree size.

11.3.1.1 Bloat Control

The performance of the (1+1) GP with lexicographic parsimony pressure
on Order has been considered by Nguyen et al. [38] and Doerr et al. [6].
This mechanism controls bloat by preferring trees of smaller size when ties
amongst solutions of equal fitness are broken.

Nguyen et al. used a negative drift theorem to show that as long as the
initial tree is not too large (Tinit < 19n), it does not grow significantly in less
than exponential time (i.e., Tmax < 20n with high probability). With this
bound on Tmax, it was then proven that the optimum is found in O(n2 logn)

486 Andrei Lissovoi and Pietro S. Oliveto

iterations with high probability, showing that the solution can be improved
up to n times via a cycle of shrinking it down to minimal size (containing
no redundant copies of any variable) and then expressing a new variable
(pessimistically assuming that this insertion also creates a large number of
redundant terminals in the tree, requiring another round of shrinking to occur
prior to the next insertion). Experimental results led to the conjecture of an
O(Tinit +n logn) bound [53].

A more precise analysis proves the bound and its tightness, as given in the
following theorem [6].

Theorem 11.3.4 ([6]). The (1+1) GP with lexicographic parsimony pres-
sure on Order takes Θ(Tinit +n logn) iterations in expectation to construct
the minimal optimal solution.

The lower bound of the theorem is proven by using standard coupon col-
lector and additive drift arguments. For the upper bound, the variable drift
theorem [49] is applied using a potential function that takes into account
both the number of expressed literals and the size of the tree.

Neumann considered the Pareto parsimony pressure approach to bloat
control by introducing a multiobjective GP algorithm (SMO-GP), and using
both the solution fitness and its size as objectives [37]. This approach was
motivated by noting that GP practitioners can, when presented with a vari-
ety of solutions, gain insight into how solution complexity trades off against
quality.

The SMO-GP algorithm maintains a population of solutions P , repre-
senting the current best approximation of the Pareto front. Similarly to the
(1+1) GP, the algorithm produces a single offspring individual by applying
the HVL-Prime operator k times to a parent individual chosen uniformly at
random from P in each iteration. If the offspring is not strictly dominated by
any solution already in P , it is added to the population, while any solutions in
P that it weakly dominates are removed. Thus, the size of the population P
can vary throughout the run. The theoretical analysis considers the number
of iterations required to compute a population containing the entire Pareto
front.

Theorem 11.3.5 ([37]). The expected optimization time of SMO-GP, using
either k = 1 or k = 1+Poisson(1), on Order is O(nTinit +n2 logn).

The result is proven by showing that it is possible for the GP algorithm
to construct the empty tree in expected O(nTinit) iterations. Once a mini-
mal solution with k expressed variables exists in the population, the minimal
solution with k +1 expressed variables can be constructed from it with prob-
ability at least 1

3e
1

n+1
n−k
2n in each iteration, and hence an upper bound on

the expected runtime may be achieved by using the fitness-based partition
method.

Experiments have led to the unproven conjecture that the bound in The-
orem 11.3.5 is tight [53].

11 Computational Complexity Analysis of Genetic Programming 487

11.3.2 The MAJORITY Problem

The Majority problem, as originally introduced by Goldberg and O’Reilly
[13], is defined as follows.

Problem 11.3.6 (Majority) F := {J}, L := {x1,x1, . . . ,xn,xn}.
The fitness of a tree X is the number of literals xi for which the positive

literal xi appears in X at least once, and at least as many times as the
corresponding negative literal xi.

J (for “join”) is the only available function in this problem, and the fitness
of a tree is determined by an in-order parse of its leaf nodes; this reduces the
importance of the tree structure in the analysis, making the representation
somewhat similar to a variable-length list. For example, a tree with an in-
order parse of (x1,x1,x2,x3,x3,x3) would have a fitness of 2, as only the
literals x1 and x2 are expressed (while x3 outnumbers x3 in the tree, and
x3 is therefore suppressed). Any optimal solution, expressing all n positive
literals, has a fitness of n.

The fitness of solutions in Majority is based on the number of literals xi

and xi in the tree, with only the literal in greater quantity (the majority) be-
ing expressed and potentially contributing to the fitness value. This serves to
model problems where solution fitness can be accumulated through additions
of more nodes to the tree, regardless of their exact positions.

In contrast to Order, where there is always a position in the tree where
an unexpressed literal xi can be inserted to express xi and improve the fitness
of a solution, in Majority there exist trees where no single insertion of an
unexpressed xi will lead to xi being expressed and thus improving the fitness,
even though all literals xi can contribute to expressing xi in aggregate regard-
less of their position. Thus, GP variants which do not accept neutral moves
have been found to perform quite badly, with RLS-GP∗ shown to be capable
of getting stuck in easily constructed local optima, and (1+1) GP∗ having
an exponential expected optimization time to recover from a worst-case ini-
tialization [9]. On the other hand, GP variants using nonstrict selection may
be efficient.

Theorem 11.3.7 ([9]). Let Tmax denote the maximum tree size at any stage
during the execution of the algorithm. Then the expected optimization time
of RLS-GP on Majority is

O(n logn+DTmaxn log logn)

in the worst case, where D := max(0,maxi(c(xi)− c(xi))) and c(x) is the
number of times the literal x appears in the initial tree.

If the algorithm is initialized with a random tree containing 2n terminals
selected uniformly at random from L, the expected optimization time of RLS-
GP on Majority is O(n2Tmax log logn).

488 Andrei Lissovoi and Pietro S. Oliveto

The bounds presented depend on D, the maximum deficit between the
numbers of positive literals and negative literals of any variable in the tree
(thus, a tree with a single copy of x1 and two copies of x1 would have a
deficit D = 1). The worst-case result, assuming a deficit of D literals for all n
variables, follows from a generalized variant of the coupon collector problem
[36], requiring the collection of D copies of each coupon. For a uniform initial-
ization with Tinit = 2n, a bound D = O(logn/ log logn) was derived using the
balls-into-bins model [32]. It was then proven that a variable which initially
has a deficit of D becomes expressed after an expected O(DTmax) mutations
involving that variable (which occur with probability Θ(1/n)) by showing
that the GP system essentially performs a random walk that is at least fair
with respect to decreasing the deficit.

For the (1+1) GP, only a hypothetical worst-case analysis for the elitist
variant was presented in [9], noting that if the last unexpressed variable has k
more negative literals than positive literals in the tree, the final mutation will
require at least Ω(nk/2) time, and thus, unless k can be shown to be constant,
the expected runtime remains superpolynomial. However, no bounds on the
probability that a superconstant k would actually occur were given.

The problem, including the dependence on Tmax was recently solved, prov-
ing the following upper and lower bounds on the expected optimization time
[6].

Theorem 11.3.8 ([6]). When the algorithm is initialized with a tree con-
taining Tinit terminals, the expected optimization time of the RLS-GP and
(1+1) GP algorithms on Majority is at least Ω(Tinit +n logn) and at most
O(Tinit logTinit +n log3 n).

The lower bound is proven by an application of the multiplicative drift
theorem with bounded step size, while the upper bound relies on showing
that if Tinit ≥ n log2 n, the tree will grow by at most a constant factor in
O(Tinit logTinit) generations before the optimal solution is constructed. As a
result, bloat does not hinder the optimization process, i.e., the final tree may
be at most larger by a multiplicative polylogarithmic factor than the optimal
solution size.

From the analysis, an interesting alternative to bloat control emerges. If
the HVL mutation probabilities were changed such that deletions were more
likely than insertions, a drift towards smaller solutions would be observed,
leading to smaller trees, and hence faster optimization. Such a suggestion
was originally made by Durrett et al., albeit for the Order problem [9].
Concerning Majority, theoretical evidence in support of this has emerged,
though no formal proof is available [6].

11 Computational Complexity Analysis of Genetic Programming 489

11.3.2.1 Bloat Control

Applying lexicographic parsimony pressure mitigates the analysis problems
that arise with GP systems for Majority. With this bloat control mecha-
nism, mutations which solely remove negated terminals are always accepted,
as they reduce the size of the tree. Accepting such mutations eventually leads
the GP system to a solution where fitness can be improved by inserting a pos-
itive literal, allowing the optimum to be reached efficiently.

Theorem 11.3.9 ([37]). The expected optimization time of RLS-GP with
lexicographic parsimony pressure on Majority, when initialized with a tree
containing Tinit literals, is O(Tinit +n logn).

The result is proven by reasoning that it takes O(Tinit) iterations to re-
move the Tinit negated terminals provided by a worst-case initialization, and
O(n logn) iterations to express all n variables by an application of the coupon
collector argument.

A tight bound for the (1+1) GP, showing that the larger Poisson mu-
tations do not affect the asymptotic runtime, has recently been proven [6],
confirming a previous conjecture [53].

Theorem 11.3.10 ([6]). The expected optimization time of the (1+1) GP
with lexicographic parsimony pressure on Majority, when initialized with a
tree containing Tinit literals, is Θ(Tinit +n logn).

The lower bound of the theorem is proven by using standard coupon col-
lector and additive drift arguments. For the upper bound, the variable drift
theorem [49] is applied using a potential function that takes into account
both the number of expressed literals and the size of the tree. Intuitively, the
size of the tree is only allowed to increase if the Majority fitness is also in-
creased, which can only occur a limited number of times, and the magnitude
of the increase is unlikely to be overly large owing to the Poisson distribution
used to determine k.

It is still an open problem to prove that lexicographic parsimony pressure
asymptotically improves the runtime of the (1+1) GP or that the upper
bound given in Theorem 11.3.8 is not tight (Urli et al. conjectured an upper
bound of O(Tinit +n logn) without bloat control, based on experimental data
[53]).

Applying Pareto parsimony pressure and treating the size of the tree as
an additional objective in the multiobjective SMO-GP algorithm allows the
GP system to compute the Pareto front of solutions in terms of fitness/com-
plexity.

Theorem 11.3.11 ([37]). The expected optimization time of SMO-GP (with
either k = 1 or k = 1 + Poisson(1)) on Majority, initialized with a single
tree containing Tinit terminals, is O(nTinit +n2 logn).

490 Andrei Lissovoi and Pietro S. Oliveto

The SMO-GP population will contain at most n + 1 individuals, as there
are only n+1 distinct fitness values for Majority. Similarly to the situation
for lexicographic parsimony pressure, SMO-GP is able to construct an initial
solution on the Pareto front by repeatedly removing any duplicate or negated
terminals from the initial solution. Once a solution on the Pareto front ex-
ists, the entire front can be constructed by repeatedly selecting a solution
at the edge of the front and expressing an additional variable or deleting an
expressed variable.

11.3.2.2 More Complex MAJORITY Variants

Given that the Majority problem can be efficiently optimized by simple GP
systems without bloat appearing as a problem, more sophisticated versions
of the problem have been designed [17].

