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Evolutionary multi-objective optimization is one of the most successful areas in the field 
of evolutionary computation. Using the hypervolume indicator to guide the search of 
evolutionary multi-objective algorithms has become very popular in recent years. We 
contribute to the theoretical understanding of these algorithms by carrying out rigorous 
runtime analyses. We consider multi-objective variants of the problems OneMax and 
LeadingOnes called OneMinMax and LOTZ, respectively, and investigate hypervolume-based 
algorithms with population sizes that do not allow coverage of the entire Pareto front. 
Our results show that LOTZ is easier to optimize than OneMinMax for hypervolume-based 
evolutionary multi-objective algorithms, which is contrary to the results on their single-
objective variants and the well-studied (1 + 1) EA. Furthermore, we study multi-objective 
genetic programming using the hypervolume indicator. We show that the classical ORDER 
problem is easy to optimize if the population size is large enough to cover the whole 
Pareto front and point out situations where a small population size leads to an exponential 
optimization time.

© 2014 Published by Elsevier B.V.

1. Introduction

Many real-world applications involve optimization problems with multiple objectives and evolutionary algorithms have 
become very popular for handling problems in the area of multi-objective optimization [9,10]. Evolutionary algorithms seem 
to be well-suited for these types of problems since, in multi-objective optimization, the goal is to compute a set of solutions 
that represent the trade-offs with respect to the given objective functions. Evolutionary multi-objective algorithms aim to 
compute a set of such trade-offs by iteratively evolving a population of solutions into a reasonable collection that represents 
a good set of trade-offs with respect to the given objective functions.

Hypervolume-based evolutionary algorithms have become very popular in recent years for multi-objective optimiza-
tion [1,4,12,22]. These algorithms work with a fixed population size of μ and try to maximize the volume of space that is 
covered by the μ objective vectors corresponding to each individual of the population.

Despite their popularity, it is difficult to understand from a theoretical point of view how hypervolume-based evolution-
ary algorithms work. Many studies in recent years have concentrated on the optimal hypervolume distribution for a wide 
range of problems, or the cost of computing or approximating the value of the hypervolume indicator for a given set of μ
points [5,6]. These studies tackled the difficult task of determining the configuration of the optimal distribution of the μ
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individuals without considering the computational costs to reach this goal. Other studies relate the optimal hypervolume 
distribution to the best achievable approximation ratio when using μ solutions to cover the Pareto front [3,7].

In this paper, we want to put forward the theoretical understanding of the optimization process of hypervolume-based 
evolutionary algorithms. We do this by carrying out rigorous runtime analyses of hypervolume-based evolutionary algo-
rithms and point out, using popular example functions, when and why they are able to achieve an optimal hypervolume 
distribution in expected polynomial time. On the other hand, we show that even on very simple problems, hypervolume-
based algorithms can have significant difficulties achieving the optimal configuration if the population size is not set 
correctly.

To our knowledge, the only article on the runtime analysis of hypervolume-based algorithms is the article by Brockhoff 
et al. [8]. We push forward the runtime analysis of hypervolume-based evolutionary algorithms by studying the algorithm 
called (μ + 1) SIBEA introduced in [8] in order to extend these initial investigations.

We start by analyzing the OneMinMax problem introduced in [14], which is the multi-objective version of the famous 
OneMax problem. We show that as long as μ is large enough to cover the entire Pareto front, (μ + 1) SIBEA computes 
the whole Pareto front in expected polynomial time. Furthermore, we point out that a smaller population size might lead 
to plateaus that are hard to leave in polynomial time. In particular, we show that there exists an initial population of size 
μ = O (

√
n) such that the optimization time of (μ + 1) SIBEA is exponential with probability very close to 1.

After having investigated OneMinMax, we turn our attention to the multi-objective problem LOTZ introduced in [18]. 
Extending the investigations of [8], we show that (μ +1) SIBEA optimizes LOTZ in expected polynomial time if 1 < μ < n/3. 
This shows that LOTZ is easier to optimize than OneMinMax by (μ + 1) SIBEA for small μ.

This paper extends a preliminary conference version [20] by additional investigations into the field of tree-based genetic 
programming. Genetic programming has been shown to be a successful approach to evolve syntax trees that solve a given 
task [17]. It is frequently used in the area of symbolic regression [13]. We analyze multi-objective genetic programming 
algorithms using the hypervolume indicator and consider the multi-objective formulation of the ORDER problem [11,15]. 
Multi-objective genetic programming algorithms for this problem have already by analyzed with respect to their expected 
optimization time in [19]. We show that hypervolume-based multi-objective genetic programming algorithms solve the 
ORDER problem efficiently if the population size is large enough. For smaller population size we point out situations leading 
to an exponential optimization time.

The outline of the paper is as follows. In Section 2, we introduce the framework that is subject to our investigations. 
Section 3, studies the behavior of (μ + 1) SIBEA on OneMinMax and these studies are extended to LOTZ in Section 4. Our 
results for multi-objective genetic programming using the hypervolume indicator are presented in Section 5. We finish with 
some concluding remarks.

2. Preliminaries

Let X be a finite domain. In multi-objective optimization, we work with a vector-valued fitness function f : X → Rm

where m ∈ N and the fitness of an element x ∈ X is given by the vector f (x) = ( f1(x), . . . , fm(x)). Assuming we want to 
maximize each function f i , we say f (x) ≥ f (x′) if and only if f i(x) ≥ f i(x′) for x, x′ ∈ X and all i ∈ {1, . . . , m}. We say a 
solution x dominates a solution x′ if f (x) ≥ f (x′) and f (x) �= f (x′).

For a fitness function f :X → Rm , we define

P = {
x ∈ X : f (x) ≤ f

(
x′) 
⇒ f (x) = f

(
x′), ∀x′ ∈ X

}
as the Pareto set of f . We sometimes call a point x ∈ P Pareto optimal.

The hypervolume indicator is a set measure that identifies a set of elements in Rm (corresponding to images of elements 
in X ) with the volume of the dominated portion of the objective space. In particular, given a reference point r ∈ Rm , the 
hypervolume indicator is defined on a set A ⊂ X as

I H (A) = λ

( ⋃
a∈A

[
r1, f1(a)

] × [
r2, f2(a)

] × · · · × [
rm, fm(a)

])

where λ(S) denotes the Lebesgue measure of a set S and [r1, f1(a)] × [r2, f2(a)] × · · · × [rm, fm(a)] is the orthotope with r
and f (a) in opposite corners.

