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Preface

The theory of evolutionary computation, or, more generally, randomized
search heuristics, is aimed at understanding how these methods work and
why they are so successful in many applications. While there has always
been theoretical work in this field, and even more since Ingo Wegener (1950
2008) pushed for a mathematical approach inspired by the classical field of
randomized algorithms, this research area remains young and many astonish-
ing advances have only been made in the last five to ten years. These include
new and more powerful methods, the solution of long-standing open prob-
lems, and the analysis of heuristics that could not be analyzed before. Not
only have the topics changed and become closer to what is the state of the
art in applications, but also the field has progressed from only analyzing ex-
isting methods to finding unexpected and more powerful parameter choices,
designing new building blocks such as mutation operators, selection opera-
tors, and mechanisms that adjust parameters on the fly, and even proposing
completely new heuristics.

In this edited book, we report on some of these recent developments. Our
aim is to give a concise summary of the state of the art to experts in the field
and to make this exciting area more accessible to students and researchers in
related fields.

The book starts with two chapters on mathematical methods that are of-
ten used in the analysis of randomized search heuristic. These are followed
by three chapters on how to measure the complexity of a search heuristic: we
discuss black-box complexity, a counterpart of classical complexity theory
in black-box optimization, parameterized complexity, aimed at a more fine-
grained view of the difficulty of problems, and the fixed-budget perspective,
which answers the question of how good a solution will be after investing a
certain computational budget. We then describe theoretical results on three
important questions in evolutionary computation, namely how to profit from
changing the parameters during the run of an algorithm, how evolutionary
algorithms are able to cope with dynamically changing or stochastic environ-
ments, and how population diversity influences performance. Finally, we look
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at three algorithm classes that have only recently become the focus of theo-
retical work, namely estimation-of-distribution algorithms, artificial immune
systems, and genetic programming.

We hope that this book will help students and researchers in the field
and around it to access these topics, to deepen their understanding, and
possibly to join this young and exciting area, in which many very fundamental
questions are still wide open.

We thank all authors for accepting the time-consuming task of writing a
book chapter and for completing this task to perfection. We are very grateful
to the reviewers of each chapter, whose careful reading is a guarantee of
the high quality we aim at. Our final thanks go to the publisher, and, in
particular, Ronan Nugent, for all their help and responsiveness.

Palaiseau, Adelaide, Benjamin Doerr
Mai 2019 Frank Neumann
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Chapter 1

Probabilistic Tools for the Analysis of
Randomized Optimization Heuristics

Benjamin Doerr

Abstract This chapter collects several probabilistic tools that have proven to
be useful in the analysis of randomized search heuristics. This includes classic
material such as the Markov, Chebyshev, and Chernoff inequalities, but also
lesser-known topics such as stochastic domination and coupling, and Chernoff
bounds for geometrically distributed random variables and for negatively
correlated random variables. Most of the results presented here have appeared
previously, but some only in recent conference publications. While the focus is
on presenting tools for the analysis of randomized search heuristics, many of
these may be useful as well for the analysis of classic randomized algorithms
or discrete random structures.

1.1 Introduction

Unlike in the field of classic randomized algorithms for discrete optimization
problems, where theory has always supported (and, in fact, often led) the
development and understanding of new algorithms, the theoretical analysis
of nature-inspired search heuristics is much younger than the use of these
heuristics. The use of nature-inspired heuristics can easily be traced back to
the 1960s; their rigorous analysis with proven performance guarantees only
started in the late 1990s. Propelled by impressive results, most notably from
the German computer scientist Ingo Wegener (1950-2008) and his students,
theoretical studies became quickly accepted in the field of nature-inspired
algorithms and now form an integral part of it. They help to understand
these algorithms, guide the choice of their parameters, and even (as in the
field of classic algorithms) suggest new promising algorithms. It is safe to
say that Wegener’s vision that nature-inspired heuristics are nothing more

Benjamin Doerr
Ecole Polytechnique, CNRS, Laboratoire d’Informatique (LIX), Palaiseau, France



2 Benjamin Doerr

than a particular class of randomized algorithms, which therefore should be
analyzed with the same rigor as other randomized algorithms, has come true.

After around 20 years of theoretical analysis of nature-inspired algorithms,
however, we have to note that the methods used here are different from those
used in the analysis of classic randomized algorithms. This is most visible
for particular methods such as the fitness level method or drift analysis, but
applies even to the elementary probabilistic tools employed throughout the
field.

The aim of this chapter is to collect those elementary tools which have
often been used over the past 20 years. This includes classic material such
as expectations, variances, the coupon collector process, Markov’s inequal-
ity, Chebyshev’s inequality and Chernoff-Hoeffding bounds for sums of inde-
pendent random variables, but also topics that are used rarely outside the
analysis of nature-inspired heuristics such as stochastic domination, Chernoff—
Hoeffding bounds for sums of independent geometrically distributed random
variables, and Chernoff-Hoeffding bounds for sums of random variables which
are not fully independent. For many results, we also sketch a typical applica-
tion or refer to applications in the literature.

The large majority of the results and applications presented in this chapter
have appeared previously, some in textbooks, some in recent conference pub-
lications. The following results, while not necessarily very deep, are original
to the best of our knowledge.

e The result that all known Chernoff bounds, when applied to binary random
variables, hold as well for negatively correlated random variables. More
precisely, for bounds on the upper tail, we need only 1-negative correla-
tion, and for bounds on the lower tail, we need only 0-negative correlation
(Section )

e The insight that all commonly known Chernoff bounds can be deduced
from only two bounds (Section )

o A version of the method of bounded differences which requires only that
the t-th random variable has a bounded influence on the expected result
stemming from variables ¢4+ 1 to m. This appears to be an interesting
compromise between the classic method of bounded differences, which is
hard to use for iterative algorithms, and martingale methods, which require
familiarity with martingales (Theorem )

e Via an elementary two-stage rounding trick, we give simple proofs of
the facts that (i) a sum X of independent binary random variables with
Var[X] > 1 exceeds its expectation with constant probability by at least
£2(y/Var[X]) and (ii) it attains a particular value at most with probabil-
ity 2/4/Var[X] (Lemmas [.10.16 and [L.10.17). Both results were proven
earlier by deeper methods, for example, an approximation via the normal
distribution.

This chapter is intended to serve both as an introduction for newcomers
to the field and as a reference book for regular users of these methods. With
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both addressees in mind, we have not shied away from also stating elementary
reformulations of results or explicitly formulating statements that rely only
on elementary mathematics, such as:

e how to choose the deviation parameter ¢ in the strong multiplicative Cher-
noff bound so_that the tail probability (e/8)° is below a desired value

(Lemma ), and

o how to translate a tail bound into an expectation (Corollary )

We hope that this will save all users of this chapter some time, which can be
better spent on understanding the challenging random processes that arise
in the analysis of nature-inspired heuristics.

1.2 Notation

All notation in this chapter is standard and should not need much additional
explanation. We use N:={1,2,...} to denote the positive integers. We write
Np := NU{0}. For intervals of integers, we write [a..b] :={x € Z | a <z <b}.
We use the standard definition 0° := 1 (and not 0° = 0).

1.3 Elementary Probability Theory

We shall assume that the reader has some basic understanding of the concepts
of probability spaces, events, and random variables. As is usual in probability
theory and is very convenient in the analysis of algorithms, we shall almost
never explicitly state the probability space we are working in. Hence an intu-
itive understanding of the notion of a random variable should be enough to
follow this exposition.

While many results presented in the following naturally extend to con-
tinuous probability spaces, in the interests of simplicity and accessibility to
a discrete-optimization audience, we shall assume that all random variables
in this book are discrete, that is, they take at most a countable number of
values. As a simple example, consider the random experiment of indepen-
dently rolling two distinguishable dice. Let X3 denote the outcome of the
first roll, that is, the number between 1 and 6 which the first die displays.
Likewise, let X5 denote the outcome of the second roll. These are already
two random variables. We formalize the statement that with probability %
the first die shows a one by saying Pr[X; =1] = %. Also, the probability
that both dice show the same number is Pr[X; = X3 = %. The complemen-
tary event that they show different numbers naturally has a probability of
Pr[X; # X5] =1-Pr[X; = Xo] = 2.
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We can add random variables (defined over the same probability space),
e.g., X := X1 + Xo is the sum of the numbers shown by the two dice, and
we can multiply a random variable by a number, e.g., X :=2X is twice the
number shown by the first die.

The most common type of random variable we shall encounter in this
book is an extremely simple one called a binary random variable or Bernoulli
random variable. It takes the values 0 and 1 only. In consequence, the prob-
ability distribution of a binary random variable X is fully described by its
probability Pr[X = 1] of being one, since Pr[X =0] =1 —-Pr[X =1].

Binary random variables often show up as indicator random variables for
random events. For example, if the random experiment is a simple roll of a
die, we may define a random variable X by setting X =1 if the die shows a
six, and X = 0 otherwise. We say that X is the indicator random variable for
the event “die shows a six.”

Indicator random variables are useful for counting. If we roll a die n times
and Xi,...,X, are the indicator random variables for the events that the
corresponding roll showed a 6 (considered as a success), then Y i ; X; is a
random variable describing the number of times we saw a 6 in these n rolls. In
general, a random variable X that is the sum of n independent binary random
variables that all are one with equal probabilities p is called a binomial random
variable (with success probability p). We denote this distribution by Bin(n,p)
and write X ~ Bin(n,p) to denote that X has this distribution. We have

il =4l = ()t

for all k € [0..n]. See Section for the definition of the binomial coefficient.

A different question is how long we have to wait until we roll a 6. Assume
that we have an infinite sequence of die rolls and X7, X5s,... are the indicator
random variables for the event that the corresponding roll shows a six (suc-
cess). Then we are interested in the random variable Y = min{k € N| X =1}.
Again for the general case of all X; being one independently with proba-
bility p > 0, this random variable Y is called a geometric random variable
(with success probability p). We denote this distribution by Geom(p) and
write Y ~ Geom(p) to indicate that Y is geometrically distributed (with
parameter p). We have

Prly =K = (1-p)*'p

for all kK € N. We note that an equally established definition is to count only
the failures, that is, to consider the random variable Y — 1. So, some care is
necessary when comparing results from different sources.
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1.4 Useful Inequalities

Before starting our presentation of probabilistic tools useful in the analysis
of randomized search heuristics, let us briefly mention a few inequalities that
are often needed to estimate probabilities arising naturally in this area.

1.4.1 Switching Between Exponential and Polynomial
Terms

When dealing with events occurring with a small probability € > 0, we of-
ten encounter expressions such as (1 —¢)™. Such a mix of a polynomial term
(1—¢) with an exponentiation is often hard to work with. It is therefore very
convenient that 1 —e ~ e~ so that the above expression becomes approx-
imately the purely exponential term e~*". In this section, we collect a few
estimates of this flavor. With the exception of the second inequality in (),
a sharper version of a Weierstrass product inequality, all are well known and
can be derived via elementary arguments.

Lemma 1.4.1. For all x € R,
1+z<e”.

We give a canonical proof as an example of a proof method that is often
useful for such estimates.

Proof. Define a function f: R = R by f(z) =e®” —1—=z for all € R. Since
f'(z) =€e® —1, we have f'(z) =0 if and only if z = 0. Since f’(z) =¢* >0
for all z, we see that =0 is the unique minimum of f. Since f(0) =0, we
have f(z) >0 for all z, which is equivalent to the claim of the lemma. O

Applying Lemma to —z and taking reciprocals, we immediately de-
rive the first of the following two upper bounds on the exponential function.
The second bound again follows from elementary calculus. Obviously, the
first estimate is better for z < 0, and the second is better for x > 0.

Lemma 1.4.2. (a) For all x <1,

1 T z2
< =1 =1
¢ 1—-z +1—x +$+1—x

(1.4.1)

z

In particular, for 0 <z <1, we have e™* < 1—
(b) For all x < 1.79,

(o]

e <l+z4z2 (1.4.2)
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1 —05 0 0.5 1
T

Fig. 1.1 Plot of the estimates of Lemmas and .

As is visible also from Figure 1.1, these estimates are strongest for x close
to zero. By combining Lemmas m and 7 the following useful estimate
was obtained in [87, Lemma 8].

Corollary 1.4.3. For all x € [0,1] and y >0, (1—z)¥ < 1+1wy'

Replacing = with 117 in the first inequality of Lemma gives the
following bounds.

Corollary 1.4.4. For all x > —1, we have
e <14z <e”. (1.4.3)

For all x,y >0,
Ty

P19 < (1+2)¥ < e, (1.4.4)

The first bound in () can, with different arguments and for a smaller
range of z, be sharpened to the following estimate [28, Lemma 8(c)].

Lemma 1.4.5. For all z € [0, 2], A

A reformulation of () often useful in the context of standard bit mu-
tation (mutating a bit string by flipping each bit independently with a small
probability such as %) is the following (see Figure for some related plots).
Note that the first bound holds for all > 1, while it is often only stated for
r € N. For the (not so interesting) boundary case r = 1, recall that we use
the common convention 00 := 1.
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;: — fx)=(1-1/x)"
08 S fl@)=(1-1/2)" 00
fl@)=(1-1/x)""
06y F@)=((1=1/2)* 1+ (1-1/z)%)/2
S

Fig. 1.2 Plots related to Corollary .

Corollary 1.4.6. For allr>1 and 0<s<r,

(1_%)7‘§ %S 1_;)7'*17 (145)

(1= <e < (1-2)"7%. (1.4.6)
Occasionally, it is useful to know that (1— %)’" is monotonically increasing
and that (1— %)T*I is monotonically decreasing in r (and thus both converge
to 1).

e

Lemma 1.4.7. For all 1 < s <7, we have

1-1y<a-1r, (1L4.7)
(1-Lys=t>@a-1)1 (1.4.8)

Finally, we mention Bernoulli’s inequality and a related result.
Lemma below will be proven at the end of Section , both to
show how probabilistic arguments can be used to prove non-probabilistic re-
sults and because we have not found a proof for the upper bound in the
literature.

Lemma 1.4.8. (a) Bernoulli’s inequality. Let x > —1 and r € {0} U[1,00).
Then (1+xz)" > 1+rz.

(b) Weierstrass product inequalities. Let p1,...,pn € [0,1]. Let P:=>"" | p;.
Then

n
1-P<J[A-p)<1-P+> pipj<1-P+5P% (1.4.9)
i=1 1<J

If in addition P < 1, then
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n
1

1+P< 1+p) < ——. 1.4.1

er<]laen s g (1410

The term “Weierstrass product inequality” is sometimes applied only to
the lower bounds in Lemma m‘ . For the upper bound in (), the
estimate

i 1
1—p) < —— 1.4.11
g( p)_1+P ( )

is well known. It is stronger than our bound if and only if P > 1. Since for
P > 1 the lower bound is trivial, this might be the less interesting case.

1.4.2 Harmonic Number

Quite frequently in the analysis of randomized search heuristics, we will en-
counter the harmonic number H,. For all n € N, it is defined by H,, = > ;_; %
Approximating this sum via integrals, namely by

/ fdxangl—l—/ —dzx,
1 € 1z

we obtain the estimate
Inn < H, <1+Inn, (1.4.12)

valid for all n > 1. Sharper estimates involving the Euler—Mascheroni constant
v =~ 0.5772156649 are known, e.g.,

H,=Inn+~v+0(2),

H,=Inn+~+ ﬁ iO(#).
For non-asymptotic statements, it is helpful to know that H,, —Inn is mono-

tonically decreasing (with limit v, obviously). In most cases, however, the
simple estimate () will be sufficient.

1.4.3 Binomial Coefficients and Stirling’s Formula

Since discrete probability is strongly related to counting, we often encounter
the binomial coefficients, defined by
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n

for all n € No, k € [0..n]. The binomial coefficient (} ) equals the number of k-
element subsets of a given n-element set. For this reason, the above definition
is often extended to () :=0 for k > n.

In this section, we give several useful estimates for binomial coefficients.
We start by remarking that, while very precise estimates are available, in the
analysis of randomized search heuristics crude estimates are often sufficient.

The following lemma lists some estimates which all can be proven by
elementary means. To prove the second inequality of ([l d), note that

ek = POy % > ’2—, gives the elementary estimate

k k
(> <k < KR (1.4.13)
e
To prove (), note that for even m we have (n%) = W('nﬂ)' =
2 24(2i— 2 2 n
[T 28 = 2 [0 - 3) < 2"exp(—3 20 1) < 2"exp(~§Ing) =

2”\/g (see Lemma .4.1 and (h.4.1ﬂ)), while for odd n we have (Ln72j) =

%((nT;)l/z) <2 /A

Lemma 1.4.9. For alln € N and k € [1..n], we have

Z) <9, (1.4.14)

K
@) <)
<

”> < TLT < (’w)k (1.4.16)

2
< (Lnj%) SQ"\/E. (1.4.17)

Stronger estimates, giving also the well-known version

(1) = (o) <7V (1.4:18)

of (), can be obtained from the following estimate, known as Stirling’s

formula.

Theorem 1.4.10 (Robbins [86]). For alln € N,
n!=V2mn(2)" Ry,

where 1 < exp(zagy) < Rn < exp(3;;) < 1.08690405.
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Corollary 1.4.11. For alln € N and k € [1.n —1],

()= is (1) () e

where 0.88102729 ... = exp(—§ +

A g

1 1 1
) <exp(— 125 — o= + agr) < fnk <
1 1 1
exp(— 13547 — Bl 20) < L.

We refer to [b5] for an analysis of randomized search heuristics which
clearly requires Stirling’s formula. Stirling’s formula was also used in [43,
proof of Lemma 8] to compute another useful fact, namely that all bino-
mial coefficients that are O(y/n) away from the middle one have the same
asymptotic order of magnitude of Q(Q”n_l/ 2). Here the upper bound is
simply ()

Corollary 1.4.12. Let v > 0. Let n € N and £ = 5 £~\/n. Then (7;) >(1-

n 2
0(1)) g2 ~17".

When working with mutation rates different from the classical choice of %,
the following estimates can be useful.
Lemma 1.4.13. Let n € N, k € [0..n], and p € [0,1]. Let X ~ Bin(n,p).
(a) Let Y ~ Bin(n, %) Then Pr[X = k| < Pr[Y = k|. This inequality is strict
except for the trivial case p= .

(b) For k€ [L.n—1], Pr[X =k < -b= [reies

Proof. The first part follows from Pr[X = k| = (Z)pk(l —p)"~* and noting
that p+— pF(1 —p)”~* has a unique maximum in the interval [0,1], namely at
ﬁ 4.1

(B

p= % The second part follows from the first and from using Corollary

to estimate the binomial coefficient in the expression Pr[Y = k] = (}) (%)k(l -
n\n—~k
)R O

For the special case where np = k, the second part of the lemma above
was shown in [94, Lemma 10 of the arXiv version|. For k € {|np], [np]} but
np # k, a bound larger than ours by a factor of e was shown there as well.

Finally, we note that to estimate sums of binomial coefficients, large-
deviation bounds (to be discussed in Section ) can be an elegant tool.
Imagine we need an upper bound on S =3";_ (}), where a > Z. Let X
be a random variable with distribution Bin(n, 3). Then Pr[X > a] =27"5.
Using the additive Chernoff bound of Theorem , we also see that

2(a—%)°

Pr[X > a] = Pr[X > E[X] + (a — §)] < exp(—=—2~). Consequently, S <

o ey ( 20— 1)’ '
exp(~ 20~ D7)

The same argument can even be used to estimate single binomial coef-
ficients, in particular, those not to close to the middle one. Note that by
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Lemma , S=3_, (%) and () are quite close when a is not too

close to 5. Hence
2(a—%)?
<"> < 2Mexp <w> (1.4.19)
a

is a good estimate in this case.

1.5 Union Bound

The wunion bound, sometimes called Boole’s inequality, is a very elemen-
tary consequence of the axioms of a probability space, in particular, the
o-additivity of the probability measure.

Lemma 1.5.1 (union bound). Let Ey,...,E, be arbitrary events in some
probability space. Then

Pr [O E} < iPr[Ei].
i=1 =1

Despite its simplicity, the union bound is a surprisingly powerful tool in
the analysis of randomized algorithms. It draws its strength from the fact that
it does not need any additional assumptions. In particular, the events F; are
not required to be independent. Here is an example of such an application of
the union bound.

1.5.1 Example: The (1+1) EA Solving the Needle
Problem

The needle function is the fitness function f: {0,1}"™ — Z defined by f(x)=0
for all z € {0,1}"\{(1,...,1)} and f((1,...,1)) = 1. It is neither surprising
nor difficult to prove that all reasonable randomized search heuristics need
time exponential in n to find the maximum of the needle function. To give a
simple example of the use of the simplified drift theorem, it was shown in [[79]
that the classic (14 1) EA, within a sufficiently small exponential time, does
not even get close to the optimum of the needle function (see Theorem [1.5.2
below). We now show that the same result (and in fact a stronger one) can
be shown via the union bound.

The (14 1) EA, described in Algorithm EI, is a simple randomized search
heuristic that starts with a random search point « € {0,1}". Then, in each
iteration, it generates from = a new search point y by copying x into y and
flipping each bit independently with probability % If the new search point
(“offspring”) y is at least as good as the parent z, that is, if f(y) > f(z) for
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an objective function to be maximized, then z is replaced by y; that is, we
set x :=y. Otherwise, y is discarded.

Algorithm 1.1: The (14 1) EA for maximizing f: {0,1}" = R
1 Choose z € {0,1}" uniformly at random;
2 fort=1,2,3,... do
3 Y z;
for i € [1..n] do
L with probability % do y; < 1—y;;
if f(y) > f(z) then z  y;

4
5

=)

The precise result of [79, Theorem 5] is the following.

Theorem 1.5.2. For all n > 0 there are c1,co > 0 such that with probability
1—29" the first 2°2™ search points generated in a run of the (1+1) EA on
the needle function all have a Hamming distance of more than (% —n)n from

the optimum.

The proof of this theorem in [[79] argues as follows. Denote by 20 )
the search points generated in a run of the (14+1) EA. Denote by z* the
optimum of the needle function. For all i >0, let X; := H(z",z*) :=|{j €
[1.n] | xy) # 27 }| be the Hamming distance of 2 from the optimum. The

random initial search point 2 has an expected Hamming distance of 4 from
the optimum. By a simple Chernoff bound argument (Theorem ), we see
that, with probability 1 —exp(—2nn), we have Xo = H(z(®),z*) > (1 —n)n.
Now a careful analysis of the random process (X;);>o via a new “simplified
drift theorem” gives the claim.

We now show that the Chernoff bound argument plus a simple union
bound is sufficient to prove the theorem. We show the following more explicit
bound, which also applies to all other unbiased algorithms in the sense of
Lehre and Witt [66] (roughly speaking, all algorithms which treat the bit
positions [1..n] and the bit values {0,1} in a symmetric fashion).

Theorem 1.5.3. For alln >0 and ¢ > 0 we have that with probability at least
1—2(e=2m@)n*)n e first L := 2" search points generated in a run of the
(1+1) EA (or any other unbiased black-box optimization algorithm) on the
needle function all have a Hamming distance of more than (% —n)n from the
optimum.

Proof. The key observation is that as long as the (1+1) EA has not found
the optimum, any search point x generated by the (14 1) EA is uniformly
distributed in {0,1}". Hence Pr[H (z,2*) < (3 —n)n] < exp(—2n?n) by Theo-
rem . By the union bound, the probability that one of the first L := 2"
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search points generated by the (14 1) EA has a distance H(x,z*) of at most

(1 —n)n is at most Lexp(—2n2n) = 9(e=2In(2)n*)n,

To be more formal, let z(?), (1) .. be the search points generated in a
run of the (141) EA. Let T = min{t € Ny | z(*) = 2*}. Define a sequence
y(© () of search points by setting y®) := 2(®) for all ¢+ < T. For all
t>T, let y® be obtained from y(*~1) by flipping each bit independently
with probability % With this definition, and since z(t) = 2* for all t > T, we
have

{® |t e0.L-1} = {z® |t € (0. min{T,L—1}]}
={y® |t € [0.min{T,L-1}]} C {y |t [0.L-1]}.

Consequently,

Pr[3t €0..L—1]: H(z® ,2*) < (3 —n)n]
<Pr[3te[0.L-1]: Hiy®, ") < (3 —n)n).

By the union bound,

L—-1
Pr3t € [0.L—1]: H(y",2*) < (3 —nn] < > Pr{H(yY,2") < (5 —n)nl.
t=0

Note that when 3®) is a search point uniformly distributed in {0,1}", then
so is 41 Since y(©) is uniformly distributed, all y(*) are. Hence, by The-
orem [1.10.7, we have Pr[H(y",z*) < (2 —n)n] < exp(—2n*n) for all t and
thus

L-1
Z Pr[H (y®,z*) < (% —n)n] < Lexp(—2n*n) = 9(e=2In(2)n*)n,
t=0

This proof immediately extends to all algorithms which, when optimizing
the needle function, generate uniformly distributed search points until the
optimum is found. These are, in particular, all unbiased algorithms in the
sense of Lehre and Witt [66]. O

Note that the y; in the proof above are heavily correlated. For all ¢, the
search points y; and y;41 have an expected Hamming distance of exactly one.

Nevertheless, we could apply the union bound to the events “H(y..z*) <

(% —n)n” and from this obtain a very elementary proof of Theorem [1.5.3.
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1.5.2 Lower Bounds, Bonferroni Inequalities

The union bound is tight, that is, it holds with equality, when the events F;
are disjoint. In this case, the union bound simply reverts to the o-additivity
of the probability measure. The second Bonferroni inequality gives a lower
bound on the probability of a union of events also when they are not disjoint.

Lemma 1.5.4. Let E1,...,E, be arbitrary events in some probability space.
Then
n—1 n
SRS REEES 3 e CID
i=1 = i=1j=1

As an illustration, let us consider the performance of blind random search
on the needle function; that is, we let (), 2(2) ... be independent random
search points from {0,1}" and ask ourselves what is the first hitting time
T=min{t e N|z(*) =(1,...,1)} of the maximum z* = (1,...,1) of the needle
function (any other function f:{0,1}" — R with a unique global optimum
would do as well). This is easy to compute directly. We see that T" has a
geometric distribution with success probability 27", so the probability that
L iterations do not suffice to find the optimum is Pr[T > L] = (1 —27")L.

Let us nevertheless see what we can derive from the union bound and the
second Bonferroni inequality. Let E; be the event 2(*) = z*. Then the union
bound gives

Pr[T < L]= {UEt]<L2_

and the second Bonferroni inequality yields

L(L-1)
2

L
Pr[T < L] =Pr [UEt} > L2 — 272,

t=1

Hence, if L = o(2"), that is, L is of smaller asymptotic order than 2", then
Pr[T < L] = (1—0(1))L2~"™; that is, the union bound estimate is asymptoti-
cally tight.

For the sake of completeness, we now state the full set of Bonferroni in-
equalities. Note that the case k =1 is the union bound and the case k =2 is
the lemma above.

Lemma 1.5.5. Let Ey,...,E, be arbitrary events in some probability space.
For all k € [1..n], let

Sk = Z Pr[Ailﬂ“'ﬂAik].

1<y << <n

Then, for all k € [1..n], we have
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n k

e Pr {U E} <) (~1)/71S; for k€ [1..n] odd,
=1 j=1
n k

e Pr {U EZ} > Z(—l)j_lSj for k € [l.n] even.
i=1

i=1

In simple terms, the Bonferroni inequalities state that when we omit the
terms for j > k in the inclusion—exclusion formula

n

o[e]-gors

Jj=1

then the first of the omitted terms (that is, the one for j = k+ 1) dominates
the error. So, if k is odd and thus the first omitted term is negative, then we
obtain a “<” inequality, and the reverse for k even.

We now use the Bonferroni inequalities to prove two of the inequalities
given in Lemma h.4. b).

Proof (of () ). Consider some probability space with independent events
Ey,...,E, having Pr[E;] = p;. Due to the independence,

ﬁ(l —p;)=PrVie[l.n]: -E;]=1-Pr[3i € [1.n] : E;]. (1.5.1)
=1

By the union bound, the right-hand side of () is at least 1—>_1" | pi=
1— P. By the Bonferroni inequality for k£ =2 and again the independence,
the right-hand side of () is at most

1 n n
1=P+Y PrENE;|=1-P+) pip; <1=P+3 > > pin;
oy i<y i=1j=1
=1-P+1ipP2

a

Note that the slack in the last inequality is only the term % 2?21 p%, so there
is not much reason to prefer the stronger upper bound 1 —-P+3% ", jpipj over

the bound 1— P+ %P2.
1.6 Expectation and Variance

The expectation and variance are two key characteristic numbers of a random
variable.
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1.6.1 Expectation

The expectation (or mean) of a random variable X taking values in some set
2 CRis defined by E[X] =)  cowPr[X =w], where we shall always assume
that the sum exists and is finite. As a trivial example, we immediately see
that if X is a binary random variable, then F[X]=Pr[X =1].

For non-negative integral random variables, the expectation can also be
computed by the following formula (which is valid also when E[X] is not
finite).

Lemma 1.6.1. Let X be a random variable taking values in the non-negative
integers. Then
o0
X]=) Pr{x >i.
i=1

If X takes values in (—o00,0]UN, then E[X] <> 72, Pr[X >4] still holds.

This lemma, among others, allows one to conveniently transform informa-
tion about the tail bound of a distribution into a bound on its expectation.
This was done, for example, in [47, proof of Lemma 10| for lower bounds,
in [42, proof of Theorem 2] in a classic runtime analysis, and in [29, proof of
Theorem 5] in the simplified proof of the multiplicative drift theorem.

Lemma can also be employed to conveniently derive from information
about the upper tail of a random variable an estimate of its expectation, as
is done in the following elementary result.

Corollary 1.6.2 (expectations from exponential tail bounds). Let
a,8>0 and T > 0. Let X be an integer random variable and Y be a non-
negative integer random variable.

(a) IfPr[I X >T+ A < aexp(—f) or all \ €N, then E[X]<T+ap.
(b) If Pr[Y <T — )\ < aexp(— ) or all A € [1..T], then E[Y]>T —af.
(c) If Pr[X > (14¢)T] < avex ( ) for alle >0, then E[X] < (1+ap)T.
(d) If PriX < (1—¢)T] < aexp(—3) for all e € (0,1], then E[X] 2(1 aB)T.

Proof. By Lemma , we compute
. - i—T
X]<Y PrX >i]<T+ Y aexp (-)
i=1 i=T+1 B

1
=T—-a+a——+—— <T+ap,
T~ exp(~1/P) p

where the last estimate uses ()
Similarly, we compute
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T T
E[Y]=) Pr[Y >i>) (1-Pr[Y <i-1))
1 =1

.
Il

(1 —aexp(—%)) >T— iaexp(—%) >T—af.
1 A=1

]~

>
Il

The last two claims are simple reformulations of the first two. O

In a similar vein, Lemma yields an elegant analysis of the expecta-
tion of a geometric random variable. Let X be a geometric random variable
with success probability p. Intuitively, we feel that the expected waiting time
for a success should be ]%. This intuition is guided by the fact that after %
repetitions of the underlying binary random experiment, the expected num-
ber of successes is exactly one. This intuition leads to the right result; the
“proof”, however, is not correct. The correct proof uses either standard re-
sults in Markov chain theory, elementary but non-trivial calculations, or (as
done below) the same reasoning as in the lemma above.

Lemma 1.6.3 (waiting-time argument). Let X be a geometric random

variable with success probability p > 0. Then E[X] = %.

Proof. We have Pr[X >i] = (1—p)*~!, since X > is the event of having no
success in the first ¢ — 1 rounds of the random experiment. Now Lemma |l
gives
E[X]=) Pr[X>i]= 1-p)ft=e— =2,
XI=3PX =300 = =
O

An elementary, but very useful property is that the expectation is linear.

Lemma 1.6.4 (linearity of expectation). Let X1,...,X,, be arbitrary ran-
dom variables and aq,...,a, € R. Then

E [Zn:aixi] = iaiE[Xi].
=1 =1

This fact is very convenient when we can write a complicated random
variable as sum of simpler ones. For example, let X be a binomial random
variable with parameters n and p, that is, we have Pr[X = k] = (Z)pk(l -
p)”*k. Since X counts the number of successes in n (independent) trials, we
can write X =" | X; as the sum of (independent) binary random variables
X1,...,Xn, each with Pr[X; = 1] = p. Here X is the indicator random variable
for the event that the i-th trial is a success. Using linearity of expectation,

we compute
n n
E[X]|=E [in] =Y E[X,]=np.
=1 =1
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We have just proved the following.

Lemma 1.6.5 (expectation of binomial random variables). Let X be
a binomial random variable with parameters n and p. Then E[X]| = pn.

In the same fashion, we can compute the following elementary facts.

Lemma 1.6.6. Let x,y,2* € {0,1}". Denote by H(x,y) := |{i € [1.n] | z; #
yi }| the Hamming distance between x and y.

(a) Let z be obtained from x via standard bit mutation with rate p € [0,1],
that is, by flipping each bit of x independently with probability p. Then
E[H(z,z)] =pn and E[H(z,2*)] = H(x,2*) 4+ p(n —2H (z,2*)).

(b) Let z be obtained from x and y via uniform crossover, that is, for each
i € [1..n] independently, we set z; = x; or z; =y; each with probability %
Then E[H(z,z)] = $H(z,y) and E[H(z,2*)] = &(H(z,z*)+ H(y,z*)).

(c) Let z be obtained from the unordered pair {x,y} via 1-point crossover; that
ils, we choose r uniformly at random from [0..n] and then, with probability
5 each,

e define z by z; =x; for i <r and z; =vy; fori>r, or
o define z by z; =y; fori <r and z; =x; fori>r.

Then E[H(z,z)] = $H(z,y) and E[H(z,2*)] = &(H(z,z*)+ H(y,z*)).

The fact that the results for the two crossover operators are identical shows
again that linearity of expectation does not care about possible dependencies.
We have Pr[z; = 2;] = % in both cases, and this is what is important for the
result, whereas the fact that the events “z; = x;” are independent for uniform
crossover and strongly dependent for 1-point crossover has no influence on
the result.

1.6.2 Markov’s Inequality

Markov’s inequality is an elementary large-deviation bound valid for all non-
negative random variables.

Lemma 1.6.7 (Markov’s inequality). Let X be a non-negative random
variable with E[X] > 0. Then, for all A >0,

Pr[X > AE[X]] < 1, (1.6.1)
[

Prix > ) < 21X (1.6.2)

Proof. We have

E[X]=) wPrX =w]> Y APr[X =w]=APr[X > )],
w w>A
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proving ( ). O

We note that ([L.6.9) also holds without the assumption E[X] > 0. More
interestingly, the proof above shows that Markov’s inequality is always strict
(that is, it holds with “<” instead of “<”) when X takes at least three different
values with positive probability.

It is important to note that Markov’s inequality, without further assump-
tions, only gives information about deviations above the expectation. If X
is a (not necessarily non-negative) random variable taking only values not
larger than some v € R, then the random variable v — X is non-negative and
Markov’s inequality gives the bound

u— E[X]

PriX <)\ <
X <A< u—X\

(1.6.3)
which is sometimes called the reverse Markov’s inequality. An equivalent
formulation of this bound is

E[X]— A

Pr[X > )\ >
X > A= U— A

(1.6.4)

Markov’s inequality is useful if not much information is available about
the random variable under consideration. Also, when the expectation of X
is very small, the following elementary corollary is convenient and, in fact,
often quite tight.

Corollary 1.6.8 (first moment method). If X is a non-negative random
variable, then Pr[X > 1] < E[X].

Corollary together with linearity of expectation often gives the same
results as the union bound. For an example, recall that in Section we
observed that in a run of the blind random search heuristic, the probability
that the ¢-th search point z; is the unique optimum of a given function
f:{0,1}™ = R is 27™. Denote this event by E; and let X; be the indicator
random variable for this event. Then the probability that one of the first L
search points is the optimum can be estimated equally well via the union
bound or via the above corollary and linearity of expectation:

L L
Pr [ U Et} < ZPr[Et] =127",
t=1 t=1
L

Pr [ixt > 1} < E[XL:Xt} = ZE[Xt] =L27",
t=1 t=1

t=1
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1.6.3 Chebyshev’s Inequality

The second elementary large-deviation bound is Chebyshev’s inequality,

sometimes called the Bienaymé-Chebyshev inequality as it was first stated

by Bienaymé [[7] and later proven by Chebyshev [95]. It seems less often used

in the theory of randomized search heuristics (exceptions being [B5, [74]).
Recall that the variance of a discrete random variable X is

Var[X] = E[(X — E[X])?] = E[X?] - E[X]?. (1.6.5)

Just by definition, the variance is a measure of how well X is concentrated
around its mean.