In the +c-Majority problem, xi is expressed if and only if the number
of xi literals in the tree exceeds the number of xi literals by at least c. It
has been proven that the RLS-GP is with high probability not able to find
the optimal solution when c > 1 and lexicographic parsimony pressure is
employed, but is able to do so in expected polynomial time when no bloat
control mechanism is used. In this problem, the impact of bloat is limited,
as the insertions of xi and xi are accepted with equal probability when xi

is not expressed, and the necessary margin to express xi can be reached
as a consequence of a fair random walk. On the other hand, lexicographic
parsimony pressure prevents this random walk from taking place, as only
mutations which increase the number of expressed variables or reduce the size
of the tree would be accepted. Thus, RLS-GP with lexicographic parsimony
pressure cannot express xi unless at least c−1 copies of xi are already present
in the initial solution.

The opposite holds for the 2/3-SuperMajority problem, which provides
a fitness reward of 2− 2c(xi)−c(xi) for every variable xi for which c(xi) >
2c(xi), where c(z) denotes the number of times the literal z appears in the
tree. In particular, the RLS-GP without bloat control is with high probability
not able to express all n variables, and thus cannot find solutions with fitness
above a certain threshold.

Theorem 11.3.12 ([17]). For any constant ν > 0, consider the RLS-GP
without bloat control on 2/3-SuperMajority on the initial tree with size
sinit = νn. There is ε = ε(ν) > 0 such that, with probability 1− o(1), an ε-
fraction of the variables will never be expressed. In particular, the algorithm
will never reach a fitness larger than (2−2ε)n.

The proof idea relies on showing that the size of the current solution
increases over time (due to the fitness rewards for inserting additional copies
of positive literals for expressed variables), which makes insertions of non-
expressed variables more likely to occur than their deletions. This makes

11 Computational Complexity Analysis of Genetic Programming 491

reaching the 2/3-majority threshold to express a variable difficult, requiring
a significant deviation from the expected outcome of a fair random process.
Lexicographic parsimony pressure, when employed, sidesteps this problem
by gradually removing literals of non-expressed variables from the tree, and
eventually allowing xi to be expressed by a single insertion of its positive
literal.

Kötzing et al. additionally proved that a memetic GP algorithm with a
simple concatenation crossover mechanism and local search to remove re-
dundant literals is able to efficiently solve both the +c-Majority and 2/3-
SuperMajority problems [17] if lexicographic parsimony pressure is em-
ployed. Hence they provide an example where incorporating a population
and applying crossover allows a wider range of problems to be solved.

11.3.3 The SORTING Problem

The Sorting problem is the first classical combinatorial optimization prob-
lem for which computational complexity results have been obtained for dis-
crete evolutionary algorithms. For the application of evolutionary algorithms
Scharnow et al. defined Sorting as the problem of maximizing different
measures of sortedness of a permutation of a totally ordered set of elements
[50].

Wagner et al. analyzed the performance of GP for the problem, aiming
to investigate the differences between different bloat control mechanisms for
GP [56, 57]. For GP, the measures of sortedness were adapted to deal with
incomplete permutations of the literal set.

Problem 11.3.13 (Sorting) F := {J}, L := {1,2, . . . ,n}.
The fitness of a tree X is computed by deriving a sequence π of symbols

based on their first appearance in the in-order parse of X, and considering
one of the following five measures of sortedness of this sequence.

INV(π) Number of pairs of adjacent elements in the correct order (max-
imize to sort), with INV(π) = 0.5 if |π|= 1.

HAM(π) Number of elements in correct position (maximize to sort).
RUN(π) Number of maximal sorted blocks (minimize to sort), plus the

number of missing elements n− |π|, with RUN(π) = n + 1 if
|π|= 0.

LAS(π) Length of longest ascending sequence (maximize to sort).
EXC(π) Smallest number of exchanges needed to sort the sequence (min-

imize to sort), plus 1+n−|π| if |π|< n.

J (for “join”) is the only available function in this problem, and the fitness
of a tree is determined by an in-order parse of its leaf nodes drawn from a
totally ordered set of terminals L. This reduces the importance of the tree
structure in the analysis, making the representation somewhat similar to a

492 Andrei Lissovoi and Pietro S. Oliveto

variable-length list. Thus, for n = 5, the fitness of a tree with an in-order parse
of (1,2,1,4,5,4,3), and hence π = (1,2,4,5,3) is INV(π) = 3, HAM(π) = 2,
RUN(π) = 2, LAS(π) = 4, and EXC(π) = 2. The fitness value of optimal trees
for the INV, HAM, and LAS measures is n, while for the RUN and EXC
measures it is 0.

Unlike the Order and Majority problems considered in the previous sec-
tions, the Sorting problem is not separable, meaning that it cannot be split
into subproblems that could be solved independently. The dependencies be-
tween the subproblems can thus significantly impact the overall time needed
to solve the optimization problem, and the variable-length representation of
solutions can create local optima from which it is difficult for GP systems to
escape. Wagner et al. additionally remarked that the task of evolving a solu-
tion is more difficult for the RLS-GP and (1+1) GP systems considered than
for the permutation-based EA, which in expectation requires O(n2 logn) iter-
ations for the INV, HAM, LAS, or EXC sortedness measure, and exponential
time when using the RUN sortedness measure [50].

Theorem 11.3.14 ([57]). The expected optimization time for the RLS-GP∗

and (1+1) GP∗ algorithms on Sorting using INV as the sortedness measure
is O(n3Tmax), where n is the number of elements to be sorted, and Tmax is
the maximum size of the tree during the run of the algorithm.

For the HAM, RUN, LAS, and EXC measures, there exist initial solutions
with O(n) terminals such that the expected optimization time of RLS-GP∗ is
infinite, and the expected optimization time of (1+1) GP∗ is eΩ(n).

The positive statement is proven by applying the artificial fitness level
method, observing that there are n · (n−1)/2+1 possible fitness values, and
with probability Ω(1/(nTmax)) a mutation inserts a literal which corrects at
least one unsorted pair without introducing any additional unsorted pairs.

For the HAM, RUN, LAS, and EXC measures, trees which require large
mutations to improve fitness exist, which causes the expected optimization
time to be infinite for RLS-GP∗ and eΩ(n) for the (1+1) GP∗. In general,
the problematic solutions contain a large number of copies of a single literal
in an incorrect location and a large sorted sequence, requiring either all the
incorrectly placed copies to be removed simultaneously or the sorted sequence
to be moved in a single mutation.

11.3.3.1 Bloat Control

When bloat control mechanisms are applied, GP systems may reduce the size
of the redundant components of the solution even if mutations which make
progress in this direction do not alter the solution’s sortedness measure.

The impact of applying lexicographic parsimony pressure for the
(1+1) GP family of algorithms and of Pareto parsimony pressure for the

11 Computational Complexity Analysis of Genetic Programming 493

Table 11.1 Known expected runtimes for GP algorithms on Sorting using various
sortedness measures and bloat control mechanisms.

No bloat control Parsimony pressure
F (X) RLS-GP∗ (1 + 1) GP∗ RLS-GP SMO-GP
INV O(n3Tmax)a O(n3Tmax)a O(Tinit + n5)a O(n2Tinit + n5)a

LAS ∞a Ω
((

n
e

)n)a
O(Tinit + n2 logn)a,b O(nTinit + n3 logn)a

HAM ∞a Ω
((

n
e

)n)a ∞c O(nTinit + n4)c

EXC ∞a Ω
((

n
e

)n)a ∞c O(n2Tinit + n3 logn)c

RUN ∞a Ω
((

n
e

)n)a ∞c O(n2Tinit + n3 logn)c

a Shown in [57].
b Also holds with probability 1−o(1) for the (1 + 1) GP.
c Shown in [56].

SMO-GP algorithms has been considered [56, 57]. We summarize the results
in Table 11.1.

In general, the positive results are proven by showing that there exists a
sequence of fitness-improving mutations leading the GP system to the global
optimum (in the case of (1+1) GP algorithms), or, for SMO-GP, to a so-
lution on the Pareto front from which other Pareto front solutions can be
constructed efficiently.

The majority of the negative results rely on showing the existence of local
optima for the sortedness measure, which limits the availability of results
for nonstrictly elitist algorithms, and especially for the (1+1) GP, which is
capable of performing larger mutations.

The results in Table 11.1 suggest that the variable-length representation
can cause difficulties for RLS-GP even when parsimony pressure is applied,
for some simple measures of sortedness, while even a simple multiobjective
algorithm is able to find the entire Pareto front of the problem efficiently
when using any of the five measures considered.

Experimental results have been presented that suggest that the (1+1) GP
algorithm is efficient (i.e., able to find the optimum in polynomial time) using
all of the sortedness measures considered except RUN, both with and with-
out bloat control mechanisms: concerning the average-case complexity, an
O(n2 logn) bound has been conjectured for the INV and LAS measures, and
an O(n4) bound for the EXC and HAM measures [57]. Providing a rigorous
theoretical analysis of the behavior of these GP systems remains an open
question.

11.3.4 Outlook

In this section, we have provided an overview of the computational complex-
ity results for simple GP systems for toy problems where the evolved GP

494 Andrei Lissovoi and Pietro S. Oliveto

trees may grow to arbitrarily large sizes. The main aim behind the analyses
is to shed light on how bloat affects the optimization process of GP. Surpris-
ingly, bloat does not hinder the efficient optimization of the (1+1) GP for
any of the basic problems. Theorem 11.3.8 provides a rigorous proof of this
for Majority, while experimental work has lead to similar conjectures for
Order and Sorting, although formal proofs are not yet available.

Recently, a toy problem has been designed where the RLS-GP provably
requires exponential time with overwhelming probability due to bloat. To
achieve this result, the design of 2/3-SuperMajority closely follows the
definition of “bloat”. Indeed, fitness increases slightly with the increase of the
tree size, making it less and less likely that significantly beneficial mutations
occur. Nevertheless, simple bloat control mechanisms, such as lexicographic
parsimony pressure, effectively address the issue. Thus they allow the RLS-
GP to efficiently optimize 2/3-SuperMajority. Overall, there is still a need
to design benchmark functions that reflect the reported behavior of GP in
practice, i.e., problems where bloat occurs and are difficult to solve with the
use of bloat control techniques.

11.4 Evolving Programs of Fixed Size

In this section, we consider two more advanced applications compared with
those in the previous section. For both problems, the fitness of an evolved
program is computed by evaluating its output. While more realistic, these
problems are still different from real-world GP applications. In the first prob-
lem, MAX, the program to be evolved has no input variables, and thus the
GP system has to construct a program which always outputs the same con-
stant value, subject to constraints on problem size and available operators.
Concerning the second problem, Identification, the structure of the opti-
mal solution is fixed (i.e., no tree structure has to be evolved), and the GP
system is not allowed to deviate from it, but must instead learn the exact
weights of a predefined linear function while evaluating program quality by
comparing the program output with the target function on only a limited
number of the possible function inputs.