We define the extreme points of a problem as{
x ∈ P, ∃i ∈ {1, . . . ,m} : f i(x) ≥ f i

(
x′), ∀x′ ∈ X

}
.

The extreme points are the points in P that maximize at least one objective function.
We study variants of (μ + 1) SIBEA algorithm introduced by Brockhoff et al. [8] outlined in Algorithm 1. The algorithm 

uses a population of size μ and produces in each generation an offspring by mutation to create an intermediate population 
of μ + 1 individuals. The new parent population is then obtained in a steady-state fashion by deleting the individual that 
results in the smallest loss to the hypervolume indicator. This potential loss (called the contribution of an individual) is 
calculated as the difference between the indicator value of the population containing the individual, and the indicator value 
of a hypothetical population in which that individual is chosen for deletion.
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Algorithm 1: (μ + 1) SIBEA.

Start with an initial population P (1) consisting of μ elements from X .
repeat forever

Select x from P (t) u.a.r.;
x′ ← mutate(x);
P ′(t) ← P (t) ∪ {x′};
foreach x ∈ P ′(t) do

d(x; P ′(t)) ← I H (P ′(t)) − I H (P ′(t) \ {x});

z ← arg minx∈P ′(t) d(x; P ′(t)) with ties broken u.a.r.;
P (t+1) ← P ′(t) \ {z};

A trace is an infinite stochastic sequence of μ-multisets(
P (1), P (2), . . . , P (t), . . .

)
where P (t) denotes the population visited by (μ + 1) SIBEA in iteration t .

It will often be convenient to discuss how the properties of individual solutions change during the construction of an 
intermediate population P ′(t) from a population P (t) in iteration t . To facilitate such discussion, we will employ the following 
notation scheme. We denote as x′ the offspring produced by applying mutation to some individual in P (t) . For each xi ∈ P (t)

we use the expression x′
i ∈ P ′(t) \ {x′} to denote the same solution in the intermediate population directly after a mutation, 

but before undergoing truncation selection.
We are ultimately interested in the optimization time of (μ + 1) SIBEA, which is the random variable

T = inf
{

t ∈N : I H
(

P (t)) is maximal over μ-multisets
}
.

In the following sections, we will derive asymptotic bounds for the expectation of T .
Given a population P , we define the hypervolume contribution of an individual x ∈ P (with respect to P ) as

d(x; P ) = I H (P ) − I H
(

P \ {x}).
Hence, d(x; P ) represents the volume of space that the point x ∈ P uniquely contributes to the total hypervolume covered 
by the population P . When the population is clear from context, we will denote the contribution of x simply as d(x).

We first consider multi-objective problems over length-n binary strings, that is X = {0, 1}n . For a point x ∈ {0, 1}n , we 
will use square brackets to address individual elements of the bitstring, that is x = (x[1], x[2], . . . , x[n]) so that x[i] ∈ {0, 1}
denotes the i-th bit in the string x. The mutation operator that we consider differs slightly from the variants of (μ +1) SIBEA 
initially proposed by [8]. In particular, we will study only a local, single-point mutation operator, in which a single bit, 
chosen uniformly at random, is flipped at each mutation step. In this way, the algorithms we consider are more similar to 
indicator-based randomized local search. This single-point mutation operator is defined as follows.

Function mutate(x).

x′ ← x;

Choose i ∈ {1, . . . ,n} u.a.r.;

x′[i] ← 1 − x′[i];
return x′;

In the case of bicriteria optimization, we will be interested in the dynamics of the intervals between points on one fitness 
function, say f1. To do so, we label a population P with respect to its ordering on f1, that is P = {x1, x2, . . . , xμ} such that 
f1(xi) ≤ f1(xi+1) and define an interval function as follows.

Definition 1. Given a labeled population P , the interval function ι: P \{x1} →R measures the intervals between the projection 
of the points onto the f1 axis (see Fig. 1) as follows.

ι(xi) = f1(xi) − f1(xi−1) for all i ∈ {2,3, . . . ,μ}.

In the remainder of the paper we rigorously prove theorems about the optimization time of (μ + 1) SIBEA on various 
multi-objective problems. In each case we provide asymptotic bounds on the expected time to maximize the hypervolume 
indicator, and these bounds are functions of both problem size and population size μ. It is worth remarking here that a 
change in μ has the effect of changing the properties of the hypervolume indicator and hence the ability of the algorithm 
to cover the Pareto front. For a given μ, we always consider the optimal solution to be the configuration that results in the 
highest hypervolume indicator value that could possibly be achieved by any population of size μ.
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Fig. 1. Shaded areas denote contribution d(xi) of each individual xi to the hypervolume indicator.

3. OneMinMax

The OneMinMax problem, originally introduced by Giel and Lehre [14], is defined as the bicriteria optimization problem 
over the set of binary strings as f : {0, 1}n →N ×N with

f (x) = (
f1(x), f2(x)

)
, with

f1(x) = |x|0 = n − |x|1, and

f2(x) = |x|1 =
n∑

i=1

x[i].

The goal is to maximize both objectives. In OneMinMax, every solution belongs to P . Denoting as f [P] the image of P
under f in objective space, it is clear that | f [P]| = n +1, since each string with k ones (n −k zeros) is mapped to a unique, 
non-dominated point in objective space. We define the reference point to be r = (−n2, −n2) such that the extreme points 
always have the highest contributions. We are interested in the expected time for (μ + 1) SIBEA to arrange the population 
on the Pareto front so that the hypervolume indicator is maximized.

Theorem 1. If μ ≥ n + 1, the expected optimization time of (μ + 1) SIBEA on OneMinMax is O (μn logn).

Proof. Since every solution belongs to P and μ ≥ n + 1, solutions are never lost during a run. The algorithm reaches the 
optimal hypervolume when the population covers the whole Pareto front. In the case of OneMinMax, a population P covers 
the whole Pareto front when, for every i ∈ {0, 1, . . . , n}, there exists an x ∈ P such that |x|1 = i and |x|0 = n − i. Thus it 
suffices to bound the expected time it takes for (μ + 1) SIBEA to generate a solutions for all missing values of |·|1.

Suppose t is a generation in which I H (P (t)) is suboptimal. In such a generation, the Pareto front is not yet covered. 
Hence, there exists at least one individual x ∈ P (t) such that at least one of the following is true.