From the variance, we also obtain a bound on the expected (absolute)
deviation from the mean. Applying the well-known estimate E[X]? < E[X?],
which follows from the second equality in (), to the random variable
|X — E[X]|, we obtain

E[IX - E[X][] < /E[(X - B[X))?] = /Var[X]. (L6.6)

More often, we use the variance to bound the probability of deviating from
the expectation by a certain amount. Applying Markov’s inequality to the
random variable (X — E[X])? easily yields the following very useful inequality.

Lemma 1.6.9 (Chebyshev’s inequality). Let X be a random variable with
Var[X] > 0. Then, for all A\ >0,

Pr(|X — E[X]| > A\\/Var[X]] < 35, (1.6.7)
Pr[|X — E[X]| > A] < Y& (1.6.8)

Similarly to Markov’s inequality, the second estimate is valid also without
the assumption Var[X] > 0. Note that Chebyshev’s inequality automatically
yields a two-sided tail bound (that is, a bound for | X — E[X]|), as opposed to
Markov’s inequality (which just gives a bound for exceeding the expectation).
There is a one-sided version of Chebyshev’s inequality that is often attributed
to Cantelli, though Hoeffding [54] sees Chebyshev [96] as its inventor.

Lemma 1.6.10 (Cantelli’s inequality). Let X be a random variable with
Var[X] > 0. Then for all A >0,

Pr[X > E[X]+ A/ Var[X]] < o1, (1.6.9)
Pr[X < E[X] - A/ Var[X]] < 1. (1.6.10)

In many applications, the slightly better bound of Cantelli’s inequality is
not very interesting. Cantelli’s inequality has, however, the charm that the
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right-hand side is always less than one, and hence one can also obtain non-
trivial probabilities for deviations smaller than /Var[X]. We shall exploit
this in the proof of Lemma .

While Markov’s inequality can be used to show that a non-negative random
variable X rarely is positive (first moment method), Chebyshev’s inequality
can serve the opposite purpose, namely showing that X is positive with good
probability. By taking A = E[X] in (), we obtain the first estimate of the
following lemma. Using the Cauchy—Schwarz inequality and computing

E[X]* = B[X1xz0]” < E[X?|E[1x10] = E[X?|Pr[X #0],
we obtain the second estimate, which has the nice equivalent formulation

E[X]?
E[X?’

Pr[X #0] > (1.6.11)

Since E[X?] > E[X]?, the second estimate gives a stronger bound on
Pr[X = 0] than the first. While the lemma below does not require that X
is non-negative, the typical application of showing that X is positive requires
that X is non-negative in the second bound, so that Pr[X # 0] = Pr[X > 0].

Lemma 1.6.11 (second moment method). For a random variable X with
E[X]#0,

Pr[X — 0] < Pr[X < 0] < \;g[()]‘;] , (1.6.12)
Pr[X = 0] < YET)[(XZ]] (1.6.13)

In the (purely academic) example of finding a unique global optimum
via blind random search (see Section ), let X; be the indicator random
variable for the event that the ¢t-th search point is the optimum. Let X =
Zthl X¢. Then the probability that the optimum is found within the first L
iterations is

Var[X]
E[X]?"

The variance of a sum of binary random variables is

Pr[X >0|=1-Pr[X=0]>1—

L
Var[X] =Y Var[X;]+ > Cov[X,,X,] < E[X]+)  Cov[X,, X,

t=1 s<t s<t

where we recall the definition of the covariance,

Cov[U,V]:= E[UV] - E[U)E[V],
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of two arbitrary random variables U and V. Here we have Cov[X,, X;] =0,
since the X; are independent. Consequently,

1

PriX>0>1- ——.
0= g

Hence the probability of finding the optimum within L iterations is Pr[T <

L=Pr[X>0>1—- L;—,n Note that this estimate is, for the interesting

case where F[X] is large, much better than the bound Pr[T' < L] > L27" —

wQ_Q" which we obtained from the second Bonferroni inequality.

1.7 Conditioning

In the analysis of randomized heuristics, we often want to argue that a certain
desired event C already holds, and then continue arguing under this condition.
Formally, this gives rise to a new probability space where each of the original
events A now has a probability of

_ Pr[ANC]

Pr[A|C]:= PriC]

Obviously, this only makes sense for events C' with Pr[C] > 0. In an analogous
fashion, we define the expectation of a random variable X conditional on C' by
E[X|C]=3,ccX(w)Pr[w|C]. The random variable behind this definition,
which takes a value x with probability Pr[X = z]/Pr[C], is sometimes denoted
by (X | C).

While we shall not use this notation, we still feel the need to warn the
reader that there is a related notion of the conditional expectation with re-
spect to a random variable, which sometimes creates confusion. If X and
Y are two random variables defined on the same probability space, then
E[X | Y] is a function (that is, a random variable) defined on the range of Y’
by BIX |Y](y) = E[X | Y =y

Conditioning as a proof technique has many faces, among them the follow-
ing.

1.7.1 Decomposing Events

If we can write some event A as the intersection of two events A; and Ao,
then it can be useful to compute first the probability of A; and then the
probability of Ao conditional on A;. Directly from the definition, we have
Pr[A; N Ag] = Pr[A;]Pr[As | A;]. Of course, this requires that we have some
direct way of computing Pr[A; | As].
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1.7.2 Case Distinctions

Let C4,...,Ck be a partition of our probability space. If it is easy to analyze
our problem conditional on each of these events (“in the that case C; holds”),
then the following law of total probability and law of total expectation are
useful.

Lemma 1.7.1 (laws of total probability and total expectation). Let
C1,...,Cy be a partition of our probability space. Let A be some event and X
be some random variable. Then

Pr[A | Cj] Pr[Cy],

E[X | C;] Pr[Cy].

:i

1.7.3 Excluding Rare FEvents

Quite often, in the analysis of nature-inspired search heuristics, we would
like to exclude some rare unwanted event. For example, assume that we are
analyzing an evolutionary algorithm using standard bit mutation with muta-
tion rate E Then it is very unlikely that in an application of this mutation
operator more than n'/4 bits are flipped. So it could be convenient to ex-
2_9("1/4)7 in
1/4

clude this rare event, say by stating that “with probability 1 —
none of the first n? applications of the mutation operator more than n
bits are flipped; let us condition on this event in the following.” The proofs
of Theorems 7 and 8 in [47] are examples of the use of such reasoning.
What could be a problem with this approach is that as soon as we condition
on such an event, we change the probability space and thus arguments that
are valid in the unconditional setting are not valid anymore. As a simple
example, note that once we condition on the event that we flip at most nl/4
bits, the events E; that the i-th bit is flipped are not independent anymore.
Fortunately, we can safely ignore this in most cases (and many authors do so
without saying a word on this matter). The reason is that when we condition
on an almost sure event, then the probabilities of all events change only very
little (see the lemma below for this statement made precise). Hence, in our
example, we can compute the probability of some event assuming that the bit
flips are independent and then correct this probability by a minor amount.

Lemma 1.7.2. Let C be some event with probability 1 —p. Let A be any event.
Then

Pr[A] — Pr[A4]
ﬁ<P1V[A|C] —
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In particular, for p< 3, we have Pr[A] —p < Pr[A | C] < Pr[A] + 2p.

The proof of this lemma follows directly from the definition of conditional
probabilities and the elementary estimate Pr[A] —p < Pr[A\ C] =Pr[ANC] <
Pr[A], where C denotes the complement of C. From this, we also observe
the natural fact that when A C C, that is, the event A implies C, then

conditioning on C' does not decrease the probability of A:
Pr[ANC] Pr[A4]

P4 | €)= =5l = By 2 P4 (1.7.1)

Likewise, when A D C, then
PriANC] _ PrlA]—p Pr[A]. (1.7.2)

PriAlC]= Pr[C]  1-p

For example, if X is the number of bits flipped in an application of standard
bit mutation, then

Pr[X <10| X
Pr[X >10| X

] > Pr[X < 10],

5
4] < Pr[X >10].

1.7.4 Conditional Binomial Random Variables

We occasionally need to know the expected value of a binomially distributed
random variable X ~ Bin(n,p) conditional on the variable having at least
a certain value k. An intuitive (but wrong) argument is that E[X | X > k]
should be around k 4+ p(n — k), because we know already that k of the n
independent trials are successes and the remaining (n — k) trials still have
their independent success probability of p. While this argument is wrong (as
we might need more than k trials to have k successes), the result is correct
as an upper bound, as shown in this lemma from [23, Lemma 1].

Lemma 1.7.3. Let X be a random variable that is binomially distributed
with parameters n and p € [0,1]. Let k € [0..n]. Then

EX|X >k <k+(n—kp<k+E[X].

Proof. Let X =37 | X; with X1,..., X, being independent binary random
variables with Pr[X; = 1] = p for all i € [1..n]. Conditioning on X >k, let
:=min{i € [1..n] | 22:1 X; =k}. Then

E[X|X2k]:Zn:Prw:uXZk]E[XM:i].
=1
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Note that £ > k by definition. Note also that (X |£=1)=k+ Z?:H_l X with
unconditioned X;. In particular, E[X | £ =] = k+ (n—¢)p. Consequently,

I

EX|X>k=Y Prlt=i| X >KE[X|(=i]

=1

Pri=i| X > kj(k+(n—k)p) =k+ (n—k)p.

“.

@
1
By

O

We note that, in the language introduced in the following section, we
have actually shown the stronger statement that (X | X > k) is dominated
by k+ Bin(n — k,p). This stronger version can be useful for obtaining tail
bounds for (X | X > k).

1.8 Stochastic Domination and Coupling

In this section, we discuss two concepts that are not too often used explicitly,
but where we feel that mastering them can greatly help in the analysis of ran-
domized search heuristics. The first of these is stochastic domination, which
is a very strong way of saying that one random variable is better than another
even when they are not defined on the same probability space. The second
concept is coupling, which means defining two random variables suitably over
the same probability space to facilitate comparing them. These two concepts
are strongly related: if a random variable Y dominates X, then X and Y can
be coupled in such a way that Y is pointwise not smaller than X, and vice
versa. The results of this section and some related ones have appeared, in a
more condensed form, in [20].

1.8.1 The Notion of Stochastic Domination

Possibly the first to use the notion of stochastic domination in the rigorous
analysis of an evolutionary algorithm was Droste, who employed it in [45, 46]
to make precise an argument often used in an informal manner, namely that
some artificial random process is not faster than the process describing a run
of the algorithm under investigation.

Definition 1.8.1 (stochastic domination). Let X and Y be two random
variables not necessarily defined on the same probability space. We say that
Y stochastically dominates X, written as X <Y, if for all A € R we have
Pr[X <Al >Pr[Y < ).
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If Y dominates X, then the cumulative distribution function of Y is point-
wise not larger than that of X. The definition of domination is equivalent

to
VAER: Pr[X > ] <Pr[Y > ],

which is maybe a formulation that makes it more visible why we feel that Y
is at least as large as X.

Concerning nomenclature, we remark that some research communities re-
quire in addition that the inequality is strict for at least one value of A. Hence,
intuitively speaking, Y is strictly larger than X. From the mathematical per-
spective, this appears not to be very practical. Consequently, our definition
above is more common in computer science. We also note that stochastic dom-
ination is sometimes called first-order stochastic domination. For an extensive
treatment of various forms of stochastic orders, we refer to [[72].

The usual way of explaining stochastic domination is via games. Let us
consider the following three games.

Game A. With probability % in each case, you win 500 or 1500.

Game B. With probability %, you win 500, with probability %, you win 800,
and with probability %, you win 1500.

Game C. With probability ﬁ7 you win 2,000,000. Otherwise, you win
nothing.

Which of these games is best to play? It is intuitively clear that you would
prefer Game B over Game A. However, it is not clear whether you should pre-
fer Game C over Game B. Clearly, the expected win in Game C is 2000, com-
pared with only 1050 in Game B. However, the chance of winning anything
at all is really small in Game C. If you do not like to go home empty-handed,
you might prefer Game B.

The mathematical take on these games is that the random variable Xp
describing the win in Game B stochastically dominates the variable X for
Game A. This captures our intuitive feeling that it cannot be wrong to prefer
Game B over Game A. For Games B and C, neither of Xg and X dominates
the other. Consequently, it depends on the precise utility function of the
player which game the player prefers. This statement is made precise in the
following lemma.

Lemma 1.8.2. The following two conditions are equivalent.

(a) X <Y.

(b) For all monotonically non-decreasing functions f : R — R, we have
E[f(X)] < E[f(Y)].

As a simple corollary, we note the following.

Corollary 1.8.3. If X <Y, then E[X] < E[Y].
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We note another simple, but useful property.

Lemma 1.8.4. Let X1,...,X,, be independent random variables defined over
some common probability space. Let Y1,...,Y, be independent random vari-
ables defined over a possibly different probability space. If X; XY; for all

i € [1..n], then
n n
I RT
i=1 i=1

For discrete random variables, this result is a special case of Lemma
stated further below.
Finally, we note two trivial facts.

Lemma 1.8.5. Let X and Y be random variables.

(a) If X and Y are defined on the same probability space and X <Y, then
X=<Y.
(b) If X andY are identically distributed, then X <Y .

1.8.2 Stochastic Domination in Runtime Analysis

From the perspective of algorithm analysis, stochastic domination allows one
to state very clearly that one algorithm is better than another. If the runtime
distribution X o of algorithm A dominates the distribution Xy of algorithm B,
then from the runtime perspective algorithm B is always preferable to algo-
rithm A.

In a similar vein, we can also use domination to give more detailed descrip-
tions of the runtime of an algorithm. For almost all algorithms, we will not be
able to determine precisely the runtime distribution. However, via stochastic
domination, we can give a lot of useful information beyond, say, just the
expectation. We demonstrate this via an extension of the classic fitness level
method, which is implicit in the work of Zhou, Luo, Lu, and Han [104].

Theorem 1.8.6 (domination version of the fitness level method).
Consider an iterative randomized search heuristic A mazimizing a function
f:2—>R. Let Ay,..., A, be a partition of 2 such that for alli,j € [1..m] with
i<jandallxeA;, yeAj, we have f(x) < f(y). Set A>; = A;U---UAp,.
Let p1,...,pm—1 be such that for all i € [1..m — 1] we have that if the best-so-
far search point is in A;, then, regardless of the past, A has a probability of
at least p; of generating a search point in A>;y1 in the next iteration.

Denote by T the (random) number of iterations A takes to generate a
search point in Ap,. Then

m—1

T < Geom(p),

=1
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where this sum is to be understood as a sum of independent geometric distri-
butions.

To prove this theorem, we need a technical lemma, which we defer to the
next subsection to ease reading this part.

Proof. Consider a run of the algorithm A. For all i € [1..m], let T; be the
first time (iteration) when A has generated a search point in A>;. Then
T=T,,= Z;ZII(Ti_H —T;). By assumption, T;11 —T; is dominated by a
geometric random variable with parameter p; regardless of what happened
before time T;. Consequently, Lemma [1.8.§ gives the claim. a

Note that a result such as Theorem implies various statements
about the runtime. By Corollary , the expected runtime satisfies E[T] <
Z?i_ll i, which is the common version of the fitness level theorem [97]. By
using tail bounds for sums of independent geometric random variables (see
Section ), we also obtain runtime bounds that hold with high proba-
bility. This was first proposed in [104]. We defer a list of examples where
previous results can profitably be turned into a domination statement to Sec-
tion , where we will also have the large-deviation bounds needed to
exploit such statements.

1.8.3 Domination by Independent Random Variables

A situation often encountered in the analysis of algorithms is that a sequence
of random variables is not independent, but that each member of the sequence
has a good chance of having a desired property no matter what the outcome
of its predecessors was. In this case, the random variables in some sense can
be treated as if they were independent.

Lemma 1.8.7. Let X1,...,X,, be arbitrary binary random variables and let
Xi{,..., X} be independent binary random variables.

(a) If we have
PI‘[Xi =1 | X1 :itl,...,Xi_l :xi—l] S PT[XZ* = ].]

for allie[l.n] and all x1,...,2;—1 € {0,1} with Pr[X; =x1,...,X;—1 =
xi—1] >0, then

(b) If we have

PI"[Xi =1 | X1 = xl,...,Xi_l = mi—l] Z PI‘[XZ* = 1]
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foralli€[l.n] and all xy,...,2;—1 €{0,1} with Pr[X1 =21,...,X;—1 =

xi—1] >0, then
n n
Sy
=1 =1

Note that here and in the following, we view “X; = x1,...,X;-1 = x;—1”
for 1 =1 as an empty intersection of events, that is, an intersection over
an empty index set. As in most textbooks, we define this to be the whole
probability space.

Both parts of the lemma are simple corollaries of the following, slightly
technical, general result, which might be of independent interest.

For two sequences (X7i,...,X,) and (X7,...,X}) of random variables, we
say that (X7,...,X}) unconditionally sequentially dominates (X1,...,Xy) if
foralli e [l..n] and all z1,...,2,—1 ER with Pr[Xy = x1,..., X1 =2;-1] > 0,
we have (X; | X1 =21,...,Xi-1 = z;—1) =< XJ. Analogously, we speak of
unconditional sequential subdomination if the last condition is replaced by
X2 (Xi | Xi=21,...,Xi 1 =241).

The following lemma shows that unconditional sequential (sub)domination
and independence of the X imply (sub)domination for the sums of these ran-
dom variables. Note that unconditional sequential (sub)domination is inher-
ited by subsequences, so the following lemma immediately extends to sums
over arbitrary subsets I of the index set [1..n].

Lemma 1.8.8. Let X1,...,X, be arbitrary discrete random wvariables. Let
Xi,..., X} be independent discrete random variables.

(a) If (XT,..., X}) unconditionally sequentially dominates (X1,...,Xp), then
Z?:l Xi = Z?:l X7

(b) If (X75,...,X};) unconditionally sequentially subdominates (X1,...,Xn),
then 37y XJ X370, Xi.

Proof. The two parts of the lemma imply each other (as can be seen by
multiplying the random variables by —1), so it suffices to prove the first
statement.

Since the statement of the theorem is independent of the correlation be-
tween the X; and the X, we may assume that they are independent. Let
A € R. Define

J n
Pj:=Pr ZXH— Z X:>A
=1 1=7+1
for j € [0..n]. We show Pj;q < Pj for all j € [0.n—1].
For m € R, let {2, denote the set of all (z1,...,2j,Zj42,...,2,) € R"1
such that Pr[X; = z1,...,X; = ;] >0 and Zie[l”n]\{j_,_l}xi =A—m. Let
M:={meR| 2, #0}. Then
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Jj+1 n
Piyy=Pr|Y X;+ > X;>)\
i=1 i=j+2
J n
= > Pr|> Xi+ > Xi=XA-mAX;jp1=m
meM i=1 =542

Z Z Pr[Xlle,...,Xj:xj].

MEM (x1,...,25,Tj42,.-,Tn)ELm

n
PI"[XjJrl 2m|X1:x1,...,Xj:xj]~ H PI‘[X;k:xl]

i=j+2
J n
< P> Xt Y Xf=A—m| -Pr[X;, >m]
meM i=1 =542
i n
=Pr|> Xi+ Y X;=A
i=1 i=j+1

1.8.4 Coupling

Coupling is an analysis technique that consists of defining two unrelated
random variables over the same probability space to ease comparing them.
As an example, let us consider standard bit mutation with rate p and with
rate ¢, where p < ¢. Intuitively, it seems obvious that we will flip more bits
when using the higher rate ¢. We could make this precise by looking at the
distributions of the random variables X, and X, describing the numbers of
bits that flip and computing that X, < X,. For that, we would need to show
that for all k € [0..n], we have

; (T;)pi(l —p)" ' > g (?)qi(l _g)

Coupling is a way to get the same result in a more natural manner.
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Consider the following random experiment. For each i € [1..n], let r; be
a random number chosen independently and uniformly distributed in [0, 1].
Let X'p be the number of the r; that are less than p and let X, be the
number of the r; that are less than ¢q. We immediately see that Xp ~ Bin(n,p)
and )N(q ~ Bin(n,q). However, we know more. We have defined )N(p and Xq
over a common probability space in such a way that we have Xp < f(q with
probability one: X, and X, viewed as functions on the (hidden) probability
space 2={(r1,...,7n) | 71,...,7m € [0,1]}. satisfy X, (w) < X,(w) for all w € 2.
Consequently, by the trivial Lemma , we have X, =< Xp = X'q =< X4 and
hence X, < Xj.

The same argument works for geometric distributions. We summarize these
findings (and two more) in the following lemma. Part follows from the
obvious embedding (which is a coupling as well) of the Bin(n,p) probability
space into that of Bin(m,p). The first inequality of part |(c) is easily computed
directly from the definition of domination (and holds in fact for all random
variables); the second part was proven in [63, Lemma 1].

Lemma 1.8.9. Let X and Y be two random variables. Let p,q € [0,1] with
p<q.

(a) If X ~Bin(n,p) and Y ~ Bin(n,q), then X <Y.

(b) If n <m, X ~Bin(n,p), and Y ~ Bin(m,p), then X Y.

(c) If X ~Bin(n,p) and x € [0..n], then X <X (X | X > z) < (X +z).
(d) If p>0, X ~ Geom(p), and Y ~ Geom(q), then X <Y .

Let us now formally define what we mean by coupling. Let X and Y
be two random variables, not necessarily defined over the same probability
space. We say that (X,Y) is a coupling of (X,Y) if X and Y are defined
over a common probability space and if X and X’ as well as Y and Y’ are
identically distributed.

This definition itself is very weak. (X,Y") have many couplings and most of
them are not interesting. So, the art of using coupling as a proof and analysis
technique is to find a coupling of (X,Y) that allows one to derive some useful
information.

It is not a coincidence that we could use coupling to prove stochastic
domination. The following theorem is well known.

Theorem 1.8.10. Let X and Y be two random variables. Then the following
two statements are equivalent.

(a) X <Y. o o
(b) There is a coupling (X,Y) of (X,Y) such that X <Y.

We remark, without giving much detail, that coupling as a proof technique
has found numerous powerful applications beyond its connection to stochastic
domination. In the analysis of population-based evolutionary algorithms, a
powerful strategy to prove lower bounds is to couple the true population of
the algorithm with the population of an artificial process without selection,
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and by this overcome the difficult dependencies introduced by the variation—
selection cycle of the algorithm. This was first done in [99, 100] for the analysis
of the (1 +1) EA and an elitist steady-state genetic algorithm. This technigue
then found applications for memetic algorithms [91], aging mechanisms [59],
non-elitist algorithms [6§], multi-objective evolutionary algorithms [B9], and
the (u+A) EA [1].

1.8.5 Domination in Fitness or Distance

So far, we have used stochastic domination to compare runtime distributions.
We now show that stochastic domination is a powerful proof tool also when
applied to other distributions. To do so, we give a short and elegant proof of a
result of Witt [101] that compares the runtimes of mutation-based algorithms.
The main reason why our proof is significantly shorter than that of Witt is
that we use the notion of stochastic domination for the distance from the
optimum also. This will also be an example where we exploit heavily the
connection between coupling and stochastic domination (Theorem )

To state this result, we need the notion of a (u,p) mutation-based algo-
rithm introduced in [92]. This class of algorithms is called only mutation-based
n [92], but since (i) it does not include all adaptive algorithms using muta-
tion only, for example, those considered in [3, 10, 17, 28, 44, 58, [7§], (ii) it
does not include all algorithms using a different mutation operator than stan-
dard bit mutation, for example, those in [24, 25, 41, 69|, and (iii) this notion
collides with the notion of unary unbiased black-box complexity algorithms
(see [66]), which without greater justification could also be called the class of
mutation-based algorithms, we feel that a notion making these restrictions
precise is more appropriate.

The class of (u,p) mutation-based algorithms comprises all algorithms
which first generate a set of p search points uniformly and independently at
random from {0,1}" and then repeat generating new search points from any
of the previous ones via standard bit mutation with probability p. This class
includes all (p+ ) and (4, A) EAs which use only standard bit mutation with
static mutation rate p.

We denote by (1+1) EA,, the following algorithm in this class. It first
generates 1 random search points. From these, it selects uniformly at random
one with highest fitness and then continues from this search point like the
(1+1) EA, that is, it repeatedly generates a new search point from the current
one via standard bit mutation with rate p and replaces the previous search
point with the new one if the new one is not worse (in terms of fitness). This
algorithm was called “(1+1) EA with BestOf(x) initialization” in [64].

For any algorithm A from the class of (u,p) mutation-based algorithms
and any fitness function f:{0,1}"™ — R, let us denote by T'(A, f) the runtime
of the algorithm A on the fitness function f, that is, the number of the first
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individual generated that is an optimal solution. Usually, this will be p plus
the number of the iteration in which the optimum was generated. To cover
also the case where one of the random initial individuals is optimal, let us
assume that these initial individuals are generated sequentially. As a final
technicality, for reasons of convenience, let us assume that the (1+1) EA,,
in iteration p+ 1, does not choose as parent a random previous search point
with maximal fitness, but the last one with maximal fitness. Since the initial
w individuals are generated independently, this modification does not change
the distribution of this parent.

In this language, Witt [101], Theorem 6.2] showed the following remarkable
result.

Theorem 1.8.11. For any (u,p) mutation-based algorithm A and any f :
{0,1}™ = R with unique global optimum,

T((14+1) EA,,ONEMAX) =X T(A, f).

This result significantly extends results of a similar flavor in [9, BY, 92].
The importance of such types of result is that they allow one to prove lower
bounds for the performance of many algorithms on essentially arbitrary fit-
ness functions by considering just the performance of the (1+1) EA, on
ONEMAX.

Let us denote by |z|; the number of ones in the bit string = € {0,1}™.
In other words, |z|1 = ||z|/1, but the former is nicer to read. Witt [101,
Lemma 6.1] has shown the following natural domination relation between
offspring generated via standard bit mutation.

Lemma 1.8.12. Let z,y € {0,1}". Let p € [0, 5]. Let 2',y" be obtained from
x,y via standard bit mutation with rate p. If |z|1 < |yl1, then |z'|1 < |y'|1-

We are now ready to give our alternate proof of Theorem . While
it is clearly shorter than the original one in [[101], we also feel that it
is more natural. In very simple words, it shows that T'(A,f) dominates
T((14+1) EA,,ONEMAX) because the search points generated in a run of
the (14+1) EA,, on ONEMAX are always at least as close to the optimum (in
the domination or coupling sense) as those in a run of 4 on f.

Proof. Since A treats bit positions and bit values in a symmetric fashion,
we may assume without loss of generality that the unique optimum of f is

(1,...,1).
Let 2,2 ... be the sequence of search points generated in a run of
A on the fitness function f. Hence (), ... 2" are independently and uni-

formly distributed in {0,1}™ and all subsequent search points are generated
from suitably chosen previous ones via standard bit mutation with rate p.
Let y™,y@) ... be the sequence of search points generated in a run of the
(1+1) EA, on the fitness function ONEMAX.

We now show how to couple these random sequences of search points
in such a way that |2(®)|; <|§®|; for all + € N. We take as the common
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probability space £2 simply the space that (z®)),ey is defined on and let
i® =z for all t € N.

We define the §®) inductively as follows. For t € [1..], let §(*) = 2(*). Note
that this trivially implies |£(®)]; < |[§®)]; for these search points. Let t > p
and assume that ||, < |5 for all #' <. Let s € [1..t — 1] be maximal
such that §(*) has the maximal ONEMAX-fitness among §(V),..., 5=V, Let
€ [1..t—1] be such that z(*) was generated from (") in the run of A on f. By
induction, we have |z(")|; <|7(")|;. By the choice of s. we have |§(")|; < |g(8)];.
Consequently, we have |2(")|; < |§(®)|;. By Lemma and Theorem I1.8.1{],
there is a random §) (defined on £2) such that §*) has the distribution of
being obtained from §(*) via standard bit mutation with rate p and such that
e < |5P)s.

With this construction, the sequence (g(t))teN has the same distribution
as (y*))ien. This is because the first 1 elements are random and then each
subsequent one is generated via standard bit mutation from the current best
one, which is just the way the (14+1) EA, is defined. At the same time, we
have |2(1)|; < |7(!)|; for all t € N. Consequently, we have min{t € N | |§(!)|; =
n} <min{t € N| [z |; =n}. Since T((141) EA,,ONEMAX) and min{t €
N | |5 ]; = n} are identically distributed and also T'(A, f) and min{t € N |
|2®)|; = n} are identically distributed, we have T'((1+1) EA,, ONEMAX) <
T(A,f). O

While not explicitly using the notion of stochastic domination, the result
and proof in [§] bear some similarity to those above. In very simple words and
omitting many details, the result [9, Theorem 1] states the following. Assume
that you run the (14 1) EA and some other algorithm A (from a relatively
large class of algorithms) to maximize a function f. Denote by z(*) and y(®)
the best individuals produced by the (1+1) EA and A up to iteration ¢.
Assume that for all ¢t and all possible runs of the algorithms up to iteration ¢
we have that f(z(®)) > f(y®) implies f(z(t+t1)) = f(y**+D). Assume further
that the random initial individual of the (14 1) EA is at least as good (in
terms of f) as all initial individuals of algorithm A. Then f(z®)) = f(y®)
for all ¢.

The proof of this result (like that of the fitness domination statement in our
proof of Theorem [L.8.11) uses induction over the time ¢. Since [9] does not use
the notion of stochastic domination explicitly, there the two processes cannot
simply be coupled, but instead the two distributions have to be compared
using an argument called Abel transform.
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1.9 The Coupon Collector Process

The coupon collector process is one of the central building blocks in the ana-
lysis of randomized algorithms. It is particularly important in the theory of
randomized search heuristics, where it often appears as a subprocess.

The coupon collector process is the following simple randomized process.
Assume that there are n types of coupons available. Whenever you buy a
certain product, you get one coupon of a type chosen uniformly at random
from the n types. How long does it take until you have a coupon of each type?
In this section, we denote the random variable describing the first round after
which we have all types by T}, and call it the coupon-collecting time. In simple
words, this is the number of rounds it takes to obtain all types.

As an easy example showing how the coupon collector problem arises in the
theory of randomized search heuristics, let us regard how the randomized local
search heuristic (RLS) optimizes strictly monotonically increasing functions.
The RLS heuristic, when maximizing a given function f:{0,1}"™ — R, starts
with a random search point. Then, in each iteration of the process, a single
random bit is flipped in the current solution. If this gives a solution worse
than the current one (in terms of f), then the new solution is discarded.
Otherwise, the process is continued from this new solution.

Assume that f is strictly monotonically increasing, that is, flipping any
0-bit to 1 increases the function value. Then the optimization process of RLS
on f strongly resembles a coupon collector process. In each round, we flip a
random bit. If this bit was 1 in our current solution, then nothing changes
(we discard the new solution as it has a smaller f-value). If this bit was 0,
then we keep the new solution, which now has one extra 1. Hence, taking the
1-bits as coupons, we obtain a random coupon in each round. This has no
effect if we have this coupon already, but is good if we do not.

We observe that the optimization time (the number of solutions evaluated
until the optimal solution is found) of RLS on strictly monotonic functions
is exactly the coupon-collecting time when we start with an initial stake of
coupons that follows a Bin(n, %) distribution. This shows that the optimiza-
tion time is at most the ordinary coupon-collector time (where we start with
no coupons). See [22] for a very precise analysis of this process.

The expectation of the coupon-collecting time is easy to determine. Recall
from Section [1.4.2 the definition of the harmonic number H,, := 3 }_; %

Theorem 1.9.1 (coupon collector, expectation). The expected time to
collect all n coupons is E[T,] =nH, = (1+0(1))nlnn.

Proof. Given that we already have k different coupons for some k € [0..n — 1],
the probability that the next coupon is one that we do not already have is
”T_k. By the waiting-time argument (Lemma [1.6.3), we see that the time
Ty, 1 needed to obtain a new coupon, given that we have exactly k different
ones, satisfies E[T), ] = -2%. Clearly, the total time T} needed to obtain
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all coupons is Z b 0 n,k- Hence, by linearity of expectation (Lemma |l -
E[T,] = k;O E[T, 1| =nHy. ad
We proceed by trying to gain more information about 7;, than just the

expectation. The tools discussed so far (and one to come in a later section)
lead to the following results.

o Markov’s inequality (Lemma - 1ves Pr[T,, > AnH,) < 1 for all A > 1.
o Chebyshev’s inequality ( Lemma can be used to prove Pr[|T,, —

nHy| > en] < gj for all € > 2 ~ 0. 6079 This builds on the fact (im-
plicit in the proof above) that the coupon- collectmg time is the sum of

independent geometric random variables T}, =Y~ Geom( k). Hence
the variance is Var[T,] = 26 ’
o Again exploiting T}, = >, _, ! Geom(2=£)_ Witt’s Chernoff bound for geo-

metric random variables (Theorem [L. ) gives

3e T
Pr[T}, > E[T}] +¢en] < exp(—r ) ifes 6,
exp(—%) ife> T,
2
o)

Pr[T, < E[T,] —en] < exp(—2

for all € > 0. See [102] for details.

Interestingly, asymptotically stronger tail bounds for T}, can be derived by
fairly elementary means. The key idea is to consider not how the number of
coupons increases over time, but instead the event that we miss a particular
coupon for some period of time. Note that the probability that a particular
coupon is not obtained in ¢ rounds is (1 — %)t By a union bound argument
(see Lemma [L.5.1]), the probability that there is a coupon that is not obtained
within ¢ rounds, and, equivalently, that T, > t, satisfies

Pr[T, >t] <n(1-1)"
Using the simple estimate of Lemma , we obtain the following (equiva-
lent) bounds.
Theorem 1.9.2 (coupon collector, upper tail). For all e > 0,

Pr[T, > (14+e)nlnn] <n~%, (1.9.1)
Pr[T,, > nlnn+en] < exp(—¢). (1.9.2)

Surprisingly, prior to the following result from [[18], no good lower bound
for the coupon-collecting time was published.
Theorem 1.9.3 (coupon collector, lower tail). For all e >0,
Pr[T, < (1—¢)(n—1)Inn] <exp(—n®), (1.9.3)
Pr[T, <(n—1)Inn—e(n—1)] < exp(—e®). (1.9.4)
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Theorem was proven in [18] by showing that the events of having a
coupon after a certain time are 1-negatively correlated. The following proof
defers this task to Lemma .

Proof. Let t=(1—¢)(n—1)Inn. For i € [1..n], let X; be the indicator random
variable for the event that a coupon of type i is obtained within the first ¢
rounds. Then Pr[X; =1]=1-(1— %)t <l—exp(—(1—¢)lnn)=1-n"17¢
where the estimate follows from Corollary [L.4.6.

Since, in the coupon collector process, in each round j we choose a random
set S; of cardinality 1, by Lemma the X; are 1-negatively correlated.
Consequently,

Pr[T, <(1—¢)(n—1)Inn]=Pr[Vie [l.n]: X; = 1]
§ ﬁPr[Xl = ].]
i=1

< —n71+€)” < exp(—n°)

by Lemma . a

We may remark that a good mathematical understanding of the coupon
collector process is important not only because such processes directly show
up in some randomized algorithms, but also because it might give us the
right intuitive understanding of other processes. Consider, for example, a run
of the (14+1) EA on some pseudo-Boolean function f:{0,1}" — R with a
unique global maximum.

The following intuitive consideration leads us to believe that the
(14+1) EA, with high probability, needs at least roughly nln% iterations
to find the optimum of f: By the strong concentration of the binomial dis-
tribution, the initial search point differs in at least roughly & bits from the
global optimum. To find the global optimum, it is necessary (but clearly not
sufficient) that each of these missing bits is flipped at least once in some
mutation step. Now that the (14 1) EA on average flips one bit per iteration,
this looks like a coupon collector process started with an initial stake of 4
coupons, so we expect to need at least roughly nln % iterations to perform
the nln 35 bit flips necessary to have each missing bit flipped at least once.
Clearly, this argument is not rigorous, but it suggests the right answer to us.

Theorem 1.9.4. The optimization time T of the (1+1) EA on any function
f:{0,1}" = R with a unique global mazimum satisfies

Pr[T'<(1—¢)(n—1)Ing] <exp(—n®).