The first toy problem, MAX, may reflect practical GP applications where
bloat is avoided by setting a maximum limit on the size or height of the
evolved trees. When such a limit is reached, large tree modifications may
be required to make further progress. Such a problem occurs, for example,
for GP evolving Boolean conjunctions with a function set comprising of AND
and OR (see Theorem11.5.10 in Section 11.5.1.3). The second problem, Iden-
tification, models the issue that the true fitness of candidate solutions in
GP is usually unknown, and their quality has to be estimated using a training
set.

11 Computational Complexity Analysis of Genetic Programming 495

11.4.1 The MAX Problem

The MAX problem was originally introduced by Gathercole and Ross as a
means of analyzing the limitations of crossover when applied to trees of fixed
size [12]. The fitness of the program depends on the evaluation of the arith-
metic expression represented by the tree. However, the problem contains no
variable inputs, and thus the goal of the GP algorithm is simply to construct
a tree that evaluates to the maximum possible value subject to restrictions
on the size of the tree, and on the available functions and terminals.

Problem 11.4.1 (MAX) F := {+,×}, L := {t}, t > 0 a positive constant,
and maximum tree depth D.

The fitness of a tree X is the value produced by evaluating the arithmetic
expression represented by the tree if the tree is of depth at most D, and 0 if
the tree is of larger depth.

The optimal solution to MAX is a complete binary tree of depth D, with
t at all the leaf nodes, and with the lowest ⌊1/2+1/t⌋ levels of internal (i.e.,
nonleaf) nodes containing + and the remaining internal nodes containing ×.
It has been noted that lower values of t < 1 make the problem more difficult
for crossover-based GP systems [12].

The behavior of GP systems on the MAX problem was previously studied
experimentally, with Langdon and Poli observing that MAX is hard for GP
systems utilizing crossover owing to the interaction of deception with the
depth bound on the tree making it difficult to evolve solutions. The GP
system is essentially forced to perform randomized hill climbing in the later
stages of the optimization process, and hence requires exponential time with
respect to the maximum allowed depth of the tree [23].

A theoretical analysis of the (1+1) GP for the MAX problem was pre-
sented by Kötzing et al. [19], who proved that the runtime of the mutation-
only algorithm is polynomial with respect to n = 2D+1− 1, the maximum
allowed number of nodes in the tree.

Theorem 11.4.2 ([19]). The RLS-GP algorithm finds the optimal solution
for the MAX problem for any choice of t > 0, in expected O(n logn) iterations,
where n is the maximum allowed number of nodes in a tree subject to the depth
limit D.

The theorem is proven by showing that the GP algorithm can first con-
struct a complete binary tree with depth D in a way that prevents any node
from being deleted, and then use the substitution suboperation of HVL-Prime
to correct internal nodes.

Concerning the (1+1) GP, a weaker bound on the expected runtime was
proven.

Theorem 11.4.3 ([19]). The expected time for the (1+1) GP to find the
optimal solution for the MAX problem with t = 1 is O(n2).

496 Andrei Lissovoi and Pietro S. Oliveto

The theorem is proven using fitness-based partitions, exploiting the exis-
tence of at least one leaf in a tree of size n which could be selected by insertion
to grow the tree. Experimental results suggesting that the true runtime of the
(1+1) GP on MAX is also O(n logn) were also presented, and the authors
of [19] noted that a more precise potential function based on the contents of
the tree would be required to show this upper bound using drift analysis.

Additionally, a modification of the insertion operation in HVL-Prime to
grow the tree in a more balanced fashion was considered: rather than se-
lecting a location to insert a new leaf node uniformly at random from the
entire tree, selection would pick a leaf at depth d with probability 2−d to be
replaced with a new function node, using the original leaf and an inserted
terminal as its children. As well as balancing the growth of the tree between
different branches, this reduces the probability that mutation attempts inser-
tion operations which would be blocked by the tree depth limit. With this
modified insertion operator, an O(n logn) bound on the expected runtime of
the (1+1) GP on MAX with F = {+} was proven [19].

Closing the gap between the O(n2) upper bound for the (1+1) GP on
MAX with F = {+,×} and the Ω(n logn) lower bound given by a coupon
collector argument remains an open problem. Furthermore, theoretical time
complexity analyses of the performance of crossover-based GP systems, for
which the MAX problem was originally introduced, are still unavailable.

11.4.2 The Identification Problem and PAC Learning

It is generally not possible to evaluate the quality of the evolved programs
on all possible inputs efficiently, as they usually are too numerous when the
number or the domain of input variables is too large. The Identification
problem was introduced by Kötzing et al. [18] to evaluate the learning ca-
pabilities of a simple evolutionary algorithm, an EA with a local mutation
operator that evaluates program quality by considering only a polynomial
number of inputs chosen uniformly at random in each iteration. This setting
is the same as that of the PAC learning framework [54]. The idea is that while
some problems cannot always be solved exactly (as there might be no known
polynomial-time algorithm that produces an exact solution, as, e.g., for NP-
hard problems), a good approximation, i.e., one that is correct on a random
input with high probability, may be achieved. A large class of functions has
been shown to be PAC learnable by designing appropriate evolutionary al-
gorithms [10, 55]. Compared with those studies, Kötzing et al. considered a
simplified setting [18]. Unlike the problems previously considered, the struc-
ture of the desired solution is known in advance by the algorithm, which has
to identify the target function among a known class of linear functions. More
precisely, the Identification problem is to learn the weights of a linear
function fOPT defined over bit strings x ∈ {0,1}n,

11 Computational Complexity Analysis of Genetic Programming 497

fOPT(x) =
n∑

i=1
wixi,

where wi ∈ {−1,1}.
The goal of the EA (called the Linear GP algorithm) is to identify whether

each weight wi is positive or negative. The algorithm changes a single weight
wi in each iteration, and determines whether the mutated offspring has better
fitness than its parent using a multiset S constructed independently in each
iteration by selecting the desired number of points uniformly at random (with
replacement) from {0,1}n. The error eS of each solution f is computed as

eS(f,fOPT) =
∑
x∈S

|f(x)−fOPT(x)|,

and solutions with lower error are preferred.
Thus, the focus of the analysis is to measure the ability of the GP system

to extract information from a limited view of the true fitness function: if S
is too small, the sampled error function may be an unreliable indication of
the true quality of the solution. On the other hand, if S is too large, more
computational effort than necessary is expended for each fitness evaluation,
which could result in worse performance with respect to the overall CPU time
spent.

The following theorem shows that the Linear GP algorithm is able to
learn fOPT efficiently if the number of inputs sampled in each iteration is
sufficiently large.

Theorem 11.4.4 ([18]). If |S| ≥ c0n logn, c0 a large enough constant, the
expected number of generations until the best-so-far function found by Lin-
ear GP has an expected error ≤ δ is O(n logn+n2/δ2).

If fOPT also has a linear number of both 1 and −1 weights, the expected
number of generations until such a solution is found is O(n+n2/δ2).

In this setting, eS ≤ 1 implies that an optimal solution has been found,
and thus the theorem additionally provides an O(n2) bound on the expected
number of generations required to learn fOPT perfectly (by setting δ = 1).
The theorem is proven by showing that in O(n logn) generations, the numbers
c1 and c−1 of incorrect weights in f set to 1 and −1, respectively, become
balanced (such that there is at most one more incorrect weight of one kind
than the other) with high probability, and remain balanced throughout the
rest of the process. When c1 = c−1, mutations that increase either value are
rejected with high probability, while mutations that reduce either value are
accepted with high probability (but can be undone by the GP system until
a wrong weight of the opposite kind is corrected). Thus, c1 and c−1 can be
reduced permanently by performing the two reductions in sequence (which
occurs with probability at least (i/n)2 if, initially, c1 = c−1 = i), and, by a

498 Andrei Lissovoi and Pietro S. Oliveto

coupon collector-like argument, the number of incorrect weights is reduced
to an acceptable level in expectation after O(n2/δ2) generations.

Extending the analysis to broader function classes and algorithms, for
example considering functions with more than two options for each coefficient,
or a (1+1) GP-like mutation operator capable of performing more than one
change in each iteration, remains an open direction for further research. The
PAC learning framework will also be used to analyze the performance of the
(1+1) GP family of algorithms on Boolean functions in the next section.

11.4.3 Outlook

The MAX problem is easy for mutation-based GP systems. Yet, the achieve-
ment of precise asymptotic bounds on their runtime is still prohibitive. On
the other hand, the crossover-based GP algorithms used in practice do not
achieve a significant benefit from crossover on MAX [12]. How this could be
rigorously proven remains an open problem.

Small super-linear polynomial size training sets suffice to efficiently esti-
mate the true fitness of candidate solutions for linear functions with {1,-1}
weights. This allows the exact identification of the target function of the Iden-
tification problem. Generalization of this result to larger weight sets and
function classes would support future analyses of realistic symbolic regression
applications.

11.5 Evolving Proper Programs: Boolean Functions

In real-world applications of GP systems, the goal is to evolve a program with
specific behavior. In most applications, the program accepts some inputs and
produces one or more output values, and the quality of candidate programs
is evaluated by executing them on a variety of possible inputs for which the
correct output is known. The structure of the target program is typically
not known in advance, and thus the GP systems may be given access to
more components (both functions and terminals) than is strictly necessary
to represent an optimal solution. Real-world applications of GP can exhibit all
the challenges that the previously discussed problems modeled in isolation:
the length and structure of the target program are not known to the GP
system, there may be a variety of function and terminal nodes, and solution
quality is evaluated by executing the program on some or all of the possible
inputs.

Boolean functions, which take a number of binary inputs and produce a
single binary output, have long been used as benchmarks in the field of GP
[20, 23] and are a natural next step for the complexity analysis of GP sys-

11 Computational Complexity Analysis of Genetic Programming 499

tems, as they can combine all of these challenges. The problems of evolving
some Boolean functions, such as conjunctions (AND) or parity (XOR), are
also well understood in the PAC learning framework [55] – conjunctions are
evolvable efficiently, while parity problems are not. Additionally, such prob-
lems form an interesting sanity check for the (1+1) GP algorithms: if the
simple algorithms are not able to evolve relatively simple functions, it would
be interesting to determine which components of the more complex GP al-
gorithms enable these problems to be solved efficiently, i.e., to identify how
much sophistication is required in the GP system for it to be efficient.

A complexity analysis of (1+1) GP algorithms for the AND and XOR
problems, where the goal is to construct a conjunction or an even parity
function, has recently been presented [29]. For these problems, the fitness of
the evolved solutions was evaluated by comparing their output with that of
the target function on either the entire truth table or a polynomial training
subset.