1. �x′ ∈ P (t), |x′|1 = |x|1 + 1.
2. �x′ ∈ P (t), |x′|1 = |x|1 − 1.

It is thus possible to gain a missing |·|1 value by mutating x by flipping either a one bit or a zero bit. Without loss of 
generality, suppose there are no solutions x′ ∈ P (t) with |x′|1 = |x|1 +1 and |x|1 < n (otherwise, a symmetric argument holds 
for |x′|1 = |x|1 − 1 and |x|1 > 0). In this case, a mutation operation creates a new Pareto optimal solution if x is selected 
for mutation, and one of the zero bits in x is flipped to produce a new solution x′′ where |x′′|1 = |x′|1. The probability of 
this event is at least |x|0/(μn) = (n − |x|1)/(μn). The total expected waiting time to generate all missing |·|1 values is thus 
bounded by

n∑
i=0

μn

n − i
= μn

n∑
i=0

1

i
= O (μn log n).

The same argument holds in the case of missing values for |x|1 − 1, and the claimed bound on the expected time to cover 
the Pareto front follows. �

Theorem 1 shows that, so long as the population is sufficiently large, the optimization time of (μ + 1) SIBEA on 
OneMinMax is bounded by a polynomial in μ and n. In contrast, we will soon show (in Theorem 3) that if the popula-
tion size is too small, the optimization time can become exponential in n. Before stating and proving this result, we will 
need to develop a few technical concepts.
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On OneMinMax for strings of length n, a population P is distributed along the line x + y = n in the xy-plane. We label 
the population P = {x1, x2, . . . , xμ} such that |xi |0 ≤ |xi+1|0. The following lemma states that, after a polynomially-bounded 
number of iterations of (μ + 1) SIBEA, the population contains the extreme points (00 · · · 0) and (11 · · · 1).

Lemma 1. If μ ≥ 2, the expected time until the two extreme points are contained in the population is O (μn logn).

Proof. In OneMinMax, the two extreme points are the points (00 · · · 0) and (11 · · · 1). In every iteration during the run of 
(μ + 1) SIBEA, the value corresponding to the highest |·|1 value in the population never decreases (since removing this 
point results in a population with a strictly smaller hypervolume indicator value).

In iteration t , the individual x ∈ P (t) with the highest |·|1 value is selected with probability 1/μ, and a zero bit is selected 
with probability k/n where k is the number of zero bits in x. The highest |·|1 value can be increased at most n times until 
(11 · · ·1) enters the population. A symmetric argument holds for the |·|0 value, and the expected time to until both extreme 
points enter the population is upper bounded by:

2
n∑

k=1

(
1

μ

k

n

)−1

= 2μn
n∑

k=1

1

k
= O (μn log n). �

Without loss of generality, in order to simplify the analysis we will assume for the remainder of the paper that n is 
divisible by μ − 1. We remark here that our results still hold in the case that μ − 1 does not divide n evenly, but this 
requires some extra attention to technicalities.

The optimal μ-distribution for a Pareto front P is the set of μ points on the front that maximize the hypervolume 
indicator. The following theorem is due to Auger et al. [2, Theorem 7].

Theorem 2. If the Pareto front is a (connected) line, the optimal μ-distribution with respect to the hypervolume indicator is such that 
the distance is the same between all neighboring solutions.

In other words, assuming 2 < μ < n + 1 and μ − 1 divides n evenly, in the optimal μ-distribution, the intervals ι(xi) = ι(x j) =
n/(μ − 1) for all i, j ∈ {2, . . . , μ}.

Since OneMinMax has a linear front, the conditions for the theorem are satisfied.

Proposition 1. Suppose the extreme points are contained in P . Let x′ be produced from xi ∈ P by flipping a single bit. Then either,

d
(
x′) = |xi+1|0 − |xi|0 − 1 = ι(xi+1) − 1, or,

d
(
x′) = |xi |0 − |xi−1|0 − 1 = ι(xi) − 1.

Note that the assumption on the membership of extreme points implies |x1|0 ≤ |x′|0 ≤ |xμ|0 and at least one of the above statements 
is always well-defined.

An illustration of Proposition 1 is given in Fig. 1.

Proposition 2. The contribution of a solution xi ∈ P \ {x1, xμ} is calculated by

d(xi) = (|xi |0 − |xi−1|0
) × (|xi+1|1 − |xi |1

)
,

and since |xi |1 = n − |xi |0 ,

d(xi) = ι(xi)ι(xi+1).

Lemma 2. Given a population P (t) on OneMinMax, (μ + 1) SIBEA can produce a new population P (t+1) with I H (P (t+1)) > I H (P (t))

if and only if one of the following conditions is satisfied:

1. ∃xi ∈ P (t) \ {x1} : |ι(xi) − ι(xi+1)| ≥ 2.
2. ∃xi, x j ∈ P (t) \ {x1} : ι(xi) > d(x j) + 1.

Specifically, we show that at least one of these conditions is necessary and sufficient for (μ + 1) SIBEA to produce an offspring x′ in 
generation t such that

∃z ∈ P (t) : I H
((

P (t) \ {z}) ∪ {
x′}) > I H

(
P (t))
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Fig. 2. The intervals corresponding to population P w for OneMinMax.

Proof. For the first condition, without loss of generality, assume that ι(xi+1) = ι(xi) + k for k ≥ 2. In order for a strict 
improvement to occur, a new solution x′ can be generated by flipping a one bit in xi to a zero. We calculate the new 
intervals in the intermediate population P ′(t) ← P (t) ∪{x′} as ι(x′

i) = ι(xi), ι(x′) = 1,1 and ι(x′
i+1) = ι(xi+1) − 1. It follows that 

d(x′
i) = ι(x′

i) = ι(xi) < ι(xi) + k − 1 = ι(xi+1) − 1 = d(x′). Hence replacing x′
i with x′ results in a strictly higher hypervolume 

indicator.
For the second condition, assume that there are two solutions xi , x j such that ι(xi) > d(x j) + 1. Let x′ be a new solution 

produced by mutating xi or xi−1. According to Proposition 1, d(x′) = |xi |0 − |xi−1|0 − 1 = ι(xi) − 1 > d(x j).
Therefore, if one of the above conditions is satisfied, there always exists a solution z in the intermediate population such 

that

I H
(

P (t+1) ← P ′(t) \ {
x′}) < I H

(
P (t+1) ← P ′(t) \ {z})

On the other hand, suppose none of the above conditions hold. In this case, for all solutions xi, x j ∈ P (t) \ {x1},
|ι(xi) − ι(xi+1)| ≤ 1 and ι(xi) ≤ d(x j) + 1. Assume that a solution xk ∈ P (t) is selected for mutation and let x′ be the new 
solution obtained by mutating xk . Again, by Proposition 1, either d(x′) = |xk+1|0 − |xk|0 − 1 or d(x′) = |xk|0 − |xk−1|0 − 1 and 
we make the following case distinction.