Proof. By symmetry, we may assume that the unique global optimum of f is
(1,...,1). Let t=(1—¢)(n—1)In§. For all i € [1..n], let ¥; denote the event
that the i-th bit is zero in the initial search point and is not flipped in any
application of the mutation operator in the first ¢ iterations. Let X; =1-Y;.
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Then Pr[X; =1]=1-2(1—1)* <1—n~1*¢. The events X; are independent,
S0 we compute

O

We have stated the above theorem to give a simple example of how un-
derstanding the coupon collector process can help also in understanding ran-
domized search heuristics that do not directly simulate a coupon collecting
process. We remark that the theorem above is not the best possible; in partic-
ular, it does not rule out an expected optimization time of nln 5. In contrast,
it is known that the optimization time of the (1+1) EA on the ONEMAX
function is E[T] > enlnn — O(n) [27], improving on the minimally weaker
bound E[T] > enlnn — O(nloglogn) from, independently, [26] and [92]. By
Theorem , this lower bound holds for the performance of the (1+1) EA
on any function f:{0,1}" — R with a unique optimum.

1.10 Large-Deviation Bounds

Often, not only we are interested in the expectation of some random variable,
but we also need a bound that holds with high probability. We have seen
in the proof of Theorem that such high-probability statements can be
very useful: if a certain bad event occurs in each iteration with a very small
probability only, then a simple union bound is enough to argue that this event
is unlikely to occur even over a large number of iterations. The better the
original high-probability statement is, the more iterations we can cover. For
this reason, the tools discussed in this chapter are among those most often
employed in the theory of randomized search heuristics.

Since computing the expectation is often easy, a very common approach
is to first compute the expectation of a random variable and then bound the
probability that the random variable deviates from this expectation by too
large an amount. The tools for this second step are called tail inequalities or
large-deviation inequalities, and this is the topic of this section. In a sense,
Markov’s and Chebyshev’s inequalities, discussed in Section [L.G, can be seen
as large-deviation inequalities as well, but usually the term is reserved for
exponential tail bounds.

A large number of large-deviation bounds have been developed in the past.
They differ in the situations they are applicable to, and also in their sharpness.
Often, the sharpest bounds give expressions for the tail probability that are
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very difficult to work with. Hence some experience is needed to choose a tail
bound that is not overly complicated, but sharp enough to give the desired
result.

To give the novice to this topic some orientation, here is a short list of
results that are particularly useful and which are sufficient in many situations.

(a) The simple multiplicative Chernoff bounds (ll.lO.d) and (ll.lO.lﬂ), show-
ing that for sums of independent [0, 1] random variables, a constant-factor
deviation from the expectation occurs only with a probability negatively
exponential in the expectation.

(b) The additive Chernoff bound of Theorem , showing that a sum of
n independent [0,1] random variables deviates from the expectation by
more than an additive term of A only with probability exp(—2A2/n).

(¢) The fact that essentially all large-deviation bounds can be used also with a
pessimistic estimate for the expectation instead of the precise expectation
(Section )

(d) The method of bounded differences (Theorem ), which states that
the additive Chernoff bounds remain valid if X is functionally dependent
on independent random variables each having a small influence on X.

For the experienced reader, the following results may be interesting as they
go beyond what most introductions to tail bounds cover.

(a) In Section , we show that essentially all of the large-deviation
bounds usually stated for sums of independent random variables are also
valid for negatively correlated random variables. An important applica-
tion of this result is to distributions arising from sampling without re-
placement or with partial replacement.

(b) In Section , we present a number of large-deviation bounds for sums
of independent geometrically distributed random variables. These seem
to be particularly useful in the analysis of randomized search heuristics,
whereas they are rarely used with classic randomized algorithms.

(¢) In Theorem , we present a version of the bounded-differences
method which requires only that the ¢-th random variable has a bounded
influence on the expected outcome resulting from variables £+ 1 to n. This
is much weaker than the common bounded-differences assumption that
each random variable, regardless of how we condition on the remaining
variables, has a bounded influence on the result. We feel that this new
version (which is an easy consequence of known results) may be very use-
ful in the analysis of iterative improvement heuristics. In particular, it
may lead to elementary proofs for results which so far can only be proven
via tail bounds for martingales.
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1.10.1 Chernoff Bounds for Sums of Independent
Bounded Random Variables

In this rather long subsection, we assume that our random variable of interest
is the sum of n independent random variables, each taking values in some
bounded range, often [0,1]. While some textbooks present these bounds for
discrete random variables, e.g., taking the values 0 and 1 only, all the results
are true without this restriction.

The bounds presented below are all known under names such as Cher-
noff or Hoeffding bounds, referring to the seminal papers by Chernoff [[13]
and Hoeffding [p4]. Since the first bounds of this type were proven by Bern-
stein [6] — via the so-called exponential moments method that is used in
essentially all proofs of such results (see Section ) — the name “Bern-
stein inequalities” would be more appropriate. We shall not be that precise,
and instead use the most common name “Chernoff inequalities” for all such
bounds.

For the reader’s convenience, as in the remainder of this chapter, we shall
not be shy to write out minor reformulations of some results. We believe
that it helps a lot to have seen such reformulations and we think that it is
convenient, both for using the bounds and for referring to them, if all natural
versions are visible in the text.

1.10.1.1 Multiplicative Chernoff Bounds for the Upper Tail

The multiplicative Chernoff bounds presented in this and the next section
bound the probability of deviating from the expectation by at least a given
factor. Since in many algorithm analyses we are interested only in the asymp-
totic order of magnitude of some quantity, a constant-factor deviation can be
easily tolerated, and knowing that larger deviations are very unlikely is just
what we want to know. For this reason, the multiplicative Chernoff bounds
are often the right tool.

The following theorem collects a number of bounds for the upper tail, that
is, for deviations above the expectation. Some of the bounds are visualized
in Figure [L.3.

Theorem 1.10.1. Let X1,...,X,, be independent random wvariables taking
values in [0,1]. Let X =>"" | X;. Let § > 0. Then
Pr[X > (1+0)E[X]]

(14+8) E[X] _ n—(1+9) E[X]
1+4 n—(1+0)E[X]

&0 B[X]
S((Hé)l”) — exp(—((1+8)In(1+8)— 6 E[X]) (1.10.2)
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§?E[X]
<exp(— 2—}—%6 ) (1.10.3)
<exp (—W), (1.10.4)

where the bound in () is read as 0 for § > nE}[E)g(] and as (%)n Jor
5= "Eﬁﬁq For§ <1, () stmplifies to

2

Pr[X > (1+90)E[X]) <exp(—6E:;[X]). (1.10.5)

The first and strongest bound () was first stated explicitly by

Hoeffding [@] It improves over Chernoft’s [@] tail bounds in particular by

not requiring that the X, are identically distributed. Hoeffding also showed

that (I101) is the best bound that can be shown via the exponential mo-

ments methods under the assumptions of Theorem .

For E[X] small, say E[X] = o(n) when taking a view asymptotic in n — oo,

the second bound () is easier to use, but essentially as strong as ([L.10.1]).

More precisely, it is larger by only a factor of (1+0(1))¥ (X1 since we have
estimated

<nEm)n—(1+5)E[X] <1+5E[X—]>n—(1+6)E[X]
n—(1+0)FE[X] n—(1+9)F[X]
< B (1.10.6)

—f@)=1+4+z)ln(14+2z)—=

15| @ = w5
f(z) = min{z?,z}/3

= 17
P
0.5 +
0 -~ : : : |
0.5 1 1.5 2 2.5
xT

Fig. 1.3 Visual comparison of the bounds (i.lO.a), (I .10.3), and ( .10.2). The term
f(z) leading to the bound Pr[X > (1+z)E[X]] < exp(—f(z)E[X]) is depicted.
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using Lemma 1.4.1).

Equation () is derived from () by noting that (14 )In(1+
0)—46 > % holds for all § > 0; see Theorem 2.3 and Lemma 2.4 in
McDiarmid [70]. Equations () and ([L.10.5) are trivial simplifications
of (L.10.9).

In general, to successfully use Chernoff bounds in one’s research, it greatly
helps to look a little behind the formulas and understand their meaning.
Very roughly speaking, we can distinguish three different regimes relative
to 0, namely that the tail probability is of order exp(—©(dlog(d)E[X])),
exp(—O(SE[X])), and exp(—O(52E[X])). Here, in principle, the middle
regime, referring to the case of § constant, could be seen as a subcase of either
of the other two regimes. Since this case of constant-factor deviations from
the expectation occurs very frequently, however, we discuss it separately.

Superexponential Regime

Equation () shows a tail bound of order §-COFPKXD —
exp(—O(dlog(d)E[X])), where the asymptotics are for ¢ — oco. In this
regime, the deviation  E[X] from the expectation F[X] is much larger than
the expectation itself. It is not very often that we need to analyze such large
deviations, so this Chernoff bound is rarely used. It can be useful in the
analysis of evolutionary algorithms with larger offspring populations, where
the most extreme behavior among the offspring can deviate significantly
from the expected behavior. See [23, 40] for examples of how to use Chernoff
bounds for the large deviations occurring in the analysis of the (1+ ) EA.
Note that in [56], the first theoretical study of the (1+X) EA, and in [51]
such Chernoff bounds could have been used as well, but the authors found
it easier to directly estimate the tail probability by estimating binomial
coefficients.

Weaker forms of () are

. (14+8) E[X]

Pr[X > (1+6)E[X]] < ((1+6)> : (1.10.7)
SE[X]

Pr[X > (1+0)E[X]] < (;) , (1.10.8)

where the first one is stronger for those values of § where the tail probability
is less than one (that is, 6 > e—1).

It is not totally obvious how to find a value for § that ensures that (%)‘5 is
less than a desired bound. The following lemma solves this problem.

Lemma 1.10.2. Let t > ¢ ~ 4.24044349 ... . Let
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Int
0= ln( Int )
elnlnt
Then (£)° < 1.
o _ Int Int —
Proof. We compute 6In ¢ = §ln (m) > 6In(e7) = Int. O

We can use this estimate to bound the number of bits flipped in an appli-
cation of the standard bit mutation operator defined in Lemma [L.6.6. By lin-
earity of expectation, it is clear that the expected Hamming distance H (z,y)
between a parent = and an offspring y is E[H (z,y)] = a when the mutation
rate is ©; see Lemma . Using Chernoff bounds, we now give an upper
bound on how far we can exceed this value. Such arguments are often useful
in the analysis of evolutionary algorithms; see, e.g., Lemma 26 in [40] for an

example.

Lemma 1.10.3. (a) Let x € {0,1}"™ and y be obtained from x via standard
bit mutation with mutation rate <. Then Pr[H (z,y) > k] < (§2)*.
(b) Let 0 <p < exp(—ozexp(%)). Let

In(1/p)
ln( In(1/pt/®) )

elnln(1/pl/«)

k>k,:=

Then Pr[H(x,y) > k] < p.
(¢) Let T €N and 0 <p< %exp(—aexp(%)). Let y1,...,yr be obtained from
r1,...,o7, respectively, via standard bit mutation. Let

k> In(7/p)

= n(T/p7*) \’
In (elnln((T/p)l/%)

Then Pr[3i € [1.7]: H(zi,y;) > k] <p.

Proof. Note that H(z,y) ~ Bin(n, %), and hence H(x,y) can be written as
a sum of n independent random variables Xi,..., X, with Pr[X; =1] =%
and Pr[X; =0l =1— £ for all ¢ € [1..n]. Since E[H(z,y)] = «, we can apply

n

() with (6+1) = % This proves (a).
For part (b), we use part (a) and Lemma and compute Pr[H (z,y) >
k] < Pr[H(z,y) > kp] < ((L/)kp/o‘)o‘ < (pt/*)* = p. Similarly, for (c) we

kp/a

obtain Pr[H (x;,y;) > k] < & and use the union bound (Lemma ) O

Observe that the bounds in Lemma are independent of n. Also, the
bounds in parts (b) and (c¢) depend only mildly on «. By applying part (c)

with p=n"° and T = n®2, we see that the probability that an evolutionary
algorithm using standard bit mutation with rate 2, where « is a constant,
flips more than (c; + ¢ —|—0(1))1r11‘fgbn bits in any of the first n“? applications

of the mutation operator is at most n~°L.
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We gave the results above to demonstrate the use of Chernoff bounds for
sums of independent bounded random variables. Since the number of bits
that are flipped in standard bit mutation follows a binomial distribution,
similar bounds can also (and by more elementary arguments) be obtained
from analyzing the binomial distribution. See Lemma for an example.

Exponential Regime

When § = ©O(1), all bounds give a tail probability of order exp(—O(JE[X])).
Note that the difference between these bounds is often not very large. For
§ =1, the bounds in ([.10.9), (L.10.3), and (.10.4) become (0.67957...)E1X],
(0.68728...)PIX] and (0.71653...)EX], respectively. So there is often no rea-

son to use the unwieldy equation ()
We remark that also for large J, where the bound () gives the

better_asymptotics exp(—©(dlog(d)E[X])), one can, with the help of Sec-
tion |1.10.1.§, resort to the easier-to-use bounds () and () when
the additional logarithmic term is not needed. For example, when X is again
the number of bits that flip in an application of the standard bit muta-
tion operator with mutation rate p = %, then, for all ¢> 0 and n € N with
clnn > o, equation (i.10.4) with E[X] < u :=clnn and the argument of Sec-
tion II .10.1.§ give Pr[X > 2clnn] =Pr[X > (14+1)pT] <exp(—iu™) = n=¢/3,
which in many applications is fully sufficient.

A different way of stating an exp(—O(JE[X])) tail bound, following di-
rectly from applying () for § > 2e—1, is the following.

Corollary 1.10.4. Under the assumptions of Theorem , we have
Pr[X > k] <27F (1.10.9)

for all k > 2eFE[X].

Sub-exponential Regime

Since Chernoff bounds give very low probabilities for the tail events, we can
often work with § = o(1) and still obtain sufficiently low probabilities for the
deviations. Therefore, this regime occurs frequently in the analysis of random-
ized search heuristics. Since the tail probability is of order exp(—©O(§?E[X])),
we need § to be at least of order (E[X])~'/2 to obtain useful statements.
Note that for E[X] close to 5, Theorem below gives slightly stronger
bounds. A typical application in this regime is showing that the random ini-
tial search points of an algorithm with high probability all have a Hamming
distance of at least §(1—o0(1)) from the optimum. See Lemma [1.10.§ below
for further details.
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1.10.1.2 Multiplicative Chernoff Bounds for the Lower Tail

In principle, of course, there is no difference between bounds for the upper
and lower tails. If, in the situation of Theorem , we set Y; i =1—X;,
then the Y; are independent random variables taking values in [0,1], and
any upper tail bound for X turns into a lower tail bound for Y := Z?:l Y;
via Pr[Y <] = Pr[X > n —t]. However, since this transformation also
changes the expectation, that is, E[Y] =n — E[X], a convenient bound
such as () becomes the cumbersome estimate Pr[Y < (1 —96)E[Y]] <
exp(—§ (1405 25d)2(n - E[Y])).

For this reason, usually the tail bounds for the lower tail either are proven
completely separately (but using similar ideas) or are derived by significantly
simplifying the results stemming from applying the above symmetry argu-
ment to () Either approach can be used to show the following bounds.
As a visible result of the asymmetry of the situation for upper and lower
bounds, note the better constant of 1 in the exponent of () as com-
pared with the % in (I1.10.5). Two of the terms appearing in this result are
visualized in Figure .

Theorem 1.10.5. Let X1,...,X,, be independent random wvariables taking
values in [0,1]. Let X =37 | X;. Let § € [0,1]. Then

Pr[X < (1-6)E[X]]

1\ A-9EX] n— E[X] n—(1—6)E[X]
<(i5) (5em) —
=0 E[X]
< ((15)1_5> (1.10.11)
<exp (— 522[X] ), (1.10.12)

where the first bound reads as (1 — %)” foro=1.

For the not-so-interesting boundary_cases, recall our definition 0° := 1.
The first bound ([L.10.1() follows from (i.lO.ll) by regarding the random vari-
ables Y; :=1— X;. Allowing the following easy derivation is maybe the main

strength of () Setting Y =>"" | Y; and §' = 5%, we compute

Pr[X < (1—0)E[X]] = Pr[Y > (1+§)E[Y]]
| ONWHIEYT Ly \ 0B
“(7s) (o)

146 (1+0)E[Y]

:(m>n(lé)E[X]<lid>(l5)E[X],
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—fz)=—z—(1—2z)In(l —x)
0.8 +

0.6 +

04+

0.2 +

0 : . . .
0.2 0.4 0.6 0.8

T

Fig. 1.4 Visual comparison of the bounds (tLlO.l]]) and (h.lO.lﬂ)A The term f(z) leading
to the bound Pr[X < (1 —z)E[X]] < exp(—f(z)E[X]) is depicted.

Obviously, in an analogous fashion, () can be derived from ([L.
so the two bounds are equivalent. Equation (|L.10.11f) follows from
using an elementary estimate analogous to ([l d). Equation
lows from ([1.10.11]) using elementary calculus; see, for example, the proof of
Theorem 4.5 in .

Theorems El(). and [L.10.5 show in particular that constant-factor devia-

tions from the expectation appear only with exponentially small probability.

P

Corollary 1.10.6. Let X1,...,X,, be independent random wvariables taking
values in [0,1]. Let X =>"" | X;. Let § € [0,1]. Then

Pr[|X — E[X]| > 6E[X]] < 2exp (— 522[)(]).

1.10.1.3 Additive Chernoff Bounds

We now present a few bounds for the probability that a random variable devi-
ates from its expectation by an additive term independent of the expectation.
The advantage of such bounds is that they are identical for the upper and
lower tails and that they are invariant under additive rescalings.

From ([L.10.1) in Theorem 7 by careful estimates (see, e.g.,
Hoeffding [54]) and exploiting the obvious symmetry, we obtain the follow-

ing estimates. As mentioned earlier, when E[X] is close to 5, this additive
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Chernoff bound gives (slightly) stronger results than the simplified bounds
of Theorems [L.10.1 and [L.10.5.

Theorem 1.10.7. Let X1,...,X,, be independent random wvariables taking
values in [0,1]. Let X =>""" | X;. Then, for all A >0,

Pr[X > E[X]+ ) Sexp(—Q;\Lz), (1.10.13)
Pr[X < E[X]— )] Sexp(—ij). (1.10.14)

A second advantage of additive Chernoff bounds is that they are often very
easy to apply. As a typical application in evolutionary computation, let us
consider the Hamming distance H (z,2*) of a random search point = € {0,1}
from a given search point z*. This could be, for example, the distance of a
random initial solution from the optimum.

Lemma 1.10.8. Let x* € {0,1}™. Let = € {0,1}" be chosen uniformly at
random. Then, for all A >0,

2
Pr HH(m,x*) — ﬁ‘ > /\} < 2exp (—2)\> .
2 n
Proof. Note that if € {0,1}™ is uniformly distributed, then the z; are inde-
pendent random variables uniformly distributed in {0,1}. Hence, regardless
of z*, the indicator random variables X; for the event that x; # x are also in-
dependent random variables uniformly distributed in {0,1}. Since H(z,z*) =
Z?:l X, the claim follows immediately from applying Theorem to the
events “H(x,2*) > E[H (z,2*)]+ X\ and “H(z,2*) < E[H(z,2*)] — \". O

This lemma implies that even among a polynomial number of initial search
points there is none which is closer to the optimum than % —O(y/nlogn).
This argument has been used numerous times in lower-bound proofs. This
argument is also the reason why the best-known black-box algorithm for the
optimization of ONEMAX, namely repeatedly sampling random search points
until the fitness values observed determine the optimum, also works well for
jump functions [12].

The following theorem, again due to Hoeffding [54], non-trivially extends
Theorem [1.10.7 by allowing the X; to take values in arbitrary intervals [a;, b;].

Theorem 1.10.9. Let X1,..., X, be independent random variables. Assume
that each X; takes values in a real interval [a;,b;] of length ¢; :==b; —a;. Let
X =>""1X,. Then, for all A >0,

2
Pr[X > E[X]+ ) Sexp(—z:zn)\2>, (1.10.15)
i=1G
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2
Pr[X < E[X] - A] <exp<—i)\2>. (1.10.16)
Dim1

For comparison, we now reformulate Theorems ll.lO.]J and ll.lO.ﬂ as addi-
tive bounds. There is no greater intellectual challenge hidden here, but we
feel that it helps to have seen these bounds at least once. Note that, since
the resulting bounds depend on the expectation, we require that the X; take
values in [0,1]. In other words, unlike the bounds presented so far in this
subsection, the following bounds are not invariant under additive rescaling

and are not symmetric for upper and lower tails.

Theorem 1.10.10 (equivalent to Theorem ) Let Xq,...,X,, be
independent random variables taking values in [0,1]. Let X =" | X;. Let
A>0. Then

Pr(X > E[X]+\)

( X[iX]A EW]“( n— [b;([]X_]Q”E[XH (1.10.17)
ga(%)E[X]H_exp( (E[X }+)\)1n<1—|—E[/\X])(—|;)\12 .
gexp<—2E[);\]2+§A> (1.10.19)
§eXp(—;min{E)[\;7)\})7 (1.10.20)

where the bound in () is read as 0 for A >n— E[X] and as (%)”
for A\=n—E[X]. For A < E[X], equation () simplifies to

2
Pr[X > F[X]+ )] SeXp(?)l;\[X])' (1.10.21)

Theorem 1.10.11 (equivalent to Theorem ) Let Xq,...,X, be
independent random variables taking values in [0,1]. Let X = > 1" | X;. Let
A>0. Then

Pr[X < E[X]- )| < ( E[X )\)E[X]A( n—E[X] )nE[XH,\

= E[X] - n—E[X]+\
(1.10.22)
E[X]-\
ge—A<E£([]X_]A) (1.10.23)
2
§exp< QL?[X]) (1.10.24)
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1.10.1.4 Chernoff Bounds Using the Variance

There are several versions of Chernoff bounds that take into account the
variance. In certain situations, they can give significantly stronger bounds
than the estimates discussed so far. Hoeffding [54] proved essentially the
following result.

Theorem 1.10.12. Let Xq,...,X,, be independent random wariables such
that X; < E[X;]+1 for all i=1,....,n. Let X =) 1 X;. Let 02 =
S, Var[X;] = Var[X]. Then, for all A >0,

Pr[X > E[X]+ )]
= <1_/\)(12)":"2>n (1.10.25)

Saidy
<exp| —A 1+% n 1+% .
exp <02<(1+0_A2) In <1+;2> _ U/\Z>) (1.10.26)

)\2
< exp ( 2) (1.10.27)
2O2+§)\

1 A2
gexp<—3min{2,)\}), (1.10.28)
o

where () is understood to mean 0 when A >n and (#i_z)” when A =n.

Obtaining () from (i.10.2a) is non-trivial. This estimate can be
found, for example, in Hoeffding [64]. From ([L.10.2¢), we derive (i.10.27‘) in
the same way as we derived () from (]1.10.2).

By replacing X; with —X;, we obtain the analogous bounds for the lower
tail.

Corollary 1.10.13. If the condition X; < E[X;]+1 in Theorem |1.10.14 is
replaced by X; > E[X;]—1, then Pr[X < E[X]— ] satisfies the estimates
(I.10.25) to ([1.10.29).

As discussed in Hoeffding [p4], the bound () is the same as the in-
equality (8b) in Bennett [5], which is stronger than the bound () due to
Bernstein [§] and the bound of exp(—%)\arcsinh(ﬁ)) due to Prokhorov [84].

In comparison with the additive version of the usual Chernoff bounds for
the upper tail (Theorem ), very roughly speaking, we see that the
Chernoff bounds working with the variance allow us to replace the expecta-
tion of X by its variance. When the X; are binary random variables with
Pr[X; = 1] small, then E[X]~ Var[X] and there is not much value in using
Theorem . For this reason, Chernoff bounds taking into account the
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variance have not been used a lot in the theory of randomized search heuris-
tics. They can, however, be convenient when we have random variables with
Pr[X; = 1] close to 1.

For example, assume that a search point y € {0,1}" is obtained from a
given x € {0,1}" via standard bit mutation with mutation rate p. Assume for
simplicity that we are interested in estimating the number of ones in y (the
same argument would hold for the Hamming distance of y from some other
search point z € {0,1}", e.g., a unique optimum). Now, the number of ones in
y is simply X = 2?21 y; and thus X is a sum of independent binary random
variables. However, differently from, e.g., the situation in Lemma , the
expectation of X may be big. If z; =1, then E[y;] = 1 —p. Hence, if  has many
ones, then E[Y] is large. However, since Var[y;] = p(1 — p) regardless of z;, the
variance Var[X] =np(1—p) is small (assuming that p is small). Consequently,
here the Chernoff bounds in this subsection give better estimates than, e.g.,
Theorem . See, e.g., [28] for an example where this problem appeared
in a recent research paper.

When not too precise bounds are needed, looking separately at the num-
ber of zeros and ones of x that flip (and bounding these via simple Chernoff
bounds) is a way to circumvent the use of Chernoff bounds taking into ac-
count the variance. Several research studies follow this approach despite the
computations often being more technical.

Chernoff bounds using the variance can also be useful in ant colony al-
gorithms and estimation-of-distribution algorithms, where again pheromone
values or frequencies close to 0 or 1 can lead to a small variance. See [[76, [L03]
for examples.

The bounds of Theorem can be written in a multiplicative form,

for example,

Pr[X > (1+0)E[X]]

B < (1 . aEa[;q ) - (1+225) =2 (1 - 5E7£X] ) -(1- ‘sEJLX])nl(Li);Q)
< exp (—%) (1.10.30)

This is useful when working with relative errors, however, it seems that unlike
for some previous bounds (compare, e.g., (1105) and (i.lO.lS)) the multi-
plicative forms are not much simpler here.

Obviously, the case where all X; satisfy X; < E[X;]+b for some number b
(instead of 1) can be reduced to the case b=1 by dividing all random variables
by b. For the reader’s convenience, we state the resulting Chernoff bounds
here.
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Theorem 1.10.14 (equivalent to Theorem and Corol-
lary [1.10.13). Let X1i,...,X, be independent random wvariables. Let b
be such that X; < E[X;]+0b for all i =1,....,n. Let X = Z?:1Xi- Let
02 =3""_, Var[X;] = Var[X]. Then, for all A >0,

Pr[X > E[X]+ ]

2

~(1+2) e (1= ) e\ 7
< <(1+b§> rr (1 A) v ) (1.10.31)
ag

b
gexp<—2(<1+‘;i) In (1+Z§> —1>) (1.10.32)
< exp <— 02(21232)) (1.10.33)
<exp<—;min{2z,2}), (1.10.34)

where () is understood to mean 0 when A >nb and (nbgiiﬂ)” when
A =nb.

When we have X; > E[X;] —b instead of X; < E[X;]+b foralli=1,...,n,
then the above estimates hold for Pr[X < E[X]— A].

1.10.1.5 Relation Between the Different Chernoff Bounds

We proceed by discussing how the bounds presented so far are related. The
main finding will be that the Chernoff bounds depending on the variance im-
ply all other bounds discussed so far with the exception of the additive Cher-
noff bound for random variables having different ranges (Theorem )

Surprisingly, this fact is not stated in Hoeffding’s paper [54]. More pre-
cisely, in [b4] the analogue of Theorems .10.15 and [1.10.14 uses the addi-
tional assumption that all X; have the same expectation. Since this assump-
tion is not made for the theorems not involving the variance, Hoeffding ex-
plicitly states that the latter are stronger in this respect (see the penultimate
paragraph of Section 3 of [54]).

It is, however, quite obvious that the common-expectation assumption can
be easily removed. From random variables with arbitrary means we can obtain
random variables all having mean zero by subtracting their expectation. This
operation does not change the variance and does not change the distribution
of X — E[X]. Consequently, Hoeffding’s result for variables with identical
expectations immediately vields our version of this result (Theorems 1.10.15
and [1.10.14). Theorem implies Theorem via the equivalent
version of Theorem m (see again the penultimate paragraph of Section 3
of [B4)).
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Consequently, the first (strongest) bound in Theorem (or, equiva-
lently the first bound in Theorem [1.10.14) implies the first (strongest) bound
in Theorem [1.10.1], which is equivalent to the first (strongest) bound in Theo-
rem [1.10.5. Essentially all of the other bounds presented so far can be derived
from these main theorems via simple, sometimes tedious, estimates. The sole
exception is Theorem [1.10.9, which can lead to significantly stronger esti-
mates when the random variables have ranges of different size.

As an example, let X1,...,X,, be independent random variables such that
X1,...,X,_1 take the values 0 and (n—1)~1/2 with equal probability %
and such that X, takes the values 0 and 1 with equal probability % Let
X =31 ,X;. Then E[X]=1(y/n—1+1). Theorem 1.10.9, taking ¢; = (n—
1)71/2 for i € [1.n—1] and ¢, = 1, yields the estimate

2)2

Pr[X > E[X]+ )\ <exp (— =
i

) = exp(—A?). (1.10.35)

Note that Var[X] = % =: 02, Consequently, the strongest Chernoff bound
of Theorem , equation ()7 gives an estimate larger than

no

— A ynot
1+ (UF32)nts = exp(—©(Alog))). Consequently, in this case Theo-
rem m gives a significantly stronger estimate than Theorem .

1.10.1.6 Tightness of Chernoff Bounds, Lower Bounds for
Deviations (Anti-Concentration)

As a very general and not at all precise rule of thumb, we can say that often
the sharpest Chernoff bounds presented so far give an estimate of the tail
probability that is near-tight. This is good to know from the perspective
of proof design, since it indicates that failing to prove a desired statement
usually cannot be overcome by trying to invent sharper Chernoff bounds. We
shall not try to make this statement precise.

However, occasionally we also need lower bounds for the deviation from
the expectation as a crucial argument in our analysis. For example, when
generating several offspring independently in parallel; as, e.g., in a (1+ A) EA|
we expect the best of these to be significantly better than the expectation,
and the efficiency of the algorithm relies on such desired deviations from the
expectation.

Lower bounds for deviations from the expectation, occasionally called anti-
concentration results, seem to be harder to work with. For this reason, we only
briefly give some indications of how to handle them, and refer the reader to
the literature. We note that there is a substantial body of mathematical liter-
ature on this topic (see, e.g., [73] and the references therein), which, however,
is not always easy to use for algorithmic problems. We also note that for bi-
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nomially distributed random variables, also the estimates in Theorem
can be used to derive lower bounds for tail probabilities.

Estimating Binomial Coeflicients

For binomial distributions, estimating the (weighted) sum of binomial co-
efficients arising in the expression for the tail probability often works well
(though the calculations may become tedious). In the theory of randomized
search heuristics, this approach was used, among others, in the analysis of
the (14+A) EA in [28, 40, 44, 51, 6] and the (1+ (X, A)) GA in [23]. The
following elementary bound was shown in [19, Lemma 3].

Lemma 1.10.15. Let n € N and X ~ Bin(n, ). Then
Pr {X > B[X]+1 E[X]} >1 (1.10.36)

1 E[X]} > 1 (1.10.37)

Two-Stage Rounding Trick

Estimating binomial coeflicients works well for binomial distributions. How-
ever, a neat trick allows us to extend such results to sums of independent,
non-identically distributed binary random variables. The rough idea is that
we can sample a binary random variable X with Pr[X = 1] = p by first sam-
pling the unique random variable Y which takes values in {1, [p+ 1]} and
satisfies E[Y] = E[X] = p, and then, if Y = %, replacing Y with a uniform
choice in {0,1}. If we view sampling X as rounding p randomly to 0 or 1 in
such a way that the expectation is p, then this two-stage procedure consists of
first rounding p to {0, 3} or {%,1} with expectation p and then (if necessary)
rounding the result to {0,1} without changing the expectation.

We use this trick below to show by elementary means two results which
previously had been shown only via deeper methods. We first extend
Lemma 1.10.15 above from fair coin flips to sums of independent binary
random variables having different distributions. A similar result was shown
in [81, first item of Lemma 6] for X ~ Bin(n,p), that is, for sums of iden-
tically distributed binary random variables (the result is stated without a
lower bound on the variance, but by regarding, e.g., Bin(n,n~2), it becomes
clear that a restriction such as p € [+,1— %] is necessary). We have not found
the general result of Lemma in the literature, even though it is clear
that such results can be shown via a normal approximation.

Lemma 1.10.16. Let vg > 0. There are constants c¢,C > 0 such that the
following is true. Let n € N. Let p1,...,pn € [0,1]. For alli € [1..n], let X; be
a binary random variable with Pr[X; = 1] = p;. Assume that X1,..., X, are
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independent. Let X =Y | X;. Assume that Var[X] =", p;(1—p;) > vo.
Then

Pr [X > B[X] +c\/Var[X]] >0, (1.10.38)
Pr {X < B[X] - c\/Var[X]] > C. (1.10.39)

Proof. Let us first assume that p; < § for all i € [1..n] and show the claim
under the weaker assumption Var[X] > $vy. We define independent random
variables Y; such that

Let Y =37, Y; and note that E[Y] = E[X].

Based on the Y;, we define independent binary random variables Z; as
follows. If Y; =0, then Z; := 0. Otherwise, that is, if Y; = %, then we let
Z; be uniformly distributed in {0,1}. An elementary calculation shows that
Pr[Z; = 1] = p;, that is, the Z; have the same distribution as the X;. Hence
it suffices to show our claim for Z := 3" | Z;.

Let ¢ be a sufficiently small constant. Our main argument for the lower
bound on the upper tail () will be that with constant probability we

have the event

A=Y > E[Y] - 3c\/Var[X]".
In this case, again with constant probability, we have Z > E[Z | A] +
cy/Var[X], which implies Z > E[Y]— S¢y/Var[X] + ¢\/Var[X] = E[X] +
1cy/Var[X]. In other words, we have

Pr [X > B[X]+ %cs/Var[X}] > Pr[A] - Pr [(Z | A) > E[Z| Al —i—c\/Var[X]}

and we shall argue that both factors are at least constant.

For the first factor, we note that for all i € [1..n], we have E[Y;] = p;.
An elementary calculation thus shows that Var[Y;] = %pi(l —2p;) < %pi(l —
pi) = 3 Var[X;] and hence Var[Y] < % Var[X]. With Cantelli’s inequality
(Lemma )7 we compute

DN =

Pr[A] = Pr [Y > E[Y] - c\/\T[X]]
> Pr [Y > E[Y] - \}c\/\ﬁ[y]]

2

>1—Pr {Y <E[Y]- \gc\/\/arim]
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1 c?
>1- = .
T~ 1+4c2/2 242

For the second factor, we note that once Y is determined, Z ~ Bin(2Y, 3).
We estimate

E[Y] - 3¢/ Var[X] > E[Y] - —£= Var[X]

0

5

EY] - &= EX] > (1- o) E[X] =q,

where we use the fact that Var[X] > v implies /Var[X] < \/2/vo Var[X].
Hence, conditional on A, we have Z ~ B1n(2q7 2) for some q > q, and thus

co| —

Pr [(Z | A)> E[Z| A] —i—c\/Var[X]] >
by Lemma and c\/Var[ < c\/E /1—m)E[X] <

L\/E[Z] A], where the middle inequality assumes that c is sufficiently small.

2
To prove ()7 we argue as follows. Let K = E[X]+ Sc¢y/Var[X]. Then
Pr[X < E[X] - %c\/Var[X]}
> ZPr = 5Py {(Z 1Y =)< B[X)- %c\/Var[X]}.

Now (Z |Y = %) ~ Bin(k,3), and hence Lemma implies that the
second factor is smallest for kK = 2K. Consequently,

Pr[X < B[X]~Jey/Var[X]|
> Pr[Y < K]-Pr [(Z Y = K) < E[X] - %c\/Var[X]].

We estimate the two factors separately. For the first one, in an analogous
fashion to that before, we obtain Pr[Y’ < K] =Pr[Y < E[Y]+ jc¢y/Var[X]] >

For the second factor, we compute
Pr((Z]Y = K) < E[X] - bey/Var[X]]
—Pr {Bin(ZK, 1) < E[Bin(2K, )] - K+ E[X] - %c\/Var[X]}
—Pr {Bin(2K, 1)< E[Bin(2K, 1) - c\/Var[Xﬂ .