Using the complete truth table (i.e., all possible inputs) as the training set
is typically only feasible for Boolean functions if the size of the problem, in
terms of the number of input variables, is relatively small (as there are 2n

possible inputs for n Boolean input variables, and evaluating each candidate
program on an exponential number of inputs would require exponential time).
However, benchmark problems with small n have been considered for GP
systems, and may still occur in some settings. Additionally, a confirmation of
whether a given GP system can evolve a given function given an exact fitness
function (i.e., the complete truth table) is also useful for further analysis: if
it cannot, it is likely that mechanisms more complex than random sampling
of inputs would be required to evolve the function in polynomial time.

If an incomplete training set is used, the GP system may either choose it
once at the beginning of the run (the static incomplete training set case, as
considered in [29]), or choose a fresh subset dynamically in every iteration
(as in [25]). Both approaches may be valid in different practical settings. If
the complete truth table is known but is prohibitively large, it may be sam-
pled to estimate the fitness of a solution, reducing the computational effort
required to evaluate the quality of a program at the cost of introducing some
uncertainty. On the other hand, if only a limited number of input/output
examples are available, some may need to be reserved to validate the quality
of the solution on inputs that it has not been trained on.

11.5.1 Evolving Conjunctions

For the AND problem, the target function that the GP system has to evolve
is a conjunction of some number of variables. Conjunctions have an easy to
understand input-to-output mapping simplifying the analysis, and are known
to be efficiently evolvable [55]. However, unlike tailored learning algorithms,

500 Andrei Lissovoi and Pietro S. Oliveto

the GP systems do not necessarily know that the target function is a conjunc-
tion – and ideally, should be able to evolve conjunctions even with access to
a variety of functions and terminals.

Problem 11.5.1 (AND) Let L⊆ {x1, . . . ,xn} be the set of available termi-
nals, and F be the set of available functions.

The fitness of a tree X using a training set T selected from the rows of the
complete truth table C is the number of training set rows on which the value
produced by evaluating the Boolean expression represented by the tree differs
from the output of the target function: the conjunction of all (or some) of the
n inputs. This fitness value should be minimized; the optimal solution has a
fitness of 0.

ANDn is used to refer to the variant of this problem where the target
function is a conjunction of all n input variables, while the target of ANDn,m

is composed of an unknown subset of m≤ n variables.

For example, when the complete truth table is used as the training set T ,
the fitness of a tree containing only a single leaf x1 for the ANDn problem with
n = 3 is 3, while the fitness of the optimum is 0 (the fitness function represents
the error of the solution on the training set). In general, a conjunction of a
distinct variables has a fitness of 2n−a−1 on the complete truth table.

The initial complexity analysis results for this problem consider the min-
imal function set (i.e., F = {AND}) to simplify the analysis by forcing all
solutions considered by the GP algorithms to be conjunctions. This simpli-
fication renders the fitness function unimodal, making the ANDn problem
somewhat similar to the OneMax benchmark problem for evolutionary algo-
rithms: the GP system simply has to collect all n distinct variables together
in its solution, with the fitness of the current solution improving with each
distinct variable that is added. In this minimal setting, initializing with larger
trees makes the problem easier for the GP system, as fewer variables would
need to be inserted into the tree to complete the conjunction. Thus, for com-
plexity analysis results, the initial solution is typically an empty tree.

Building upon these results, the impact of using richer function (e.g., by in-
troducing disjunctions [7] and negations) and terminal sets (via the ANDn,m

problem) has been also been analyzed.

11.5.1.1 Complete Truth Table, Minimal Terminal and Function
Sets

Mambrini and Oliveto showed that the RLS-GP and RLS-GP∗ algorithms
can efficiently construct the optimal solution for the ANDn problem when
they use the complete truth table to evaluate solution fitness [29].

Theorem 11.5.2 ([29]). The expected optimization time of RLS-GP and
RLS-GP∗ with F = {AND} and L := {x1, . . . ,xn} on the ANDn problem

11 Computational Complexity Analysis of Genetic Programming 501

using the complete truth table as the training set is Θ(n logn). The solution
produced by RLS-GP∗ contains exactly n terminals.

The proof applies a coupon collector argument, showing that with prob-
ability (n− i)/(3n) a new variable is added to the solution, and that no
mutations decreasing the number of distinct variables are ever accepted. As
all internal nodes are forced to be conjunctions, collecting all n variables in
the tree produces an optimal solution.

The following theorem presents a fixed budget analysis of the RLS-GP and
RLS-GP∗ algorithms, providing a relationship between the expected number
of distinct variables in the solution and the time the algorithms are allowed
to run.

Theorem 11.5.3 ([25]). Let v(x) denote the number of distinct variables
in solution x, and let x∗

b or xb be the solution produced by the RLS-GP∗

or RLS-GP algorithms, respectively, with F = {AND} and L := {x1, . . . ,xn},
given a budget of b iterations on the ANDn problem using the complete truth
table as the training set when initialized with an empty tree. Then,

E(v(x∗
b)) = n−n(1−1/(3n))b,

n−n(1−1/(3n))b ≤ E(v(xb))≤ n−n(1−2/(3n))b.

The theorem is proven by following the techniques used to analyze Ran-
domized Local Search (RLS) on the OneMax problem in [16]. The exact
expectation is known for RLS-GP∗, which never accepts solutions that do
not improve fitness, and hence can never have a substitution suboperation
increase the number of distinct variables in the solution. The upper and lower
bounds on E(v(xb)) for RLS-GP stem from trivial bounds on the probabil-
ity of a substitution suboperation of HVL-Prime increasing the number of
distinct variables in the solution. We note that although the relationship
f(x) = 2n−v(x)−1 between the solution fitness (f(x)) and the number of dis-
tinct variables it contains (v(x)) is known, it is not possible to apply linearity
of expectation to transform a bound on E(v(xb)) into a bound on E(f(xb))
(as could be done for OneMax).

The runtime analysis results have been extended to cover the (1+1) GP al-
gorithms, and show that the expected number of terminals in the constructed
solution is Θ(n).

Theorem 11.5.4 ([25]). The expected optimization time of the (1+1) GP
and the (1+1) GP∗ with F = {AND} and L := {x1, . . . ,xn} on the ANDn

problem using the complete truth table as the training set is Θ(n logn). In ex-
pectation, the solution produced by these algorithms contains Θ(n) terminals.

For the AND problem, there are many possible trees which encode the de-
sired behavior (because repeating a variable multiple times in the conjunction
does not negatively affect the behavior of the program) and it is therefore

502 Andrei Lissovoi and Pietro S. Oliveto

possible that a “correct” program could contain many redundant leaf nodes.
The space complexity result in Theorem 11.5.4 shows that the considered GP
systems construct a tree that in expectation contains just O(n) leaf nodes.
This is proven by showing that the number of leaf nodes that contain vari-
ables present in the solution multiple times does not grow fast enough to
affect the asymptotic tree size bound in the O(n logn) iterations required to
collect all n variables with high probability.

11.5.1.2 Incomplete Training Sets, Minimal Terminal and
Function Sets

In practice, it may not be possible to evaluate the exact fitness of a candidate
solution on all 2n possible Boolean inputs when n is large. If this is the case,
solution quality could instead be evaluated by executing the program on a
sampled subset of possible inputs (the “training set”). Without assuming
any specific knowledge of the target function class, the training set could be
sampled uniformly at random.

When training sets of polynomial size sampled uniformly at random are
used for the ANDn problem, a solution representing a conjunction of a loga-
rithmic number of distinct variables will with high probability be correct on
all of the inputs included in the training set. This causes the optimization
process to end prior to finding a solution that is correct on all possible inputs
[29]. The following result holds both when the training set is sampled once
and for all at the beginning of the run (i.e., a static training set) and when at
each generation a new training set is sampled (i.e., a dynamic training set).

Theorem 11.5.5 ([25, 29]). Let s = poly(n) be the size of a training set
chosen from the truth table uniformly at random with replacement. With
F = {AND} and L := {x1, . . . ,xn}, both RLS-GP and RLS-GP∗ will fit the
training set on the ANDn problem in expected time O(logs) = O(logn), and
the solution will contain at most O(logn) variables.

This result is proven by observing that rows selected uniformly at random
from the truth table are unlikely to assign more than Y = n/2 + εn input
variables to true, and hence can be satisfied by inserting any one of a linear
number of variables into the solution. After logn/Y (2s) successful insertions,
the probability that some row of the s-row training set is still not satisfied
is at most n/2, and hence in expectation the process satisfies all rows after
2k = O(logn) distinct variables have been successfully inserted into the tree.

Theorem 11.5.5 also yields a lower bound on the generalization error of
the solution: if it contains at most O(logn) variables, the probability that
its output is wrong on a truth table row sampled uniformly at random is
2−O(logn) = n−O(1), i.e., it requires in expectation a polynomial number of
samples taken uniformly at random from C before a divergence from the
target function is discovered.

11 Computational Complexity Analysis of Genetic Programming 503

Theorem 11.5.5 has been extended to cover the (1+1) GP and (1+1) GP∗

algorithms, using a multiplicative drift theorem to provide a runtime bound
on the expected time to fit a static polynomial-sized training set [25]. Ad-
ditionally, a similar bound holds if, instead of a static training set, each
iteration samples s independent rows of the complete truth table to compare
the fitness of two solutions (using a dynamic training set).

Theorem 11.5.6 ([25]). Let s = n2c+ε rows from the complete truth table of
the ANDn problem be sampled with replacement and uniformly at random in
each iteration (where c > 0 and ε > 0 are any constants). With F = {AND}
and L := {x1, . . . ,xn}, RLS-GP, RLS-GP∗, (1+1) GP, and (1+1) GP∗ will
construct a solution with a generalization error of at most n−c in expected
O(logn) iterations. In expected O(log2 n) iterations, the nonstrictly elitist
algorithms will construct a solution with a sampled error of 0.

Here, the training set size s is chosen to be sufficiently large to ensure that
solutions with a generalization error greater than n−c are wrong on at least
one training set row with high probability, preventing the GP system from
terminating early with a bad solution, while the O(log2 n) runtime bound
stems from a random walk argument pessimistically considering the proba-
bilities of accepting solutions that increase or decrease the number of distinct
variables in the tree to be equal.

11.5.1.3 More Expressive Function and Terminal Sets

In practical applications of GP, it may not be known which functions or input
variables are useful for evolving the target function, and thus a generic GP
system is usually given access to a wide variety of functions and terminals.
In the setting of evolving conjunctions, this may be modeled by introducing
input variables not included in the target conjunction (the ANDn,m problem),
or giving the GP systems access to additional Boolean operators (such as
negation or disjunction). The aim is to evaluate whether the systems are still
able to evolve the target function efficiently.