Case 1. If d(x′) = |xk+1|0 − |xk|0 − 1 = ι(xk+1) − 1, then only the value of ι(xk+1) changes, which leads to d(x′
k) = ι(xk), 

d(x′
k+1) = (ι(xk+1) − 1) × ι(xk+2) while the contribution of other solutions in the population remain the same. Obvi-

ously, d(x′) ≤ d(x′
k+1) and d(x′) ≤ d(x′

k) from the first counter conditions. Furthermore, based on the second counter 
condition, d(x′) ≤ d(x′

j) for all j �= k and j �= k + 1.
Case 2. If d(x′) = |xk|0 −|xk−1|0 −1 = ι(xk) −1, then only the value of ι(xk) changes, which leads to d(x′

k) = ι(xk+1), d(x′
k−1) =

(ι(xk) − 1) × ι(xk−1) while the contribution of other solutions in the population remain the same. Using a similar 
argument, d(x′) ≤ d(x′

j) for all 1 ≤ j ≤ μ.

Therefore, if none of the conditions are satisfied, for all solutions x j in the population,

I H
(

P (t+1) ← P ′(t) \ {x j}
) ≤ I H

(
P (t+1) ← P ′(t) \ {

x′}).
This completes the proof. �

We define an initial population P w in which (1) μ = √
n + 1, (2) the extreme points already exist in P w , and (3) the 

intervals are as follows.

ι(xi) =
⎧⎨
⎩

√
n + 1 if i = 2;√
n − 1 if i = μ;√
n if i ∈ {3, . . . ,μ − 1}.

The set of intervals of P w with respect to f1 = |·|0 are illustrated in Fig. 2.
We now show that with probability approaching one exponentially fast (μ + 1) SIBEA requires exponential time to reach 

the optimal population state from P w .

Theorem 3. Starting with the initial population P w where μ = √
n + 1, the expected optimization time of (μ + 1) SIBEA on 

OneMinMax is exponential with probability 1 − 2−Ω(n) .

Proof. By Theorem 2, the population is optimal when ι(xi) = √
n for all xi ∈ P (t) \ {x1}. During the run, we call an interval 

large if ι(xi) = √
n + 1. Similarly, we call the interval small if ι(xi) = √

n − 1. At the beginning of the above configuration, the 
interval belonging to x2 is large, and the interval belonging to xμ is small.

In this configuration, an offspring is only accepted if it results in moving the large interval or the small interval in either 
direction by flipping one of the bits in the solutions that bound the intervals.

No other mutation will be accepted since it would result in an offspring with a strictly smaller contribution. To reach 
the optimum, the large interval and the small interval must meet, i.e., ι(xi) = √

n + 1 and ι(xi+1) = √
n − 1 for some 

i ∈ {2, . . . , μ}. From this state, only a single mutation is possible to reach the optimum.

1 Note that here we are abusing the ι notation slightly. The μ intervals in the intermediate population should be understood in terms of their relative 
positions along the f1-axis. This may be different than their canonical subscripts due to the addition of x′.
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Fig. 3. Markov chain for interval dynamics for (μ + 1) SIBEA on OneMinMax.

Let T be the random variable corresponding to the optimization time of (μ + 1) SIBEA. We consider the position of the 
large and small intervals during all times t < T . Let a = a(t) be the index at time t such that ι(xa) = √

n + 1 and let b = b(t)
be the index at time t such that ι(xb+1) = √

n − 1. The optimal solution is only reachable from the state in which a = b. 
Before this occurs, at least one of the following conditions must hold at some time t < T . (1) |xa|0 ≥ n

4 , or (2) |xb|0 ≤ n
4 .

We now prove that either of these conditions only occur after exponential time with probability approaching one ex-
ponentially fast. For the first condition, note that probability of a mutation that moves the large interval to the right is 
|xa|0/(2μn). Here, 1/μ is the probability of choosing the correct individual, xa from the population, |xa|0/n is the probabil-
ity of flipping one of zero bits in the current solution and 1/2 is the probability of keeping the new solution.

Meanwhile, the probability of moving the large interval to the left (if possible) is |xa−1|1/(2μn) where 1/μ is the 
probability of choosing the correct solution xa−1 from the population, |xa−1|1/n is the probability of flipping one of the one 
bits in the current solution and 1/2 is the probability of keeping the new solution.

Let Xt be the set of variables describing a Markov process over a finite state space S = {1, 2, . . . , (�n/4� − 1)/
√

n} ∪
F where the k-th state corresponds to the event in which |xa(t)|0 = k

√
n + 1, that is, the large interval has moved into 

position k. The chain is absorbed into a final accepting state F if the small interval meets it (we later show this also takes 
exponential time). Letting T denote the time when the intervals first meet, for all 0 ≤ t < T , Xt+1 − Xt ∈ {−1, 0, 1}. Using 
the above transition probabilities (illustrated in Fig. 3), for all 0 < t < T and 1 ≤ Xt ≤ (�n/4� − 1)/

√
n,

Pr(Xt+1 − Xt = −1 | Xt) ≥ δ · Pr(Xt+1 − Xt = 1 | Xt),

where δ ≥ (n − n/4)/(n/4) = 3. By the Local Gambler’s Ruin Theorem [16], the time until a(t) is large enough so that 
|xa(t)|0 ≥ n/4 conditioned on the event that it has not yet met the small interval is at least δ1/3·(1−1/(4μ))·n ≥ 3Ω(n) with 
probability 1 − 2−Ω(n) . A symmetric argument shows that, with high probability, it requires exponential time for b(t) to 
reach |xb(t)|0 ≤ n/4. Since both conditions require exponential time with probability 1 − 2−Ω(n) , the claim follows. �
4. LOTZ

The leading ones, trailing zeros (LOTZ) problem is a bicriteria optimization problem over binary strings first introduced by 
Laumanns et al. [18], defined as LOTZ : {0, 1}n →N2 where

LOTZ(x) = (
f1(x), f2(x)

)
with

f1(x) = LO(x) =
n∑

i=1

i∏
j=1

x[ j], and

f2(x) = TZ(x) =
n∑

i=1

n∏
j=i

(
1 − x[ j]).