2+2
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For ¢ < %, we have c¢y/Var[X Bin(2K % and
Lemma yields Pr [(Z Y = K) < E[X} ~1lc Var[ ]} >1

Now assume that the p; are not all in [0,3]. Let I’ = {i € [L.n] | p; < 1}
and 1" = [1.n]\I'. Let X' =%, X; and X" =37, X;. Since Var[X] =
Var[X'] 4+ Var[X”], by symmetry (possibly replacing the p; by 1—p;), we can
assume that Var[X'] > 1 Var[X]. Now Var[ ] > vo implies Var[ '] > Ly, and
by the above we have X' > E[X']+ Sc\/Var[X'] > E[X f cy/Var[X
with constant probability. By Cantelli’s inequality again, we have X" >

E[X"] = §3/Var[X"] > E[X"] — Var[X] with constant probability.
Hence X = X'+ X" > E[X']+ E[X"] + [X] = E[X]+ [X] with
constant probability. The proof that X < F[X]— 4\0/5 [X] with constant

probability is analogous. By replacing our original ¢ by 4v/2¢, we obtain the
precise formulation of the claim. a

We now use the two-stage rounding trick to give an elementary proof of
the following result.

Lemma 1.10.17. Let n € N and p1,...,pn € [0,1]. For alli € [1..n], let X; be
a binary random variable with Pr[X; = 1] = p;. Assume that X1,...,X,, are
independent. Let X =37 | X;. If Var[X] > 1, then, for all k € [0..n],

2

PriX =k < ———.
Var[X]

This result (without making the leading constant precise) was proven for
the special case where all p; are between % and % in [94, Lemma 9, arXiv ver-
sion]. This proof uses several deep arguments from probability theory. In [63,

Lemma 3], the result stated in [94] was minimally extended to the case where

only a linear number of the p; are between % and %.

Proof (of Lemma |1.10.17). In a similar fashion to the proof of Lemma ,

we define independent random variables Y; such that

Pr[Y; = 1] = 2p;,
PrY; =0] =1-2p;

when p; < % and

PrlY;=1]=2(p; — 1) =2p; — 1,
PrY; = 3] =1-2(pi—3) =2-2p;
for p; > 5. If V; € {0,1}, then Z; :=Y;; otherwise (that is, when Y; = 1), we let

Z; be uniformly distributed on {0,1}. As before, the Z; are just an alternative
definition of the X;. Hence Z = 2?21 Z; has the same distribution as X.
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For ¢ € {0,3,1}, let I, := |{i € [1..n] | ¥; = £}|. Since
Pr[Y; = %] =2min{p;,1 —p;} > 2Var[X;],
we have E[I%} > 2Var[X]. Since the Y; are independent, we have Pr[l1 <
2(1 — 6) Var[X]] < exp(—42 Var[X]) for all § € [0,1], by ([.10.12).
Finally, note that by () we have Pr[Bin(a, 3) =k] < /2 foralla €N

and k € Np.
Writing ag = |2(1 —0) Var[X]| and combining these arguments, we obtain

1
2

Pr[X = k]| =Pr[Z = k]

n k
:ZPr% a] Pr[ly = b Pr[Z = kI =anl =Y
a=0 b=0
n k
:ZPr[I%:a]ZPr[I =b|Pr[Bin(a, ) = k-]
a=0 b=0
<Pr[l; <ao]
n k
+ > Pr[I%za]ZPr[Il_b}Pr[Bm( L=k
a=ap+1 b=0
n k 9
<exp(—6% Var[X]) + Pr[li =a]Y Pr[l; =b],/———
( X)) a:aZOH 7 Jg 1 =b) | s
1
§exp(—52Var[X])+ m

For Var[X] > 1, by taking 6 = 0.75 and estimating exp(—d2Var[X]) <
E where we have used the estimate e* > ex, an al-

L <
62 Var[X] ed? \/Var
ternative version of Lemma , we obtain the bound 2 Var[X ]*1/ 2, a

We did not aim to optimize the implicit constants in the result above.
We note that if we take § = Var[X]~'/4, the claimed probability becomes

(1 +0(1))\/ﬁ fOI' Var[X] — OQ.

Approximation via the Normal Distribution

The generic approach of approximating binomial distributions via normal
distributions is not often used in the theory of randomized search. In [81],

the Berry—Esseen inequality was employed to prove a result similar to
Lemma for the special case of binomial distributions. Unlike many
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other proofs relying on the normal approximation, this proof is quite short
and elegant.

In [64], the normal approximation was used to show that the best of
k € w(l)No(y/n) independent random initial search points in {0,1}™ has
with probability 1 —o(1) a distance of & — \/% (Ink—2Inlnk=+cy) from the
optimum, where ¢ is an arbitrary sequence tending to infinity.

In [94, Lemma 7, arXiv version], a very general result on how a sum of
independent random variables with bounded expectation and variance can be
approximated by a normal distribution was used to analyze the performance
of an estimation-of-distribution algorithm. This analysis is highly technical.

Order Statistics

The result about the best of k independent initial individuals in [64] actually
says something about the maximum order statistic of k¥ independent Bin(n, %)
random variables. In general, the maximum order statistic is strongly related
to lower bounds for tail probabilities, as the following elementary argument
(more or less explicit in all work on the (14 \) EA) shows: Let X7,...,X) be
independent random variables following the same distribution. Let X a.x =
max{X; | € [1..A]}. Then

Pr[X* > D] < APr[X; > D],
Pr[X* > D] =1—-(1—Pr[X; > D])* > 1 —exp(APr[X; > D]).

Consequently, Pr[X* > D] is constant if and only if Pr[X; > D] = O(3).

For the maximum order statistics of binomially distributed random vari-
ables with small success probability, Gieflen and Witt [51, Lemma 4(3)]
proved the following result and used it in the analysis of the (1+)\) EA.

Lemma 1.10.18. Let a >0 and ¢ > 0 be constants. Let n € N, and let all of
the following asymptotics be for n — oo. Let k =n(lnn)~% and A =w(1). Let
Xmax be the mazximum of X independent random variables with distribution

Bin(k, £). Then E[Xmax] = (1+0(1)) 5 e -

Extremal Situations

Occasionally, it is desirable to understand which situation gives the smallest
or the largest deviations. For example, let X1,..., X,, be independent binary
random variables with expectations E[X;] = p;. Then it could be useful to
know that X =" ; X; deviates most (in some suitable sense) from its
expectation when all p; are % Such statements can be made formal and can
be proven with the notions of majorization and Schur-convexity. We refer
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to [89] for a nice treatment of this topic. Such arguments have been used to
analyze estimation-of-distribution algorithms in [94].

Staying on One Side of the Expectation, and Feige’s Inequality

When it suffices to know that with reasonable probability we will stay (more
or less) on one side of the expectation, then the following results can be
useful.

A very general bound is Feige’s inequality [48, Theorem 1], which has
found applications in the analysis of randomized search heuristics, among
others, in [15, L6, 65, 93].

Lemma 1.10.19 (Feige’s inequality). Let X1,...,X,, be independent non-
negative random variables with expectations p; := E[X;] satisfying p; < 1. Let
X =" ,X;. Then
Pr[X < E[X]+ 4] > min{;, %}.
For binomial distributions, we have stronger guarantees. Besides bounds

comparing the binomial distribution with its normal approximation [90], the
following specific bounds are known.

Lemma 1.10.20. Let n €N, p € [0,1], and k = |np|. Let X ~ Bin(n,p).
(a) If L < p, then Pr[X > E[X]] > 1.
(b) If 0.29/n < p < 1, then Pr[X > E[X]] > 1.

Lopcp1 > >_1__ vne(dop)
(c)If - <p<1 n,thenPr[X_E[X]]_2\/5\/m+1

() If 3 <p <1, then Pr[X > BIX])> § — \ [ortipy
(e) If & <p <13, then Pr[X > E[X]+1] > 0.037.

n

Surprisingly, all these results are quite recent. The kﬁound , from [52],
appears to be the first_general result of this type at all.B It was followed up
by estimate (c), from [83], which gives stronger estimates when np(1—p) > 8.
The result [d), from [21], is the only one to give a bound tending to % for
both np and n(1 — p) tending to infinity. The estimates and are also
from [21]. A lower bound on the probability of exceeding the expectation by
more than one, such as [e), was needed in an analysis of an evolutionary
algorithm with self-adjusting mutation rate [28, Lemma 9].

! For pe [%, %]7 this result follows from the proof of Lemma 6.4 in [85]. The lemma

itself only states the bound Pr[X > E[X]] < min{p, i} for p < £. The assumption p < %
appears to be crucial for the proof.
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1.10.1.7 Proofs of the Chernoff Bounds

As discussed in Section , all Chernoff bounds stated so far can be
derived from the strongest bounds of Theorem [1.10.9 or [1.10.12 via elemen-
tary estimates that have nothing to do with probability theory. We shall
not detail these estimates — the reader can find them all in the literature,
for example, in [54]. We shall, however, sketch how to prove the two central
inequalities ( and ([1.10.2). One reason for this is that we can then
argue in Section that these proofs (and thus also all Chernoff bounds
presented so far) hold not only for independent random variables, but also
for negatively correlated ones.

A second reason is that, occasionally, it can be profitable to have this
central argument ready to prove Chernoff bounds for particular distributions
for which the classical bounds are not_applicable or do not give sufficient
results. This has been done, e.g., in [3, 27, B3, 67, 79, 80, 102].

The central step in almost all proofs of Chernoff bounds, going back to
Bernstein [(], is the following one-line argument. Let h > 0. Then

E[th]

Pr[X >t = Pr[th > eht] < ot

n
=e M] El"]. (1.10.40)
=1

Here, the first equality stems simply from the fact that the function x — e*

is monotonically increasing. The inequality in (1.10.4@]) is Markov’s inequality
(Lemma ) applied to the (non-negative) random variable . The last
equality exploits the independence of the X;, which carries over to the e¥i.

It now remains to estimate E[e"Xi] and to choose h so as to minimize the
resulting expression. We do this as an example for the case where all X; take
values in [0,1] and E[X] <t < n. Since the exponential function is convex,
E[e"¥i] is maximized (which is the worst case for our estimate) when X; is
concentrated on the values 0 and 1, that is, we have Pr[X; = 1] = E[X;] and
Pr[X; = 0] = 1 — E[X;]. In this case, E[e"Xi] = (1 - E[X;])e’ + E[X;]e". By
the inequality of arithmetic and geometric means, we compute

n

This gives the tail estimate Pr[X >¢] <e~"*(1(n— E[X]+ E[X]e"))", which
is minimized by taking
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= (o)

which then gives the strongest multiplicative Chernoff bound () if we
rewrite it using t = (1+90)E[X].

Since it may help reading the literature, we add that E[eX] is called the
exponential moment of X and h +— E[th] is called the moment-generating
function of X.

From the above proof sketch together with the remark on the tightness of
Markov’s inequality following Lemma | , we see that in almost all cases,
our Chernoff bounds are not absolutely tight, that is, they hold with “<”
instead of “<.” The sole exceptions are (i) when X takes only two values
with positive probability, (ii) when the tail event consists of a single point,
for example, when X >n or X <0if X is a sum of n binary random variables,
or (iii) when the tail event is empty, for example, when X >n+1if X is a
sum of n binary random variables. Having a “<” in a Chernoff bound will not
drastically change things, but can occasionally be nice for cosmetic reasons.

1.10.1.8 Chernoff Bounds with Estimates for the Expectation

Often we do not know the precise value of the expectation or it is tedious to
compute it. In such cases, we can exploit the fact that all Chernoff bounds
discussed in this chapter are also valid when the expectation is replaced by an
upper or_lower bound on it. This is obvious for many bounds; for example,

from ([1.10.13), (i.l().lé-ll)7 and () we immediately derive the estimates

2\2
Pr[X > pt 4+ A <Pr[X > p+ ) gexp<>,
n

2\2
PrX <y~ X < PrX < i A SeXp<>,
n

- 5 p 5p

PrX < (1-8)u~] < Pe[X < (1) SeXp(Q) < oxp ( ! )
for all u* > E[X] =:p and p~ < E[X].

This is less obvious for a bound such as Pr[X > (1+0)u™] < exp(—362u™T),
since now also the probability of the tail event decreases for increasing pt.
However, for such bounds also we can replace E[X] by an estimate, as the
following argument shows.

Theorem 1.10.21. (a) Upper tail: Let Xi,...,X, be independent random
variables taking values in [0,1]. Let X =" | X;. Let p* > E[X]. Then,
for all 6 >0,
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1 (1+8)u™ n—ut n—(14+8)u™

1+46 n—(14+0)u™ ’
(1.10.41)

where this bound is read as 0 for 6 > ”;iﬁ and as (%)” for 6 = n—pt

Consequently, all Chernoff bounds of Theorem (including (|L.10.7)

and () and Corollary ) and those of Theorem are
valid when_all occurrences of E[X] are replaced by p+. The additive
bounds (i.lO.la) and ([1.10.15) and those of Theorem |1.10.14 and |1.10.1
are trivially valid with the expectation replaced by an upper bound on it.

(b) Lower tail: All Chernoff bounds of Theorems |1.10.d and [Z.IO.ZJL the ones
in ( .10.14-}1) and (]L.10.16), and those of Corollary 1,10.13 are valid when
all occurrences of E[X| are replaced by p~ < E[X].

Pr[X > (1+46)ut] < (

Proof. We first show () There is nothing to do when (1+6)u™ > n, so
+

let us assume that (1+8)u™ <n. Let y= % For all i € [1..n], define

Y: by Vi = X; +~v(1 — X;). Since v <1, V; < 1. By definition, Y¥; > X;, and

thus also Y > X for Y :=>"" | Y;. Also, ™ = E[Y]. Hence

Pr[X > (14+8)uT] < Pr[Y > (14+6)u™] = Pr[Y > (14+6)E[Y]).

Now ( 10.41) follows immediately from Theorem , equation ()
Since ([1.10.41)) implies all other Chernoff bounds of Theorem (includ-
ing (th?I) and ( 1.10.§) and Corollary [1.10.4) via elementary estimates, all
these bounds are valid with E[X] replaced by pu* as well. This extends to
Theorem , since that is just a reformulation of Theorem . For
the remaining (additive) bounds, replacing E[X] by an upper bound only
decreases the probability of the tail event, so clearly these remain valid.

To prove our claim about lower tail bounds, it suffices to note that all
bounds in Theorem are monotonically decreasing in F[X]. So, replacing
E[X] by some p~ < E[X] makes the tail event less likely and increases the
probability in the statement. Similarly, the additive bounds are not affected
when E[X] is replaced by u~. O

We note without proof that the variance of the random variable Y con-
structed above is at most that of X. Since the tail bound in Theorem
is increasing in 02, the same argument as above also shows that multiplicative
versions of Theorem [1.10.19 such as () remain valid when all occur-
rences of E[X] are replaced by an upper bound u* > E[X].
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1.10.2 Chernoff Bounds for Sums of Dependent
Random Variables

In the previous subsection, we discussed large-deviation bounds for the clas-
sical setting of sums of independent random variables. In the analysis of al-
gorithms, often we cannot fully satisfy the assumption of independence. The
dependencies may appear minor, maybe even in our favor in some sense, so
we could hope for some good large-deviation bounds.

In this section, we discuss three such situations which all lead to (essen-
tially) the known Chernoff bounds being applicable despite the absence of
perfect independence. The first of these was already discussed in Section m
so we just note here how it also implies the usual Chernoff bounds.

)

1.10.2.1 Unconditional Sequential Domination

In the analysis of sequential random processes such as iterative randomized
algorithms, we rarely encounter situations where the events in different iter-
ations are independent, simply because the actions of our algorithm depend
on the results of the previous iterations. However, owing to the independent
randomness used in each iteration, we can often say that, independent of
what happened in iterations 1,...,¢ —1, in iteration ¢ we have a particular
event with at least some probability p.

This property was made precise in the definition of unconditional sequential
domination before Lemma [1.8.§. The lemma then showed that unconditional
sequential domination leads to domination by a sum of independent random
variables. Any upper tail bound for this sum is naturally valid also for the sum
of the original random variables. We make this elementary insight precise in
the following lemma. This type of argument has been used in, among others,
analyses of evolutionary algorithms for shortest-path problems [32, 33, 37].
There, one can show that, in each iteration, independent of the past, with at
least a certain probability an extra edge of a desired path is found. This type
of argument was also used in [B4] to construct a monotonic function that is
difficult to optimize.

Lemma 1.10.22. Let (X1,...,X,) and (X7,...,X}) be finite sequences of
discrete random variables. Assume that X{,..., X} are independent.

(a) If (XT,..., X)) unconditionally sequentially dominates (X1,...,X,), then
for all X € R, we have Pr[>°7" | X; > X\ < Pr[>.7" | X > \| and the lat-
ter expression can be bounded by Chernoff bounds for the upper tail of
independent random variables.

(b) If (X75,...,X};) unconditionally sequentially subdominates (X1,...,Xn),
then for all X € R, we have Pr[Y " | X; <N <Pr[};" ; X¥ <] and the
latter expression can be bounded by Chernoff bounds for the lower tail of
independent random variables.
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1.10.2.2 Negative Correlation

Occasionally, we encounter random variables that are not independent, but
that display an intuitively even better negative-correlation behavior. Take as
an example the situation where we do not flip bits independently with proba-
bility %, but we flip a set of exactly k bits chosen uniformly at random from
all sets of k out of n bits. Let X1,...,X,, be the indicator random variables
for the events that bit 1,...,n flips. Clearly, the X; are not independent. If
X; =1, then Pr[Xy = 1] = £=1 which is different from the unconditional

n—1’

probability % However, things feel even better than independent: knowing
that X7 =1 actually reduces the probability that Xs = 1. This intuition is
made precise in the following notion of negative correlation.

Let X1,...,X, be binary random variables. We say that Xi,..., X, are
1-negatively correlated if, for all I C [1..n], we have

Privie I:X;=1] < [[Pr[Xi=1].
el

We say that X1,...,X, are O-negatively correlated if, for all I C [1..n], we
have
Pr{Vie I: X; =0] < [[Pr[X; =0].
i€l
Finally, we call X1,..., X,, negatively correlated if they are both 0-negatively
correlated and 1-negatively correlated.

In simple words, these conditions require that the event that a set of vari-
ables is all zero or all one is at most as likely as in the case of independent
random variables. It seems natural that sums of such random variables are at
least as strongly concentrated as independent random variables, and, in fact,
Panconesi and Srinivasan [82] were able to prove that negatively correlated
random variables admit Chernoff bounds. To be precise, they only proved
that 1-negative correlation implies Chernoff bounds for the upper tail, but
it is not too difficult to show (see below) that their main argument works
for all bounds proven via Bernstein’s exponential moments method. In par-
ticular, for sums of 1-negatively correlated random variables we obtain all
Chernoff bounds for the upper tail that have been presented in this chapter
for independent random variables (as far as they can be applied to binary
random variables). We prove a slightly more general result, as this helps in
arguing that we can also work with upper bounds for the expectation instead
of the precise expectation. We then use a symmetry argument to argue that
0-negative correlation implies all lower tail bounds presented so far.

Theorem 1.10.23 (1-negative correlation implies upper tail bounds).
Let X1,...,X, be l-negatively correlated binary random wvariables. Let
al,...Gn,b1,...,bn € R with a; < b; for all i € [1.n]. Let Y1,...,Y, be ran-
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dom variables with Pr[Y; = a;] = Pr[X; = 0] and Pr[Y; = b;] =Pr[X; =1]. Let
Y=31Y

(a) If ay,...,an.b1....,b, €[0.1], then Y satisfies the_Chernoff bounds
given_in L.lO.i) to), (i.lO.;I) to (|L.10.9), (i.lO.la), (1101()
to (1.10.21)), and (1.10.25) to ([L.10.3(), where in the latter we use
0% == 31, VarlY].

(b) Without the restriction to [0,1] specified in @ Y satisfies the Cher-
noff_bound of () with ¢; :== b; —a; and the bounds of ()

0 (1.10.34) with o2 := 3", Var[Vi].

Each of these results also holds when all occurrences of E[Y] are replaced by
* for some pt > E[Y].

—

Proof. Let X{,...,X] be independent binary random variables such that for
each i € [1..n], the random variables X; and X/ are identically distributed.
Let ¢; :=b; —a; for all i € [1..n]. Note that Y; = a; +¢; X; for all i € [1..n]. Let
Y/=a;+¢ X Let Y =31, Y/

We first show that the 1-negative correlation of the X; implies
E[Y*] < E[(Y")¥] for all £ € Ng. There is nothing to show for £ =0 and
(=1, so let £>2. Since Y = (31 a;) + (X, ciX;i), we have Y =
Zi:o (ﬁ)(Z?zlal)Z doys 1cZXZ) By linearity of expectation, it suffices
to show that E[(3 1, ¢;Xi)F] < B[S0, ciX])*]. We have (31, ¢; X;)F =
Z(il, )€l H?Zl ci; Xi;. Applying the definition of 1-negative correla-
tion to the set I = {i1,...,ix}, we compute

k

EL]icin,-j} (H ZJ)PerG [1.k]: X, =1]

(110 (s )

= i€l

= (I) (Irevi=n) e[ 11 31]

= el

zw

Consequently, by linearity —of expectation, E[(> 1 ;¢ X;)F] <
E[(X0 i X]))k] for all k € N, and thus E[Y?] < E[(Y")"].

We recall from Section [l .10.1.7 that essentially all large-deviation bounds
are proven via upper bounds on the exponential moment E[e"Y] of the ran-
dom variable hY, where h > 0 is suitably chosen. Since the random variable
Y is bounded, by Fubini’s theorem we have

S N AV X 10 0
EleM] E[Zh; } :ZhETEY] (1.10.42)
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Since E[Y*] < E[(Y")], we have E[e"Y] < E[ehyl]. Consequently, we obtain
for Y all Chernoff bounds which we could prove with the classical methods
for Y.

It remains to show that we can also work with an upper bound p* > E[Y].
For this, note that when we apply the construction of Theorem [1.10.2]] to
our random variables Y;, that is, we define Z; =Y; +~(1—Y;) for a suitable
v € [0,1], then the resulting random variables Z; have the same properties as
the Y;, that is, there are a and ¢ such that Z; = a) + ¢/ X;. Consequently,
we have Pr[Y > (14+8)u™] < Pr[Z > (1+6)ut]) =Pr[Z > (1+0)E[Z]] for the
sum Z = Z?:l Z;, and the last expression can bounded via the results we
have just proved. a

Theorem 1.10.24 (0-negative correlation implies lower tail bounds).
Let X1,...,X, be 0-negatively correlated binary random wariables. Let
A1y y0pn,b1,.. by € R with a; <b; for all i € [1..n]. Let Y1,...,Y,, be ran-
dom variables with Pr[Y; = a;] = Pr[X; = 0] and Pr[Y; = b;] =Pr[X; =1]. Let
Y =YY

(a) If ay.....an,b1,....by €[0,1]. then Y satisfies the Chernoff bounds given
in (1.10.1d) to (Il.l().lﬂ), (IL.10.14), (1.10.22) to (| .10.24-1]), and those in
Corollary [1.10.18 with 0% := Y"1, Var[Y;].

(b) Without the restriction to [0,1] specified in @, Y satisfies the Chernoff
bound of ([1.10.16) with ¢; :=b; —a; and those of the last paragraph of
Theorem with 02 := """ | VarlY;].

Each of these results also holds when all occurrences of E[Y] are replaced by
p~ for some p~ < E[Y].

Proof. Let }7; :=1—Y;. Then the Yz satisfy the assumptions of Theo-
rem (with a; = 1—b;, b; =1—a;, and X; =1 — X;; note that the
latter are 1-negatively correlated, since the X; are 0-negatively correlated;
note further that a;,b; € [0,1] if a;,b; € [0,1]). Hence Theorem [1.10.23 gives
the usual Chernoff bounds for the ¥;. As in Section [1.10.1.2. these translate
into the estimates (i.lO.l ) to (i.l().lﬂ) and these imply ( to ()
The bound ([1.10.13) for the Y; immediately translates to ( ] for the Y;.
Finally, the results of Theorem [1.10.12 imply those of Corollary [1.10.13. All
these results are obviously weaker when E[Y] is replaced by some p~ < E[Y].

O

1.10.2.3 Hypergeometric Distribution

It remains to point out some situations where we encounter negatively corre-
lated random variables. One typical situation (but by far not the only one)
is sampling without replacement, which leads to the hypergeometric distribu-
tion.
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Say we choose n elements randomly from a given N-element set S without
replacement. For a given m-element subset T' of S, we wonder how many of
its elements we have chosen. This random variable is said to be hypergeomet-
rically distributed with parameters N, n, and m.

More formally, let S be any N-element set. Let T' C S have exactly m ele-
ments. Let U be a subset of S chosen uniformly from all n-element subsets of
S. Then X = |UNT)| is a random variable with a hypergeometric distribution
(with parameters N, n, and m). By definition,

() (k)
()

for all k € [max{0,n+m — N}..min{n,m}|.

It is easy to see that F[X] = ‘Ulgl‘T‘ = % Enumerate T'= {t1,...,t,,} in an

Pr[X =k =

arbitrary manner (before choosing U). For i =1,...,m, let X; be the indicator

random variable for the event ¢; € U. Clearly, Pr[X; =1] = ||—g|| = - Since

X =3"", X;, we have E[X] = T by linearity of expectation (Lemma )

It is also obvious that the X; are not independent. If n < m and X; =
...=X,, =1, then we necessarily have X; = 0 for ¢ > n. Fortunately, however,
these dependencies are of the negative-correlation type. This is intuitively
clear, but also straightforward to prove.

Let I C[1.m], W={t;|i€ I}, and w=|W|=|I|. Then Pr[VieI: X; =
1] =Pr[W C U]. Since U is uniformly chosen, it suffices to count the number
of U that contain W, which is (lS\Wl

[U\W|
number of possible U. Hence

e e (Y1) (V)

ne....-(n—w+1) n\w
TN (N—wth () =IPixi=1.

), and to compare them with the total

In a similar fashion, we have

PriVieI:X;=0]=Pr[UNW =)

()
(N=n)...(N—n—w+1)

N...(N-w+1)

< (N];”yv =[]Prix:=0],

i€l

where we read (N;w) =0 when n > N —w.
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Together with Theorems 11.10.251 and h.10.24|, we obtain the following the-
orem.

Theorem 1.10.25. Let N € N. Let S be some set of cardinality N; for conve-
nience, let S=[1..N]. Let n < N, and let U be a subset of S having cardinality
n uniformly chosen from all such subsets. For i € [1..N], let X; be the indi-
cator random variable for the event i € U. Then Xy,..., XN are negatively
correlated.

Consequently, if X is a random variable having a hypergeometric distri-

bution with parameters N, n, and m, then the usual Chernoff bounds for
sums_of n_independent binary random variables (listed in Theorems |1.10.2

and |1.10.24) hold.

Note that for hypergeometric distributions we have symmetry in n and
m, that is, the hypergeometric distribution with parameters N, n, and m is
the same as the hypergeometric distribution with parameters N, m, and n.
Hence, for Chernoff bounds depending on the number of random variables,
for example those in Theorem | , we can make this number min{n,m}
by interpreting the random experlment in the right fashion.

That the hypergeometric distribution satisfies the Chernoff bounds of The-
orem [1.10.7 has been attributed to Chvatal [14] in some recent publications,
but this is not correct. As Chvatal writes, the aim of his note was solely to
give an elementary proof of the fact that the hypergeometric distribution
satisfies the strongest Chernoff bound of Theorem (which implies the
bounds of Theorem [L.10. ﬂ), whereas the result itself is from Hoeffding [54].

For a hypergeometric random Varlable X with parameters N, n, and m,
[B, Lemma 2] showed that if m < 2 and z > 2, then Pr[X = 2] < (2¢7)%,
With Theorem we can use the usual Chernoff bound () and
obtain the stronger bound

Pr[X > 2] < e=~FIX] (E[X]) < <6E[X]> = (Y a04)

z z zN

which is at most ! 2em)z for z > n/2.

Theorem [1.10.25 can be extended to pointwise maxima of several families
such as (X;) in Theorem if these are independent. This result was
used in the analysis of a populatlon—based genetic algorithm in [23], but might
be useful also in other areas of discrete algorithmics.

Lemma 1.10.26. Let k,N € N. For all j € [1..k], let n; € [1..N]. Let S be
some set of cardinality N; for convenience, let S = [1..N]. For all j € [1..k],
let Uj be a subset of S having cardinality n; uniformly chosen from all such
subsets. Let the U; be stochastically independent. For all i € S, let X; be the
indicator random variable for the event that i € U; for some j € [1..k]. Then
the random variables X1,..., XN are negatively correlated.
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Note that the situation in the lemma above can be seen as sampling with
partial replacement. We sample a total of > ;M elements, but we replace
the elements chosen after rounds ny,n1 +ne,... only. We expect that other
partial replacement scenarios will also lead to negatively correlated random
variables, and thus to the usual Chernoff bounds.

We recall that negative correlation can also be useful without Chernoff
bounds. For example, in Section we used the lemma above to prove a
lower bound on the coupon collector time (or, equivalently, on the runtime
of the randomized local search heuristic on monotonic functions).

1.10.3 Chernoff Bounds for Functions of Independent
Variables, Martingales, and Bounds for
Maxima

So far, we have discussed tail bounds for random variables which can be writ-
ten as a sum of (more or less) independent random variables. Sometimes, the
random variable we are interested in is determined by the outcomes of many
independent random variables, but not simply as a sum of these. Neverthe-
less, if each of the independent random variables has only a limited influence
on the result, then bounds similar to those of Theorem [1.10.9 can be proven.
Such bounds can be found under the names of Azuma’s inequality, martingale
inequalities, and the method of bounded differences.

As far as possible, we shall try to avoid the use of martingales. The follow-
ing two bounds due to McDiarmid [[70] need martingales in their proof, but
not in their statement.

Theorem 1.10.27 (method of bounded differences). Let X1,...,X,, be

independent random variables taking values in the sets 21,..., 2y, respectively.

Let 2:=01 x...x 2. Let f: 2 —R. Foralli€[l..n] let ¢; > 0 be such that

for all w,w € £2 we have that if for all j #1i, wj =wj, then |f(w)— f(@)] < ¢.
Let X = f(X1,...,Xn). Then, for all A\ >0,

Pr[X > B[X]+ )\ < ( 2
T > sexp| — n 5
i c

Pr[X < E[X] - )] < ( 227 )
r[X < “AN<exp| ~=— -
i

The version of Azuma’s inequality given above is due to McDiarmid [[7(]
and is stronger than the bound exp(—A2/23"1" | ¢?) given by several other
authors.

Theorem has found numerous applications in discrete mathematics
and computer science, but only a few in the analysis of randomized search
heuristics (the only one we are aware of is [L1]). All other analyses of random-
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ized search heuristics that need Chernoff-type bounds for random variables
that are determined by independent random variables, but in a way other
than as a simple sum, have resorted to the use of martingales.

One reason for this might be that the bounded-differences assumption is
easily proven in discrete mathematics problems such as the analysis of random
graphs, whereas in algorithms the sequential nature of the use of randomness
makes it hard to argue that a particular random variable sampled now has
a bounded influence on the final result regardless of how we condition on all
future random variables. A more natural condition might be that the outcome
of the current random variable has only a limited influence on the expected
result determined by the future random variables. For this reason, we are
optimistic that the following result might become useful in the analysis of
randomized search heuristics. This result is a weak version of Theorem 3.7
in [[70].

Theorem 1.10.28 (method of bounded conditional expectations).
Let Xq,..., X, be independent random wvariables taking values in the sets
2,..., 82, respectively. Let 2:= 1 X ... x 2. Let f: 2 —R. Foralli€[1..n]
let ¢; > 0 be such that for all wy € 21,...,wi—1 € 2,1 and all w;,w; € 2; we
have

|E[f<w17'-'7wi—17wiaXi+1)-"aXn)] _E[f(UJl,-..,Wi_17a1i,Xi+17-.-,Xn)]|
§ci.

Let X = f(X1,...,Xy). Then, for all A >0,

Pr[X > E[X] 4\ <e ( 227
rA = SEXpl ~=n 3 |»
Zi:lc%

Pr[X < E[X]—A] < ( 22 )
r[X < “AN<exp| —~=7— |-
D1 6

Here is an example of how the new theorem can be helpful. The compact
genetic algorithm (cGA) without frequency boundaries maximizes a function
f:{0,1}™ = R as follows. There is a (hypothetical) population size K € N,
which we assume to be an even integer. The cGA sets the initial frequency
vector 79 € [0,1]" to 7(0) = (3,...,%). Then, in each iteration ¢t =1,2,...
it generates two search points z(t1) z(t2) ¢ {0,1}"™ randomly such that, in-
dependently for all j € {1,2} and i € [1..n], we have Pr[xl(-t’j) =1]= Tl-(t).
If f(x(t’l)) < f(m(t’Q)), then we swap the two variables, that is, we set
(D) 252y (2(52) (1) Finally, in this iteration, we update the fre-
quency vector by setting 7+ « 7() 4 L (381 —5(t:2)),

(t)

Let us analyze the behavior of the frequency 7, of a neutral bit i € [1..n],
that is, one that has property that f(z) = f(y) for all  and y which differ
only in the i-th bit.
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Lemma 1.10.29. Let K be an even integer. Consider a run of the cGA with
hypothetical population size K on an objective function f:{0,1}"™ — R having
a neutral biti. For all T € N, the probability that within the first T iterations
the frequency of the i-th bit has converged to one of the absorbing states 0

. K2
or 1 is at most 2exp (732—7“)

Proof. To ease reading, let X; := Ti(t). We have Xg = % with probability one.
Once X; is determined, we have

Pr(Xip1 = Xi + o] = Xe(1- Xy),
Pr(Xep1 =Xt — %] = Xi(1-X3),
Pr[Xt+1 = Xt] =1- 2Xt(1 - Xt)

In particular, we have E[X41 | Xo,...,X¢] = F[Xt41 | X¢] = X¢. By induction,
we have E[Xp | Xy] = X for all T > t.

2
Our aim is to show that, with probability at least 1 — 2exp <_3}§7T>7

X7 has not yet reached to one of the absorbing states 0 and 1. We first
write the frequencies as results obtained from independent random variables.
For convenience, these will be continuous random variables, but it is easy
to see that we could have used discrete ones instead. For all t =1,2,..., let
R; be a random number uniformly distributed in the interval [0,1]. Define
Yy,Y1,... as follows. We have Yy = % with probability one. For t € Ng, we set

PrlYip1 =Y+ ] if Ry > 1-Y,(1-Y;),
Pr[Yij1 =Y — %] if R <Yi(1-Y3),
Pr[Y;41 = Yi] otherwise.

It is easy to see that (Xo,X1,...) and (Yp,Y7,...) are identically distributed.
Note that Y7 is a function g of (Ry,...,Ry). For concrete values r1,...,r: €
[0,1], we have E[g(r1,...,7¢,Rex1,...,Rr)] = E[Y7 | Yi] = Y;. Consequently,
for all 7, € [0,1], the two expectations F[g(r1,...,7t—1,7¢, Ret1,- .., Rr)] and
Elg(r1,...,r4—1,Ft, Ri41,...,Rr)] are two possible outcomes of Y; given a
common value for Y;_1 (which is determined by r{.....r;_1), and hence differ
by at most ¢; = % We can thus apply Theorem as follows.

Pr[Yr € {0,1}] =Pr UYT— %| > %]
=Pr Ug(Rla~--7RT) —E[Q(Rl,...,RT)H Z

(1)2 K2
< 2exp (—271?[%?) = 2exp (_32T> .

Note that it is not obvious how to obtain this result with the clas-
sical method of bounded differences (Theorem [1.10.27). In particular,

]

D=

O
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the above construction does not satisfy the bounded-differences condition,
that is, there are values ri,...,rp and 7; such that g(ri,...,rp) and
g(r1,...,Te—1,T¢,"t41,- .., r7) differ by significantly more than % To see this,
consider the following example. Let r; =1 for even ¢ and r; = % for odd i. Then
g(r1,...,rp) = % for even T and g(r1,...,rp) = %f % for odd T'. However,
for all even T we have g(%,rg, coy ) :g(%,rg, cooyrpy1) =min{l, % + % . %},
showing that a change in the first variable leads to a drastic change in the
g-values for larger T

This example shows that our stochastic modeling of the process cannot
be analyzed via the method of bounded differences. We cannot rule out the
possibility that a different modeling might admit an analysis via the method
of bounded differences, but nevertheless this example suggests that Theo-
rem is a useful tool in the theory of randomized search heuristics.

