
Maximizing Submodular Functions under
Matroid Constraints by Evolutionary

Algorithms∗

Tobias Friedrich
Faculty of Mathematics and Computer Science, Friedrich-Schiller-Universität Jena,
07743 Jena, Germany

Frank Neumann
Optimisation and Logistics, School of Computer Science, The University of Adelaide,
Adelaide, SA 5005, Australia

Abstract

Many combinatorial optimization problems have underlying goal functions that are
submodular. The classical goal is to find a good solution for a given submodular func-
tion f under a given set of constraints. In this paper, we investigate the runtime of a
simple single objective evolutionary algorithm called (1+1) EA and a multi-objective
evolutionary algorithm called GSEMO until they have obtained a good approximation
for submodular functions. For the case of monotone submodular functions and uni-
form cardinality constraints we show that GSEMO achieves a (1−1/e)-approximation
in expected polynomial time. For the case of monotone functions where the constraints
are given by the intersection of k ≥ 2 matroids, we show that the (1+1) EA achieves a
(1/k + δ)-approximation in expected polynomial time for any constant δ > 0. Turning
to non-monotone symmetric submodular functions with k ≥ 1 matroid intersection
constraints, we show that GSEMO achieves a 1/((k + 2)(1 + ε))-approximation in ex-
pected time O(nk+6 log(n)/ε).

1 Introduction

Evolutionary algorithms can efficiently find the minima of convex functions. While this
is known and well studied in the continuous domain, it is not obvious how an equiv-
alent statement for discrete optimization looks like. Let us recall that a differentiable
fitness function f : R → R is called convex if its derivative d

dxf(x) is non-decreasing
in x. The bitstring analogue of this is a fitness function f : {0, 1}n → R whose discrete
derivative ∂if(x) = f(x + ei) − f(x) is non-decreasing in x for all 1 ≤ i ≤ n with ei
being the i-th unit vector. A discrete function satisfying the aforementioned condi-
tion is called submodular. Submodularity is the counterpart of convexity in discrete
settings [29].

For understanding the properties of continuous optimizers it is central to study
their performance for minimizing convex functions. This has been done in detail for
continuous evolutionary algorithms [2, 19]. On the other hand, there is apparently very

∗A conference version [11] of this article was presented at PPSN’14.

c⃝20xx by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

T. Friedrich and F. Neumann

little prior work on the performance of discrete evolutionary algorithms for optimizing
submodular functions. We fill this gap and present several approximation results for
simple evolutionary algorithms and submodular functions.

Analogous to the situation for convex functions, there is a significant difference
between minimization and maximization of submodular functions. Submodular func-
tions can be minimized with a (non-trivial) combinatorial algorithm in polynomial
time [22]. On the other hand, submodular function maximization is NP-hard as it gener-
alizes many NP-hard combinatorial optimization problems, like maximum cut [10, 17],
maximum directed cut [18], maximum facility location [1, 6], and several restricted sat-
isfiability problems [10, 21]. As evolutionary algorithms are especially useful for hard
problems, we focus on the maximization of submodular functions.

More formally, we consider the optimization problem max{f(S) : S ∈ I}, where
X is an arbitrary ground set, f : 2X → R is a fitness function, and I ⊆ 2X a collection
of independent sets describing the feasible region of the problem. As usual, we assume
value oracle access to the fitness function; i.e., for a given set S, an algorithm can query
an oracle to find its value f(S). We also always assume that the fitness function is
normalized, i.e., f(∅) = 0, and non-negative, i.e., f(A) ≥ 0 for all A ⊆ X . We will study
the following variants of f and I:

• Submodular functions: A function f is submodular iff f(A∪B)+f(A∩B) ≤ f(A)+
f(B) for all A,B ⊆ X .

• Monotone functions: A function f is monotone iff f(A) ≤ f(B) for all A ⊆ B.

• Symmetric functions: A function f is symmetric iff f(A) = f(X \A) for all A ⊆ X .

• Matroid: A matroid is a pair (X, I) composed of a ground set X and a non-empty
collection I of subsets of X satisfying (1) If A ∈ I and B ⊆ A then B ∈ I and (2) If
A,B ∈ I and |A| > |B| then B + x ∈ I for some x ∈ A \B. The sets in I are called
independent, the rank of a matroid is the size of any maximal independent set.

• Uniform matroid: A uniform matroid (X, I) of rank k ∈ N contains all subsets of
size at most k, i.e., I = {A ⊆ X : |A| ≤ k}.

• Partition matroid: A partition matroid is a matroid formed from a direct sum of
uniform matroids. If the universe X is partitioned into k parts X1, . . . , Xk and
we have integers di with 0 ≤ di ≤ |Xi|, then in a partition matroid a set I is
independent if it contains at most di elements from each Xi, i.e., |I ∩Xi| ≤ di for
all i. (Note that in parts of the literature and in the conference version [11] of this
paper, it is assumed that di = 1 for all i.)