The ANDn,m problem is a variant of the AND problem in which the
target function is a conjunction of m≤ n distinct variables from the terminal
set L. This is similar to the conjunction evolution problem considered by
Valiant [55] and has been analyzed for RLS-GP algorithms in [25]. The RLS-
GP and RLS-GP∗ algorithms (the latter only when disallowing the HVL-
Prime substitution suboperation) are able to construct an optimal solution for
the ANDn,m problem using the complete truth table in an expected O(n logn)
iterations, while the canonical RLS-GP∗ will with high probability fail to find
the optimum.

Theorem 11.5.7 ([25]). The RLS-GP algorithm and the RLS-GP∗ algo-
rithm (without the HVL-Prime substitution suboperation) using F = {AND}

504 Andrei Lissovoi and Pietro S. Oliveto

and L := {x1, . . . ,xn} find the optimum for the ANDn,m problem in expected
O(n logn) iterations when using the complete truth table as the training set.

The RLS-GP∗ algorithm (with the substitution suboperation) will with high
probability fail to find the optimum for the ANDn,m problem when m = cn
for any constant 0 < c < 1 when using the complete truth table as the training
set.

The analysis relies on showing that, initially, inserting both variables that
are present in the target function (“correct” variables) and those that are
not (“incorrect” variables) is beneficial for the fitness value of the candidate
solution, while removing incorrect variables only becomes beneficial after all
correct variables are present in the current solution. With local search mu-
tation and the substitution suboperation of HVL-Prime, it is possible for
RLS-GP∗ to accept a solution which substitutes the last copy of some in-
correct variable with another copy of a still-present incorrect variable in the
solution. If this occurs, RLS-GP∗ will not be able to reach the global opti-
mum, because a single application of HVL-Prime could only remove a single
copy of an incorrect variable present multiple times in the current solution,
which would not provide a fitness improvement.

It is conjectured that a similar bound also holds for the runtime of the
(1+1) GP and (1+1) GP∗ algorithms, which are able to introduce and re-
move duplicate terminals in the solution using larger mutation operations.

A more realistic function set as used in practice should also include addi-
tional Boolean operators, such as OR or NOT, with the aim of giving the
GP system the expressive power necessary to represent any Boolean func-
tion. Mambrini and Oliveto have shown that if the unary NOT operation
is introduced (by extending the set of literals with negated versions of each
variable, avoiding the need to modify the HVL-Prime mutation operator to
deal with nonbinary functions), the RLS-GP algorithms are no longer able
to efficiently construct the optimal solution of the AND problem using the
complete truth table as the training set [29]. This result was extended by
Lissovoi and Oliveto to cover the (1+1) GP algorithms [25].

Theorem 11.5.8 ([25, 29]). The RLS-GP, RLS-GP∗, (1+1) GP and
(1+1) GP∗ algorithms on the ANDn problem with L = {x1, . . . ,xn,x1, . . . ,xn}
and F = {AND} do not construct an optimal solution in polynomial time,
with overwhelming probability, when using the complete truth table as the
training set.

The theorem follows from the observation that a conjunction that contains
both a variable xi and its negation xi always evaluates to false, and hence has
a nearly optimal fitness value of 1 (i.e., it is wrong on just one of 2n possible
inputs). Such a pair of literals was shown to be present in the current solution
with overwhelming probability once it contains n/2 distinct literals. For the
strictly elitist GP algorithms, reaching the global optimum would then require
a large simultaneous mutation with an exponential waiting time, while the

11 Computational Complexity Analysis of Genetic Programming 505

nonstrictly elitist GPs would essentially need to perform a random walk in
2n dimensions and reach a particular point while receiving little guidance
from the fitness function.

Additionally, even if the GP systems could be prevented from accepting
any solution containing a contradiction (for instance, by weighting the all-
true variable assignment much higher than any other input), the RLS-GP
and (1+1) GP algorithms would still require exponential time to find the
global optimum, as nonoptimal solutions containing all n variables (in either
the positive or the negated form) share the same fitness value (2n− 2, i.e.,
they are wrong on the all-true input and the single assignment satisfying
the solution but not the target function), and the closer the GP system is
to having all n positive literals, the more likely it is to produce an offspring
which replaces a positive literal with a negative one.

On the other hand, if a training set of polynomial size is used as in practical
applications, the GP systems can still efficiently construct a solution which
generalizes well (even if it is not optimal) on the ANDn problem, even in the
presence of negations.

Corollary 11.5.9 ([25]). The (1+1) GP using F = {AND} and L =
{x1, . . . ,xn,x1, . . . ,xn}, is able to find a solution on the ANDn problem with
a generalization error of at most n−c for any constant c > 0 in polynomial
time, when comparing program quality using a sufficiently large training set
of polynomial size chosen either uniformly at random from the complete truth
table in each iteration or during the first iteration.

Doerr et al. [7] have analyzed the behavior of the RLS-GP algorithm using
F = {AND,OR} for the ANDn problem. To allow the analysis in this setting,
a limit on the maximum solution size was imposed; specifically, solutions
containing more than ℓ≥ n leaf nodes were rejected regardless of their fitness.
However, there exist solutions with ℓ leaf nodes which cannot be modified
by HVL-Prime without detrimentally affecting fitness, and hence RLS-GP
requires an expected infinite number of iterations to find an optimal solution.
To address this issue, the HVL-Prime deletion sub-operation was modified
to select a node uniformly at random and remove the subtree rooted at that
node (replacing the node’s parent with the node’s sibling). Allowing subtree
deletions brings the operator closer to the sort of large-scale modifications of
candidate solutions that are produced by the mutation operators of practical
GP systems [47]. With the two modifications, RLS-GP is able to find the
global optimum in expected polynomial time with respect to the number of
variables and the limit on the tree size imposed if the complete truth table
is used.

Theorem 11.5.10 ([7]). The RLS-GP algorithm with F = {AND,OR} and
L := {x1, . . . ,xn}, a tree size limit ℓ ≥ (1 + c)n leaf nodes for any c ∈ Θ(1),
HVL-Prime with subtree deletion, finds the optimum for the ANDn problem
in expected O(ℓn log2 n) iterations when using the complete truth table as the
training set.

506 Andrei Lissovoi and Pietro S. Oliveto

This result was proven by showing that within Ω(ℓn log2 n) iterations, the
current solution of the RLS-GP contains fewer than ℓ leaf nodes, and thus
progress can be made by inserting a conjunction with a useful variable at the
root of the offspring solution. A super-multiplicative drift theorem was then
applied to bound the expected runtime. Experimental results suggest that a
tree size limit is not required in this setting, and that systems with larger
tree size limits find the optimum in fewer iterations than those with tree size
limits close to n [7].

When using incomplete training sets to evaluate solution quality, it was
shown that with probability 1−O(log2(n)/n), RLS-GP avoids inserting any
disjunctions before finding a solution which satisfies its termination condition
and with high probability reaches the desired generalization ability.

Theorem 11.5.11 ([7]). For any constant c > 0, consider an instance of the
RLS-GP algorithm with F = {AND,OR}, L = {x1, . . . ,xn}, a tree size limit
ℓ≥ n, using a training set of s = nc lg2 n rows sampled uniformly at random
from the complete truth table in each iteration to evaluate solution quality, and
terminating when the sampled error of the solution is at most c′ lgn, where c′

is an appropriately large constant. On the ANDn problem, the algorithm will,
with probability at least 1−O(log2(n)/n), terminate within O(logn) iterations,
and return a solution with a generalization error of at most n−c.

Notably, the theorem does not require an upper limit on the size of the
tree; ℓ ≥ n simply ensures that the target function is representable within
the tree size limit. The proof shows that a solution with the desired general-
ization error is found once O(logn) insertions occur, and thus the RLS-GP
with high probability does not exceed any reasonable tree size limit in this
setting. Experimental results additionally show that solutions with fewer un-
desired disjunctions could be constructed by terminating the GP system once
it achieves a logarithmic error on the training set rather than waiting for an
error of 0 to be observed [7].

11.5.1.4 Optimal Training Sets

While the target conjunctions are unlikely to be evolved exactly (with a gener-
alization error of 0) when using a polynomial training set chosen uniformly at
random, there do exist small training sets of O(n) rows which allow the RLS-
GP and (1+1) GP algorithms to find exact solutions efficiently. In general,
identifying such training sets may be nontrivial.

Theorem 11.5.12 ([25]). Let M be an n-row training set, where row i sets
xi to false and all xj (where j ̸= i) to true, and let M ′ be a 2n+1-row training
set containing all the rows of M and n+1 copies of the row setting all inputs
to true. The RLS-GP and (1+1) GP algorithms with F = {AND} using
the training sets M and M ′, respectively are able to find the exact solution

11 Computational Complexity Analysis of Genetic Programming 507

of ANDn and ANDn,m with F = {AND}, L = {x1, . . . ,xn} (or ANDn with
F = {AND} and L = {x1, . . . ,xn,x1, . . . ,xn}) in expected O(n logn) fitness
evaluations (or O(n2 logn) training set row evaluations).

For L = {x1, . . . ,xn,x1, . . . ,xn}, a variant of the (1+1) GP which main-
tains and randomly selects from a population of µ individuals subject to a
diversity mechanism prohibiting multiple solutions with identical outputs on
the training set was proven to find an optimal solution in O(µn logn) itera-
tions on an n + 1-row training set (consisting of all the inputs in M and an
input where all the n variables are set to true) [25]. Effectively, this uses the
explicit diversity mechanism to avoid including multiple copies of the all-true
row in the training set as in Theorem 11.5.12.

11.5.2 Evolving Parity

The XOR problem asks the GP system to evolve an exclusive disjunction of
all n input variables. Unlike conjunctions, exclusive disjunctions are known
to not be evolvable in the PAC learning framework [55].

Problem 11.5.13 (XOR) Let L ⊆ {x1, . . . ,xn} be the set of available ter-
minals, and F be the set of available functions.

The fitness of a tree X using a training set T selected from the rows of the
complete truth table C is the number of training set rows on which the value
produced by evaluating the Boolean expression represented by the tree differs
from the output of the exclusive disjunction of all n inputs.

When F = XOR and the complete truth table is used as the training set,
the fitness of any nonoptimal solution is 2n−1, while the fitness of the optimal
solution is 0. Thus, using the complete truth table as the training set on XOR
is similar to the Needle benchmark problem; Langdon and Poli noted that
“the fitness landscape is like a needle-in-a-haystack, so any adaptive search
approach will have difficulties” [23].