Without going into details (and, in particular, without defining the notion
of a martingale), we note that both Theorem and Theorem are
special cases of the following martingale result, which is often attributed to
Azuma [2] despite the fact that it had already been proposed by Hoeffding [54].
Readers familiar with martingales may find it more natural to use this result
rather than the previous two theorems in their work; however, it has to be
said that not all researchers in the theory of algorithms are familiar with
martingales.

Theorem 1.10.30 (Azuma—Hoeffding inequality). Let Xo,X1,...,X,
be a martingale. Let c1,...,cp, >0 with |X; — X;—1| < ¢; for all i € [1..n].
Then, for any A >0,

)\2
PriX,—Xo> A <exp| ——5— |-
o= Ko 2N < p( 22?_1012>

This result has found several applications in the theory of randomized
search heuristics, for example, in [25, 40, 62].

We observe that the theorem above is a direct extension of Theorem
to martingales (note that the ¢; there are twice as large as here, which explains
the different location of the 2 in the bounds). In a similar vein, there are
martingale versions of most other Chernoff bounds presented in this chapter.
We refer to McDiarmid [70] for more details.

1.10.3.1 Tail Bounds for Maxima and Minima of Partial Sums

We end this section with a gem already contained in Hoeffding’s work. It
builds on the following elementary observation: if Xg, X1,...,X,, form a mar-
tingale, then Yy, Y7,...,Y,, defined as follows also form a martingale. Let A € R.
Let ¢ € [0..n] be minimal with X; > A, if such an X; exists, and i =n+1 oth-
erwise. Let Y; = X; for j <4 and Y; = X; for j > 4. Then Y, > X if and
only if max;e[1..n) Xi > A. Since Yp,...,Y, is a martingale with martingale
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differences bounded at least as well as for Xo,..., X, (and also all other vari-
ation measures at least as good as for Xg,...,X,,), all large-deviation bounds
provable for the martingale Xo,..., X, via the Bernstein method are valid
also for Yp,..., Yy, that is, for max;c[;..,) Xi. Since we have not introduced
martingales here, we omit the details and state only some implications of this
observation. The reader will find more details in [54. end of Section 2] and [[70,
end of Section 3.5]. It seems that the authors of [54] and [[7(] do not see this
extension as very important (see also the comment at the end of Section 2
in [7q]). We feel that this might be different for randomized search heuristics.
For example, to prove that a randomized search heuristic has at least some
optimization time 7', we need to show that the distance of each of the first
T — 1 solutions from the optimum is positive, that is, that the minimum of
these differences is positive.

Theorem 1.10.31 (tail bounds for maxima and minima). Let
X1,...,Xyn be independent random variables. For all i € [1.n], let S; =
Z;ZlXj. Assume that one of the results in Section yields the tail
bound Pr[S,, > E[Sy|+ A <p. Then we also have

Pr[3i € [1..n] : S; > E[S;]+ ] < p. (1.10.44)

In an analogous manner, each tail bound Pr[S, < E[S,]— ] < p derivable
from Section can be strengthened to Pr[3i € [1..n] : S; < E[S;] — A] < p.

Note that if the X; in the theorem are non-negative, then, trivially,
() implies the uniform bound

Pr[3i € [1.n] : S; > E[Sn]+A] < p. (1.10.45)

Note also that the deviation parameter A does not scale with ¢. In particular,
a bound like Pr[3i € [1..n] : S; > (14 6)E[S;]] < p cannot be derived.

1.10.4 Chernoff Bounds for Geometric Random
Variables

As is visible from Lemma below, sums of independent geometric ran-
dom variables occur frequently in the analysis of randomized search heuris-
tics. Surprisingly, it was only in 2007 that a Chernoff-type bound was used to
analyze such sums in the theory of randomized search heuristics [B1] (for sub-
sequent uses see, e.g., [4, 23, B2, B5, 104]). Even more surprisingly, Witt [102]
only recently proved good tail bounds for sums of geometric random vari-
ables having significantly different success probabilities. Note that geometric
random variables are unbounded. Hence the Chernoff bounds presented so
far cannot be applied directly.
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We start this subsection with simple Chernoff bounds for sums of identi-
cally distributed geometric random variables, as these can be derived from the
Chernoff bounds for sums of independent 0,1 random variables discussed so
far. We remark that a sum X of n independent geometric distributions with
success probability p > 0 is closely related to the negative binomial distribu-
tion NB(n,1— p) with parameters n and 1 —p: we have X ~ NB(n,1—p)+n.

Theorem 1.10.32. Let X1,...,X,, be independent geometric random vari-
ables with common success probability p > 0. Let X := Z?:lXi and p:=
E[X]= %.

(a) For all 6 > 0,

P2n—1

Pr[X > (1+6)u] <exp (21—1-5) <exp (imin{éz,é}(n 1)) .
(1.10.46)

(b) For all0 <46 <1,

(1=8)p—n
Pr[X < (1—0)u] < (1—6)" (“_‘W‘_")) ’ (1.10.47)

(I—0)u—n
< (1—98)"exp(dn) (1.10.48)
5%n

where the first bound reads as p™ for (1—38)p=mn and as0 for (1—9§)p <n.
For0<d <1 and A>0, we also have

2
Pr[X < (1-0)u) < exp (— 215_1’;) : (1.10.50)
312
Pr[X < p— A < exp (— 27 ) . (1.10.51)
n

The bounds ( .10.5”) and (I .10.5 I) are interesting only for relatively large
values of p. Since part (a) has been proven in [4], we prove only (b). The main
idea in both cases is exploiting the natural relation between a sum of inde-
pendent identically distributed geometric random variables and a sequence
of Bernoulli events.

Proof. Let Z1,Zs,... be independent binary random variables with Pr[Z; =
1=pforallieN. Let n <K <™. Let Yg = K Z;. Then X < K if and
only if Yx > n. Consequently, by Theorem ,

Pr[X < K] =Pr[Yx > n]

e o (3 )
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_ Kp "R Kp K—n
—\n K—n
K n
< (p> exp(n— Kp)
n

pA?
<exp K12y ]
3

where we have used the shorthand A := p— K for the absolute deviation.
From Theorem , we derive

Pr[X < K] =Pr[Yx > n]
=Pr[Yi > E[Yk]+ (n— Kp)]

<exp (2(” KKP)Q)

< 2p2)\2 > < 2p2 /\2 >
=exp| — <exp| — .
p=A %

Replacing K by (1—4§)u and A by dp in these equations gives the claim. O

When the geometric random variables have different success probabilities,
the following bounds can be employed.

Theorem 1.10.33. Let X1,...,X,, be independent geometric random vari-
ables with success probabilities p1,...,pn > 0. Let pmin := min{p; | i € [1..n]}.
Let X :=>" | X; and p=E[X] = Z" 1

i=1p; "
(a) For all 6 >0,
1
PriX > (140)u] < 75 (1 1 — pryin)# (07 m(1H9) (1.10.52)
<eXp( Pminpt(6 —1In(1+6))) (1.10.53)
<1+5“pm‘“) exp(—5Pmin) (1.10.54)
. \2

< exp f(é"p—rg““), . (1.10.55)

2n(1+ M};mm)

(b) For all0 <46 <1,

Pr[X <(1-0)p] < (1—0)Pmint exp(—0pminpt) (1.10.56)
52,U'pmin

< —_—— 1.10.57

< exp ( - 15 ( )

< exp(— 56 {Pmin)- (1.10.58)
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The estimates ) and () are from [@], the bound ()

is from [@], and ([1.10.55) follows from the previous bound by standard es-
timates. This last bound, when applied to identically distributed random
variables, is essentially the same as ([L.10.46]).

For the lower tail bounds, ([L.10.56) from @ is identical to () for

identically distributed variables. Hence (| ) is the strongest estimate
for identically distributed geometric random variables. Equation ([1.10.56)
gives (via the same estimate_that gives () from (h.10.48). Es-
timate ([ §) appeared earlier in [89].

Overall, it remains surprising that such useful bounds have been proven
only relatively late and have not yet appeared in a scientific journal.

The bounds of Theorem allow the geometric random variables
to have different success probabilities; however, the tail probability depends
only on the smallest of them. This is partially justified by the fact that
the corresponding geometric random variable has the largest variance, and
thus might be most detrimental to the desired strong concentration. If the
success probabilities vary significantly, however, then this result gives overly
pessimistic tail bounds, and the following result of Witt [@] can lead to
stronger estimates.

Theorem 1.10.34. Let X1,...,X,, be independent geometric random vari-
ables with success probabilities p1,...,pn > 0. Let X = Z?IlXi, s =

Z?Zl(i)2, and pmin = min{p; | i € [1..n]}. Then, for all X\ >0,

1 2
Pr[X > E[X]+ )\ <exp (—4min{)\,)\pmin}> , (1.10.59)
s

2
Pr[X < B[X] - \] < exp (—;) . (1.10.60)

In the analysis of randomized search heuristics, it appears that we often
encounter sums of independent geometrically distributed random variables
X1,...,X, with success probabilities p; proportional to ¢. For this case, the
following result from [23. Lemma 4] gives stronger tail bounds than the pre-
vious result. See Section @ for the definition of the harmonic number H,.

Theorem 1.10.35. Let X1,...,X,, be independent geometric random vari-
ables with success probabilities pi,...,pn. Assume that there is a number
C <1 such that p; > CL for allie[1l..n]. Let X =" | X;. Then
E[X] < &nH, < En(1+1nn), (1.10.61)
Pr[X > (146)&nlnn] < n=? for all § > 0. (1.10.62)

As announced in Section , we now present a few examples where the
existing literature gives only an upper bound on the expected runtime, but
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where a closer look at the proofs easily gives more details about the distribu-
tion, which in particular allows one to obtain tail bounds on the runtime. We
note that similar results have previously (and before [20]) only been presented
for the (1+1) EA optimizing the LEADINGONES test function [B5] and for
RLS optimizing the ONEMAX test function [102]. Zhou et al. [104] implicitly
gave several results of this type; however, the resulting runtime guarantees
are not optimal, owing to the use of an inferior Chernoff bound for geometric
random variables.

Lemma 1.10.36. (a) The runtime T of the (1+1) EA on the ONEMAX func-
tion is dominated by the independent sum .1, Geom(-) [47]. Hence
E[T) < enH, and Pr[T > (1+d)enlnn] <n=° for all § > 0.

(b) For any function f:{0,1}" — R, the runtime T of the (1+1) EA is
dominated by Geom(n~"™) J47]. Hence E[T] <n™ and Pr[T > yn"] <
(1-n~ )'7" <e 7 forall y>0.

(¢) The runtime T of the (1+1) EA for finding Fulerian cycles in undirected
graphs using perfect matchings in the adjacency lists as the genotype and
using the edge based mutation operator is dominated by the independent
sum EZ 1 Geom(Qem) [36]. Hence E[T] < 2emH,, 3 and Pr[T > 2(1+
6)emln3]§(3) for all § > 0.

(d) The runtime of the (1+1) EA for sorting an array of length n by min-
imizing the number of inversions is dominated by the independent sum

Zl( ZGeom(4 @ )) [88]. Hence E[T) S%(Q)H( )g%rﬂ(l—k?lnn) and

n
2

Pr[T > (1+6)4n2lnn] < (3) .

Similarly, the runtime of the (1+1) EA using a tree-based representation
for the sorting problem [30] has a runtime satisfying T < Zz(iz Geom(%),
Hence the expected optimization time is E[T] = 26(2) and we have the
tail bound Pr[T > (1+6)E[T]] < exp(—82n/(2+26)). This evample shows
that a superior representation can not only improve the expected runtime,
but also lead to significantly lighter tails (negative exponential vs. inverse
polynomial).

(e) The runtime of the multi-criteria (14 1) EA for the single-source shortest-
path problem in a graph G can be described as follows. Let £ be such that
there is a shortest path from the source to any vertex having at most
¢ edges. Then there are random variables Gyj;, i € [1.4], j € [1l.n—1],
such that (1) G5 ~ Geom( z) for allie[1.4] and j € [1.n—1], (i) for
all j € [l.n—1], the variables Gij,...,Gyj are independent, and (iii) T
is dominated by maX{Zf 1Gij | jel.n—1]} /34, 88]. Consequently,

for 6 = maX{MHZ(f;l), 41n(n 1)} and Ty := (1—|—5) , we have E[T] <

(1+ m)TO and Pr[T > (1 +5)Tg] <(n—1)7¢ for alle > 0.

Proof. We shall not show the domination statements, as these can be easily
derived from the original analyses cited in the theorem. Given the domina-
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tion result, parts @L , and m follow immediately from Theorem .

Part [(b) follows directly from the law of the geometric distribution.

To prove part , let Xi,...,X; be independent geometrically dis-

tributed random variables with parameter p = —L5. Let X = 2521 X;. Let

en?’

5 = max{Hnlnzl) |\ fA0ZD)y rpen, by ([L10.46), Pr(X > (14 6)E[X]] <
2 n(n—
exp(—3 155 (£~ 1)) < exp(— L min{6?,6} (¢ — 1)) < exp(— 122D (7 1)) =

ﬁ. For all € > 0, again by (| ), we compute

(6+¢&+de)? (€_1)>

X 2 (1491 +0)B[X]) <exp (— LFERIT
52(1+¢)?

<o (3 ra g ¢Y)

1 52 14e€
exp<(fl)) < (n—1)"0+e),

1
2

1
2

Let Y1,...,Y,,_1 be random variables with a distribution equal to that of X.
We do not make any assumptions about the correlation of the Y;; in particular,
they do not need to be independent. Let Y =max{Y; | i € [1..n—1]}, and recall
that the runtime T is dominated by Y. Let Tp = (1+6)E[X] = (1 —1—5)%. Then
Pr[Y > (14+&)To] < (n—1)Pr[X > (1+¢)Tp] < (n—1)"¢ by the union bound
(Lemma ﬁ) By Corollary ,

ElY] < (1+ ln(nl—l)) T.

a

We note that not all classical proofs reveal details about the distribution.
For results obtained via random walk arguments, for example, the optimiza-
tion of the short path function SPC,, [67], monotone polynomials [98], or ver-
tex covers on path-like graphs [77], as well as for results proven via additive
drift [p3], the proofs often give little information about the runtime distribu-
tion (an exception is the analysis of the needle function and the ONEMAX
function in [50]).

For results obtained via the average weight decrease method [75] or via
multiplicative drift analysis [Bg], the proofs also do not give information about
the runtime distribution. However, the probabilistic runtime bound of type
Pr[T > To+A] < (1—6)* obtained from the tail bound in [29] implies that
the runtime is dominated by T' < Tp — 1+ Geom(1 —J).
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1.10.5 Tail Bounds for the Binomial Distribution

For binomially distributed random variables, tail bounds exist which are
slightly stronger than the bounds for general sums of independent 0,1 ran-
dom variables. The difference are small, but since they have been used in the
analysis of randomized search heuristics, we briefly describe them here.

In this section, let X always be a binomially distributed random variable
with parameters n and p, that is, X =" | X; with independent X; satis-
fying Pr[X; = 1] = p and Pr[X; = 0] = 1 —p. The following estimate seems
well known (e.g., it was used in [56] without proof or reference). Gieflen and
Witt [51, Lemma 3] gave an elementary proof via estimates of binomial coef-
ficients and the binomial identity. We find the proof below more intuitive.

Lemma 1.10.37. Let X ~ Bin(n,p). Let k € [0..n]. Then

Pr[X > k| < (Z)pk
Proof. For all T C [1..n] with |T| =k, let Ap be the event that X; =1 for
all i € T. Clearly, Pr[Ar] = p*. The event “X > k” is the union of the events
Ar, with T as above. Hence Pr[X > k] <> . Pr[A7] = (})p" by the union
bound (Lemma 15I) O

When the binomial coefficient is estimated by (}) < (92)*, which is
often an appropriate way_to derive more understandable expressions, the
above bound reverts to ), a slightly weaker version of the classical
multiplicative bound ([1.10.2). Since we are not aware of an application of
Lemma I!.10.3Z that does not estimate the binomial coefficient in this way,
its main value might be its simplicity.

The following tail bound for the binomial distribution was shown by
Klar [61], again with elementary arguments. In many cases, it is significantly
stronger than Lemma . However, again we do not see an example
where this tail bound would have improved an existing analysis of a random-
ized search heuristic.

Lemma 1.10.38. Let X ~ Bin(n,p) and k € [np..n]. Then

prlx > k] < -EFDA=P)

= _mPY[X:k]

Note that, trivially, Pr[X = k] <Pr[X > k], so it is immediately clear that

this estimate is quite tight (the gap is at most the factor %). With
elementary arguments, Lemma gives the slightly weaker estimate

k—kp
k—np

Pr[X > k] <

Pr[X = k], (1.10.63)
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which has appeared also in [49, equation (VI.3.4)]. For p = %, the typical
mutation rate in standard bit mutation, Lemma gives

Pr[X > k] < k%l Pr[X = &]. (1.10.64)

Writing Lemma in the equivalent form Pr[X > k] < (ﬁ)”_k Pr[X =
k] and noting that (ﬁ)”*k > exp(p(n —k)), we see that in many cases
Lemma gives substantially better estimates.

Finally, we mention the following estimates for the probability function of
the binomial distribution stemming from [8]. By summing over all values for
k' > k, upper and lower bounds for tail probabilities can be be derived.

Theorem 1.10.39. Let X ~ Bin(n,p) with np > 1. Let h > 0 such that k =
np+heN. Let g=1—p.

(a) If hqn/3 > 1, then

PrX =k] < ! e 2+h+h3
r[X = ———exp| — — .
V2mpgn P 2pgn  qn = p*n?
(b) If k <n, then
Pr[X = ]

>7 —_ —_ —_ e
\/QquneXp( 2pqn  2¢%2n2  3pPn3  2pn 12k 12(n—k)

h2 h3 ht h 1 1
=)
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Chapter 2
Drift Analysis

Johannes Lengler

Abstract Drift analysis is one of the major tools for analysing evolutionary
algorithms and nature-inspired search heuristics. In this chapter we give an
introduction to drift analysis and give some examples of how to use it for the
analysis of evolutionary algorithms.

2.1 Introduction

Drift analysis goes back to the seminal paper of Hajek [37], and has since
become ubiquitous in the analysis of evolutionary algorithms (EAs). Google
Scholar lists more than 100,000 hits for the phrases ‘Drift’ and ‘Evolutionary
Algorithm’; so a comprehensive review of all applications or even just all
existing drift theorems is far beyond the scope of this chapter. Instead, the
chapter serves two purposes.

Firstly, it provides a self-contained introduction to ﬂirift analysis (Sec-
tion R.3), which has so far been absent in the literature.H This introduction
is suitable for graduate students and for theory-affine researchers who have
not yet encountered drift analysis. This first part of the chapter will contain
illustrative examples, and will discuss in detail the different requirements of
the most basic drift theorems, specifically on additive drift, variable drift and
multiplicative drift. Counterexamples are given to point out when some drift
theorems are not applicable or give poor results.

Secondly, Section provides an overview of the most important recent
developments in drift analysis, including lower and tail bounds, weak drift,
negative drift, and population drift. This section is much more concise, and
may serve also as a quick reference for the expert reader.

Johannes Lengler
Department of Computer Science, ETH Ziirich, Switzerland

L A briefer introduction can be found in [51).
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2.2 Basics of Drift Analysis

2.2.1 Motivation

To analyse the runtime of an evolutionary algorithm (or, more generally, any
randomised algorithm), one of the most common and successful approaches
consists of the following three steps.

1. Identify a quantity Xy, the potential (also called the drift function or dis-
tance function), that adequately measures the progress that the algorithm
has made after ¢ steps.

2. For any value of X;, understand the nature of the random variable X; —
Xi¢41, the one-step change of the potential.

3. Translate the data from step 2 into information about the runtime T of
the algorithm, i.e.the number of steps until the algorithm achieves its goal.

Drift analysis is concerned with step 3. Generally, good drift theorems
require as little information as possible about the potential X;,1, and give
as much information as possible about T'. In the basic theorems, we only
require (bounds on) the expectation E[X; — X¢y1 | X¢ = 5] for all s, which is
called the drift, in order to derive (bounds on) the expectation E[T]. Drift
analysis has become a successful theory because the framework above is very
general, and good tools for step 3 exist, which apply to a multitude of situ-
ations. In contrast, steps 1 and 2 often do not generalise from one problem
to another. Frequently, step 1 is the part of a runtime analysis that carries
the key insight, and it usually requires much more ingenuity than the other
steps. On the other hand, step 2, the analysis of X — X;41, requires arguably
less insight. However, step 2 is usually the most lengthy and technical part
of a runtime analysis. Therefore, the complexity of a proof can often be sub-
stantially reduced if only some basic information such as the expectation
E[X:— X411 | Xt = ] is needed in step 2.

For evolutionary algorithms, a natural candidate for the potential X is
the fitness f (a:(t)) of the best individual in the current population, especially
so if the population consists only of a single individual, as for example in
(1+1) EAs. In a sense, this fitness measures the ‘progress’ up to time ¢, since
it would correspond exactly to the quality of the output if the algorithm
terminated with this generation. However, it is not necessarily the best choice
to measure the progress that the algorithm has made towards finding a global
optimum. For example, consider the linear fitness function® f: {0,1}" with
f(@)=(n—1)-21+> 1 5x;, which puts a very large emphasis on the first
bit. The optimum (for maximisation) is the string zopt = (1,...,1), but the
two strings x1 = (1,0,0,...,0) and z2 = (0,1,1,...,1) have the same fitness
f(z1) = f(z2) =n— 1. However, the string x2 is much more similar to zopT

2 We follow the standard convention that for an n-dimensional vector x, we denote its
components by z1,...,Zn.
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than x; is, so we should choose a potential that assigns a higher rating to
x2 than to z1. We will see later (Example ) some good choices for the
potential in this example.

Historically, before drift analysis was fully developed in the EA community,
it was preceded by the fitness level method [[74]. In retrospect this method may
be regarded as a special case of the variable drift theorem, which we will intro-
duce in Section . Likewise, the method of expected weight decrease [64]
may be regarded as a predecessor of the multiplicative drift theorem, pre-
sented in Section P.3.3. It is fair to say that the development of drift analysis
has boosted our understanding of evolutionary algorithms, either by simpli-
fying existing results, by achieving greater precision, or as a means to obtain
qualitatively new results that might not have been achievable with the old
techniques. For example, the original proof by Droste, Jansen, and Wegener
that the (14+1) EA takes time O(nlogn) on all linear functions needed 7
pages [26], while Doerr, Johannsen, and Winzen could reduce the proof to a
single page [1&]. To obtain the leading constant with the fitness level method
would have been quite challenging and perhaps out of reach. With drift ana-
lysis, in a groundbreaking paper, Witt [75] could derive the leading constant
not only for the standard mutation rate 1/n but for any mutation rate ¢/n,
where c¢ is a constant, in a proof of 2-3 pages!

2.2.2 General Set-Up

Throughout this chapter, we will assume that (X;);>0 is a sequence of non-
negative random variables with a finite state space S C Rar such that 0 € S.
We will denote the minimum positive state by Smin := min(S\ {0}). The
stopping time, or hitting time of 0, of (X¢)¢>¢ is defined as the smallest ¢ such
that X; = 0. We are generally interested in the drift A¢(s) := E[X¢ — X411 |
Xt =s], where t >0 and s € S.

As with all conditional expectations, A.(s) is not well-defined if Pr[X; =
s] = 0. So in other words, A;(s) is undefined for situations that never occur.
Obviously, this is not a practical issue, and it is convenient (and common in
the community) to be sloppy about such cases. So we will use phrases such
as ‘Ag(s) <1forall t >0 as a shorthand for ‘A;(s) <1 for all ¢ > 0 for which
the conditional expectation A(s) is well-defined”.

In Section R.4 we will often need to work with pointwise drift and filtrations,
i.e.we need to condition on the complete history (or at least the current state)
of the algorithm, instead of just conditioning on the value of X;. In these
cases, we will denote the filtration associated with the algorithm’s history
up to time ¢ by F:. Moreover, tail bounds will be formulated for a fixed
initial search point Xy = sg. For details and an explanation of the technical
terms ‘pointwise drift’ and ‘filtration’, see the corresponding paragraph in
Section m below.
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Throughout the chapter, f will denote a fitness function to be optimised,
either maximised or minimised. For a (1+ \) algorithm, we will use the con-
vention that z(!) is the search point after ¢ generations.

2.2.3 Variants

In the literature, terminology may vary between different authors, and there
are often slightly different set-ups considered. We highlight some variants
which occur frequently. A reader who is new to drift analysis may skip this
section on first reading.

1. Signs. We consider the change Xy — X;41. In the literature, the difference
is sometimes considered with opposite signs, X1 — X¢, which is arguably
a more natural choice. However, since we consider drift towards zero, with
our choice the drift is usually positive instead of negative. Moreover, our
choice is more consistent with the established term ‘negative drift’, which
refers to a drift that points away from the target.

2. Markov chains. Instead of any sequence of random variables, the sequence
X; is sometimes assumed to be a Markov chain, i.e. the state X; should
completely determine the distribution of X¢41. While this is a mathemat-
ically appealing scenario, it usually does not apply in the context of evo-
lutionary algorithms. For instance, in the example in Section R.2.1 above,
the information X; =n — 1 would tell us that the current fitness is n —1,
but the two search points 1 and g differ in nature. Thus, the subsequent
trajectory of search points depends on more information than is contained
in X, and so do the subsequent potentials X;i1,X¢42,.... So, even in
this very simple example, we do not have a Markov chain.

There are several papers on the theory of EAs which ignore this point,
either accidentally or perhaps consciously for the sake of exposition, since
Markov chains are an easily accessible concept. These papers contain drift
theorems for a Markov chain X, but use them for runtime analyses in
which X} is not a Markov chain. So, technically speaking, the proofs are
not correct. However, this is a purely technical issue: since the Markov
property is not really needed for drift theorems, the results derived are still
correct. An alternative was used in [54], where the authors assumed an
underlying Markov process Y; with arbitrary state space S, and a function
a: S — R. Then they formulated drift theorems for X; := a(Y%). This is
a more precise description of randomised algorithms, where the internal
state (e.g., the current population) is described by Y%, and the real-valued
potential is described by X;. It has the advantage that expressions such
as E[X; — X4 | Yy = s] are still well-defined even if Pr[Y; = s] = 0. This is
especially relevant in continuous domains. For example, assume that Yy is
a real number drawn uniformly at random from [0, 1]. Then Pr[Yy =s]=0
for all s €[0,1].
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3. Filtrations and pointwise drift. We have defined the drift as a random
variable that is conditioned on the value of Xy, i.e. Ay(x) = B[ X — Xyy1 |
X; = s]. Instead, it is also possible to condition on the whole history of
X, or even on the whole history of the algorithm. (Recall that, in general,
the potential X; does not completely describe the state of the algorithm
at time ¢). In mathematical terms, the set of such histories is described by
a filtration of o-algebras Fo C F; C ..., where, intuitively, the o-algebra
JF: contains all the information that is available after the first ¢ steps of
the algorithm.H For example, instead of requiring that F[X; — X¢q1 | Xt =

s] <1 for all t > 0, we would ask that E[X; — Xy41 | F¢] <1forall ¢t >0 and
all histories F} up to time ¢ such that X; = s in F}. In this case, we also
speak of pointwise drift, and we will write E[X; — X¢y1 | Ft, Xe =] <1
to mean that, for every history F' of the algorithm up to time ¢ with the
property X; = s, we have F[X; — X4, | F] < 1.

Obviously, pointwise drift is a much stronger condition, and requiring
such a strong condition in a drift theorem gives a priori a weaker theorem.
However, for most applications it does not make a big difference to con-
sider either version. Intellectually, it is arguably easier to imagine a fixed
history of the algorithm, and to think about the next step in this fixed
setting. Therefore, it is not uncommon in the EA community to formulate
drift theorems using filtrations. However, we will also see examples (Ex-
amples ‘ and ) where the weaker condition ‘X; = s’ is beneficial.

The basic drift theorems concerned with the expected runtime E[T
can be formulated with either form of conditioning, and in this chapter
we choose the stronger form (i.e. with weaker requirements), conditioning
on Xy = s. However, once the drift theorems include tail bounds, things
become more subtle, and it becomes essential to condition on every pos-
sible history. Therefore, we will switch to using filtrations and pointwise
drift in the last part of the chapter.

4. Infinite search spaces. We assume in this chapter that the state space S is
finite. This makes sense in the context of this book, since in discrete optimi-
sation the search spaces, and also the state spaces of the algorithms, tend
to be finite (although they may be huge). However, there are problems, es-
pecially in continuous optimisation, in which infinite state spaces are more
natural. Generally, all drift theorems mentioned in this chapter still hold
if the state space S C Ra' is infinite, but bounded.? For unbounded search

3 Mathematically speaking, it is the coarsest g-algebra which makes all random choices
of the algorithm up to time ¢ measurable.

4 This is sometimes sloppily described by E[X¢ — X;11 | Xo,...,X:]. However, note that
this is not quite correct, since it conditions only on the past values of X, and not on
the history of the algorithm. In particular, conditioning on Xo,..., X usually does not
determine the current state of the algorithm (e.g.the current search point or population).
5 By abuse of notation, for brevity.

6 Some statements, such as Theorems and , additionally require that the
infimum spin ;= inf(S'\ {0}) is strictly positive.
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spaces, things become more complicated. The upper bounds on E[T] in the
drift theorems still hold in these cases, while the lower bounds on E[T] fail
in general [54], as we will discuss briefly after Theorem P.3.1l. Collections
of drift theorems for unbounded spaces can be found in [45, p4].

5. Drift versus expected drift. Unfortunately, the meaning of the term ‘drift’
is somewhat inconsistent in the literature. We have defined it as the ex-
pected change F[Xy — X1 | X = s]. However, some authors also use ‘drift’
to refer to the conditional random variable X; — X; 11 | X; = s, and our
definition would be the ‘expected drift’ in their terminology. Some au-
thors would also call the conditional expectation F[X; — X¢41 | Fy] ‘drift’,
which is itself a random variable (by the randomness in the history of
the algorithm). Again, our notion of drift would be the expected drift
Er, [E]X; — X¢41 | Ft]], also called the ‘average drift’ in this terminol-
ogy [40]. Yet another notion uses ‘drift’ to refer to the conditional random
variable X; — X;11 | F¢. Fortunately, the heterogeneous nomenclature usu-
ally does not lead to confusion, except for some minor notational irrita-
tions.

2.3 Elementary Introduction to Drift Analysis

We start with an elementary introduction to drift analysis. We will discuss
the three main workhorses, The additive drift theorem (Theorem ), the
variable drift theorem (Theorem ), and the multiplicative drift theorem
(Theorem ) All of them give upper bounds on the expected hittﬂqg
time E[T], the additive drift theorem also giving matching lower bounds.

2.3.1 Additive Drift

The simplest possible drift is additive drift, i.e. X341 differs from Xy in expec-
tation by an additive constant. The theorem in its modern form dates back to
He and Yao [38, B9], who built on work by Hajek [37],2 which they stripped

" Note that the expectation of a random variable may not always give the full story.
There are even cases where the value of E[T] may be misleading. We will discuss such
examples in Section , where we consider drift theorems that give tail bounds on T'.

8 They were apparently all unaware that the result had been proven even earlier by
Tweedie [73, Theorem 6], and a yet earlier proof in Russian has been attributed to
Menshikov [58, Bibliographical Notes on Section 2.6]. The aditive drift theorem has
been proven and rediscovered many times, and it is known under various names. For
example, in stability theory it is considered a special cage of Dynkin’s formula [p9,
Theorem 11.3.1], or a generalisation of Foster’s criterion [, Proposition 4.5]. In these
contexts, drift analysis is often called the Lyapunov function method, e.g. 68, Theorem
2.6.2]. However, the hitting time is often only a side aspect in these areas.
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of substantial technical overhead that was due to the fact that Hajek’s focus
was more on deciding whether hitting times actually exist for unbounded
state spaces. He and Yao proved their theorem using (without explicit ref-
erence) the optional stopping theorem for martingales [36]. Here we give an
elementary proof taken from [54], since this proof gives some insight into the
differences between upper and lower bounds.

Theorem 2.3.1 (Additive Drift Theorem [39]). Let (X;):>0 be a se-
quence of non-negative random variables with a finite state space S C Rar
such that 0 € S. Let T :=inf{t > 0| X; = 0}.

(a) If there exists § > 0 such that for all s € S\ {0} and for allt >0,

At(s) = E[Xt —Xt+1 | Xt = S] Z 5, (21)
then
E[T] < E[‘;(O]. (2.2)

(b) If there exists § > 0 such that for all s € S\ {0} and for allt >0,

At(S) = E[Xt - Xt+1 | Xt = S] S 6, (23)
then
E[X
E[T) > [5 o, (2.4)
Proof.

(a). As we are interested only in the hitting time T of zero, we may assume

without loss of generality that X =Xrio=...=0.
We may rewrite the condition ﬁ) as B[ X411 | Xy =s] < E[X;| Xy =s]—4.

Since this holds for all s € S\ {0}, and since T > ¢ if and only if X; > 0, we
conclude
E[Xt+1 ‘T>t]SE[Xt|T>t}—6 (25)

By the law of total probability, we have

E[X)] =Pr[T >1]-E[X, | T >t]+Pr[T <t]- E[X, | T < 1]

=0
=Pr[T >t]-E[X; | T > 1. (2.6)
Proceeding similarly for X;,1, we obtain
E[Xt+1] = PI‘[T > t] 'E[Xt+1 |T > t} —|—PI‘[T < t] 'E[Xt+1 | T< t]
—_——
=0

(23)
< Pr[T>t]-(B[X¢ | T >t]—9)
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) BIX,]—5-Pr[T > 1. (2.7)

Since T is a random variable that takes values in Ng, we may write E[T] =
>ore o Pr[T > t]. Thus

T

§-E[T) &= iéPr[T > 1] (?) > (E[X4] - E[X144])

t=0 t=0
= E[Xo] - E[Xr41] < E[Xo], (2.8)
>0

which proves (a).

(b) Analogously to (a), the calculations (@), (@), (% and (% hold with
(.8)- So, (

reversed inequalities, except for the very last step in . So, ) becomes
T

§-B[T) =) "0Pr[T > t] > E[Xo] — E[X-41]. (2.9)
t=0

There are only two possible cases. The first case is that Pr[T > t], which
is a non-increasing sequence, does not converge to 0. In this case, E[T] =
Y2 o Pr[T > t] = oo, in_which case (b) holds trivially. The second is that
Pr[T > t] — 0, and by (@) we also have

E[Xs11] = Pr[T > 1] E[Xy41 | T > ] = 0. (2.10)
—_——— N —
—0 < maxS < o©

Now (b) follows from (@) and () O

The proof also shows what can generally go wrong for infinite search spaces.
The proof of (a) goes through unmodified. For (b). the inequality (@) is
generally true. Moreover, it is tight if the condition (@) is tight. The problem
is that E[X11] may not go to zero. For example, consider the Markov chain
where Xy is either 0 or 2X;, both with probability 1/2. Here E[T] =2, but
E[X:— X¢41] =0 for all ¢ > 0. In particular, the condition (@) is satisfied
with § =1 (or any other § > 0), but the conclusion of (b) does not hold. On
the other hand, for the tight choice § =0, we see that we have equality in (@)
since E[X;4+1] = E[Xp].

Note that if the drift in Theorem is exactly 6 in_each step, then
the upper and lower bounds match. In this case, Theorem can be seen
as an invariance theorem, which states that the expected hitting time of
0 is independent of the exact distribution of the progress, as long as the
expectation of the progress (i.e.the drift) remains fixed. In particular, if Xy
is an integer multiple of &, this includes the deterministic case in which X}
decreases in each step by exactly &, with probability 1. Thus a process of
constant drift cannot be accelerated (or slowed down) by redistributing the



2 Drift Analysis 97

probability mass. We will resume this point in Section m when we discuss
why other drift theorems are not tight in general.
We conclude this section on additive drift with an application.

Ezample 2.3.2 (RLS on LEADINGONES ). Consider random local search (RLS)
on the n-dimensional hypercube {0,1}"™. RLS is a (141) algorithm (i.e. it has
population size one and generates only one offspring in each generation). The
mutation operator flips exactly one bit, which is chosen uniformly at random.
RLS has elitist selection, i.e. the offspring replaces the parent if and only if
its fitness is at least as large as the parent’s fitness. A pseudocode description
is given in Algorithm PR.1l.