• Intersection of k matroids: Given k matroids M1 = (X, I1) , M2 = (X, I2), . . . , Mk =
(X, Ik) on the same ground set X , the intersection of these matroids is the matroid
(X, I) with I = {A ⊆ X : A ∈ Ii, 1 ≤ i ≤ k}. A simple example for k = 2 is the
family of matchings in a bipartite graph; or in general the family of hypergraph
matchings in a k-partite hypergraph.

Maximizing submodular functions is not only NP-hard, but also NP-hard to approxi-
mate. We therefore also have to formalize the notion of an approximation algorithm.
We say an algorithm achieves an α-approximation if for all instances of the considered

2 Evolutionary Computation Volume x, Number x

Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms

maximization problem, the output returned by the algorithm is at least α times the
optimal value.

Our results. We study the well-known (1+1) EA [8] as well as a multi-objective ap-
proach for optimizing submodular functions. Optimizing single objective optimiza-
tion problems by multi-objective approaches such as the global simple evolutionary
multiobjective optimizer (GSEMO) has already been shown to be beneficial for many
combinatorial optimization problems [12, 24, 32]. In this article, we prove the following
statements.

• Based on the seminal work of Nemhauser, Wolsey, and Fisher [30], we show that
GSEMO achieves in polynomial time a (1 − 1/e)-approximation for maximizing
monotone submodular functions under a uniform matroid constraint (Theorem 2). This
approximation factor is optimal in the general setting [31], and it is optimal even
for the special case of Max-r-cover, unless P = NP [9]. Furthermore, we show that
there are local optima for (1+1) EA which require exponential time to achieve an
approximation better than 1/2 + ε, for any ε > 0 a constant (Theorem 1).

• Based on recent work of Lee, Sviridenko, and Vondrák [27] and using the idea of
p-exchanges, we show that (1+1) EA achieves a (1/(k+1/p+ε))-approximation for
any monotone submodular function f under k matroid constraints in expected time
polynomial in nO(pk) and 1/ε, where p ≥ 1 is an integer and ε > 0 is a real value
(Theorem 3).

• Based on the recent work of Lee, Mirrokni, Nagarajan, and Sviridenko [26], we
show that GSEMO achieves in expected time O(1ε · n

k+6 log n) a 1/((k+2)(1+ ε))-
approximation for maximizing symmetric submodular functions over k matroid con-
straints where ε > 0 is a real value (Theorem 4). Furthermore, we explore the idea
of p-exchanges and show that GSEMO obtains (for k ≥ 2, p ≥ 1, and ε > 0) a(

1
((1+ε)(k+1+1/p)

)
-approximation in expected timeO(1ε ·n

2p(k+1)+2 · k · log n) (The-
orem 5). Note that these results even hold for non-monotone functions.

In the conference version [11] of this article only GSEMO has been studied. This article
extends the conference version by providing lower and upper bounds for the (1+1) EA
(Section 3.1 and 4) as well as using the idea of p-exchanges to prove improved bounds
for GSEMO and the case of symmetric submodular functions in Section 5.

Outline. The paper is organized as follows. In Section 2, we describe the setting for sub-
modular functions and introduce the algorithm that is subject to our investigations. We
analyze the algorithm on monotone submodular functions with a uniform constraint
in Section 3 and present results for monotone submodular functions under k matroid
constraints in Section 4. In Section 5, we consider the case of symmetric (but not neces-
sarily monotane) submodular functions under k matroid constraints. Finally, we finish
with a discussion on open problems in Section 6.

2 Preliminaries

Optimization of submodular functions and matroids have received a lot of attention in
the classical (non-evolutionary) optimization community. For a detailed exposition, we
refer to the textbooks of Korte and Vygen [23] and Schrijver [34].

Evolutionary Computation Volume x, Number x 3

T. Friedrich and F. Neumann

2.1 Submodular Functions and Matroids

When optimizing a submodular function f : 2X → R, we will often consider the incre-
mental value of adding a single element. For this, we denote by FA(i) = f(A+i)−f(A)
the marginal value of i with respect to A. Nemhauser et al. [30, Proposition 2.1]
give seven equivalent definitions for submodular functions. Additionally to the def-
inition stated in the introduction we will also use that a function f is submodular iff
Fi(A) ≥ Fi(B) for all A ⊆ B ⊆ X and i ∈ X \B.

Many common pseudo-Boolean and combinatorial fitness functions are submod-
ular. As we are not aware of any general results for the optimization of submodular
function by evolutionary algorithms, we list a few examples of well-known submodu-
lar functions:

• Linear functions: All linear functions f : 2X → R with f(A) =
∑

i∈A wi for some
weights w : X → R are submodular. If wi ≥ 0 for all i ∈ X , then f is also mono-
tone.

• Cut: Given a graph G = (V,E) with nonnegative edge weights w : E → R≥0. Let
δ(S) be the set of all edges that contain both a vertex in S and V \ S. The cut
function w(δ(S)) is symmetric and submodular but not monotone.