Predictably, the RLS-GP and (1+1) GP algorithms are not able to opti-
mize XOR efficiently. Strictly elitist variants will only move from their initial
solution if the optimum is constructed as a mutation of that solution, which
occurs in expected infinite time for RLS-GP∗ (as the optimum is not reach-
able by a single HVL-Prime mutation from many possible points), and in
expected exponential time for the (1+1) GP∗ (which essentially needs to
construct the complete function in one mutation; if initialized with an empty
tree, this mutation needs to perform at least n HVL-Prime insertion subop-
erations). When the complete truth table set is used as the training set, the
expected optimization time for RLS-GP is exponential in the problem size,
because the algorithm accepts any and all mutations, while reaching the op-
timal solution requires all n variables to appear an odd number of times in
the solution [29].

508 Andrei Lissovoi and Pietro S. Oliveto

Theorem 11.5.14 (Theorem 4, [29]). RLS-GP using F = {XOR}, L =
{x1, . . . ,xn}, and using the complete truth table as the training set to
evolve XORn requires more than 2Ω(n/logn) iterations with probability p >
1−2−Ω(n/logn) to reach the optimum.

The theorem is proven by an application of the simplified negative drift
theorem, showing that when the number of variables that appear in the cur-
rent solution an odd number of times is large, there is a strong negative drift
towards reducing this number, and the optimum requires all n distinct vari-
ables to appear an odd number of times in the solution. The negative drift
stems primarily from the HVL-Prime insertion operator: if a large number of
variables are represented an odd number of times, it is more likely to insert
one of these variables when choosing a terminal uniformly at random.

Also when sampling solution fitness using a polynomial number of rows
of the complete truth table, the outcome is underwhelming: if only a loga-
rithmically small number of training set rows are sampled in each iteration,
the algorithm will terminate in expected polynomial time with a nonoptimal
solution that fits the sampled training set, while using training sets of super-
logarithmic size will lead to superpolynomial optimization time. Thus, in any
polynomial amount of time, the expected generalization ability of the GP sys-
tems considered on XOR is 1/2, i.e., they require in expectation a constant
number of samples taken uniformly at random from C before a divergence
from the target function is discovered.

There is also a straightforward extension of Theorem 11.5.14 to dynamic
training sets of polynomial size, as such sampling provides no consistent in-
dication of fitness.

Corollary 11.5.15. The RLS-GP and (1+1) GP algorithms sampling s ∈
ω(logn) rows of the complete truth table in each iteration on XORn with
F = {XOR} and L = {x1, . . . ,xn} with high probability do not reach the
optimum in polynomial time.

Proof. The RLS-GP and (1+1) GP algorithms will accept any nonoptimal
offspring of a nonoptimal parent with probability at least 1/2, as both the
offspring and the parent are wrong on 2n−1 inputs, and there are exactly as
many rows on which the offspring is correct while the parent is wrong as the
converse, and the offspring is accepted in cases of tied fitness.

With s ∈ ω(logn) rows sampled uniformly at random in each iteration,
the probability that a nonoptimal solution is correct on all sampled rows
is 2−ω(logn) = n−ω(1), and, by a straightforward union bound, the GP algo-
rithms do not terminate within polynomial time unless the optimal solution
is found.

With the exception of any iterations in which the offspring individual is
rejected, the algorithms behave identically to the RLS-GP and (1+1) GP
algorithms using the complete truth table to evaluate solution fitness (i.e.,
accepting offspring regardless of the effects of mutation), and thus cannot

11 Computational Complexity Analysis of Genetic Programming 509

achieve better performance than these algorithms in terms of the number of
iterations performed.

Theorem 11.5.14 provides a runtime bound for RLS-GP only. A similar
result for the (1+1) GP can be obtained by observing that the (1+1) GP
performs in expectation two HVL-Prime suboperations in each iteration, and
hence, even if the algorithm terminated immediately upon constructing the
optimal solution (even if this occurred in the middle of a mutation), it would
in expectation be only a constant factor faster than RLS-GP in terms of the
number of iterations required to find the optimum. ⊓⊔

11.5.3 Outlook

In this section, the available computational complexity results regarding
the evolution of proper functions with input/output behavior have been
overviewed. Simple GP systems equipped with the AND (or AND and OR)
functions and positive literals (or possibly both positive and negative literals)
can evolve conjunctions of arbitrary size with high probability if appropriate
limits on maximum tree size are put in place. Important open problems are
providing performance statements of the algorithms without tree size limits,
and analyses of GP systems equipped with comprehensive function sets F ,
i.e., those that allow the expression of any Boolean function.

11.6 Other GP Algorithms

The previous sections have covered the available theoretical results for stan-
dard tree-based GP systems, which constitute the majority of theoretical
complexity analysis results for GP. Several other GP paradigms have been
proposed in the literature which use different representations for candidate
solutions, e.g., Cartesian GP [31], Linear GP [1], PushGP [52], and Geometric
Semantic GP (GSGP) [33]. Amongst these, the only class for which computa-
tional complexity analyses are available is GSGP. In this section, we present
the available results concerning this different approach to GP system design
which aims to evolve programs semantically rather than syntactically.

11.6.1 Geometric Semantic Genetic Programming

Standard tree-based GP evolves programs by applying mutation and
crossover to their syntax. Programs that are considerably different syntacti-
cally may produce identical output, while introducing minimal syntactic mu-

510 Andrei Lissovoi and Pietro S. Oliveto

tations may completely change the output of a program. Moraglio et al. [33]
introduced Geometric Semantic GP (GSGP) with the aim of focusing GP
search on program behavior. In particular, GSGP mutation and crossover
operators modify programs in a way that allows the GP system to search
through the semantic neighborhood (which consists of programs with sim-
ilar behavior) rather than their syntactic neighborhood (which consists of
programs with similar syntax).

GSGP generally uses a natural program representation for the domain at
hand (e.g., it represents programs using Boolean expressions when a Boolean
expression is to be evolved), and uses specialized semantic mutation and
crossover operators to produce offspring programs with behavior similar to
that of their parents. These operators generally reproduce the parent pro-
grams in their entirety, adding to them to modify their behavior in a limited
fashion. For example, the GSGP mutation operator could produce an off-
spring which contains an exact copy of its parent and a random element which
overrides some portions of the parent’s behavior, while the GSGP crossover
operator could construct an offspring containing exact copies of both parents
and a random element which switches between the two behaviors depend-
ing on the inputs. As both operators increase the size of the programs by
adding additional syntax to the parent programs to encode the chosen ran-
dom components (and the crossover includes exact copies of both parents),
the programs produced by these operators need to be simplified in order
for the algorithms to remain tractable. For some domains, such as Boolean
functions, quick function-preserving simplifiers exist, while computer algebra
systems and static analysis can be used to simplify more complex expressions
and programs [33].

Semantic geometric crossover and mutation operators have been designed
for many problem domains, including regression problems [34], learning clas-
sification trees [28], and Boolean functions [35]. Initial experimental results
suggest that GSGP consistently finds solutions that fit the training sets used
for a wide array of simple Boolean benchmark functions, regression problems
for polynomials of degree up to 10, and various classification problems, outper-
forming standard tree-based GP with the same evaluation budget [33]. Theo-
retical guarantees have been derived regarding the number of generations it
takes GSGP to construct a solution fitting the training set, or achieving an
ε-small training set error in the case of regression problems [28, 34, 35]. In
this section, we explore the available theoretical results focusing on applying
geometric semantic search to evolving Boolean functions.

In the case of Boolean functions, the program semantics can be represented
by a 2n-row output vector, corresponding to the program output on all rows
of the complete n-variable truth table. In this setting, the semantic crossover
operator SGXB, acts on two parents T1 and T2, and produces an offspring
solution (T1 ∧TR)∨ (T2 ∧TR), where TR is a randomly generated Boolean
function. This offspring outputs the solution produced by T1 if TR evaluates
to true, and the solution produced by T2 if TR evaluates to false, effectively

11 Computational Complexity Analysis of Genetic Programming 511

performing crossover on the 2n-row output vectors of the two parent solu-
tions. The semantic mutation operator SGMB, acting on a single parent T1,
produces the offspring T1 ∨M with probability 0.5, and T ∧M with proba-
bility 0.5, where M is a random minterm (a conjunction where each variable
appears in either positive or negated form) of all input variables. This effec-
tively copies the output vector of T1, setting the rows on which M evaluates
to true to either true or false.

These operators allow GSGP to always observe a cone fitness landscape on
any Boolean function, i.e., the mutation operator is always able to improve
the behavior of the parent program. This allows mutation-only GSGP to hill-
climb its way up to the optimal program for any function in this domain.
However, since the output vector contains 2n rows, hill-climbing by applying
SGMB, which only affects one row per iteration, would take O(2n log(2n)) =
O(n2n) iterations (by the coupon collector argument, or similarly to RLS on
a 2n-bit OneMax function).

For GSGP on any Boolean function, a polynomially sized training set can
be viewed as a OneMax problem on a 2n-bit string where only a polynomial
number of bits are nonneutral (i.e., contribute to the solution’s fitness). In
that setting, the runtime can be improved by allowing mutations to flip more
than one bit of the output vector per iteration (e.g., such that in expectation
one nonneutral bit is affected per iteration). This setting was explored in [35],
with various approaches to the design of mutation operators, establishing a
hierarchy of operator expressiveness (based on how much of the search space
they enable the GP system to explore), and considering the probability of
fitting a training set of polynomial size. The following mutation operators,
differing in how the random minterm M used to modify program behavior is
constructed, were analyzed:

• Fixed Block Mutation (FBM), which picks the v ≤ n variables to use as
the base for M once during the run,

• Fixed Alternative Block Mutation (FABM), which partitions the variables
into v sets, and forms M by picking a variable from each set uniformly at
random in each iteration,

• Varying Block Mutation (VBM), which in each iteration chooses v ≤ n
variables uniformly at random to form the base for M .

For all three operators, v is a fixed parameter. The results show that while
VBM is more expressive than FABM, which in turn is more expressive than
FBM, there nevertheless exist training sets which GSGP using VBM cannot
fit in any amount of time. Conversely, the less expressive FBM operator can
with high probability fit a training set of polynomial size sampled uniformly
at random from the complete truth table of any Boolean function [35].

Theorem 11.6.1 ([35]). Let a training set T consist of nc rows, with c
a positive constant, the rows being sampled uniformly at random from the
complete truth table of any Boolean function. Then GSGP using the FBM

512 Andrei Lissovoi and Pietro S. Oliveto

operator with v = (2c + ε) log2(n) (for any ε > 0), is able to fit T with proba-
bility at least 1− 1

2n−ε. Conditioning on this, a function that fits the training
set is found in an expected O(n2c logn) iterations.