Algorithm 2.1: Random Local Search (RLS) maximising a fitness func-
tion f:{0,1}" - R

1 Choose z(©) € {0,1}™ uniformly at random;

2 fort=0,1,2,... do

3 Pick i € {1,...,n} uniformly at random, and create y(t) by flipping the i-th
bit in x(t);

if f(y'") > f(z(")) then

‘ D (),

else
L LD em(t);

N o oo B

We study RLS on the LEADINGONES fitness function, which returns the
number of initial one-bits before the first zero bit. Formally,

n k
LEADINGONES(z) = Z chl =max{i € {1,...,n} | 11...1 is a prefix of z}.

k=1i=1 i times

The LEADINGONES problem is a classical benchmark problem for evolution-
ary algorithms, and RLS on LEADINGONES has been studied in much greater
detail than we can present here, with methods and results that go far beyond
drift analysis [[10, 49]. We examine the bounds that we obtain from the addi-
tive drift theorem for different potential functions.

Naive potential. We first choose as the potential X; :=n— f(z®)), the distance
in fitness from the optimum. The state space is S = {0,...,n}. We need to
compute the drift A¢(s) := E[X¢ — Xi41 | Xt = s] for every state s € S\ {0},
so we fix such an s. For convenience, we write k:=n—s € {0,...,n—1} for the
fitness in this case. Note that X; = s implies that the first k bits of z(!) are
one-bits, but the k4 1-st bit is a zero-bit. Obviously, the potential changes if
and only if we flip the k+ 1-st bit, so let us denote this event by £. Since the
flipped bit is chosen uniformly, we have Pr[€] = 1/n. Hence the drift is
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At(S) = PI‘[(S} E[Xt Xt+1 | Xt = s and g]

=:E(s)

-E(s). (2.11)

3\H

So, it remains to bound the conditional expectation E(s). Such conditional
expectations occur quite frequently when a drift is computed. Assume that
X;=s (i.e. f(z)) = k=n—s), and that £ occurs. Obviously, E(s) > 1, since
we improve at least the k4 1-st bit. On the other hand, we improve the fitness
by at least 2 if and only if the £+ 2-nd bit happens to be a one-bit. Note
that since the algorithm is elitist and has fitness f(x¢) =k, the k+ 2-nd bit
has had no influence on the fitness of previous seaéch points. Therefore, by
symmetry, it has probability 1/2 of being a one-bit# and we obtain

PriX;—X;41>2|X;=sand ] =P [x,(f_?_z—uXt:s and £] = -

Analogously, X; — X¢41 > i if and only if the bits with indices k+2,...,k+1
are all one-bits, which happens with probability 271, Since X; — X1 is
an integer non-negative random variable, we may sandwich it as follows.

1< E(s ZPrXt Xi11>i| Xy =5 and &
=1

S oo
=1+) 27" <14) 27t =2 (2.12)
=2 =1
Hence, by (R.11),

1 2
— < A(k) < —, (2.13)
n
and Theorem implies that
gE[XO] < E[T] < nE[X,). (2.14)

To estimate E[Xo] =n— E[f(z(9)], we observe that f(z(®) > happens
if only if the first ¢ bits are all one-bits, which happens with probability 27°.
Hence, a similar calculation to that before shows

E[f(x(‘)))]:zn: Pr[f(z®) 22—_1 27" €10,1], (2.15)
=1

and thus n—1 < E[X(] <n. Hence, by () we get (n—1)n/2 < E[T] <n?,
and thus E[T] = 6O(n?).

9 Note that such an argument would not be true if we were to condition on one particular
history of the algorithm, compare the discussion on filtrations in Section @3
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Translated potential. The analysis so far gives the asymptotics of E[T], but
it is not tight up to constant factors. The problem is, as (.12) shows, that
the inequality E'(k) > 1 is rather coarse except for the few exceptional cases
where k is almost n. In fact, in the border case kK =n —1 we have equality,
E(k) = 1. Hence, we do not have a perfectly constant drift, which is one
reason for the discrepancy between the upper and lower bounds. Such border
effects can often be remedied by translating the potential function. In this
case, we consider

] (2.16)
0 otherwise.

Vi {Xt+1 if X, >1,
The effect is that the drift increases when there is a substantial chance of
reaching 0 in_the next step. In our case, we get an additional term for ¢ =
n—k+1in (), which equals the term for ¢ = n — k. Intuitively, the term
for i = n— k counts double since in this case the potential drops from 2 to 0,
rather than from 1 to 0. Consequently, we get the following for the potential
Y; = s+ 1, which corresponds as before to a fitness f(z()) =k =n—s:

n—k
ElY; =Yy |Yi=s+1and €] =Y Pr(Y;—Yiy1 >i|Y;=s+1and €]
=1
n—k ‘
=14 27 qponhtl =g (2.17)
=2

Hence, the drift with respect to Y; is exactly 2/n, and Theorem gives a
tight result:

E[T] = gE[YO]. (2.18)

From (R.1G) it is easy to compute E[Yy] exactly as

Bl =n— Bl ) +1-Prvy > 0] B (1 —2-m) 4197 — .
Together with ()7 the additive drift theorem (Theorem ) now implies
E[T]=n?/2.

The above example illustrates how important it is for Theorem that
the drift be as uniform as possible, to get matching upper and lower bounds.
The example also shows that rescaling of the potential function may be a
way to smooth out inhomogeneities. Following this approach systematically
leads to the variable drift theorem, which we will discuss in the next section.
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2.3.2 Variable Drift

2.3.2.1 The Variable Drift Theorem

The additive drift theorem is useful because it is tight, but it requires us to
find a potential function that has constant drift. Is this even always possible?
The perhaps surprising answer is ‘Yes’, as we will discuss in Section P.5. Un-
fortunately, it can be rather hard to find a good potential. However, there
are helpful tools. Even if we start with a potential functions with the ‘wrong’
scaling, Mitavskiy, Rowe and Cannings [60], and Johannsen in his PhD the-
sis [42] developed a theorem which automnatically rescales the drift in the right
way. A similar result was obtained independently (and earlier) by Baritompa
and Steel [[].

Theorem 2.3.3 (Variable Drift Theorem [42, 70]). Let (X;)t>0 be a
sequence of mon-negative random variables with a finite state space S C Ra'
such that 0 € S. Let Spyin :=min(S\{0}), let T:=inf{¢t > 0| X; =0}, and for
t>0 and s €S let Ay(s) := E[Xy— Xiq1 | Xt = s]. If there is an increasing
functiont h:R*T — RT such that for all s € S\ {0} and all t >0,

Ai(s) > h(s), (2.19)
then
S Xo
E[T]Sh(::n)—i—E / | h(la)da], (2.20)

where the expectation in the latter term is over the random choice of Xg.

We remark that the condition that h be increasing is usually satisfied, since
progress typically becomes harder as the algorithm approaches an optimum.
We will see in the proof why the condition is necessary, and an example
showing that it is necessary can be found in [45]. However, variants of the
theorem for non-decreasing drift functions do exist [16, 2§].

We present a proof of the variable drift theorem, for two reasons. Firstly,
the theorem is so central that it deserves to come with a proof. Secondly,
we will gain valuable insights from the proof. In particular, it will enable
us to understand when the upper bound on E[T] is tight, and realise when
the upper bound may be misleading. A reader who is completely new to drift
analysis may first skip ahead to some examples, and return to the proof when
we discuss tightness of the variable drift theorem.

Proof (of Theorem , adapted from [42]). The main insight of the proof
lies in an appropriate rescaling of X; by the function

10 Some formulations in the literature require h to be integrable. However, since we
assume S to be finite, the interval [Smin,X0] is a compact interval, on which every
monotone function is integrable.



2 Drift Analysis 101

Smi S 1
min + 7d0-’ S Z S s
gfs) o= | Py * Do 0 o (2:21)
- 0 <5< Smin-

(Smin)7

The integral is well-defined since h is increasing. Note that g is strictly in-
creasing. We claim that for all s € S\ {0} and all r > 0,

sS—7T

os) ~9r) 2 55 (222)

To prove the claim, we distinguish three cases. First, assume that s > r > spin.
Then

9(8)—g(r)=/Ts}£®daz/T$}Lg@da: Ok (2.23)

Similarly, if » > s > syin, then

g(r) —g(s) =/srh(10)dcr§ /srh(ls)da: 2;9)5 (2.24)

and multiplication by —1 yields the claim. The only remaining case is s >
Smin > 7 > 0 (since we have assumed s € S\ {0}), and in this case

( ) ( ) Smin +/S 1 d T > Smin — T + § — Smin
—qlr) = _
g9 h(8min) Smin h(o) 7 h(smin) — h(Smin) h(s)

sS—r
>

= h(s)’

(2.25)

Now let us consider the rescaled random variable Y; := g(X;). This random
variable takes values of the form g(s), where s € S. For all s € §\ {0},

BlY; —Yi1 | Ve = g(s)] = E[g(Xt) — 9(Xi41) | 9(Xt) = g(5)]

() E |:Xt 7Xt+l Xt _ 5:| _ At(s) () 1
h(X4) h(s)
(2.26)

Hence Y; has at least a constant drift. The theorem follows by applying the
additive drift theorem (Theorem ) to Y;. 0

Ezample 2.3.4 (Coupon Collector, RLS on ONEMAX). The most classical
example of variable drift is the Coupon Collector Process (CCP): there are n
types of coupons, and a collector wants to have at least one coupon of each
type. However, the coupons are sold in opaque wrappings, so she cannot see
the type of a coupon before buying it. If each type occurs with the same
frequency 1/n, how many coupons does she need to buy before she has every
type at least once?
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The CCP and its variants appear in various contexts in the study of EAs.
The most basic example is the runtime of RLS (Algorithm EI on page P7)
for maximising the ONEMAX fitness function, which counts the number of
one-bits in a bit string. Formally, for = € {0,1}",

ONEMAX(z) = Y ;. (2.27)
=1

The one-bits correspond to the coupons in the CCP that the collector has
already obtained. Since RLS flips exactly one bit in each round, and a one-bit
stays a one-bit forever, a round of RLS corresponds exactly to the purchase
of a coupon. Thus the number of roundﬁof RLS on ONEMAX is equivalent
to the number of purchases in the CCP.

To analyse the CCP, we let X; be the number of missing coupons after
t purchases, and as usual we denote by 1" the hitting time of 0. Then, for
X; = s, the probability of obtaining a new type with the next purchase is
s/n. In this case X; decreases by one, so X; has a drift of A;(s)=s/n. The
minimum positive value of X; is smin = 1. Hence, the variable drift theorem
with function h(s) = s/n gives the upper bound

1
E[T}ngrE

g

/XO”da] —n(1+EIn(Xo)]) <nlnnt+n.  (2.28)
1

The drift in Example was multiplicative, i.e. Ay(s) was proportional
to s. This is by far the most important special case of the variable drift
theorem, important enough that in Section m we will provide it with a
theorem of its own, the multiplicative drift theorem. Any reader who is eager
to see some more cute examples of a similar type is invited to peek ahead.

The upper bound in Example m is remarkably tight. The expected
runtime is indeed E[T] =nlnn+ ©(n), both for the CCP [61] and for RLS
on ONEMAX [10]. We will discuss in the next section when we can expect
the bounds from the variable drift theorem to be tight, and see situations in
which they are rather inaccurate. Before that, we give a more serious example
coming from applications.

Ezample 2.3.5 (Genetic Programming). Genetic programming (GP) uses evo-
lutionary principles to automatically generate programs which match some
desired input—output scheme. The programs are typically represented as syn-
tax trees [4€], where the leaves correspond to variables z1,...,2,, and the
inner nodes correspond to operators such as AND, OR or NOT. Here we re-
strict ourselves to the Boolean domain, for simplicity. Then each syntax tree

1 Except for the initial conditions: for the CCP, the collector usually starts with no
coupons, while RLS starts with a random bit string and thus with a random initial
number of ones/coupons.
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T represents a Boolean term, and thus defines a_pseudo-Boolean function
fr :{0,1}™ — {0,1}. Doerr, Lissovoi and Oliveto [25] studied the problem of
learning the AND function AND(x1,...,2,) =1 A...AZy, if the inner nodes
may be either AND or OR. To turn this into an optimisation problem, we as-
sign to each syntax tree 7 the number F(7) of inputs x = (z1,...,z,) € {0,1}"
for which f;(z1,...,25) # AND(x1,...,X,). So the goal is to reduce the po-
tential F' to zero. The search procedure considered in [25] uses a mutation
operator which adds, substitutes or deletes nodes, or which deletes whole sub-
trees of the current syntax tree. The actual algorithm is rather complicated,
and we refer the reader to [25] for more details.

We define X; := F(¢), where 7y is the syntax tree after ¢ steps. The authors
of [25] showed that X; has the following drift:

dslns

if s>
E[Xi— X111 | X¢ =] > h(s) :_{ n  ifs>n,

) (2.29)
ds if s <n,

where § = ©(1/n?) depends on the number of variables, but is independent
of s. Note that h is increasing and that Xg < 2. Therefore, the variable
drift theorem immediately gives the following upper bound on the expected
optimisation time T

1 2 1 " 2" ln
ET| < do = —d ——do. 2.
7= h(1) +/1 h(o) 7 h(1) Jr/l do a+/n solno (2:30)

To compute the integral, we note that the inverse derivative of 1/0 is Ino,
and the inverse derivative of 1/(c1no) is Inlno. Hence,

E[T) < %—FlnTn—FlnTn(lnlnTL —Inlnn)=0 (

loo?
ogén) =0(n?log?n).

(2.31)

So once we have found the drift as in ()7 the drift theorems make it an
easy task to compute the expected runtime. Of course, the main contribution
of the authors of [25] was to actually compute the drift.

2.3.2.2 Tightness of the Variable Drift Theorem.

even if we assume that h(s) is a tight lower bound on the drift (i.e.if (R.19)
is an equality). However, in many situations the bound is tight, especially if
the potential X; does not jump around too much. Let us unravel the proof
of Theorem to understand this phenomenom better.

We first note that the proof is a reduction to_the additive drift theorem,
which s tight (see the discussion after Theorem ) So, the only possible

In general, the bound in the variable drift theorem does not need to be ti%ht,
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problem is the estimate (R.26) of the drift. This estimate may not be tight
if (), the inequality g(s)—gq(r) > (s—r)/h(s), is too coarse. Note that to
estimate the drift, we use (@) specifically for s = Xy and r = X;41. These
are not arbitrary values; for example, for RLS on ONEMAX, they differ by
at most one. We proved () by case distinction, so let us inspect one
of the cases for illustration. For convenience, we restate the argument for
§> 1> Smin:

o) -90) = [(isioz [ =St 2

The crucial step is to use 1/h(c) > 1/h(s) for the range r < o < s. In general,
this may be a bad estimate. However, if s = X; and r = X341 are close to
each other, then o runs through a small range, and 1/h(c) may not vary
too much. For example, s and r differ at most by one for RLS on ONEMAX,
and the function 1/h(0) = n/o does not vary much in such a small range,
especially if r and s are large. We will see in Section that large jumps are
still tolerable if they occur with sufficiently small probability. The following
artificial example from [33] illustrates how large jumps can lead to bad upper
bounds. The idea of the construction is similar to the initial example on

page @

Ezample 2.3.6 (RLS with shortcuts). Consider a (1+1) algorithm that in each
step creates the optimum with probability 1/n, and with probability 1—1/n
does an RLS step as in Algorithm P.1|. To minimise ONEMAX, we may naively
try the fitness as the potential, X; := ONEMAX(aj(t)). For X; = s > 0, there
is a probability of 1/n of jumping directly to the optimum, thus decreasing
the potential by s. On the other hand, there is a probability of (1—1/n)-i/n
of decreasing the potential by 1 with a normal RLS step. Together, the drift
is

A(s) = h(s) = %-5+ <1711> 2 - 2{7% - (lio(l))%. (2.32)

Thus, the variable drift theorem (Theorem ) yields

1
ET < ——+FE

n() = O(nlogn). (2.33)

Xo n
/1 (1£0(1))5-do

However, since in each step we have a probability of at least 1/n of jumpin
directly to the optimum, the expected runtime is at most E[T] < n, so (@%)
is not tight. The problem can be understood by inspecting the transformed
variable Y; := g(X;) considered in the proof of the variable drift theorem,
see () For simplicity, we ignore the factor (1+0(1)) in () and obtain
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n(14InX,) if X, >1
Yt::{?(Jrn b)) X =1 (2.34)

if Xy =0.

Computing the drift of Y; directly, we obtain the following for X; = s, i.e. for
Y:=n/2-(1+1ns):

E[Y;—Yip1 | Xe=s] = - :

(1+1ns)+ <1— i) % g(lns—ln(s—l))

|3

1
n

h; +0(1). (2.35)

Thus, we do not have constant drift in the scaled potential. However, in the
proof of the variable drift theorem, we bound the drift by 1 (see ()), which
is the reason for the additional logn factor.

Fortunately, it is quite common that there are no large jumps in the fit-
ness value. Mutation-based evolutionary algorithms tend to take small steps,
and other nature-based search heuristics such as ant colony optimisation
and estimation-of-distribution algorithms tend to make rather small updates
to reasonable functions. However, note that this is not necessarily true for
crossover operations. Also, depending on the fitness function, a small (geno-
typic) change may cause a large (phenotypic) jump in the fitness, as the next
example shows.

Ezample 2.3.7 (RLS on BINVAL). We consider RLS (Algorithm @ on page
) for minimising the BINVAL function given by

BINVAL(z) = > 2" a;. (2.36)
i=1

If we choose the potential X; := BINVAL(z(!)) to be identical to the fitness,
then we observe that each one-bit has probability 1/n of being flipped. If the
i-th bit is flipped from one to zero, this reduces the potential by 2¢. Hence,
at a search point x with potential s:= BINVAL(x) the drift is

n

1 1 .
E[X;— Xip1 |2V =] = Z —.2" = 722"_%1— =2 (2.37)
1<i<n, 2 =1 " mis1 "

In particular, since the latter term depends only on s, we can write

S
E[Xt —Xt+1 ‘ Xt = S] = E (238)

Therefore we can apply the variable drift theorem (Theorem ) with
h(s) = s/n and S$pmin = 1, and obtain
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Xo
n
—do
1 ag

where the last equality follows since Xy < 2"+! and since with probability
at least 1/2 the first bit in X( is a one-bit, which implies E[Xo] > 2"~ 1.

However, the bound () is far from tight. In fact, if we use the OneMaz
potential ONEMAX(z) := Y I" | x;, then the drift with respect to ONEMAX
is still APNPMAX () — 5/, Whi% leads to a runtime bound of E[T] <n+n-
E[ONEMAX(2(D)] < nlnn+n.

The reason why (R.39) is not tight is that there may be some very large
jumps in the potential (see the discussion before this example). For example,
consider the situation where only a single one-bit is left. RLS operates sym-
metrically on BINVAL, so this one-bit is at a random position.=d In particular,
with probability at least 1/2, the bit is in the first half, and thus X; > on/2,
Therefore, in (@) we estimate h(o) < h(s) for values of o that range at
least between syin = 1 and 27/2 Thus the estimate is off by an exponential
factor. Consequently, the rescaled potential Y; = g(X;) = n(1+1n X;) does
not have constant drift. While the drift is always at least 1 by (@), if there
is only a single one-bit left in the first half of the string, the rescaled potential
decreases with probability 1/n from Y; > n(1+1n2"/2) = 2(n?) to 0. Hence,
the drift of Y; in this situation is 1/n-2(n?) = 2(n), causing the runtime
bound to be almost a factor n too large.

1
ET|< —+F

<im =n+n-E[lnXg] = 0(n?), (2.39)

2.3.2.3 When Rescaling Beats the Variable Drift Theorem

We have seen an example which illustrates why the variable drift theorem
does not always give tight results. Unfortunately, a common reason is that
the potential does not represent very well the progress the algorithm has
made, in which case a truly new insight is needed. However, sometimes the
problem can be solved by directly considering the rescaled potential. We
illustrate this by an artificial example taken from [54].

Example 2.3.8 (Random Decline). Let a > 0 be a constant, let n € NT and
consider the following Markov chain on & = {0,...,N}, where N is a suffi-
ciently large integer compared with n. For this exposition, we will assume
that IV is so large that the process never hits the right border. We start
with Xo =n, and for each ¢ > 0 we draw X;4+; uniformly at random from
{0,1,2,...,min{|aX¢|,N}}.

If a < 2, then for S € S\ {0} and all ¢ > 0 we have a drift of

12 Alternatively, we could observe that RLS behaves in exactly the same way on BINVAL
and on ONEMAX, so the runtimes are the same.

13 Note that this is specific to RLS, which uses only one-bit flips. An algorithm which
flips two or more bits per step would not operate symmetrically, since it would trade a
one-bit of large weight for a zero-bit of small weight, but not vice versa.
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a 2—a
At(s)Zsfis: 5

5. (2.40)

Therefore, by the variable drift theorem, E[T] = O(logn). However, the the-
orem does not make any statement for a > 2.4 Nevertheless, let us inspect
the rescaled potential Y; := 1+ 1In(X;). We give only an estimate; the full
calculation, including error terms, can be found in [54]. For every s € S\ {0}
that is smaller than N/a,

1
ElY;—Yiy1 | Yy =1+4Ins| = 1+1n(s)—m > (1+Ink)
k=1

1 as
~lIn(s) — — (/ Ino da)
as 1

=In(x) ~ ——[rln(0) ~ol3,

~In(s) — (In(as) —1) =1—Ina. (2.41)

Thus we see that if a < e =2.71... is a constant, then the drift of Y; is
also constant. Hence, by the additive drift theorem (Theorem ) we get
E[T] = O(E[Yp]) = O(Inn). So, the analysis of the rescaled random variable
applies to a wider range than the variable drift theorem does. In fact, the
condition a < e is tight for logarithmic runtime, since for a > e the expected
runtime is w(lnn) [54].

We have seen that once we try out the rescaling ¥; = 1+ 1In(X¢). the rest
is very simple and mostly calculations. We will discuss in Section how to
see that this particular rescaling is worth trying.

2.3.2.4 Further Applications of the Variable Drift Theorem

We conclude this section with some more applications of the variable drift
theorem. They illustrate the fact that even if the drift is a highly compli-
cated function, the variable drift theorem gives us an explicit expression for
the expected runtime, which we can evaluate by elementary calculus. The
impatient reader is free to skip this section.

Ezample 2.3.9 (1+X) EA on ONEMAX ). In 2017, Gieen and Witt [34] anal-
ysed the (14+\) EA (Algorithm @) for minimising the ONEMAX function
(see (2:27)).

The potential was identical to the fitness, X; = ONEMAX(z(®). To bound
the drift Ay(s), the authors of [34] used order statistics of the binomial dis-
tribution. They showed that A.(s) > h(s), where

14 Worse: the statement could be applied for a non-constant a such as a = 2(1 —1/n),
and would lead to the misleading bound E[T] = O(nlogn).

15 For the case A = w(1). The other case, A = O(1), is similar.
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Algorithm 2.2: The (1+ ) EA with offspring population size A and
mutation rate ¢/n, minimising a fitness function f: {0,1}" - R

1 Choose z(®) € {0,1}" uniformly at random;

2 for t=0,1,2,... do

3 fori=1,...,A do

4 Create y(t’i) by flipping each bit of z® independently with probability
c/n;

Yy argmin{f(y(t’i))} (breaking ties randomly);

if £(y¥) < f(='")) then
‘ D @),

else
L 2D (),

© 0w N o w

(1—o(1) s if s 2 Gy
(1/2—0(1 )e‘clnh}rf‘)\ if s > o,
h(s):= 4 (1—-o(1))e”“min{c,1}/2 if s> %, (2.42)
(I—0(1))e~¢ 1Cnn if s > A\/?frlin’
(1—o(1))ce™ A2 if s < )\ﬁnfn.

Obviously, computing the drift is non-trivial, and this was the major contri-
bution of the paper. Despite the complexity of the formula, once we know it
we can easily obtain a runtime bound by the variable drift theorem:

Xmax 1
/1 h(g)da] . (2.43)

The integral can now be computed by splitting it into six ranges, and eval-
uating it with elementary calculus. Actually, h(o) is constant for all ranges
except for the last one, which gives one of the leading terms:

1
E[T]gm—i—E

(I+0(1)) S do=(1+0(1))

/n/(km) e‘n e“nln(n/(AvInn)) (2.44)
) Ao cA . -

Proceeding like this for all six ranges, the authors of [34] obtained the final
result

ec.nlnn lnlnln)\). (2.45)

E[T]S(lJ“O(l))(c TS

The authors also proved a matching lower bound by the techniques discussed
in Section P.4.1].




2 Drift Analysis 109

Ezample 2.3.10 (Island Model on_ONEMAX). Doerr, Fischbeck, Frahnow,
Friedrich, Kétzing and Schirneck [[13] studied island models in various topolo-
gies. For the complete graph as the migration topology, the algorithm consists
of X independent (14 1) EAs, except that every 7 rounds all individuals are
updated by the current best search point; see Algorithm R.3.

Algorithm 2.3: Island model with A islands and migration interval 7
for minimising f: {0,1}" = R

1 Choose x(o’l),..,,x(o‘k) € {0,1}"™ uniformly at random;

2 for t=0,1,2,... do

3 fori=1,...,A do

4 Create y(t’i) by flipping each bit of (&9 independently with probability
1/n;

if f(y'")) < f(z(*)) then
‘ 2L (),

else

L 21D g (D),

9 if (t4+1 mod 7) =0 then

o N o w

10 fori=1,...,A do
11 Y ar.gmin{f(y(“rl’i))} (breaking ties randomly);
12 (LD g

For minimising the ONEMAX function, the most interesting phaseE turns
out to be the phase when the current best search point has its fitness in
some interval [sg.s1], where sg = min{n,nIn\/(27)} and s; = n/(7In ).
The authors of [13] defined X; to be the fitness after ¢ migrations, i.e.
X; = ONEMAX(z(*7%) holds for every 1 <i < \. To identify the end of the
phase, we truncate X;, i.e. we define X; := 0 if ONEMaX(z(t"%)) < s9. Note
that the minimum non-zero value of X; is thus syin = sg. The drift of X; for
all t > 0 and all s € [sg,s1] turns out to be

cln A\

Ay(s) > h(s) = In(nln/(rs))’

(2.46)

for some constant ¢ > 0. Note that the function h(s) is increasing. Thus,
by the variable drift theorem (Theorem ), we may bound the expected
number of migrations T before a fitness of less than sg is achieved by

S1
Blmy) < =0 4 1 / ln<nln/\>da, (2.47)

T h(so) clnA /g, TO

16 For some parameter regimes.
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where we have used Xg < s1. The latter integral can now be evaluated by
elementary analysis, and yields

51 1 /(nlnX)
/ ln(n nA)da: T [U(l—lna)]ml ! , (2.48)
50 TO nln A 750/ (nln )
from which the authors of [13] computed their runtime bounds. We refrain

from stating the final result, since it involves several case distinctions with
respect to 7 and A.

2.3.3 Multiplicative Drift

A very important special case of variable drift is multiplicative drift, where
the drift is proportional to the potential. Introduced in [15, 19, 20], it has
become the most widely used variant of drift analysis in the field of evolu-
tionary algorithms. In fact, all of Examples @, §7 and had
multiplicative drift. In particular, Examples .3.d, .3.1 and R.3.§ show that
the same limitations as for variable drift apply.

Theorem 2.3.11 (Multiplicative Drift [20], special case of Theo-
rem ) Let (Xi)t>0 be a sequence of non-negative random variables
with a finite state space S CRY such that 0 € S. Let spin :=min(S\ {0}), let
T:=inf{t>0| X, =0} and, fort >0 and s €S, let Ay(s) = E[X¢— X¢t1 |
X = s]|. Suppose there exists 6 > 0 such that for all s € S\ {0} and allt >0
the drift is

Ai(s) > 6s. (2.49)
Then

1+ E[ln(Xo/Smin)]
E[T) < 5

. (2.50)

We conclude this section by giving some applications of the multiplicative
drift theorem.

Ezample 2.3.12 (1+1) EA on Linear Functions). One of the cornerstones in
the theory of evolutionary algorithms is the analysis of linear pseudo-Boolean
functions f:{0,1}" — R, i.e. functions of the form f(z)=>""_, w;x;, where
the w; are constants. To avoid trivialities, we assume that the weights are
non-zero, and by the symmetry of the search space we may assume that they
are non-negative and sorted, wi > wg > ... > w, > 0. We have already seen
two examples of such functions: ONEMAX in Example P.3.4 and BINVAL in
Example .

To analyse how the (1+1) EA with mutation rate ¢ =1/n (Algorithm @
with offspring population size A = 1) minimises a linear function, a naive
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approach would be to use the fitness as the potential, X; := f (x(t)). Similarly
to the analysis of RLS on BINVAL, this yields a multiplicative drift of at least

Ai(s) = 2(s/n), (2.51)

since the (14+1) EA has at least a constant probability of performing an
RLS step, i.e. of flipping exactly one bit. Therefore, the multiplicative drift
theorem gives the bound

(2.52)

1+ Eln(Xo/wn)]
E[T]<O( ; 0 )

For ONEMAX-like functions where all weights are similar, this bound is
O(nlnn), which turns out to be tight. However, for other linear functions
such as BINVAL, the bound is not tight, for the same reason as for RLS on
BINVAL (Example P.3.7). Rather, the expected runtime is ©(nlnn), as was
first shown by Droste, Jansen and Wegener [26].

For the ONEMAX potential OM; := ONEMAX (z(*)), the situation is rather
interesting. For functions such as BINVAL, there are search points (e.g.
the search point (1,0,...,0), where only the highest-valued bit has not yet
been optimised) for which the drift is negative, i.e. E[OM; — OM;41 | 2®) =
(1,0,...,0)] < 0. Nevertheless, Jagerskiipper [41] showed by a coupling argu-
ment that bits of larger weight are more likely to be optimised, so that we
still have a multiplicative drift [18] for all ¢ > 0 and all s € {1,...,n},

At(S) = E[OMt _OMt+1 | OMt = S] = Q(s/n), (253)

from which a runtime bound E[T] = O(nlnn) follows. So this is one of the
cases where it is beneficial to avoid filtrations and pointwise drift, see also
the paragraph ‘Drift versus expected drift’ in Section .

The results can be tightened if one considers more carefully crafted poten-
tials. Doerr, Johannsen and Winzen showed [L9], building on ideas from [39],

that the drift function ¢(x) := ZZLZ{QJ Sa; +Z?:|_n/2j+1xi even has point-
wise multiplicative drift, i.e. for all ¢ > 0 and all search points = € {0,1}",

Elp(@®) = (V) |21 = 2] = Q(p(x) /n). (2.54)

This yields again the runtime bound E[T] = O(nlnn). Pointwise multiplica-
tive drift giving similar runtime bounds can also be achieved by other poten-
tial functions [20].

Similar techniques can also be used to show that the (1+1) EA still has
runtime ©@(nlnn) on every linear function if the mutation rate is ¢/n for
an arbitrary constant ¢ [15, 54, [75]. However, this requires a considerably
more complicated potential function which must necessarily depend on the
mutation rate [21].
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Ezample 2.3.18 (Minimum Spanning Trees). Consider the following mini-
mum spanning tree (MST) problem proposed in [64]. Let G = (V,E) be a
connected graph with n vertices, m edges eq,...,e,, and positive integer edge
weights w1, ..., w,. We denote by wpax := max; w; the maximum weight. A
bit string = € {0,1}™ represents a subgraph of G with vertex set V', where the
edge e; is present if and only if z; = 1. The fitness of a bit string is given by
f(z) =31 wx;+p(z), where p(z) is a punishment term for non-trees that
ensures we find a spanning tree quickly, and stay within the set of spanning
trees afterwards.

We consider the performance of the (1+1) EA on this problem. In [64]
it was shown that the algorithm quickly finds a spanning tree, so we assume
for simplicity that the initial search point z(© represents such a tree. We
consider the potential function X; := Z?zl wixgt) — Wopt, Where wqpt is the
weight of a minimum spanning tree. Then, relying on results from [64], it was
shown in [20] that the potential function has a multiplicative drift of

S

At(S) = E[Xt —Xt+1 | Xt = S] Z (255)

em?’
Hence, by the multiplicative drift theorem (Theorem ) the expected
runtime (starting from a spanning tree) is at most

E[T] < em?(1+In(mwmax)), (2.56)

since the minimum potential of a non-optimal search point is at least syin > 1,
and since mwmax is an upper bound on Xg. It is an open question whether
() is tight, since the best lower bound is £2(m?Inm) [64], which is a tight
bound for RLS [69].

There are numerous other applications of the multiplicative drift theorem,
including in evolutionary algorithms on other problems [17, 20, 24, B2], ant
colony optimisation [B0], island models [57], genetic programming [23] and
estimation-of-distribution algorithms [31].

2.4 Advanced Drift Theorems

In this section we review the most important developments in drift analysis
in recent years, in particular lower and tail bounds, weak drift, negative drift,
and population drift. Note that unlike those in the previous section, many
advanced theorems, especially about tail bounds, make assumptions about
the pointwise drift (see Section )
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2.4.1 Lower Bounds

As discussed in Section , the variable drift theorem and the multiplicative
drift theorem only have a chance to give tight results if we have some restric-
tion on the probability of making large jumps. From the earlier discussion on
pages ff, we know that _the critical estimates in the proof of the variable
drift theorem are ()7 () and () If h(X11)/h(Xy) is always close
to one, then these estimates are tight. For example, (ﬁ) tells us that, for the
potential function g from the proof, g(X¢) — g(X¢4+1) > (Xt — Xpy1)/h(Xy) if
X; > Xt41 > Smin- But the same argument also shows that g(X;) — g(X¢41) <
(Xt — X¢41)/h(Xi41) in this case. If h(X;) and h(Xy41) differ at most by a
factor ¢ > 1, then the upper and lower bound also differ at most by a factor c.
Following this idea, we get the following lower bound.

Theorem 2.4.1 (Variable Drift Theorem, Lower Bound 1). Let
(X¢)t>0 be a sequence of non-negative random wvariables with a finite state
space S C R such that 0 € S. Let $min := min(S\ {0}), let T :=inf{t > 0]
Xt =0} and, fort >0 and s €S, let Ay(s):= E[Xy— X¢41 | X¢ = s]. Suppose
there is an increasing function h: Rt — RT and a constant ¢ > 1 such that
for all s € S\ {0} and all t > 0 the following conditions hold:

X1 < Xi, (2.1)
A¢(s) < h(s), (2:2)

h(maX{XtJ,_l,Smin}) 1
h(Xs) = >

Then

1 Smin
> .
E[T] 2 c (h(smin) B

Xo
/Smin h(U)dJ] ) , (2.4)

where the expectation on the latter term is over the random choice of Xy.

Note that the theorem has the rather strong assumption that the sequence
X, is non-increasing, see also the discussion after Theorem . This is
necessary because otherwise, even if positive and negative contributions to
the drift are known up to constant factors, the relative error may increase due
to cancellation effects. However, for non-increaging X;, the upper bound of
Theorem and the lower bound of Theorem ‘ are directly comparable:
they differ exactly by a factor c.

Despite its arguably natural form, it seems that Theorem has never
been formulated in this version in the literature,~ perhaps because it usually

17 Although Feldmann and Kétzing [28] gave bounds following the same ideas.
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does not give tight leading constants. For example, consider RLS on ONEMAX
as in Example m There X; is given by the fitness, and h(s) = s/n.
The largest jump occurs when X; decreases from 2 to 1, in which case
h(Xt41)/h(X¢) = 1/2. Thus the lower bound is a factor 2 from the upper
bound.

Doerr, Fouz and Witt [[14] have given a variant which usually gives a tighter
lower bound. In fact, it gives a matching lower bound in many applications.

Theorem 2.4.2 (Variable Drift Theorem, Lower Bound 2 [14]). Let
(X¢)i>0 be a sequence of non-negative random wvariables with a finite state
space S C R(‘)" such that 0 € S, and with associated filtration Fi. Let spmin :=
min(S\{0}), and let T :=inf{t > 0| X; = 0}. Suppose there are two functions
& h RS‘ — RY such that h is monotone increasing, and such that for all
s € S\ {0} and for all t >0 the following three conditions hold:

X1 < Xy, (2.5)
Xip1 2 €(Xy), (2.6)
E[Xt —Xt+1 | ]:tth = S] S h(f(s)) (27)

Then

Smin
E|T| > + FE
[ ] h(smin)

Xo 1
/S h(a)dU] , (2.8)

where the expectation in the latter term is over the random choice of Xg.