Similar to OneMinMax, we set the reference point as r = (−n2, −n2) and label the population P = {x1, x2, . . . , xμ} such that 
LO(xi) ≤ LO(xi+1).

Since the Pareto front of LOTZ is linear, Theorem 2 holds. Moreover, as long as all points are on the Pareto front, 
Propositions 1 and 2 hold (using the requisite objective function) and Lemma 2 carries over to LOTZ as well. The following 
theorem follows directly from Brockhoff, Friedrich and Neumann [8, Theorem 2].

Theorem 4. If μ ≥ n + 1, the expected optimization time of (μ + 1) SIBEA on LOTZ is O (μn2).

Though the proof of Theorem 4 is carried out for a more general version of (μ + 1) SIBEA, the claim holds also for our 
choice of mutation operator, which is only slightly easier to control.

Theorem 5. Let 1 < μ < n + 1. The expected time for (μ + 1) SIBEA to reach a population that contains only Pareto optimal solutions 
and solutions for the objective vectors (n, 0) and (0, n) is O (μ2n2).
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Proof. In any point x /∈ P , a 0 must appear before a 1 in x. Thus, x = 1a0{0, 1}b10c for a, b, c ≥ 0. A mutation is only 
accepted if the 0 in position a + 1 is flipped, or the 1 in position a + b + 2 is flipped. In either case, the resulting offspring 
must have a strictly higher LO (TZ) value (respectively), so the highest LO (TZ) value in the population never decreases.

Let x ∈ P (t) be the point in the population with the highest LO value in iteration t . The probability that x is selected 
for mutation, and the correct bit is flipped to increase the LO value is bounded below by 1/(μn). This event can occur a 
maximum of n times until the extreme point with the highest LO value is in the population. It follows that the expected 
time until the extreme point with the highest LO value is O (μn2). A symmetric argument holds for the extreme point with 
the highest TZ value. Thus the expected time until both extreme points are in the population is O (μn2).

During the runtime of the algorithm, the count of Pareto optimal solutions in the population never decreases since each 
accepted mutation on a non-Pareto optimal solution will generate an offspring that either dominates or is dominated by its 
parent. The number of Pareto optimal solutions can increase when there exists a dominated solution in the population, or 
the new Pareto optimal solution dominates one of the non-Pareto, non-dominated solutions.

In the first case, where there is at least a dominated solution, there exists a point x ∈ P (t) ∩P with a Hamming neighbor 
x′ such that x′ ∈ P but x′ /∈ P (t) . The probability of creating x′ by applying a mutation to x is 1/(μn). Such a mutation must 
increase the number of Pareto optimal solutions in the population by one.

In the second case, where there is no dominated solution in the population, a new Pareto optimal solution that satisfies 
the previous conditions can be obtained by moving a non-dominated solution toward the Pareto front. A non-dominated 
solution can be moved closer to the Pareto front by first selecting it for mutation and then mutating the correct bit. This 
event occurs with probability 1/(μn). Since there are at most n bits that need to be flipped, the expected time to increase 
the number of Pareto optimal solutions in the population is O (μn2). Hence, the expected waiting time until all μ individuals 
are Pareto optimal is bounded above by O (μ2n2) and the claimed bound follows. �

We now consider some conditions on a given population that imply the existence of mutations that can improve the 
hypervolume indicator.

Theorem 6. Let 1 < μ < n
3 and let P (t) be the population in iteration t of (μ + 1) SIBEA on LOTZ. If P (t) ⊆ P and there is no single 

mutation that results in a population with a strictly higher hypervolume indicator, then ι(xi) ≥ 2 for all xi ∈ P (t) \ {x1}.

Proof. Since 1 < μ < n
3 , if P (t) is optimal, then for all xi ∈ P (t) \ {x1}, ι(xi) ≥ 3. Suppose P (t) is not optimal. If there exists a 

solution xi ∈ P (t) \{x1} with such that ι(xi) = 1, then there must also be a solution x j where ι(x j) ≥ 4. If a strict improvement 
cannot be made in a single mutation, then the first condition of Lemma 2 tells us that |ι(xi) − ι(xi+1)| ≤ 1, which implies 
that 0 ≤ ι(xi+1) ≤ 2 (recall here that Lemma 2 carries over to LOTZ when all points in the population are in P). Therefore, 
d(xi) = ι(xi) × ι(xi+1) ≤ 2 < ι(x j) − 1, and the second condition of Lemma 2 is satisfied. This contradicts the assumption that 
no improving mutation is possible. �

We define a neutral move to be the transformation of a population P (t) via mutation and selection to a population P (t+1)

such that I H (P (t)) = I H (P (t+1)).

Lemma 3. Let 1 < μ < n
3 and let P (t) be the population in iteration t of (μ +1) SIBEA on LOTZ. If P (t) ⊆ P and there exists a solution 

xk ∈ P (t) \ {x1} such that ι(xk) = 1, then using only neutral moves, it is not possible for the population to enter a state in which a strict 
improvement cannot occur in one mutation.

Proof. Suppose for contradiction that it is possible for a neutral move to result in a population P (t+1) from which a strict 
improvement cannot occur. By Theorem 6, for all xi ∈ P (t+1) \ {x1}, ι(xi) ≥ 2. This means that to produce P (t+1) , either x′

k or 
x′

k−1 must be removed from the intermediate population P ′(t) . Furthermore, when a solution in P (t) is mutated to produce 
the intermediate population, two new intervals are produced with at least one of them equal to 1. The only configuration in 
which two unit intervals can be removed from the intermediate population is when the unit intervals are adjacent on the 
Pareto front and the solution between them is subsequently removed. Thus to produce such an intermediate population, it 
follows that xk , xk+1 or xk−1 must be mutated.

In the first case, when xk is mutated, let x′ be the new solution. We have ι(x′) = 1, ι(x′
k+1) = ι(xk+1) − 1 ≥ 1 so that 

d(x′
k) = 1 ≤ d(x′). Because this is a neutral move, d(x′) = d(x′

k) = 1, which means ι(x′
k+1) = 1 = ι(x′) = ι(x′

k).
In the second case, without loss of generality, assume that xk−1 is mutated to produce a new solution x′ . Using the same 

argument, d(x′) = d(x′
k−1) = 1, which implies that ι(xk−1) = 2 and after mutation, ι(x′

k) = ι(x′
k−1) = ι(x′) = 1.