This result is proven by observing that FBM’s initial choice of v variables
(to use as the basis for the minterms) partitions the 2n row output vector of
P into 2v blocks of equal size, each corresponding to a particular minterm
of the v variables. Choosing v > 2c log2 n partitions the output vector into
more than 22c log2 n = n2c blocks, ensuring that with high probability all nc

training set rows (chosen uniformly at random from the complete truth table)
are in different blocks, and thus the training set can be satisfied by collecting
the exact minterms corresponding to the blocks which contain the training
set rows. When this condition holds, the expected runtime is obtained by a
coupon collector argument.

Of course, if FBM chooses the v variables poorly with respect to the train-
ing set T (meaning that at least two training set rows demanding different
output are contained in the same block), GSGP will not be able to fit it. More
expressive operators such as FABM or VBM can minimize this probability
at the cost of a mild runtime penalty by allowing the mutation operator to
be more flexible when choosing which variables to use as the basis for the
minterm (e.g., increasing the runtime by a factor of n/v, but improving the
success probability from p to 1− (1−p)n/v, where v is the number of classes
in the partition created by FABM).

There are also modifications of the GSGP mutation operators that are
able to cover the entire search space of programs, eliminating the possibility
of failure. There exist classes of Boolean functions for which such operators
are effective, allowing GSGP to fit any training set in expected polynomial
time (with no failure probability, unlike Theorem 11.6.1), as shown in the
following theorem.

Theorem 11.6.2 ([35]). Let ϕ be a formula in disjunctive normal form with
α = poly(n) conjunctions, every conjunction containing at most β = O(1)
variables. Then GSGP with Multiple Size Block Mutation (MSBM) can fit
any training set for ϕ in expected O(αnβ+12β) iterations, i.e., polynomial
time.

The MSBM mutation operator is a modification of the VBM variant of the
SGMB operator. It samples an integer v between 0 and n, selects v variables
from the set of n input variables, and then generates uniformly at random an
incomplete minterm M of these variables. This modified mutation operator
essentially allows each clause of the target function to be “fixed” in the current
solution in an expected polynomial number of iterations.

11 Computational Complexity Analysis of Genetic Programming 513

11.6.2 Outlook

GSGP systems have been proven to efficiently construct solutions which fit
training sets of polynomial size for several function domains. In this section,
we have covered the available results for the evolution of Boolean functions,
although similar results are available for the other domains, such as learning
classification trees and regression problems [28, 34].

At present though, there are no theoretical analyses of how the functions
produced by GSGP generalize to unseen inputs. Experimental results con-
cerning the generalization performance of GSGP systems yielded mixed con-
clusions [14, 45, 46].

11.7 Conclusion

We have presented an overview of the available results on the computational
complexity analysis of GP algorithms. The results follow the blueprint sug-
gested by Poli et al., starting with the analysis of simple GP systems based on
mutation and stochastic-hill climbing on simple problems [48]. The complex-
ity of the problems has gradually increased, from analyses focusing on the
main characteristic difficulties of GP (i.e., variable solution length, and solu-
tion quality evaluations) to more recent results considering the evolution of
functions with true input/output behavior and using realistically constrained
fitness functions. The approach of gradually expanding the complexity of the
systems analyzed was also endorsed by Goldberg and O’Reilly, who stated
that “the methodology of using deliberately designed problems, isolating spe-
cific properties, and pursuing, in detail, their relationships in simple GP is
more than sound; it is the only practical means of systematically extending
GP understanding and design” [13].

The GP systems considered in theoretical analyses have remained rela-
tively simple: the use of HVL-Prime mutation and limited, if any, popula-
tions with no crossover is a common setting. In many cases, an analysis
that provides positive runtime results is only made tractable because “the
fitness structure of the model problems is simple, and the algorithms use
only a simple hierarchical variable length mutation operator” [9]. In par-
ticular, variable-length representations often complicate the analysis of GP
systems, and require “rather deep insights into the optimization process and
the growth of the GP-trees” [6].

The chapter has highlighted three different streams that have been fol-
lowed for building the theoretical foundations of genetic programming. The
first one is the design and analysis of benchmark functions with variable
length representation for the analysis of tree structure growth. Three classes
of such problems have been considered in the literature: Order, Majority,
and Sorting. While producing rigorous proofs is not easy, surprisingly

514 Andrei Lissovoi and Pietro S. Oliveto

simple hillclimbing GP systems optimize these problems efficiently with-
out bloat seriously hindering their performance. Only recently has the 2/3-
SuperMajority benchmark function been introduced as a benchmark prob-
lem where bloat provably is a major concern. Nevertheless, simple bloat con-
trol mechanisms address the issue effectively. As a result, there is a need for
better benchmark functions to shed more light on how bloat affects evolution
via GP.

The second line of research has addressed the evolution of toy programs
of fixed size. The aim is to analyze GP behavior when tree structure is con-
strained (e.g., with tree size limits in place, as in the MAX problem) and
solution quality estimation using training sets of limited size (i.e., how large
training sets have to be for efficient evolution, e.g., the Identification prob-
lem). Only very preliminary results are available addressing these questions:
tight bounds are unavailable for the MAX problem even for simple hillclimb-
ing (1+1) GP algorithms and Identification problem results are available
only for very simple linear functions.

The third line of research concerns the evolution of proper functions with
inputs and outputs. Up to today, only conjunctions and parity Boolean func-
tions have been considered for (1+1) GP systems using limited function sets
(i.e., that do not have sufficient expressive power to express all Boolean func-
tions). Nevertheless, such GP systems can provably evolve conjunctions of
arbitrary sizes with proper tree size limits in place.

For GP systems utilizing geometric semantic mutation and crossover oper-
ators, analyses of the time required to produce a solution fitting the training
set are available for wider classes of functions, and frequently do not require
insight into the structure of the function considered. However, a rigorous
understanding of how well the GSGP solutions generalize – how well they
perform on inputs not included in the training set – remains a challenge.

While the results presented represent the first steps in the rigorous analy-
sis of the behavior of GP systems, bridging the gap to the GP systems used
in practice requires analyzing more complex GP algorithms on more realistic
problems. Thus, extending the results presented to broader classes of prob-
lems (for instance, those allowing more flexibility in program behavior), to
other problem classes on which GP experimentally performs well (such as
symbolic regression), and to more realistic GP algorithms (introducing pop-
ulations and crossover) constitute the main directions for further research.
Acknowledgements Financial support by the Engineering and Physical Sciences Re-
search Council (EPSRC Grant No. EP/M004252/1) is gratefully acknowledged.

References

[1] Brameier, M., Banzhaf, W.: Linear Genetic Programming. Genetic and
Evolutionary Computation. Springer (2007)

11 Computational Complexity Analysis of Genetic Programming 515

[2] Corus, D., Dang, D.C., Eremeev, A.V., Lehre, P.K.: Level-based analysis
of genetic algorithms and other search processes. IEEE Transactions on
Evolutionary Computation 22(5), 707–719 (2017)

[3] Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can
hillclimb faster than mutation-only evolutionary algorithms. IEEE
Transactions on Evolutionary Computation 22(5), 720–732 (2018)

[4] Corus, D., Oliveto, P.S., Yazdani, D.: On inversely proportional hy-
permutations with mutation potential. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2019) (to appear)
(2019). arXiv:1903.11674

[5] Curry, R., Lichodzijewski, P., Heywood, M.I.: Scaling genetic program-
ming to large datasets using hierarchical dynamic subset selection. IEEE
Trans. Systems, Man, and Cybernetics, Part B 37(4), 1065–1073 (2007)

[6] Doerr, B., Kötzing, T., Lagodzinski, J.A.G., Lengler, J.: Bounding bloat
in genetic programming. In: Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO 2017), pp. 921–928 (2017)

[7] Doerr, B., Lissovoi, A., Oliveto, P.S.: Evolving boolean functions with
conjunctions and disjunctions via genetic programming. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO
2019) (to appear) (2019). arXiv:1903.11936

[8] Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolu-
tionary algorithm. Theoretical Computer Science 276(1-2), 51–81 (2002)

[9] Durrett, G., Neumann, F., O’Reilly, U.: Computational complexity ana-
lysis of simple genetic programming on two problems modeling isolated
program semantics. In: Proceedings of the 11th International Workshop
on Foundations of Genetic Algorithms (FOGA 2011), pp. 69–80 (2011)

[10] Feldman, V.: A complete characterization of statistical query learning
with applications to evolvability. Journal of Computer and System Sci-
ences 78(5), 1444–1459 (2012)

[11] Gathercole, C., Ross, P.: Dynamic training subset selection for super-
vised learning in genetic programming. In: Proceedings of the 3rd In-
ternational Conference on Parallel Problem Solving from Nature (PPSN
1994), pp. 312–321 (1994)

[12] Gathercole, C., Ross, P.: An adverse interaction between crossover and
restricted tree depth in genetic programming. In: Proceedings of the 1st
Annual Conference on Genetic Programming, pp. 291–296. MIT Press,
Cambridge, MA, USA (1996)

[13] Goldberg, D.E., O’Reilly, U.: Where does the good stuff go, and why?
how contextual semantics influences program structure in simple genetic
programming. In: Proceedings of Genetic Programming, First European
Workshop (EuroGP 1998), pp. 16–36 (1998)

[14] Gonçalves, I., Silva, S., Fonseca, C.M.: On the generalization ability of
geometric semantic genetic programming. In: Proceedings of Genetic
Programming - 18th European Conference (EuroGP 2015), pp. 41–52
(2015)

516 Andrei Lissovoi and Pietro S. Oliveto

[15] Jansen, T.: Analyzing Evolutionary Algorithms - The Computer Science
Perspective. Natural Computing Series. Springer (2013)

[16] Jansen, T., Zarges, C.: Performance analysis of randomised search heuris-
tics operating with a fixed budget. Theoretical Computer Science 545,
39–58 (2014)

[17] Kötzing, T., Lagodzinski, J.A.G., Lengler, J., Melnichenko, A.: Destruc-
tiveness of lexicographic parsimony pressure and alleviation by a con-
catenation crossover in genetic programming. In: Proceedings of the
15th International Conference on Parallel Problem Solving from Nature
(PPSN 2018), Part II, pp. 42–54 (2018)

[18] Kötzing, T., Neumann, F., Spöhel, R.: PAC learning and genetic pro-
gramming. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO 2011), pp. 2091–2096 (2011)

[19] Kötzing, T., Sutton, A.M., Neumann, F., O’Reilly, U.: The max problem
revisited: The importance of mutation in genetic programming. Theo-
retical Computer Science 545, 94–107 (2014)

[20] Koza, J.R.: Genetic programming - on the programming of computers
by means of natural selection. Complex adaptive systems. MIT Press
(1992)

[21] Koza, J.R.: Human-competitive results produced by genetic program-
ming. Genetic Programming and Evolvable Machines 11(3-4), 251–284
(2010)