To apply Theorem , one should first choose £ such that (@) is satis-
fied, and afterwards choose h in such a way that the composition ho¢ is the
drift, cf. Example @ below. In particular, the function h in Theorem D 4.9
is not identical to the function h in the upper-bound version, Theorem D.3.3.
A formulation of Theorem PR.4.3 in which the function h corresponds directly
to the same function as in Theorem P.3.3 can be found in [12].

We remark that Gieflen and Witt [33] have developed a version in which
the deterministic condition (R.§) is replaced by a probabilistic condition. The
exact formulation is rather technical. For the special case where (@) holds
with some fixed probability p independent of Xy, a simplified version was
developed by Doerr, Doerr and Yang [12]. Moreover, the theorem in [33] sim-
plifies for multiplicative drift [75]. We give here the version in [52], which
assumes bounds on the probability that X; drops by more than a multiplica-
tive factor. A version in which an additive bound on |X; — X;11]| is assumed
can be found in [23].

Theorem 2.4.3 (Multiplicative Drift Theorem, Lower Bound [52,
75]). Let (Xi)i>0 be a sequence of non-negative random variables with a
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finite state space S C Rg such that 0 € S, and with associated filtration F;.
Let spin :=min(S\{0}), and let T :=inf{t > 0| Xy = 0}. Suppose there are
two constants 0 < 5,6 <1 such that for all s € S\ {0} and all t >0 the
following conditions hold:

X1 < X, (2.9)

Bé

Pr[Xt 7Xt+1 Z /BXt | ft7Xt = S] S m7 (210)
E[thXt+1 ‘ftaXt :S} § ds. (211)
Then
1—8 1+ E[In(Xo/Smin
B> =0 1 [n(Xo/5min)] (2.12)

=1+ 5

Recently, Doerr, Doerr and Kotzing [L1] showed that the monotonicity con-
dition (@) can be completely removed if () is replaced by the condition
that, for all s,s" € S\ {0} with ¢’ <s,

Elmax{s’ — X;41,0} | Ft,X; = s] < ds’. (2.13)

The authors of [11] showed that this condition is satisfied for very natu-
ral processes. In particular, it is satisfied for processes with multiplicative
drift if the jump probability p(s) ::@Pr[XH_l <s'| F, X =s] is a decreas-
ing function of s, whenever s’ < 5.8 This modification extends the scope
of Theorem considerably, since many evolutionary algorithms are non-
monotone processes. Moreover, it seems likely that the proof in [11] can be
extended to generalise related lower bounds. in particular the lower bounds
for variable drift in Theorems and .

We conclude the discussion of lower bounds with an easy example to
demonstrate how to apply Theorem and .

Ezample 2.4.4 (RLS on ONEMAX, Lower Bound). Consider once more RLS
on ONEMAX as in Example . We want to apply Theorem . Since X;
decreases by at most one, we choose £(s) :=s—1 to satisfy () as tightly as
possible. Since the drift is A¢(s) = s/n, we choose h(s) := (s+1)/n so that
h(&(s)) = A¢(s). Thus we obtain the lower bound
Xo
/ " e
1 o+1

Xo o1 1
— do|=—+FE
Amm h(e) 2/n
18 In other words, it should more likely to jump into the interval [0, s/} if you start closer
to it.

Smin
E|T| > +FE
[ ] h(smin)
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— 2 +n- Elln(Xo+1) - In2), (2.14)
which is easily seen to be at least nlnn —O(n).

Note that Theorem @ would give a less tight bound if naively applied.
To satisfy () for s =2, it would be necessary to choose 8> 1/2, and for
s =1 we even need (8 > 1, which renders the bound useless. However, this
problem can be overcome by truncating the search space; see [[L1]] for details.

2.4.2 Tail Bounds

In some cases, we would also like to understand 7" beyond its expectation.
In particular, we may wantT to be concentrated, i.e. we want bounds on the
probability that T deviates substantially from its expectation. This is desir-
able for at least two reasons. Firstly, it gives more concrete guarantees about
T, for example that the algorithm will converge in a certain number of steps
with 99% probability. Secondly, it might also happen that the expectation is
misleading. For example, consider the following variant of the gambler’s ruin
problem. A gambler starts with $1, and with each game she either wins or
loses $1, but the probability of losing is 1/2+1/n, so slightly larger than the
probability 1/2—1/n of winning. Let T be the time until she is broke, i.e. the
number of games until she has no money left. Then the drift towards 0 is 2/n,
and therefore E[T] =n/2 by the additive drift theorem. However, it can be
computed that Pr[T < 27] > 70%, which holds even for the fair game where
winning and losing are equally likely. Therefore, for large n the expectation
n/2 is rather misleading, since typical values of T are very different. Such
discrepancies can be ruled out by concentration results.

For the standard drift theorems, we need additional assumptions about
X; for such concentration results to hold, with one notable exception. The
following wupper tail bound for multiplicative drift holds without any further
requirements, as pointed out by Doerr and Goldberg [15]. We give the sim-
plified formulation presented in [20]. We also present the proof of Doerr and
Goldberg, which is remarkably short and elegant.

Theorem 2.4.5 (Multiplicative Drift, Upper Tail Bound [15, 20]).
Let (X¢)i>0 be a sequence of non-negative random variables with a finite
state space S C Ry such that 0 € S. Let syin := min(S\ {0}), and let T :=
inf{t > 0| X; = 0}. Suppose that Xy = so, and that there exists § >0 such
that, for all s € S\ {0} and all t >0,

E[Xt —Xt+1 | Xt = S] Z 0s. (215)

Then, for all r >0,
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Pr {T > PHH(?/SM)H <e T (2.16)

Proof. For every fixed p = [(r +1n(s0/Smin))/d] € N, by Markov’s inequality,

—

ElX,] @ 1-6)Pp20 (2.17)

Smin Smin

Pr[T > p| =Pr[X, > 0] <
where (*) comes from applying () and linearity of expectation p times.
Since (1—x) <e™® for all € R, we obtain Pr[T > p] < e °sq/smin < e

O

For all of the other main drift theorems, including additive drift, variable
drift and lower tails for multiplicative drift, we need assumptions on the
probability of large jumps. For example, consider the process on & = {0,n} in
which X = n has probability 1/n of jumping to zero, and stays at n otherwise.
Then X; has drift one towards 0, but the hitting time 7T is geometrically
distributed. In particular, T is not concentrated.=2 So, we need to make some
assumption about the distribution of | Xy — Xy41].

The easiest assumption is that large jumps do not occur at all, i.e. | X417 —
Xi| < ¢ for some parameter c¢. This case occurs in various situations, for
example for RLS, for some ant colony optimisation algorithms such as the
max—min ant system (MMAS) and for the compact genetic algorithm (cGA).
We refer the reader to Kotzing [43] for a large collection of additive drift
theorems with this assumption.

While there are situations without large jumps, there are even more cases
in which large jumps may occur, but are unlikely. Thus research has focused
on drift theorems with assumptions about the jump probability, usually some
type of exponentially falling bounds, i.e. Pr[|X¢11 — X¢| > j] < c-(14n)77 for
some parameters ¢,n > 0. In this chapter we stick with this type of condi-
tion, although generalisations are possible. Koétzing has made the point that
exponentially falling jump probabilities imply a sub-Gaussian distribuytion of
X —et, which is sufficient to derive most known tail bounds [44].E9 Lehre
and Witt have given a very general framework for drift theorems [52, 53], in
which only weak conditions on_the exponential probability-generating func-
tion eMXt=Xe41) are needed.@ Most major drift theorems, including con-
centration bounds, can be derived from this framework, so that it arguably
renders the other drift theorems unnecessary [52]. However, researchers have
continued to use specialised drift theorems, possibly because the framework
of Lehre and Witt comes with a substantial technical overhead. We give their
main theorem at the end of the section for quick reference, but discussing its
relation to the other drift theorems is beyond the scope of this chapter, and
we refer the reader to the very nice exposition in [52].

19 For example, Pr[T > 2E[T]] = (1—1/n)*" ~e™2.
20 And arguably more natural, using the Azuma-Hoeffding inequality.
21 More precisely, only the ezpectation of this function needs to be bounded.
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Even with bounds on the probability of making jumps, lower tail bounds
remain rather delicate. Unfortunately, it is not true in general that the run-
time is concentrated around the expectation. This problem occurs when the
drift is too weak, as the following counterexample shows.

Ezample 2.4.6 (Runtime is Not Concentrated Around Mean for Weak Drift).
We consider the following artificial random walk on the set {0,1,...,N} for
some (very large) constant N. We start at Xy = n, where n is much smaller
than N. For X; = s, with probability 1/n* we take a step to the left, X; 1 :=
X; —1, and otherwise we flip an unbiased coin to see whether we take a step
to the left or to the right. We say that %e take a biased step in the first
case, and an unbiased step in the second.E2 Effectively, this process can be
summarised as

X;—1 with probability (1+1/n%),
X1 =141 D ..yf( / 4) (2.18)
X¢+1  with probability 5(1—1/n%).
Then the drift is easily seen to be
1
Ai(s) = vy (2.19)
so that by the additive drift theorem (Theorem ) we obtain
E[T] =n* (2.20)

So, in terms of expectation, drift analysis can handle the problem quite well.
However, it turns out that the expectation is completely misleading. Consider
the first n3 steps of the algorithm. By a union bound, with probability 1 —
O(1/n) all of these steps are unbiased. Hence, with high probability the first
n? steps are given by an unbiased random walk, also known as a gambler’s
ruin process. This process is well studied, and it is known that the probability
of walking from 7 to 0 in at most an? steps is 1 —O(a~'/2) for all a > 1 [36].
In particular, with o = n, the probability that an unbiased random walk
starting at n hits 0 in at most n® steps is 1 —O(n~'/2). Thus, with high
probability the stopping time 7' of our process satisfies T = O(n?) B3 Hence,
with high probability, T' is asymptotically much smaller than its expectation
E[T]=n*

22 We have neglected the border case X; = N in the description. However, if N is large
enough, e.g. N =", then we cannot hit the right border in o(N) steps, so the arguments
are unaffected by the right border. For (2.2() we require that the drift is also 1/n* at
the border.

23 In fact, if we are mathematically sloppy, the ‘typical case’ is T' = @(n2),
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This example is rather prototypical for situations with weak drift. In fact,
it was shown in [22] that in general®2 for weak additive drift the value of E[T]
is not dominated by ‘typical’ cases, but at least a constant proportion of E[T]
comes from exceptional cases in which T is much larger than E[T]. We also
remark that Example M above can easily be adapted to multiplicative drift,
for example by making the probability of an unbiased step X;/n'?. Since X;
changes in each step by at most one, by Theorem the bound E[T] =
O(n'%logn) given by the multiplicative drift theorem is tight up to constant
factors. However, as before, the runtime is O(n?) with high probability, so
that with high probability the runtime is much smaller than the expected
runtime.

Despite this problem, good tail bounds for additive drift have been devel-
oped. %e following theorem follows from combining Theorems 10, 12 and 13
in [44].

Theorem 2.4.7 (Additive Drift, Tail Bounds, following [44]). Let
(X¢)e>0 be a sequence of non-negative random wvariables with o finite state
space S C Ra“ such that 0 € S, and with associated filtration Fy. Let spin :=
min(S\{0}), and let T :=inf{t > 0| X; = 0}. Suppose that Xo = so, and that
there exist 6,m,r > 0 such that for all s € S\ {0}, all j € Ny and all t >0 the
following conditions hold:

Pr{|[Xep1 — Xe| >4 | Fe] < A (2.21)
E[X;— Xer1 | Fou Xe = 5] < 6. (2.22)
Then, for all x >0,
Pr [Tg 506_“7] Sexp{—ng~min{1,g225x }} (2.23)
TS0
If, instead of (), we have
E[X;— Xe1 | Fou Xe = 8] > 6, (2.24)
then
Pr [T > 506”] < exp{—ng-min{l, ;722593 }} (2.25)
TS0

24 Under some weak assumptions, in particular assuming that large step sizes are unlikely
as in () below.

25 Actually, the statement in [44] is stronger, since it states that at no point during the
whole process does X deviate substantially from its expectation, whereas we consider
only values of X; that are relevant for the runtime.
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Note that the bounds in () and () give concentration only if the
right hand side is of the form exp{—®} for a large term ®. In particular,

consider the case where ¢ and r are constants and x = O(sg). Then & = w(1)
if and only if the bound sg/d on the expected runtime satisfies so/6 = o(x?) =
0(s3). On the other hand, for s9/§ = w(s2) the runtime bound from the drift
is larger than the time that an unbiased random walk would need to hit 0;
see also Example . So, it is not surprising that Theorem does not
give concentration in this regime. Tight concentration bounds for the regime
of weak drift can be found in [44].

We conclude the section with a consideration of the tail bounds in the gen-
eral framework of Lehre and Witt [52, 53]. Note that [62, 53] both contain
also several corollaries that correspond to simplified special cases, in partic-
ular some cases which resemble more closely our variant of the variable drift
theorem.

Theorem 2.4.8 (General Drift Theorem, Tail Bounds [53]). Let a >0,
and let (X¢)i>0 be a sequence of random variables with a finite state space
SC Ra' such that the interval [0,a] NS is absorbing, and with associated
filtration Fy. Let Ty :=inf{t > 0| Xy < a}, and assume that Xo = sg > a.
Moreover, let A >0, let g: RS — RS be a function such that g(0) =0 and
g(s) > g(a) for all s > a, and let f: N — R,

(a) If, for allt >0,
Ele~Mo(X0)-9(Xer)) | 7, X, > 0] < B(2), (2.26)

then for allt >0,

T > t <H /8 ) e)\(g(so)fg(a)). (2_27)

(b) If, for allt >0,
E[eMoX0)—9(Xee)) | 7, X, > 0] > B(t), (2.28)

then for allt >0,

r[T, <t] < (H B(r ) e~ Mg(s0)—g(a)) (2.29)

In general, in_order to obtain tail bounds for variable drift, we can either
apply Theorem ; or we can rescale Xy, as discussed in Sectlon R.3.2, to
turn variable drift into additive drift, and then apply Theorem L?I Unfor-
tunately, both approaches tend to be very technical. The most important
case is obtaining tight lower tail bounds for multiplicative drift. Even with
the framework of Lehre and Witt, in order to derive lower tail bounds for the
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(1+1) EA on ONEMAX, it is still necessary to split the process into phases
of relatively constant drift [62]. An easy and comprehensive lower tail bound
for multiplicative drift is still absent in the literature.

2.4.3 Negative Drift

If the drift does not point towards zero, but instead points with a constant
rate away from zero, then it takes exponential time to cross an interval. The
first theorem of this type was proven by Oliveto and Witt [65, 66]. following
Hajek’s classical work [B7]. We give a formulation close to [b4, /1] because
it avoids o-notation for the length of the interval. Explicit constants can be
found in [44, 67, [76].

Theorem 2.4.9 (Negative Drift, following [54, 65, 66, 71]). For all
a,b,8,m,7 >0, with a < b, there is a ¢ > 0,n9 € N such that the following
holds for all n > ng. Suppose (X¢)t>o0 is a sequence of random variables with
a finite state space S C Rg‘, and with associated filtration Fy. Assume that
Xo > bn, and let T, := min{t > 0| Xy < an} be the hitting time of SN[0,an).
Assume further that for all s € S with s > an, for all j € Ng and for allt >0
the following conditions hold:

BlXy — Xiq1 | Fr, Xy = s] < =6, (2.30)
T
Pr|| X — X >7 X;=s| < -, 2.31
I'“ t t+1|—j|ft7 t S]_(1+77)] ( )
Then
Pr[T, <e] <e " (2.32)

Negative drift is helpful for proving lower bounds [54, 67, 1], but not
only so. It may also be used to show that an algorithm stays in a desired
parameter regime. For example, Neumann, Sudholt and Witt used it to show
that an ant colony optimisation (ACO) algorithm has good runtime because
all pheromone values stay in a desirable range [63]. Similarly, Kétzing and
Molter [47], as well as subsequent authors [30, b5, b6], used negative drift to
show that ACO algorithms tend to stay close to the optimum, thus enabling
the algorithm to follow the optimum in a dynamically changing environment.
In a different setting, Sudholt and Witt [[72] %owed that the compact ge-
netic algorithm (cGA) is efficient on ONEMAXEY because, for each position,
the probability of sampling a one-bit never becomes too low. Similar ideas

26 In some parameter regimes.
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have been applied for population-based non-elitist algorithms in the strong-
selection weak-mutation (SSWM) regime [68].

2.4.4 Populations

If the algorithm uses population sizes larger than one, or if it does not work
at all with populations, as in the case of ant (ﬁlony optimisation (ACO) or
estimation-of-distribution algorithms (EDAs),E1 then it is often challenging
to find a single potential X; which captures well the quality of the current
population. As before, if such a potential can be found, then drift analysis
can take care of the rest. In some cases, it suffices to consider the current best
optimum as the potential (see Example and [[13]), or some average qual-
ity [29, [72]. A systematic approach was developed by Corus, Dang, Eremeev
and Lehre [3, 4], who gave the so-called level-based theorem for population-
based algorithms. With this theorem, they identified a generic situation in
which a good potential can be found automatically. A population-based algo-
rithm in their sense®d is any algorithm of the following form. In each round
it maintains a population of size A, and from this population it generates
some probability distribution D. For the next round, it produces A samples
independently from D, which form the next generation.

This framework of population-based algorithms applies to many situations,
often with a twist to the usual algorithm description. Firstly, it does include
all (i, A) evolutionary or genetic algorithms if the A offspring are generated
indepenéently of each other. In this case, let P; be the i-th offspring pop-
ulation.®d Then, from P;, a complex process determines some probability
distribution D from which the next offspring is sampled. This process sub-
sumes selection and mutation/crossover. Other population-based algorithms
include simulated annealing, and, surprisingly, EDAs [[i]. While these latter
algorithms conceptually maintain a probability distribution rather than a
population, they do produce a sample population in each round, from which
the next distribution is computed. This offspring population makes them fit
into the framework of population-based algorithms.

The level-based theorem assumes a partitioning of the search space into
fitness levels that need to be climbed by the population. It gives an upper
bound on the expected runtime if certain conditions are satisfied. The exact
formulation is rather technical, so we refer the reader to [4]. Qualitatively,
three ingredients are required:

27 ACO algorithms maintain pheromone values; EDAs maintain a probability distribu-
tion, rather than a population of search points.

28 Conflicting terminology exists.

29 Not the parent population, since the next parents are not sampled independently
from these. Rather, the parents of the next generation need to compete with each other
in the selection step.
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1. If part of the population has at least fitness level i, then the probability
of sampling an offspring at level i+ 1 is sufficiently large.

2. The fraction of the population which has fitness level at least ¢ increases
in expectation.

3. The population size is large enough.

Although it has only recently been developed, the level-based theorem has
already found quite a number of applications, including the analysis of ge-
netic algorithms with a multitude of selection mechanisms and benchmark
functions 4], of EDAs [, p(], of self-adaptive algorithms [J] and of algo-
rithms in situations that are dynamic [] or noisy [f], or provide only partial
information [§].

2.5 Finding the Potential Function

At the very beginning of the chapter, we listed three ingredients for runtime
analysis via drift theory: finding a good potential function, computing the
drift and transferring the knowledge about the drift into information about
the runtime. In this chapter, we have discussed the third point, because it is
based on a universal technique that applies to many settings. In contrast, the
first two points are highly problem-dependent, and cannot be generalised well.
As mentioned before, the second point is usually not the hardest part, though
it is often the most technical part and sometimes tedious. On the other hand,
the first task — finding a good potential function — is often the hardest part,
and it requires a lot of insight into the problem. Unfortunately, it is difficult
to give general advice on how to find an appropriate fitness function for a
given problem. Nevertheless, we will try to give some approaches which may
be helpful.

A first question may be whether drift analysis is always applicable, or
whether there are cases where the method fails completely. More concretely,
is there always a good potential function, ideally one with constant drift? The
answer is pleasantly clear: ‘Yes’. In theory, there is even a surprisingly simple
answer to the question of what this potential may look like. We may always
choose the canonical potential Xy := E[T | F¢] —t, where F; is the history
of the algorithm up to time t. Note that T is, as usual, the total number
of steps in the process; it is not just the number of steps remaining. For
the canonical potential, we always get a drift of exactly 1, for rather trivial
reasons [20, B9]. The canonical potential does not look very helpful, since it
seemingly only helps in finding the runtime if we already know the runtime.
However, the canonical potential gives us a natural candidate for the right
potential function if we have any guess as to what the runtime might be.
The guess may come from heuristic considerations or from simulations. The
situation resembles induction, where finding the right induction hypothesis
is sometimes much harder than actually proving the inductive step. With
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the random decline in Example we have already seen a case where the
situation was obscure, but after the right scaling, ¥; = 1+1In(X,), it was
rather easy to check that the drift was constant. How do we get to such a
scaling? Reinspecting the example, we find that it is very natural to guess
that the runtime is logarithmic, so a scaling of the form Y; = ¢1 4 colog(X})
is a natural candidate. Indeed, any scaling of this form would have been
sufficient. Choosing ¢; = co = 1 was just the most convenient choice, owing to
the fact that then Y; =1 if and only if X; = 1. We have seen other examples
of the rescaling technique in Example @ and in the variable drift theorem.

Note that the canonical potential is more than ‘just’ a rescaling technique,
since it defines X; from scratch. In particular, can theoretically compute
the expected runtime for every random processs== by drift analysis, by using
the canonical potential. In practice, the main problem is that the history F}
(or even the current state) is too complicated to work with, and likewise the
canonical potential is often too complex too handle. Therefore, the art of
drift analysis lies in finding a potential which is simple and manageable, but
which still resembles the canonical potential.

Let us consider next the (quite realistic) scenario where we already have
some candidate for a potential function, but this candidate is still not good
enough. Let us first discuss what it means that a potential function is ‘not
good’. If we want additive drift, it means that there are different states sy, s2
of the algorithm with very different drift. If we want multiplicative drift, it
means that the ratio between the drift and the potential is very different
for some states s1,s2, because we want the drift to be proportional to the
potential. So, the first task is to look for states with such discrepancies. Then
we can try to repair this defect: if the drift at s; is too large (compared
with the drift at so) then we must try to decrease the difference between the
potential of s; and the potentials of typical successor states of s;. We can do
this either by decreasing the potential of s; or by increasing the potentials
of successor states. Hopefully, this will improve the accuracy of the potential
function. We may iterate this procedure until we arrive at a good potential
function.

For concreteness, let us study this approach with an example. Consider the
(1+1) EA with standard mutation rate 1/n for minimising BINVAL, where
BINVAL(z) = Y1 ; 2" %z;. Our first guess is to use the fitness function as
the potential, X; := BINVAL(z(")). Our hope is that we will get multiplicative
drift, as we got for RLS in Example . However, with this potential we
have two problems. Firstly, the potential may make huge jumps (e.g.decrease
from 27~ to 0), so we need to be careful when applying the multiplicative
drift theorem, as we saw in Examples m and . Secondly, the drift
is not very close to multiplicative. For example, consider the search points
s1:=(0,...,0,1) and s9 := (1,0,...,0). The potentials are 1 :=1 and z9 :=

30 If the expected runtime is finite. However, the process does not need to have finite,
bounded or discrete search spaces.
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2n=1 respectively. A mutation of s1 is accepted only if it flips the last bit,
and no other bit, which happens with probability ~ 1/(en) = z1/(en). On
the other hand, for so we accept every mutation that flips the first bit, which
happens with probability 1/n. We may also flip a few other bits, but the
potential still goes down by (1 —0(1))2"~! in expectation if we flip the first
bit. Therefore the drift is ~ 2"*1/71 = x9/n. So the drift for so is by factor e
larger than desired, if we compare it with s;. Hence, we must try to decrease
the potential for so and/or increase it for s;. A natural way to do this is to
reduce the weight of the higher-order bits in computing the potential. This
might also alleviate the effects of large jumps.

How much should we reduce the weight? In the extreme case, we would
make all weights equal, i.e. we would use the ONEMAX potential. This works
well on strings where the higher-order bits are all zero. For example, for so
we get a drift of 1/n, and the ratio between drift and fitness is generally very
close to 1/n if all one-bits are in the last, say, 10% of the string. However,
there is a problem for s;. Here we accept an offspring whenever we flip the
first bit, and in this case we flip an expected number of (n—1)/n other bits.
Therefore, the drift for sg is 1/n-(1—(n—1)/n) = 1/n?, so it is too small.
Hence we need to increase the potential of so compared with the potential
of its typical offspring, i.e. we need to increase the weight of higher-order
bits. It takes some fiddling to get the right trade-off, but Doerr, Johannsen
and Winzen figured out that a good choice is a weight of 5/4 for the first
half of the bits, and 1 for the second half [[19]. This choice works not only
for BINVAL but for all linear functions (cf. Example R.3.19). In principle, the
same approach can also be used for mutation rates other than 1/n. In one
of the most important results on the theory of evolutionary algorithms, for
a mutation rate of the form ¢/n for any constant ¢ >0 Witt [75] managed
to find weights which lead to a good potential. In this way, he could prove
in just 2-3 pages that the runtime of the (1+1) EA is (1+o0(1))e/c-nlnn,
settling a question that had been open for years.

We should keep in mind that the methods discussed above are only guide-
lines, which may be helpful in some situations but fruitless in others. Finding
the right drift function often requires ingenuity, and cannot be reduced to a
simple cooking recipe. Thus it is still one of the most challenging, but also
most rewarding tasks in runtime analysis.

2.6 Conclusion

We have seen how drift analysis can be applied to transform knowledge about
the drift into knowledge about the runtime of an algorithm. In this chapter
we have restricted ourselves to applications in the analysis of evolutionary
algorithms, but drift analysis can be applied to other randomised algorithms
or random processes. We refer the reader to [35], which contains a nice variety
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of applications of drift analysis, including algorithms for approximate vertex
cover, 2-SAT and random sorting, and applications to processes such as the
Moran process.

In theory, it is always possible to apply drift analysis to obtain match-
ing upper and lower bounds on the expected runtime. However, in practice
there are many situations which are still difficult to handle because we do not
know a good potential function. In particular, the more complex the state
space and the behaviour of the algorithm are, the more difficult it is to find
a single real-valued function which is a sufficiently good measure of progress.
For example, in genetic programming (GP) the states are trees instead of
strings, which makes the situation considerably more complex. In the few
cases where theoretical results exist, this is mostly because the tree structure
is unimportant for the problem [23, 27, 46, 62], with the notable exception
of [25]. Similarly, while there have been impressive advances for large pop-
ulation sizes, especially through the level-based theorem (see Section P.4.4),
these techniques are still limited to some special cases of population dynam-
ics. In particular, they consider only the number of individuals on each fitness
level. This limits the complexity of the interactions that we can understand
with this method — for example, the approach is blind to beneficial crossovers
that happen between search points on the same fitness level. In general, it
remains a major challenge to apply drift analysis to complex state spaces,
and to algorithms which maintain and utilise a large diversity within their
population, for example through crossover.
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Chapter 3

Complexity Theory for Discrete
Black-Box Optimization Heuristics

Carola Doerr

Abstract A predominant topic in the theory of evolutionary algorithms and,
more generally, theory of randomized black-box optimization techniques is
running-time analysis. Running-time analysis is aimed at understanding the
performance of a given heuristic on a given problem by bounding the number
of function evaluations that are needed by the heuristic to identify a solution
of a desired quality. As in general algorithms theory, this running-time per-
spective is most useful when it is complemented by a meaningful complezity
theory that studies the limits of algorithmic solutions.

In the context of discrete black-box optimization, several black-box com-
plexity models have been developed to analyze the best possible performance
that a black-box optimization algorithm can achieve on a given problem. The
models differ in the classes of algorithms to which these lower bounds apply.
This way, black-box complexity contributes to a better understanding of how
certain algorithmic choices (such as the amount of memory used by a heuris-
tic, its selective pressure, or properties of the strategies that it uses to create
new solution candidates) influence performance.

In this chapter we review the different black-box complexity models that
have been proposed in the literature, survey the bounds that have been ob-
tained for these models, and discuss how the interplay of running-time ana-
lysis and black-box complexity can inspire new algorithmic solutions to well-
researched problems in evolutionary computation. We also discuss in this
chapter several interesting open questions for future work.

Carola Doerr
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, 75005 Paris,
France
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3.1 Introduction and Historical Remarks

One of the driving forces in theoretical computer science is the fruitful in-
terplay between complexity theory and the theory of algorithms. While the
former measures the minimum computational effort that is needed to solve
a given problem, the latter is aimed at designing and analyzing efficient al-
gorithmic solutions which prove that a problem can be solved with a certain
computational effort. When, for a problem, the lower bounds on the resources
needed to solve it are identical to (or not much smaller than) the upper
bounds attained by some specific algorithm, we can be certain that we have
an (almost) optimal algorithmic solution to this problem. Big gaps between
lower and upper bounds, in contrast, indicate that more research effort is
needed to understand the problem: it may be that more efficient algorithms
for the problem exist, or that the problem is indeed “harder” than what the
lower bound suggests.

Many different complexity models coexist in the theoretical computer sci-
ence literature. The arguably most classical one measures the number of
arithmetic operations that an algorithm needs to perform on the problem
data until it obtains a solution for the problem. A solution can be a “yes/no”
answer (a decision problem), a classification of a problem instance according
to some criteria (a classification problem), a vector of decision variables that
maximize or minimize some objective function (an optimization problem), etc.
In the optimization context, we are typically interested only in algorithms
that satisfy some minimal quality requirements such as a guarantee that the
suggested solutions (“the output” of the algorithm) are always optimal or are
optimal with some large enough probability, or that they are not worse than
an optimal solution by more than some additive or multiplicative factor C,
ete.

In the white-box setting, in which the algorithms have full access to the
data describing the problem instance, complexity theory is a well-established
and very intensively studied research objective. In black-box optimization,
where the algorithms do not have access to the problem data and can learn
about the problem at hand only through the evaluation of potential solu-
tion candidates, complexity theory is a much less present topic, with rather
large fluctuations in the number of publications. In the context of heuris-
tic solutions to black-box optimization problems, which is the topic of this
book, complexity theory has been systematically studied only since 2010, us-
ing the notion of black-box complexity. Luckily, black-box complexity theory
can build on results in related research domains such as information theory,
discrete mathematics, cryptography, and others.

In this chapter, we review the state of the art in this currently very active
area of research, which is concerned with bounding the best possible perfor-
mance that an optimization algorithm can achieve in a black-box setting.
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3.1.1 Black-Box vs. White-Box Complexity

Most of the traditional complexity measures assume that the algorithms have
access to the problem data, and count the number of steps that are needed
until the algorithm outputs a solution. In the black-box setting, these com-
plexity measures are not very meaningful, as the algorithms are asked to
optimize a problem without having direct access to it. As a consequence, the
performance of a black-box optimization algorithm is therefore traditionally
measured by the number of function evaluations that the algorithm does until
it queries for the first time a solution that satisfies some specific performance
criteria. In this book, we are mostly interested in the expected number of
evaluations needed until an optimal solution is evaluated for the first time. It
is therefore natural to define black-box complexity as the minimum number
of function evaluations that any black-box algorithm meeds to perform, on
average, until it queries an optimal solution for the first time.

We typically consider classes of problems, for example, the set of traveling
salesperson instances of planar graphs with integer edge weights. For such
a class F C {f:S — R} of problem instances, we take a worst-case view
and measure the expected number of function evaluations that an algorithm
needs to optimize any instance f € F. That is, the black-box complexity
of a problem F is infasuper E[T(A, f)], the best (among all algorithms
A) worst-case (among all problem instances f) expected number E[T(A, f)]
of function evaluations that are needed to optimize any f € F. A formal
definition will be given in Section B.2.

The black-box complexity of a problem can be very different from its white-
box counterpart. We will discuss, for example, in Sections B.2.4 and B.6.3.
the fact that there are a number of NP-hard problems whose black-box com-
plexity is of small polynomial order.

3.1.2 Motivation and Objectives

The ultimate objective of black-box complexity is to support the investigation
and design of efficient black-box optimization techniques. This is achieved in
several complementary ways.

A first benefit of black-box complexity is that it enables the above-
mentioned evaluation of how well we have understood a black-box optimiza-
tion problem, and how suitable the state-of-the-art heuristics are. Where large
gaps between lower and upper bounds exist, we may want to explore alter-
native algorithmic solutions, in the hope of identifying more efficient solvers.
Where the lower and upper bounds match or are close, we can stop striving
for more efficient algorithms.

Another advantage of black-box complexity studies is that they allow us to
investigate how certain algorithmic choices influence the performance: By re-
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stricting the class of algorithms under consideration, we can judge how these
restrictions increase the complexity of a black-box optimization problem. In
the context of evolutionary computation, interesting restrictions include the
amount of memory that is available to the algorithms, the number of solutions
that are sampled in every iteration, the way new solution candidates are gen-
erated, the selection principles according to which it is decided which search
points to keep for future reference, etc. Comparing the unrestricted with the
restricted black-box complexity of a problem (i.e. its black-box complexity
with respect to all versus that with respect to a subclass of all algorithms)
quantifies the performance loss caused by these restrictions. This way, we can
understand, for example, the effects of not storing the set of all previously
evaluated solution candidates, but only a small subset.

The black-box complexity of a problem can be significantly smaller than
the performance of a best known ‘standard’ heuristic. In such cases, the small
complexity is often attained by a problem-tailored black-box algorithm, which
is not representative of common black-box heuristics. Interestingly, it turns
out that we can nevertheless learn from such highly specific algorithms, as
they often incorporate some ideas that could be beneficial far beyond the
particular problem at hand. As we shall demonstrate in Section B.9, even for
very well-researched optimization problems, such ideas can give rise to the
design of novel heuristics which are provably more efficient than standard
solutions. This way, black-box complexity serves as a source of inspiration
for the development of novel algorithmic ideas that lead to the design of
better search heuristics.

3.1.3 Relationship to Query Complexity

As indicated above, black-box complexity is studied in several different con-
texts, which reach far beyond evolutionary computation. In the 1960s and
1970s, for example, this complexity measure was very popular in the context
of combinatorial games, such as coin-weighing problems of the type “given n
coins of two different types, what is the minimum number of weighings that is
needed to classify the coins according to their weight?” Interpreting a weigh-
ing as a function evaluation, we see that such questions can be formulated as
black-box optimization problems.

Black-box complexity also plays an important role in cryptography, where
a common research question concerns the minimum amount of information
that suffices to break a secret code. Quantum computing, communication
complexity, and information theory are other research areas where (variants
of) black-box complexity are intensively studied performance measures. While
in these settings the precise model is often not exactly identical to a model
of the kind we are faced with in black-box optimization, some of the tools
developed in these related areas can be useful in our context.
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A significant part of the literature studies the performance of determinis-
tic algorithms. Randomized black-box complexities are much less understood.
They can be much smaller than their deterministic counterparts. Since de-
terministic algorithms form a subclass of randomized ones, any lower bound
proven for the randomized black-box complexity of a problem also applies
to any deterministic algorithm. In some cases, a strict separation between
deterministic and randomized black-box complexities can be proven. This
is the case for the LEADINGONES function, as we shall briefly discuss in
Section . For other problems, the deterministic and randomized black-
box complexities coincide. Characterizing those problems for which access to
random bits can provably decrease the complexity is a wide-open research
question.

In several contexts, in particular the research domains mentioned above,
black-box complexity is typically referred to as query or oracle complexity,
with the idea that the algorithms do not evaluate the function values of
the solution candidates themselves but rather query them from an oracle.
This interpretation is mostly identical to the black-box scenario classically
considered in evolutionary computation.

3.1.4 Scope of This Chapter

In this chapter, as in the remainder of this book, we restrict our attention
to discrete optimization problems, i.e., the maximization or minimization
of functions f: S — R that are defined over finite search spaces S. As in
the previous chapters, we will mostly deal with the optimization of pseudo-
Boolean functions f:{0,1}" — R, permutation problems f :S, — R, and
functions f:[0..r —1]™ — R defined for strings over an alphabet of bounded
size, where, here and in the following, we use the following abbreviations:
[0..r—1]:={0,1,...,7 — 1} represents the set of non-negative integers smaller
than r, [n] :={1,2,...,n}, and S,, represents the set of all permutations (one-
to-one maps) o : [n] — [n].