Thus, as long as there is a solution xk in P (t) \ {x1} such that ι(xk) = 1, any neutral move produces a new population 
P (t+1) such that there must exist some xi ∈ P (t+1) \ {x1} with ι(xi) = 1. However, by the contrapositive of Theorem 6, a strict 
improvement is possible in P (t+1) . �

If no strict improvement is possible, then (μ + 1) SIBEA working on LOTZ is on a plateau. To analyze its behavior in this 
situation, we appeal to the following result for linear Markov chains.
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Lemma 4. Let N ∈ N and let {Xt : t ∈ N} be a linear Markov chain on the state space {0, 1, . . . , N} specified as follows. For 0 < p < 1,

1. if Xt = N then Xt+1 = N − 1 with probability at least p, otherwise Xt+1 = N.
2. if Xt = 0, then Xt+1 = 0.
3. otherwise,

Xt+1 =
{ Xt + 1 with probability p/2,

Xt − 1 with probability p/2,

Xt with probability 1 − p.

All other state transitions have probability zero. Define the random variable T := inf{t : Xt = 0}. Then E(T ) = O (N2/p).

Proof. Denote the filtration Ft = (X1, . . . , Xt) and let �t = Xt+1 − Xt . Clearly E(�t | Ft) ≤ 0 and E(�2
t | Ft) ≥ p. Define the 

stochastic process Yt = X2
t − 2N Xt − tp. The process Yt is a submartingale with respect to Xt since

E(Yt+1 | Ft) = E
(
(Xt + �t)

2 − 2N(Xt + �t) − (t + 1)p | Ft
)

= X2
t − 2N Xt − tp + (

E
(
�2

t | Ft
) − p

) + (
(2Xt − 2N)E(�t | Ft)

)
≥ Yt .

Then by the Optional Stopping Theorem [21], E(Y T ) ≥ E(Y0) so E(X2
T ) − 2NE(XT ) − pE(T ) ≥ E(X2

0) − 2NE(X0). Because 
XT = 0, it follows that

E(T ) ≤ 2NE(X0) − E(X2
0)

p
,

and the claim holds since 0 ≤ X0 ≤ N . �
Lemma 5. Let 1 < μ < n

3 and let P (t) be the population in iteration t of (μ +1) SIBEA on LOTZ. If P (t) ⊆ P and no strict improvement 
is possible, then the expected time until (μ + 1) SIBEA leaves the plateau and achieves a strict improvement is O (μ3n).

Proof. Suppose no strict improvement is possible from P (t) . By Lemma 2, ι(xi) ≤ d(x j) + 1 for all xi, x j ∈ P (t) \ {x1}. In 
this situation, the solutions in the population need to be shifted around in order for a strict improvement to be possible. 
(μ + 1) SIBEA must move first along a plateau before encountering an improving move.

By Theorem 6, for all xi ∈ P (t) \ {x1}, we have ι(xi) ≥ 2, which implies that d(xi) ≥ 4. If there exist two solutions xi, x j ∈
P (t) \ {x1} such that ι(xi) = d(x j) + 1 ≥ 5, a strict improvement can be made after a single neutral move. In this neutral 
move, either xi or xi−1 is selected from the population with probability 1/μ and a correct bit is flipped with probability 
1/n to generate a new solution x′ with contribution d(x′) = ι(xi) − 1 ≥ 4. Since there is at least one solution x′′ ∈ P (t) that 
has the same contribution as x′ , it follows that x′ replaces x′′ to create population P (t+1) with probability at least 1/2.

If this mutation is accepted, it is not possible for a subsequent mutation to revert to the previous population state. This 
is because a single mutation always results in two new intervals in which at least one of them is equal to one. Since we 
supposed that P (t) had no such interval, the claim follows. Moreover, after this step, there are two adjacent intervals with 
values 1 and ι(xi) − 1 in the population, and a mutation that strictly improves the hypervolume indicator is possible. Again, 
such a mutation occurs with probability 1/(μn). Finally, we point out that after this initial step, by Lemma 3, it is not 
possible to enter a state in which a strict improvement is impossible.

Otherwise, we have ι(xi) < d(x j) + 1 for all 1 < i, j ≤ μ. Let xi , x j with i < j be the two closest solutions such that 
|ι(xi) − ι(x j)| ≥ 2. The following two conditions are guaranteed. (1) ι(xi+1) = ι(xi+2) = · · · = ι(x j−1) = (ι(xi) + ι(x j))/2 = α. 
Without loss of generality, assume that ι(xi) < ι(x j), for a solution xk (i < k < j), if ι(xk) > α or ι(xk) < α then xk , x j and 
xi , xk become the closest solutions accordingly. (2) |ι(xi) − ι(x j)| = 2. Otherwise, |ι(xi) − ι(x j)| > 2 implies that |ι(xi) − α| =
|ι(x j) − α| > 2. This contradicts the supposition that xi and x j are the closest solutions that satisfy the condition.

According to Lemma 2, in order for a strict improvement to be possible, ι(xi) and ι(x j) must meet, implying that j = i +1. 
In one step, the distance between xi and x j can be changed by either moving xi and x j closer or further. The probability of 
moving xi toward x j is 1/(2μn). Here, the probability 1/2 comes from the fact that after flipping a correct bit, there are at 
most two solutions in the population with the same contribution. Similarly, the probability of moving xi further away from 
x j is 1/(2μn), because we need only to flip the correct bit in the correct individual and maintain it in the population. Finally, 
by the same argument, the probability of moving x j toward (further from) xi is 1/(2μn). It follows that the probability that 
xi and x j are moved closer (further) is 2/(2μn) = 1/(μn).

After xi and x j become adjacent on the Pareto front, a strict improvement can be performed with probability 1/(μn). 
The process of shifting the distance between xi and x j is illustrated in the Markov chain in Fig. 4. In this Markov chain, 
there are μ + 1 states that each correspond to the distance between xi and x j , and a final absorbing state reachable from 
the zero-distance state that corresponds to an improving move.
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Fig. 4. Markov chain for interval dynamics for (μ + 1) SIBEA on LOTZ. State imp represents a strictly improving move.