[22] Koza, J.R., Al-Sakran, S.H., Jones, L.W.: Automated ab initio synthe-
sis of complete designs of four patented optical lens systems by means
of genetic programming. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 22(3), 249–273 (2008)

[23] Langdon, W.B., Poli, R.: Foundations of genetic programming. Springer
(2002)

[24] Lipson, H.: Evolutionary synthesis of kinematic mechanisms. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing 22(3),
195–205 (2008)

[25] Lissovoi, A., Oliveto, P.S.: On the time and space complexity of ge-
netic programming for evolving boolean conjunctions. In: Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence, pp. 1363–
1370. AAAI Press (2018)

[26] Lohn, J.D., Hornby, G., Linden, D.S.: Human-competitive evolved an-
tennas. Artificial Intelligence for Engineering Design, Analysis and Man-
ufacturing 22(3), 235–247 (2008)

[27] Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO
2002), pp. 829–836 (2002)

[28] Mambrini, A., Manzoni, L., Moraglio, A.: Theory-laden design of
mutation-based geometric semantic genetic programming for learning
classification trees. In: Proceedings of the Congress on Evolutionary
Computation (CEC 2013), pp. 416–423 (2013)

11 Computational Complexity Analysis of Genetic Programming 517

[29] Mambrini, A., Oliveto, P.S.: On the analysis of simple genetic program-
ming for evolving boolean functions. In: Proceedings of Genetic Program-
ming - 19th European Conference (EuroGP 2016), pp. 99–114 (2016)

[30] McDermott, J., O’Reilly, U.: Genetic programming. In: Springer Hand-
book of Computational Intelligence, pp. 845–869. Springer (2015)

[31] Miller, J.F. (ed.): Cartesian Genetic Programming. Natural Computing
Series. Springer (2011)

[32] Mitzenmacher, M., Upfal, E.: Probability and computing - random-
ized algorithms and probabilistic analysis. Cambridge University Press
(2005)

[33] Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic
programming. In: Proceedings of the 12th International Conference on
Parallel Problem Solving from Nature (PPSN 2012), pp. 21–31 (2012)

[34] Moraglio, A., Mambrini, A.: Runtime analysis of mutation-based geo-
metric semantic genetic programming for basis functions regression. In:
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2013), pp. 989–996 (2013)

[35] Moraglio, A., Mambrini, A., Manzoni, L.: Runtime analysis of mutation-
based geometric semantic genetic programming on boolean functions.
In: Proceedings of the 12th International Workshop on Foundations of
Genetic Algorithms (FOGA 2013), pp. 119–132 (2013)

[36] Myers, A.N., Wilf, H.S.: Some new aspects of the coupon collector’s
problem. SIAM Journal on Discrete Mathematics 17(1), 1–17 (2003)

[37] Neumann, F.: Computational complexity analysis of multi-objective ge-
netic programming. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2012), pp. 799–806 (2012)

[38] Nguyen, A., Urli, T., Wagner, M.: Single- and multi-objective genetic
programming: new bounds for weighted order and majority. In: Pro-
ceedings of the 12th International Workshop on Foundations of Genetic
Algorithms (FOGA 2013), pp. 161–172 (2013)

[39] Oliveto, P.S., Witt, C.: On the runtime analysis of the simple genetic
algorithm. Theoretical Computer Science 545, 2–19 (2014)

[40] Oliveto, P.S., Witt, C.: Improved time complexity analysis of the simple
genetic algorithm. Theoretical Computer Science 605, 21–41 (2015)

[41] Oliveto, P.S., Yao, X.: Runtime analysis of evolutionary algorithms for
discrete optimization. In: A. Auger, B. Doerr (eds.) Theory of Random-
ized Search Heuristics: Foundations and Recent Developments, chap. 2,
pp. 21–52. World Scientific (2011)

[42] O’Reilly, U., Oppacher, F.: Program search with a hierarchical variable
lenght representation: Genetic programming, simulated annealing and
hill climbing. In: Proceedings of the 3rd International Conference on
Parallel Problem Solving from Nature (PPSN 1994), pp. 397–406 (1994)

[43] O’Reilly, U.M.: An analysis of genetic programming. Ph.D. thesis, Car-
leton University, Ottawa-Carleton Institute for Computer Science, Ot-
tawa, Ontario, Canada (1995)

518 Andrei Lissovoi and Pietro S. Oliveto

[44] O’Reilly, U.M., Oppacher, F.: A comparative analysis of genetic program-
ming. In: P.J. Angeline, K.E. Kinnear, Jr. (eds.) Advances in Genetic
Programming 2, chap. 2, pp. 23–44. MIT Press, Cambridge, MA, USA
(1996)

[45] Orzechowski, P., Cava, W.L., Moore, J.H.: Where are we now?: a large
benchmark study of recent symbolic regression methods. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO
2018), pp. 1183–1190 (2018)

[46] Pawlak, T.P., Krawiec, K.: Competent geometric semantic genetic pro-
gramming for symbolic regression and boolean function synthesis. Evo-
lutionary Computation 26(2), 177–212 (2018)

[47] Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Pro-
gramming. http://lulu.com (2008)

[48] Poli, R., Vanneschi, L., Langdon, W.B., McPhee, N.F.: Theoretical re-
sults in genetic programming: the next ten years? Genetic Programming
and Evolvable Machines 11(3-4), 285–320 (2010)

[49] Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the
(1, λ) EA. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2012), pp. 1349–1356 (2012)

[50] Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary
algorithms on sorting and shortest paths problems. Journal of Mathe-
matical Modelling and Algorithms 3(4), 349–366 (2004)

[51] Spector, L.: Automatic Quantum Computer Programming: A Genetic
Programming Approach, Genetic Programming, vol. 7. Kluwer Academic
Publishers, Boston/Dordrecht/New York/London (2004)

[52] Spector, L., Robinson, A.J.: Genetic programming and autoconstructive
evolution with the push programming language. Genetic Programming
and Evolvable Machines 3(1), 7–40 (2002)

[53] Urli, T., Wagner, M., Neumann, F.: Experimental supplements to the
computational complexity analysis of genetic programming for problems
modelling isolated program semantics. In: Proceedings of the 12th In-
ternational Conference on Parallel Problem Solving from Nature (PPSN
2012), pp. 102–112 (2012)

[54] Valiant, L.G.: A theory of the learnable. Communications of the ACM
27(11), 1134–1142 (1984)

[55] Valiant, L.G.: Evolvability. Journal of the ACM 56(1), 3:1–3:21 (2009)
[56] Wagner, M., Neumann, F.: Parsimony pressure versus multi-objective

optimization for variable length representations. In: Proceedings of the
12th International Conference on Parallel Problem Solving from Nature
(PPSN 2012), pp. 133–142 (2012)

[57] Wagner, M., Neumann, F., Urli, T.: On the performance of different ge-
netic programming approaches for the SORTING problem. Evolutionary
Computation 23(4), 583–609 (2015)

	Probabilistic Tools for the Analysis of Randomized Optimization Heuristics
	Benjamin Doerr
	Introduction
	Notation
	Elementary Probability Theory
	Useful Inequalities
	Union Bound
	Expectation and Variance
	Conditioning
	Stochastic Domination and Coupling
	The Coupon Collector Process
	Large-Deviation Bounds
	References

	Drift Analysis
	Johannes Lengler
	Introduction
	Basics of Drift Analysis
	Elementary Introduction to Drift Analysis
	Advanced Drift Theorems
	Finding the Potential Function
	Conclusion
	References

	Complexity Theory for Discrete Black-Box Optimization Heuristics
	Carola Doerr
	Introduction and Historical Remarks
	The Unrestricted Black-Box Model
	Known Black-Box Complexities in the Unrestricted Model
	Memory-Restricted Black-Box Complexity
	Comparison- and Ranking-Based Black-Box Complexity
	Unbiased Black-Box Complexity
	Combined Black-Box Complexity Models
	Summary of Known Black-Box Complexities for OneMax and LeadingOnes
	From Black-Box Complexity to Algorithm Design
	From Black-Box Complexity to Mastermind
	Conclusion and Selected Open Problems
	References

	Parameterized Complexity Analysis of Randomized Search Heuristics
	Frank Neumann and Andrew M. Sutton
	Introduction
	Parameterized Complexity Analysis
	Maximum-Leaf Spanning Trees
	Minimum Vertex Cover
	Submodular Functions with Constraints
	Euclidean TSP
	Conclusion
	References

	Analysing Stochastic Search Heuristics Operating on a Fixed Budget
	Thomas Jansen
	Introduction
	Analytical Perspective and Basic Results
	Reusing Known Runtime Results
	Advanced Methods
	Results Obtained by Using the Fixed-Budget Perspective
	Summary
	References

	Theory of Parameter Control for Discrete Black-Box Optimization: Provable Performance Gains Through Dynamic Parameter Choices
	Benjamin Doerr and Carola Doerr
	Introduction
	A Motivating Example: (1+1) EA and RLS on LeadingOnes
	Classification of Parameter Control Mechanisms
	State-Dependent Parameter Control
	Success-Based Parameter Control
	Learning-Inspired Parameter Control
	Self-Adaptation: Endogenous Parameter Control
	Hyper-Heuristics
	Conclusion and Outlook
	References

	Analysis of Evolutionary Algorithms in Dynamic and Stochastic Environments
	Frank Neumann, Mojgan Pourhassan and Vahid Roostapour
	Introduction
	Preliminaries
	Analysis of Evolutionary Algorithms on Dynamic Problems
	Analysis of Evolutionary Algorithms on Stochastic Problems
	Ant Colony Optimization
	Conclusions
	References

	The Benefits of Population Diversity in Evolutionary Algorithms: A Survey of Rigorous Runtime Analyses
	Dirk Sudholt
	Introduction
	Preliminaries
	How Diversity Benefits Global Exploration
	How Diversity Benefits Crossover
	How Diversity Benefits Dynamic Optimization
	Diversity-Based Parent Selection
	Conclusions
	References

	Theory of Estimation-of-Distribution Algorithms
	Martin S. Krejca and Carsten Witt
	Introduction
	Estimation-of-Distribution Algorithms
	Common Fitness Functions
	Convergence Analyses
	Runtime Analyses
	Conclusions and Open Problems
	References

	Theoretical Foundations of Immune-Inspired Randomized Search Heuristics for Optimization
	Christine Zarges
	Introduction
	Theoretical Analyses of Hypermutations
	Theoretical Analyses of Aging Operators
	Theoretical Analyses of Complete AIS
	Summary
	References

	Computational Complexity Analysis of Genetic Programming
	Andrei Lissovoi and Pietro S. Oliveto
	Introduction
	Preliminaries
	Evolving Tree Structures
	Evolving Programs of Fixed Size
	Evolving Proper Programs: Boolean Functions
	Other GP Algorithms
	Conclusion
	References