We point out that black-box complexity notions are also studied for infinite
search spaces S. In the context of continuous optimization problems, studies
of black-box complexity are aimed at bounding the best possible convergence
rates_that a derivative-free black-box optimization algorithm can achieve,
see [b1, B6] for examples.

3.1.5 Target Audience and Complementary Material

This chapter is written with a reader in mind who is familiar with black-
box optimization, and who brings with them some background in theoretical
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running-time analysis. We will give an exhaustive survey of existing results.
Where appropriate, we provide proof ideas and discuss some historical de-
velopments. Readers interested in a more gentle introduction to the basic
concepts of black-box complexity are referred to [61]. A slide presentation on
selected aspects of black-box complexity, along with a summary of complexity
bounds known back in spring 2014, can be found in the tutorial [20].

3.1.6 Overview of the Content

Black-box complexity is formally defined in Section @ We also provide
there a summary of useful tools. In Section m we discuss why classical
complexity statements such as NP-hardness results do not necessarily imply
hardness in the black-box complexity model.

In Sections B.3-B.7 we review the different black-box complexity models
that have been proposed in the literature. For each model, we discuss the
main results that have been achieved for it. For several benchmark problems,
including most notably ONEMAX, LEADINGONES, and JUMP, but also combi-
natorial problems such as the minimum spanning tree problem and shortest-
paths problems, bounds have been derived for various complexity models.
For ONEMAX and LEADINGONES, we compare these different bounds in Sec-
tion B.§, to summarize where gaps between upper and lower bounds exist, and
to highlight the increasing complexities imposed by the restrictive models.

We will demonstrate in Section that the complexity-theoretic view of
black-box optimization can inspire the design of more efficient optimization
heuristics. This is made possible by questioning some of the state-of-the-art
choices that are made in evolutionary computation and neighboring disci-
plines.

Finally, we show in Section that research efforts originally motivated
by the study of black-box complexity have yielded improved bounds for long-
standing open problems in classical computer science.

In Section , we conclude this chapter with a summary of open questions
and problems in discrete black-box complexity and directions for future work.

3.2 The Unrestricted Black-Box Model

In this section we introduce the most basic black-box model, which is the
unrestricted one. This model contains all black-box optimization algorithms.
Any lower bound in this model therefore immediately applies to any of the
restricted models which we discuss in Sections —@. We also discuss in
this section some useful tools for the analysis of black-box complexity and
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Fig. 3.1 In the unrestricted black-box model, the algorithm can store the full history
of previously queried search points. For each of these already evaluated candidate solu-
tions z, the algorithm has access to its absolute function value f(x) € R. There are no
restrictions on the structure of the distributions D from which new solution candidates
are sampled.

demonstrate that the black-box complexity of a problem can be very different
from its classical white-box complexity.

The unrestricted black-box model was introduced by Droste, Jansen, We-
gener in [64]. The only assumption that it makes is that the algorithms do
not have any information about the problem at hand other than the fact
that it stems from some function class F C {f : S — R}. The only way an
unrestricted black-box algorithm can learn about the instance f is by eval-
uating the function values f(z) of potential solution candidates x € S. We
can assume that the evaluation is done by some oracle, from which f(x) is
queried. In the unrestricted model, the algorithms can update after any such
query the strategy by which the next search point(s) are generated. In this
book, we are mostly interested in the performance of randomized black-box
heuristics, so that these strategies are often probability distributions over the
search space from which the next solution candidates are sampled. This pro-
cess continues until an optimal search point x € argmax f is queried for the
first time.

The algorithms that we are interested in are thus those that maintain a
probability distribution D over the search space S. In every iteration, a new
solution candidate z is sampled from this distribution and the function value
f(z) of this search point is evaluated. After this evaluation, the probability
distribution D is updated according to the information gathered through the
sample (z, f(z)). The next iteration starts again by sampling a search point
from this updated distribution D, and so on. This structure is summarized
in Algorithm B.1|, which models unrestricted randomized black-box algorithms.
A visualization is provided in Fig. B.1l.

Note that in Algorithm @, in every iteration only one new solution candi-
date is sampled. In contrast, many evolutionary algorithms and other black-
box optimization techniques generate and evaluate several search points in
parallel. Tt is not difficult to see that lower bounds obtained for the un-
restricted black-box complexity described here apply immediately to such
population-based heuristics, since an unrestricted algorithm is free to ignore
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Algorithm 3.1: Blueprint of an unrestricted randomized black-box al-
gorithm

1 Initialization: Sample (@ according to some probability distribution DO over
S and query f(x(o));
2 Optimization: for t=1,2,3,... do
3 Depending on ((:c(o),f(ac(o)))7 . (:c(t_1>7f(:c(t_1)))) choose a probability
distribution D) over S and sample z® according to D(t);
a | Query f(z™));

information obtained from previous iterations. As will be commented on in
Section , the parallel black-box complexity of a function can be (much)
larger than its sequential variant. Taking this idea to the extreme, i.e., requir-
ing the algorithm to neglect information obtained through previous queries
yields so-called nonadaptive black-box algorithms. A prime example for a
nonadaptive black-box algorithm is random sampling (with and without rep-
etitions). Nonadaptive algorithms play only a marginal role in evolutionary
computation. From a complexity point of view, however, it can be interest-
ing to study how much adaptation is needed for an efficient optimization;
see also the discussions in Sections and . For most problems, the
adaptive and nonadaptive complexity differ by large factors. For some other
problems, however, the two complexity notions coincide; see Section B.3.1] for
an example.

Note also that unrestricted black-box algorithms have access to the full his-
tory of previously evaluated solutions. The effects of restricting the available
memory to a population of a certain size will be_the focus of the memory-
restricted_black-box models discussed in Section B.4.

In line B of Algorithm B.1| we do not specify how the probability distribution
D® s chosen. Thus, in principle, the algorithm can spend significant time
on choosing this distribution. This can result in small polynomial black-box
complexities for NP-hard problems; see Section . Droste, Jansen, and
Wegener [54] therefore suggested restricting the set of algorithms to those
that execute the choice of the distributions D®) in a polynomial number of
algebraic steps (i.e., polynomial time in the input length, where “time” refers
to the classically considered complexity measure). They called this model the
time-restricted model. In this chapter, we will not study this time-restricted
model. That is, we allow the algorithms to spend arbitrary time on the choice
of the distributions D®). This way, we obtain very general lower bounds.
Almost all upper bounds stated in this chapter nevertheless apply also to the
time-restricted model. The polynomial bounds for NP-hard problems form,
of course, an exception to this rule.

We comment, finally, on the fact that Algorithm @ runs forever. As we
have seen in previous chapters in this book, the pseudocode in Algorithm
is a common representation of black-box algorithms in the theory of heuris-
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tic optimization. Not specifying the termination criterion is justified by our
performance measure, which is the expected number of function evaluations
that an algorithm performs until (and including) the first iteration in which
an optimal solution is evaluated; see Definition below. Other perfor-
mance measures for black-box heuristics have been discussed in the liter-
ature [[L1, B4, B3], but in the realm of black-box complexity, the average
optimazation time is still the predominant performance indicator. See Sec-
tion ﬂ for a discussion of the possibility of extending existing results to
other, possibly more complex performance measures.

3.2.1 Formal Definition of Black-Box Complexity

In this section, we give a very general definition of black-box complexity.
More precisely, we formally define the black-box complexity of a class F of
functions with respect to some class A of algorithms. The unrestricted black-
box complexity will be the complexity of F with respect to all black-box
algorithms that follow the blueprint provided in Algorithm @

For a black-box optimization algorithm A and a function f:S — R, let
T(A,f) € RU{oo} be the number of function evaluations that algorithm A
does until and including the evaluation in which it evaluates for the first
time an optimal search point x € argmax f. As in previous chapters, we call
T(A, f) the running time of A for f or, synonymously, the optimization time
of A for f. When A is a randomized algorithm, T'(A, f) is a random variable
that depends on the random decisions made by A. We are mostly interested
in its expected value E[T(A4, f)].

With this performance measure in place, the definition of the black-box
complexity of a class F of functions S — R with respect to some class A of
algorithms now follows the usual approach in complexity theory.

Definition 3.2.1. For a given black-box algorithm A, the A-black-box com-
plezity of F is
E[T(A,F)|:= sup E[T(A, f)],
feF

the worst-case expected running time of A on F.
The A-black-box complexity of F is

E[T(A.F)] = inf E[T(A,F)],

the minimum (“best”) complexity among all A € A for F.

Thus, formally, the unrestricted black-box complexity of a problem class
F is E[T(A,F)], where A is the collection of all unrestricted black-box algo-
rithms, i.e., all algorithms that can be expressed in the framework of Algo-

rithm @



142 Carola Doerr

The following lemma formalizes the intuition that every lower bound for
the unrestricted black-box model also applies to any restricted black-box
model.

Lemma 3.2.2. Let F C {f:S — R}. For every collection A’ of black-box
optimization algorithms for F, the A’-black-box complexity of F is at least
as large as its unrestricted black-box complexity.

Formally, this lemma holds because A’ is a subclass of the set A of all un-
restricted black-box algorithms. The infimum in the definition of E[T(A’, F)]
is therefore taken over a smaller class, thus giving values that are at least as
large as E[T(A,F)].

3.2.2 Tools for Proving Lower Bounds

Lemma shows that the unrestricted black-box complexity of a class F
of functions is a lower bound for the performance of any black-box algorithm
on F. In other words, no black-box algorithm can optimize F more effi-
ciently than what the unrestricted black-box complexity of F indicates. We
are therefore particularly interested in proving lower bounds for the black-box
complexity of a problem. This is the topic of this section.

To date, the most powerful tool to prove lower bounds for randomized
query complexity models such as our unrestricted black-box model is the so-
called minimaz principle of Yao [88]. In order to discuss this principle, we first
need to recall that we can interpret every randomized unrestricted black-box
algorithm as a probability distribution over deterministic algorithms. In fact,
randomized black-box algorithms are often defined this way.

Deterministic black-box algorithms are those for which the probability dis-
tributions in line B of Algorithm are one-point distributions. That is, for
every t and for every sequence ((;E(O),f(av(o)))7 ceey (x(t_l),f(x(t_l))))
of previous queries, there exists a search point s € S such

that D(t)(((m(o),f(x(o))),...,(az(tfl),f(x(tfl)))))(s) = 1 and
D(t)(((w(o),f(x(o))),...,(a:(tfl),f(m(tfl)))))(y) =0 for all y # s. In

other words, we can interpret deterministic black-box algorithms as decision
trees. A decision tree for a class F of functions is a rooted tree in which the
nodes are labeled by the search points that the algorithm queries. The first
query is the label of the root node, say z(%). The edges from the root node to
its neighbors are labeled with the possible objective values {g(z(?)) | g € F}.
After evaluating f(x(9), the algorithm follows the (unique) edge {z(®), z(1)}
which is labeled with the value f(z(9)). The next query is the label of the
endpoint z(1) of this edge. We call (1) a level-1 node. The level-2 neighbors
of z(®) (i.e., all neighbors of () except the root node 1'(0)) are the potential
search points to be queried in the next iteration. As before, the algorithm
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chooses as the next query the neighbor z(2) of z(!) to which the unique
edge labeled with the value f(z(})) leads. This process continues until an
optimal search point has been queried. The optimization time T'(A, f) of the
algorithm A on the function f equals the depth of this node plus one (the
“plus one” accounts for the evaluation of the root node).

We can easily see that, in this model, it does not make sense to query the
same search point twice. Such a query would not reveal any new information
about the objective function f. For this reason, on every rooted path in the
decision tree, every search point appears at most once. This shows that the
depth of the decision tree is bounded by |S|—1. The width of the tree, however,
can be as large as the size of the set F(S) :={g(s) | g € F,s € S}, which can
be infinite or even uncountable, for example, if F equals the set of all linear
or monotone functions f: {0,1}"™ — R. As we shall see below, Yao’s minimax
principle can only be applied to problems for which F(.5) is finite. Luckily, it
is often possible to identify subclasses F' of F for which F'(S) is finite and
whose complexity is identical to or not much smaller than that of the whole
class F.

When S and F(5) are finite, the number of (nonrepetitive) deterministic
decision trees, and hence the number of deterministic black-box algorithms
for F, is finite. In this case, we can apply Yao’s minimax principle. This the-
orem, intuitively speaking, allows us to restrict our attention to bounding
the expected running time E[T(A, f)] of a best possible deterministic algo-
rithm A on a random instance f taken from F according to some probability
distribution p. By Yao’s minimax principle, this best possible expected run-
ning time is a lower bound for the expected performance of a best possible
randomized algorithm on an arbitrary input. In our words, it is thus a lower
bound on the unrestricted black-box complexity of the class F.

Analyzing deterministic black-box algorithms is often considerably easier
than directly bounding the performance of any possible randomized algo-
rithm. An a priori challenge in applying this theorem is the identification of
a probability distribution p on F for which the expected optimization time
of a best possible deterministic algorithm is large. Luckily, for many appli-
cations some rather simple distributions on the inputs suffice, for example
the uniform distribution, which assigns equal probability to each problem
instance f € F. Another difficulty in the application of the theorem is the
above-mentioned identification of subclasses F’ of F for which F'(5) is finite.

Formally, Yao’s minimax principle reads as follows.

Theorem 3.2.3 (Yao’s minimax principle). Let IT be a problem with a
finite set T of input instances (of a fixed size) permitting a finite set A of
deterministic algorithms. Let p be a probability distribution over T and let g
be a probability distribution over A. Then,

min B[T(Iy, A) < max B[T(I, A,),
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where I, denotes a random input chosen from I according to p, A, denotes
a random algorithm chosen from A according to q, and T(I,A) denotes the
running time of algorithm A on input I.

The formulation of Theorem is taken from the book by Motwani and
Raghavan 7], where an extended discussion of this principle can be found.

A straightforward but still quite handy application of Yao’s minimax prin-
ciple gives the following lower bound.

Theorem 3.2.4 (simple information-theoretic lower bound, Theo-
rem 2 in [54]). Let S be finite. Let F be a set of functions {f :S — R}
such that for every s € S there exists a function fs € F for which the size of
fs(S) :={fs(x) | x € S} is bounded by k and for which s is a unique optimum,
i.e., argmax fs = {s} and |fs(S)| < k. The unrestricted black-box complexity
of F is at least [log,(|S])]—1.

To prove Theorem it suffices to select for every s € S one function
fs as in the statement and to consider the uniform distribution over the set
{fs| s € S}. Every deterministic black-box algorithm that eventually solves
any instance fs has to have at least one node labeled s. We therefore need
to distribute all |S| potential optima on the decision tree that corresponds to
this deterministic black-box algorithm. Since the outdegree of every node is
bounded from above by k, the average distance from a node to the root is at
least [logy(]S|)] — 2.

An informal interpretation of Theorem , which in addition ignores
the rounding of the logarithms, is as follows. In the setting of Theorem B.2.4,
optimizing a function fs corresponds to learning s. A binary encoding of the
optimum s requires log, (|S]) bits. With every query, we obtain at most log, (k)
bits of information, namely, the number of bits needed to encode which of the
at most k possible objective values is assigned to the queried search point. We
therefore need to query at least logs(]S])/logs (k) = log,(|S]) search points
to obtain the information that is required to decode s. This “hand-wavy”
interpretation often gives a good first idea of the lower bounds that can be
proven by Theorem .

This intuitive proof for Theorem shows that it works best if at every
search point exactly k answers are possible, and each of them is equally likely.
This situation, however, is not typical for black-box optimization processes,
where usually only a (possibly small) subset of function values are likely to
appear next. As a rule of thumb, the larger the difference of the potential
function value from the function value of the current best solution, the less
likely an algorithm is to obtain it in the next iteration. Such transition prob-
abilities are not taken into account in Theorem . The theorem also does
not cover very well the situation in which, at a certain step, fewer than &
answers are possible. Even for fully symmetric problem classes, this situation
is likely to appear in the later parts of the optimization process, where those
problem instances that are still aligned with all previously evaluated function
values all map the next query to one out of fewer than k possible function
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values. Covering these two shortcomings of Theorem is one of the main
challenges in black-box complexity. One step in this direction is the matriz
lower bound theorem presented in [9] and the subsequent publication [[7]. As
also acknowledged there, however, the verification of the conditions under
which these two generalizations apply is often quite tedious, so that the two
methods are unfortunately not yet easily and very generally applicable. So
far, they have been used to derive lower bounds for the black-box complex-
ity of the ONEMAX and the JuUMP benchmark functions; see Sections

and .

Another tool that will be very useful in the subsequent sections is the fol-
lowing theorem, which allows us to transfer lower bounds proven for a simpler
problem to a problem that is derived from it by a composition with another
function. Most notably, it allows us to bound the black-box complexity of
functions of unitation (i.e; functions for which the function value depends
only on the number of ones in the string) by that of the ONEMAX problems.
We will apply this theorem to show that the black-box complexity of the
jump functions is at least as large as that of ONEMAX; see Section @

Theorem 3.2.5 (generalization of Theorem 2 in [28]). For all problem
classes F, all classes of algorithms A, and all maps g : R — R that are such
that for all f € F it holds that {x | g(f(z)) optimal} ={x| f(x) optimal} the
A-black-box complexity of g(F):={gof|f € F} is at least as large as that
of F.

The intuition behind Theorem is that with a knowledge of f(z), we
can compute g(f(x)), so that every algorithm that optimizes g(F) can also
be used to optimize F, by evaluating the f(x) values, feeding g(f(x)) to the
algorithm, and querying the solution candidates that this algorithm suggests.

3.2.3 Tools to Prove Upper Bounds

We now present general upper bounds for the black-box complexity of a
problem. We recall that, by definition, a small upper bound for the black-
box complexity of a problem F shows that there exists an algorithm which
solves every problem instance f € F efficiently. When the upper bound for a
problem is smaller than the expected performance of well-understood search
heuristics, the question of whether these state-of-the-art heuristics can be
improved or whether the unrestricted black-box model is too generous arises.

The simplest upper bound for the black-box complexity of a class F of
functions is the expected performance of random sampling without repeti-
tions.

Lemma 3.2.6. For every finite set S and every class F C {f :S — R} of
real-valued functions over S, the unrestricted black-box complexity of F is at
most (|S|+1)/2.
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This simple bound can be tight, as we shall discuss in Section . A
similarly simple upper bound is presented in the next subsection.

3.2.3.1 Function Classes vs. Individual Instances

In all of the above we have discussed the black-box complexity of a class of
functions, and not of individual problem instances. This is justified by the
following observation, which also explains why in the following we will usually
consider generalizations of the benchmark problems typically studied in the
theory of randomized black-box optimization.

Lemma 3.2.7. For every function f:S — R, the unrestricted black-box com-
plezity of the class {f} that consists only of f is one. The same holds for any
class F of functions that all have their optimum at the same point, i.e., for
which there exists a search point x € S such that, for oll f € F, x € argmax f
holds.

More generally, if F is a collection of functions f: S — R and X C S is such
that for all f € F there exists at least one point x € X such that x € argmax f,
the unrestricted black-box complexity of F is at most (| X|+1)/2.

For every finite set F of functions, the unrestricted black-box complexity

is bounded from above by (|F|+1)/2.

The proof of this lemma is quite straightforward. For the first statement,
the algorithm which queries any point in argmax f in the first query certifies
this bound. Similarly, the second statement is certified by the algorithm that
queries x in the first iteration. The algorithm which queries the points in
X in random order proves the third statement. Finally, note that the third
statement implies the fourth by letting X be the set that contains, for each
function f € F. one optimal solution xy € argmax f.

Lemma indicates that function classes F for which Uyc rargmax f
or, more_precisely, for which a small set X as in the third statement of
Lemma @ exists are not very interesting research objects in the unre-
stricted black-box model. We therefore typically choose generalizations of
the benchmark problems in such a way that any set X which contains for
each objective function f € F at least one optimal search point has to be large.
We shall often even have | X| = |F|, i.e., the optima of any two functions in
F are pairwise different.

We will see in Section @ that Lemma does not apply to all of the
restricted black-box models. In fact, in the unary unbiased black-box model
considered there, the black-box complexity of a single function can be of order
nlogn. That is, even if the algorithm “knows” where the optimum is, it may
still need 2(nlogn) steps to generate it.
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3.2.3.2 Upper Bounds via Restarts

In several situations, rather than bounding the expected optimization time
of a black-box heuristic, it can be easier to show that the probability that it
solves a given problem within s iterations is at least p. If p is large enough
(for an asymptotic bound, it suffices that this success probability is constant),
then a restarting strategy can be used to obtain upper bounds on the black-
box complexity of the problem. Either the algorithm is finished after at most
s steps, or it is initialized from scratch, independently of all previous runs.
This way, we obtain the following lemma.

Lemma 3.2.8 (Remark 7 in [37]). Suppose for a problem F that there
exists an unrestricted black-box algorithm A that, with constant success prob-
ability, solves any instance f € F in s iterations (that is, it queries an optimal
solution within s queries). Then the unrestricted black-box complexity of F is
at most O(s).

Lemma also applies to almost all of the restricted black-box models
that we will discuss in Sections B.4-B.7. In general, it applies to all black-box
models in which restarts are allowed. It does not apply to the (strict version
of the) elitist black-box model, which we discuss in Section @

3.2.4 Polynomial Bounds for NP-Hard Problems

Our discussion in Section indicates that the classical complexity no-
tions developed for white-box optimization and decision problems are not
very meaningful in the black-box setting. This is impressively demonstrated
by a number of NP-hard problems that have a small polynomial black-box
complexity. We present such an example here, taken from [54, Section 3].
One of the best-known NP-complete problems is MAXCLIQUE. For a given
graph G = (V, E) of |V| =n nodes and for a given parameter k, it asks whether
there exists a complete subgraph G' = (V' CV,E' .= ENn{{u,v} € E |u,v €
V'}) of size |V'| > k. A complete graph is a graph in which every two vertices
are connected by a direct edge between them. The optimization version of
MaxXCLIQUE asks us to find a complete subgraph of the largest possible size.
A polynomial-time optimization algorithm for this problem implies P=NP.
The unrestricted black-box complexity of MAXCLIQUE is, however, only
of order n2. This bound can be achieved as follows. In the first (727“) queries,
the algorithm queries the presence of individual edges. This way, it learns the
structure of the problem instance. From this information, all future solution
candidates can be evaluated without any oracle queries. That is, a black-
box algorithm can now compute an optimal solution offline, i.e., without
the need for further function evaluations. This offline computation may take
exponential time, but in the black-box complexity model, we do not charge
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the algorithm for the time needed between two queries. The optimal solution
of the MAXCLIQUE instance can be queried in the ((g) + 1)—st query.

Theorem 3.2.9 (Section 3 in [54]). The unrestricted black-box complexity
of MAXCLIQUE is at most (3 ) +1 and thus O(n?).

Several similar results can be obtained. For most of the restricted black-
box complexity models this has been explicitly done; see also Section .

One way to avoid such small complexities would be to restrict the time
that an algorithm can spend between any two queries. This suggestion was
made in [54]. In our opinion, this requirement would, however, carry a few
disadvantages such as a mixture of different complexity measures. We will
therefore, in this chapter, not explicitly verify that the algorithms run in
polynomial time. Most upper bounds are nevertheless easily seen to be ob-
tained by polynomial-time algorithms. Where polynomial bounds are proven
for NP-hard problems, there must be at least one iteration for which the
respective algorithm, according to today’s knowledge, needs excessive time.

3.3 Known Black-Box Complexities in the Unrestricted
Model

We survey existing results for the unrestricted black-box model, and proceed
by problem type. For each benchmark problem considered, we first introduce
its generalization to classes of similar problem instances. We discuss which
of characteristics of the original problem are maintained in these general-
izations. We will see that for some classical benchmark problems, different
generalizations have been proposed in the literature.

3.3.1 Needle

Our first benchmark problem is an example that shows that the simple upper
bound given in Lemma m can be tight. The function that we generalize
is the NEEDLE function, which assigns 0 to all search points s € S except for
one distinguished optimum, which has a function value of one. In order to
obtain the above-mentioned property that every function in the generalized
class has a different optimum than any other function (see the discussion
after Lemma )7 while at the same time maintaining the characteristics
of the problem, the following generalization is made. For every s € S, we let
fs S — R be the function which assigns the function value 1 to the unique
optimum s € S and 0 to all other search points x # s. We let NEEDLE(S) :=
{fs|s € S} be the set of all such functions.
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Confronted with such a function fs, we do not learn anything about the
target string s until we have found it. It seems quite intuitive that the best we
can do in such a case is to query search points at random, without repetitions.
That this is indeed optimal is the statement of the following theorem, which
can be easily proven by Yao’s minimax principle applied to NEEDLE(S) with
the uniform distribution.

Theorem 3.3.1 (Theorem 1 in [54]). For every finite set S, the unre-
stricted black-box complezity of NEEDLE(S) is (|S]+1)/2.

3.3.2 OneMax

The best-studied benchmark function in the theory of randomized black-box
optimization is certainly ONEMAX. ONEMAX assigns to each bit string x of
length n the number Y7 ; z; of ones in it. The natural generalization of this
particular function to a nontrivial class of functions is as follows.

Definition 3.3.2 (OneMax). For all n € N and all z € {0,1}" let
OM, : {0,1}" — [0..n],z — OM,(z) = |{i € [n] | x;: = 2},

the function that assigns to each length-n bit string = the number of bits
in which z and z agree. Being the unique optimum of OM,, the string z is
called its target string.

We refer to ONEMAX,, :={OM, | z € {0,1}"} as the set of all (generalized)
ONEMAX functions. We will often omit the subscript n.

We easily observe that, for every n, the original ONEMAX function OM
counting the number of ones corresponds to OM(y _ 1). It is, furthermore,
not difficult to prove that, for every z € {0,1}", the fitness landscape of OM,
is isomorphic to that of OM. This can be seen by observing that OM,, (z) =
OM(z®z®(1,...,1)) for all z, z € {0,1}", which shows that OM, = OMoa,
for the Hamming automorphism a, : {0,1}" — {0,1}", 2 — z®2® (1,...,1).
As we shall discuss in Section , a Hamming automorphism is a one-to-
one map «: {0,1}™ — {0,1}" such that for all  and all z the Hamming
distance between z and z is identical to that between a(x) and «(z). This
shows that the generalization of OM to functions OM, preserves its problem
characteristics. In essence, the generalization is just a “relabeling” of the
search points.

3.3.2.1 The Unrestricted Black-Box Complexity of OneMax

With Definition at hand, we can study the unrestricted black-box com-
plexity of this important class of benchmark functions.
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Interestingly, it turns out that the black-box complexity of ONEMAX,,
has been studied in several different contexts, long before Droste, Jansen,
and Wegener introduced black-box complexity. In fact, Erdés and Rényi [55]
as well as several other authors studied it in the early 1960s, inspired by a
question about so-called coin-weighing problems.

In our terminology, Erdds and Rényi [p5] showed that the unrestricted
black-box complexity of ONEMAX is at least (1 —o(1))n/logy(n) and at
most (1+ o(1))logy(9)n/logs(n). The upper bound was improved to (1 -+
0(1))2n/logy(n) in 10, 73, [74]. Identical or weaker bounds have been proven
several times in the literature. Some publications appeared at the same time
as the work of Erdés and Rényi (see the discussion in [6]), and some much
later 2, 6, 54].

Theorem 3.3.3 ([10, 55, 73, [74]). The unrestricted black-box complezity
of ONEMAX is at least (1—o(1))n/logy(n) and at most (1+o0(1))2n/logy(n).
It is thus ©(n/logn).

The lower bound in Theorem follows from Yao’s minimax principle,
applied to ONEMAX,, with the uniform distribution. Informally, we can use
the arguments given after Theorem @ since the optimum can be anywhere
in {0,1}"™, we need to learn the n bits of the target string z. With each function
evaluation, we receive at most logy(n+ 1) bits of information, namely the
objective value, which is an integer between 0 and n. We therefore need at
least (roughly) n/logs(n+ 1) iterations. Using Theorem @, this reasoning
can be turned into a formal proof.

The upper bound given in Theorem is quite interesting because it is
obtained by a very simple strategy. Erdds and Rényi showed that O(n/logn)
bit strings sampled independently and uniformly at random from the hyper-
cube {0,1}"™ have a high probability of revealing the target string. That is,
an asymptotically optimal unrestricted black-box algorithm for ONEMAX can
just sample O(n/logn) random samples. From these samples and the corre-
sponding objective values, the target string can be identified without further
queries. Its computation, however, may not be possible in polynomial time.
The fact that ONEMAX,, can tme optimized in O(n/logn) queries also in poly-
nomial time was proven in [0].8 The reader interested in a formal analysis of
the strategy used by Erdds and Rényi may refer to Section 3 of [35], where a
detailed proof of the O(n/logn) random sampling strategy is presented.

In the context of learning, it is interesting to note that the random sam-
pling strategy of Erdds and Rényi is nonadaptive, i.e., the t-th search point
does not depend on the previous ¢t — 1 evaluations. In the black-box con-
text, a last query, in which the optimal solution is evaluated, is needed. This
query certainly depends on the previous O(n/logn) evaluations, but note

! Bshouty [6] mentions that also the constructions of Lindstrém [3, [74] and Cantor and
Mills [L0] can be done in polynomial time. But this was not explicitly mentioned in the
latter publications. The method of Bshouty also has the advantage that_it_generalizes
to ONEMAX functions over alphabets larger than {0,1}; see also Section ﬁ
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that here we know the answer to this evaluation already (with high proba-
bility). For nonadaptive strategies, learning z with (1+0(1))2n/logn queries
is optimal [p3]. The intuitive reason for this lower bound is that a random
guess typically has an objective value close to n/2. More precisely, instead
of using the whole range of n+ 1 possible answers, almost all function values
are in an O(y/n) range around n/2, giving, very informally, the lower bound
logy(n)/loga(O(y/)) = 2(2n/ logn).

Using the probabilistic method (or the constructive result of Bshouty [0]),
the random sampling strategy can be derandomized. This derandomization
says that for every n, there is a sequence of t = @(n/logn) strings (V) ,... z®)
such that the objective values OM, (x(l)), . OMZ(x(t)) uniquely determine
the target string z. Such a derandomized version will be used in later parts
of this chapter, for example, in the context of the k-ary unbiased black-box
complexity of ONEMAX studied in Section .

Theorem 3.3.4 (from [55] and others). For every n there is a sequence
M 2® of t =O(n/logn) bit strings such that for every two length-n bit
strings y # = there exists an index i with OM,(z(")) # OM, (z()).

For some very concrete ONEMAX instances, i.e., for instances of bounded
dimension n, very precise bounds for the black-box complexity are known;
see [[7] and the pointers in [29, Section 1.4] for details. Here, in this chapter,
we are only concerned with the asymptotic complexity of ONEMAX,, with
respect to the problem dimension n. Unsurprisingly, this benchmark problem
will also be studied in almost all of the restricted black-box models that
we describe in the subsequent sections. A summary of known results can be
found in Section B.§.

3.3.3 BinaryValue

Another intensively studied benchmark function is the binary-value function
BV(z):= Y1, 212, which assigns to each bit string the value of the bi-
nary number it represents. As 2°¢ > Z;:l 27=1 the bit value of the bit i+ 1
dominates the effect of all bits 1,...,7 on the function value.

Two straightforward generalizations of BV to function classes exist. The
first one is the collection of all functions

n
BV, :{0,1}" = 0.2,z — Y 2 (i, ),
=1

where 1(a,b) :=1 if and only if a = b, and 1(a,b) := 0 otherwise. In light of
Definition E, this may seem like a natural extension of BV to a class of
functions. It also satisfies our sought condition that for any two functions
BV, # BV, the respective optima z and 2’ differ, so that the smallest set



152 Carola Doerr

containing its optimum for each function is the full n-dimensional hypercube
{0,1}™. However, we can easily see that the unrestricted black-box complexity
of the set BINARYVALUE,, := {BV, | z € {0,1}"} so defined is very small.

Theorem 3.3.5 (Theorem 4 in [54]). The unrestricted black-box complex-
ity of BINARYVALUE], is 2—27".

Proof. The lower bound follows from observing that, for an instance BV,
for which z is chosen uniformly at random, the probability of querying the
optimum z in the first query is 27". In all other cases, at least two queries
are needed.

For the upper bound, we only need to observe that for any two target
strings z # 2’ and for every search point z € {0,1}" we have BV, (z) #
BV./(z). More precisely, it is easy to see that from BV,(z) we can eas-
ily determine for which bits ¢ € [n] the bit value of x; is identical to z;. This
shows that by querying the objective value of a random string in the first
query we can compute the optimum z, which we query in the second itera-
tion if the first value is not already optimal. a

Theorem is possible because the objective values disclose a lot of infor-
mation about the target string. A second generalization of BV has therefore
been suggested in the literature. In light of the typical behavior of black-box
heuristics, which do not discriminate between bit positions, and in particu-
lar with respect to the unbiased black-box model defined in Section B.6, this
variant seems to be the more “natural” choice in the context of evolutionary
algorithms. This second generalization of BV collects together all functions
BV, o, defined as

BV,..s: {0,1}" = Ny, — 221471(5(.%‘0(,-),20(1)).

i=1

Denting by o(x) the string (74 (1) ... Tx(n)), we easily see that BV, ,(x) =
BV (c(z®z®(1,...,1))), thus showing that the class {BV , |z € {0,1}",0 €
Sp} can be obtained from BV by composing it with an @-shift of the bit
values and a permutation of the indices i € [n]. Since z = argmax BV ., we
call z the target string of BV . Similarly, we call o the target permutation
of BV, 5.

Going through the bit string one by one, i.e., flipping one bit at a time,
shows that at most n+1 function evaluations are needed to optimize any
BV instance. This simple upper bound can be improved by observing that
for each query « and for each ¢ € [n] we can derive from BV, ,(z) whether or
not Ty (j) = 25 (), €ven if we cannot yet locate o(i). Hence, all we need to do
is to identify the target permutation o. This can be done by a binary search,
which gives the following result.

Theorem 3.3.6 (Theorem 16 in [44]). The unrestricted black-box complex-
ity of BINARYVALUE,, :={BV, | 2 €{0,1}",0 € S,,} is at most [logyn]+2.
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In a learning-related sense, in which we want to learn both z and o, the
bound in Theorem is tight, as, informally, the identification of o requires
us to learn O(log(n!)) = ©(nlogn) bits, while with every query we obtain
log,(2™) = n bits of information. In our optimization context, however, we do
not necessarily need to learn g in order to optimize BV .. A similar situation
will be discussed in Section , where we study the unrestricted black-box
complexity of LEADINGONES. For LEADINGONES, it can be formally proven
that the complexities of optimization and learning are identical (up to at
most n queries). We are not aware of any formal statement showing whether
or not a similar argument holds for the class BINARY VALUE,,.

3.3.4 Linear Functions

OM and BV are representatives of the class of linear functions f: {0,1}" —
R,z +— Y | fiz;. We can generalize this class in the same way as above to
obtain the collection

n
LINEAR,, := {fz 0,1} R Y fil(zi,z) |z € {0,1}“}
=1

of generalized linear functions. ONEMAX,, and BINARYVALUE,, are both con-
tained in this class.

Not much is known about the black-box complexity of this class. The only
known bounds are summarized by the following theorem.

Theorem 3.3.7 (Theorem E above and Theorem 4 in [54]). The
unrestricted black-box complexity of the class LINEAR,, is at most n+1 and
at least (1—o0(1))n/logyn.

The upper bound is attained by an algorithm that starts with a random or
a fixed bit string x and flips one bit at a time, using the better of the parent
and the offspring as the starting point for the next iteration. A linear lower
bound seems likely, but has not been formally proven.

3.3.5 Monotone and Unimodal Functions

For the sake of completeness, we mention that the class LINEAR,, is a subclass
of the class of generalized monotone functions.

Definition 3.3.8 (monotone functions). Let n € N and let z € {0,1}".
A function f:{0,1}"™ — R is said to be monotone with respect to z if for
all y,y' € {0,1}™ with {i € [n] | ys = 2z} C {i € [n] | y, = 2z} it holds that
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f(y) < f(¥'). The class MONOTONE,, contains all such functions that are
monotone with respect to some z € {0,1}".

The above-mentioned algorithm which flips one bit at a time (see the
discussion after Theorem B.3.7) solves any of th