Excluding transition probabilities that are zero, the structure of the state transition graph is a simple path and the 
transition probabilities between neighboring states in the path (excluding the absorbing state) are all equal to 1/(μn). This 
results in a linear Markov chain with N = μ + 1 and p = 2/(μn) and the bound follows from Lemma 4. �

Finally, we can state the main theorem for LOTZ, which shows that the maximum hypervolume is obtained in expected 
polynomial time if 1 < μ < n

3 holds.

Theorem 7. If 1 < μ < n
3 , the expected optimization time of (μ + 1) SIBEA on LOTZ is O (μ3n3).

Proof. If a strict improvement is possible, the expected waiting time until the algorithm discovers that improvement is 
bounded by O (μn). There are at most O (n2) strict improvements, which implies that the algorithm needs at most O (μn3)

to reach the maximum population hypervolume, as long as the algorithm never visits a state from which there are no strict 
improvements.

On the other hand, if the algorithm reaches a state from which a strict improvement is not possible, it must then deal 
with a plateau. In this case, by Lemma 5, the waiting time until the algorithm leaves the plateau and discovers a strict 
improvement is O (μ3n). The total number of improvements with respect to the hypervolume is O (n2), which implies that 
(μ + 1) SIBEA spends at most O (μ3n3) steps in such situations.

The expected optimization time is the total expected time spent in each of these two scenarios. Since this is dominated 
by O (μ3n3), the proof is complete. �
5. Multi-objective genetic programming

We now shift our focus from binary strings and consider the domain of tree-based genetic programming (GP). Genetic 
programming is a class of evolutionary algorithms that evolve executable structures such as computer programs for some 
specific task [17]. In this particular application, candidate solutions are syntax trees whose nodes are a set of primitives 
comprised of a set of function nodes and a set of terminal symbols.

We consider (μ + 1) SIBEA (see Algorithm 1), but the search space consists now of syntax trees. The inner nodes of each 
syntax tree are labeled by function symbols from a function set F and the leaves are labeled by terminals coming from a 
set L. For a given syntax tree x the mutation operator should produce a new syntax tree by applying local changes to x. To 
do so, we employ the HVL-prime operator [11]. HVL-prime mutation produces a new tree by making changes to the original 
tree via three basic operators: insertion, substitution, and deletion. We modify Algorithm 1 by changing the mutate function 
call to hvl-mutate, defined as follows.

Function hvl-mutate(x).

input: A syntax tree x

Perform one of the following operations uniformly at random;

insert(x): Choose a terminal t ∈ L uniformly at random;

Choose a node u ∈ x uniformly at random;

Replace u by a join node whose children are t and u;

substitute(x): Choose a terminal t ∈ L uniformly at random;

Choose a leaf node u ∈ x uniformly at random;

Replace u by t;

delete(x): Choose a leaf node u ∈ x randomly with parent p and sibling v;

Replace p by v and delete p and u;

The particular GP problem that we consider here is the ORDER problem introduced in [15]. In ORDER, the only function 
symbol is a join node (denoted by J ), which is binary. The terminal set is a set of 2n variables {vi, ̄vi | i ∈ {1, . . . , n}}, where 
v̄ i is considered the complement of vi . Hence, F := { J } and L := {v1, ̄v1, v2, ̄v2, . . . , vn, ̄vn}.
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For a given solution x, the fitness value is computed by parsing the represented tree via an in-order traversal. A variable 
vi contributes a value of 1 to the fitness of x iff vi is visited in the in-order traversal before every v̄ i in the tree. In this case, 
we call vi expressed and unexpressed otherwise. A variable vi is called redundant if it occurs more than once in the tree; 
in this case the variable contributes only once to the fitness value and all duplicates can be removed without decreasing 
the ORDER value. The same holds for all negated variables v̄ i , 1 ≤ i ≤ n, and negated variables are always redundant. The 
goal of the ORDER problem is to maximize the fitness value ORDER. For a given syntax tree x the computation of ORDER(x) 
is as follows.

Function ORDER(x).

input: A syntax tree x

l ← an empty leaf list;
S ← an empty statement list;
Parse x with an in-order traversal and insert each leaf at the rear of l;
Generate S by parsing l front to rear and adding (“expressing”) a leaf to S only if it or its complement are not yet in S
(i.e., have not yet been expressed);
return |{vi ∈ S}|;

For example, let x be a syntax tree that yields the in-order parse l = (v1, ̄v4, v2, ̄v1, v3, ̄v6). Then S = (v1, ̄v4, v2, v3, ̄v6)

and ORDER(x) = 3 since v1, v2, v3 ∈ S .
The multi-objective problem MO-ORDER takes the complexity C of a syntax tree as the second objective function. The 

bi-objective problem MO-ORDER(x) is defined as

MO-ORDER(x) = (
ORDER(x), C(x)

)
,

where C(x) denotes the number of leaves in the syntax tree x. It imposes a trade-off between the ORDER-value and the 
complexity of a syntax tree. Note that in this case, the goal is to maximize the ORDER-value, but minimize the complexity. 
In this case a Pareto optimal solution corresponds to a tree of minimal complexity for a particular ORDER-value. This can 
be contrasted to the pseudo-Boolean problems in Sections 3 and 4 where both functions were maximized.

Let Tinit,min be the size of the smallest tree in the initial population. In the following, we show that (μ + 1) SIBEA 
computes an optimal population efficiently if the population can cover the whole Pareto front.

Theorem 8. If μ ≥ n + 1, the expected optimization time of the (μ + 1) SIBEA on MO-ORDER is O (μTinit,min + μn log n).

Proof. Any population can manifest at most n + 1 distinct fitness values, which implies that the number of non-dominated 
solutions is upper bounded by n + 1. This means that if a Pareto optimal solution is found, it will remain in the population 
during the rest of the algorithm run. The expected time until an empty tree is included in the population is O (μTinit,min). 
Since the maximum Pareto front size is n + 1, we need to generate at most n other Pareto optimal solutions. Let P be 
a population containing a subset of Pareto optimal solutions with ORDER-value j for every 0 ≤ j ≤ i for some 0 < i < n. 
Furthermore, suppose P does not contain a Pareto optimal solution with ORDER-value i + 1. It is possible for mutation to 
produce from P an intermediate population P ′ that is equal to P but also contains a new Pareto optimal individual with 
ORDER-value i + 1. This occurs if HVL-prime mutation inserts one of the n − i unexpressed variables into a Pareto optimal 
solution with ORDER-value i. The probability of such a step can be calculated as follows.

• The probability of choosing the correct solution (i.e., one with ORDER-value i) from the population is at least 1/μ.
• The probability that HVL-prime performs an insertion mutation is 1/3.
• The probability of choosing an unexpressed variable for insertion is (n − i)/2n.

The expected time until all Pareto optimal solutions are produced after having included the empty tree in the population is 
therefore bounded above by

n−1∑
i=0

(
n − i

6μn

)−1

= 6μn ·
n∑

j=1

1

j
= O (μn log n).

Adding the time for both phases yields the claimed bound. �
Note that for ORDER, a Pareto optimal solution consists of a syntax tree that contains no redundant variables. Thus, 

a Pareto optimal solution x with ORDER(x) = i has complexity C(x) = i. It follows that all points on the Pareto front lie on 
the unique line that contains the objective vectors (0, 0) and (n, n). Assuming μ −1 divides n, this implies that a population 
with optimal hypervolume must have all μ points equally distributed on the Pareto front.
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Fig. 5. The intervals corresponding to population P w for ORDER.

Fig. 6. Markov chain for interval dynamics for (μ + 1) SIBEA on ORDER.

The following theorem will show that, with probability going to one exponentially fast, (μ + 1) SIBEA on MO-ORDER 
requires exponential time to reach the optimal population state starting with some specific initial populations. We use 
similar arguments as for the lower bound given in Theorem 3 for OneMinMax. We again index the population by the order 
of their ORDER-value, that is, ORDER(xi−1) ≤ ORDER(xi) for all i ∈ {2, 3, . . . , n} and denote ι(xi) as the interval between the 
ORDER-value of xi and xi−1. We define a pathological initial population P w in which (1) μ = √

n + 1, (2) the extreme points 
already exist in P w , and (3) the intervals are as follows.

ι(xi) =
⎧⎨
⎩

√
n − 1 if i = 2;√
n + 1 if i = μ;√
n if i ∈ {3, . . . ,μ − 1}.

Note that this is similar to the initial population used in the proof of Theorem 3, except the large interval now lies to the 
right and the small interval to the left (see Fig. 5).

Theorem 9. If μ = √
n + 1, and the algorithm starts with P (1) = P w , the expected optimization time of (μ + 1) SIBEA on MO-ORDER 

is exponential with probability 1 − 2−Ω(n) .

Proof. By Theorem 2, the population P (t) is optimal when ι(x) = √
n for all x ∈ P (t) \ {x1}. Starting at P w , in order to reach 

the solution with the optimal hypervolume, the small interval ι(xi) = √
n − 1 and the large interval ι(xi+1) = √

n + 1 must 
meet for some i ∈ {2, . . . , μ}. Only from this state a single mutation is possible to reach the optimum.

Let T denote the time step in which P (T ) is optimal with respect to the hypervolume indicator. We consider the position 
of the large and small intervals during all times t < T . Let a = a(t) be the index at time t such that ι(xa) = √

n − 1 and let 
b = b(t) be the index at time t such that ι(xb+1) = √

n + 1. The optimal solution is only reachable from the state in which 
a = b. Before this occurs, at least one of the following conditions must hold at some time t < T . (1) ORDER(xa) ≥ 3n

4 , or (2) 
ORDER(xb) ≤ 3n

4 .
We now prove that either of these conditions occur only after exponential time with high probability. For the second 

condition, note that probability of a mutation that moves the large interval to the left is (n − ORDER(xb))/(12μn). Here, 
1/μ is the probability of choosing the correct individual xb from the population, (n − ORDER(xb))/6n is the probability of 
inserting an unexpressed variable and 1/2 is the probability of keeping the newly generated offspring.

Meanwhile, the probability of moving the large interval to the right (if possible) is 1
6μ where 1/μ is the probability of 

choosing the correct solution xb+1 from the population, 1/3 is the probability of choosing deletion in HVL-prime (which 
deletes some expressed variable and reduces the ORDER value) and 1/2 is the probability of keeping the newly generated 
offspring.

Let Xt be the set of variables describing a Markov process over a finite state space S = {1, 2, . . . , (�n/4� − 1)/
√

n} ∪ F
where the k-th state corresponds to the event in which n − ORDER(xb(t)+1) = k

√
n + 1, that is, the large interval has moved 

into the k-th position starting from the right. The chain is absorbed into a final accepting state F if the small interval 
meets it, which we later show also takes exponential time. Letting T denote the time when the intervals first meet, for 
all 0 ≤ t < T , Xt+1 − Xt ∈ {−1, 0, 1}. Using the above transition probabilities (illustrated in Fig. 6), for all 0 < t < T and 
1 ≤ Xt ≤ (�n/4� − 1)/

√
n,

Pr(Xt+1 − Xt = −1 | Xt) ≥ δ · Pr(Xt+1 − Xt = 1 | Xt),

where

δ ≥ 1/(6μ)

(n − ORDER(xb))/(12μn)
> (1/6μ)/(1/48μ) = 8.

The final inequality comes from ORDER(xb) > 3n/4. By the Local Gambler’s Ruin Theorem [16], the time t that b(t) becomes 
small enough so that ORDER(xb(t)) ≤ 3n/4 conditioned on the event that it has not yet met the small interval is at least 
δ1/3·(1−1/(4

√
n))·n > 8Ω(n) with probability 1 − 2−Ω(n) .
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A symmetric argument shows that with probability 1 − 2−Ω(n) it takes exponential time for a to reach a position in 
which ORDER(xa) ≥ 3n/4. Satisfying either condition thus takes at least exponential time with high probability, and the 
claim follows. �
6. Conclusions

We have contributed to the theoretical understanding of hypervolume-based evolutionary algorithms and have developed 
rigorous results on the runtime of these algorithms. Our results specifically show that LOTZ is easy to optimize for a wide 
range of μ. Furthermore, we have shown that even simple problems such as OneMinMax can lead to plateaus that are hard 
to leave for (μ +1) SIBEA. This implies that the optimization time of this algorithm becomes exponential when starting with 
such a worst-case initial population. Our analyses for multi-objective genetic programming show that hypervolume-based 
algorithms solve the ORDER problem efficiently if the population is able to cover the whole Pareto front. For a smaller 
population size we have pointed out that there are situations leading to an exponential optimization time.
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