• Coverage: Let the ground set be X = {1, 2, . . . , n}. Given a universe U with n sub-
sets Ai ⊆ U for i ∈ X , and a non-negative weight function w : U → R≥0. The
coverage function f : 2X → R with f(S) = |

∪
i∈S Ai| and the weighted coverage

function f ′ with f ′(S) = w(
∪

i∈S Ai) =
∑

u∈
∪

i∈S Ai
w(u) are monotone submodu-

lar.

• Rank of a matroid: The rank function r(A) = max{|S| : S ⊆ A,S ∈ I} of a matroid
(X, I) is monotone submodular.

• Hypervolume Indicator: Given a set of points in Rd in the objective space of a multi-
objective optimization problem, measure the volume of the space dominated by
these points relative to some fixed reference point. The hypervolume is a well-
known quality measure in evolutionary multi-objective optimization and is known
to be monotone submodular [35].

We defined the most important matroids already in the introduction. Matroid theory
provides a framework in which many problems from combinatorial optimization can
be studied from a unified perspective. Matroids are a special class of so-called inde-
pendence systems that are given by a finite set X and a family of subsets I ⊆ X such
that I is closed under subsets. Being a matroid is considered to be the property of an
independence system which makes greedy algorithms work well. Within evolutionary
computation, matroid constraints have been studied only for linear functions [33].

We assume a finite ground set X = {x1, x2, . . . , xn} and identify each subset S ⊆ X
with a bitstring x ∈ {0, 1}n such that the i-th bit of x is 1 iff xi ∈ S. Let f : {0, 1}n → R≥0

be the given submodular function and F ⊆ {0, 1}n be the set of feasible solutions. Note,
that f is defined on every element of {0, 1}n. The constraints determining feasibility are
given by k matroids. Given k arbitrary matroids M1, . . . ,Mk defined on a ground set

4 Evolutionary Computation Volume x, Number x

Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms

Algorithm 1: (1+1) EA Algorithm

1 choose x ∈ {0, 1}n uniformly at random
2 repeat
3 create x′ by flipping each bit xi of x with probability 1/n
4 determine h(x′)
5 if h(x′) ≥ h(x) then
6 x := x′

7 until stop

X together with their independent systems I1, . . . , Ik. We consider the problem

max
{
f(x) : x ∈ F :=

k∩
j=1

Ij

}
,

where f is a submodular function defined on the ground set X .

Intersections of matroids occur in many settings like edge connectivity [14],
constrained minimum spanning trees [20] and degree-bounded minimum spanning
trees [36].

A prominent example for matroid intersection constraints is the maximum weight
matching problem in bipartite graphs: Given a bipartite graph G = (V,E) with bipartition
V1 ∪ V2, let M1 = (X, I1) and M2 = (X, I2) be two partition matroids on E with

I1 = {E′ ⊆ E : |δ(v) ∩ E′| ≤ 1, v ∈ V1},
I2 = {E′ ⊆ E : |δ(v) ∩ E′| ≤ 1, v ∈ V2},

where δ(v) is the set of neighbors of v. Then it is easy to see that I ∈ I1 ∩ I2 if and only
if I induces a matching in G.

Colorful spanning trees are an example for intersecting different kinds of matroids.
Let G = (V,E) with edges in E colored with k colors, that is, E = E1 ∪ E2 ∪ . . . ∪ Ek.
Assume we are given integers d1, d2, . . . , dk and aim at finding a spanning tree T ⊆ E
of G that has at most di edges of color i, i.e., |T ∩ Ei| ≤ di for all i. Then this can be
phrased as a matroid intersection problem as it is the combination of a spanning tree
matroid and a partition matroid.

2.2 Algorithms

The theoretical runtime analysis of evolutionary algorithms often considers random-
ized local search (RLS) and the (1+1) evolutionary algorithm (EA). We investigate the
(1+1) EA (see Algorithm 1) and consider the fitness function h(x) = (v(x), f(x)), where
v(x) measures the constraint violation of x. Considering problems with k matroid con-
straints M1, . . . ,Mk, we use

v(x) = k · |x|1 −
k∑

j=1

rj(x),

where rj(x) denotes the rank of x in matroid Mj , i.e.

rj(X) = max{|Y | : Y ⊆ X,Y ∈ Ij}

Evolutionary Computation Volume x, Number x 5

T. Friedrich and F. Neumann

Algorithm 2: GSEMO Algorithm

1 choose x ∈ {0, 1}n uniformly at random
2 determine g(x)
3 P ← {x}
4 repeat
5 choose x ∈ P uniformly at random
6 create x′ by flipping each bit xi of x with probability 1/n
7 determine g(x′)
8 if x′ is not strictly dominated by any other search point in P then
9 include x′ into P

10 delete all other solutions z ∈ P with g(z) ≤ g(x′) from P

11 until stop

for the set X given by x.

We have v(x) = 0 iff x is a feasible solution and v(x) > 0 otherwise. We optimize
h(x) in lexicographic order, i.e.

h(y) ≥ h(x) holds iff (v(y) < v(x)) ∨ (v(y) = v(x) ∧ f(y) ≥ f(x)).

We also consider a multi-objective approach to optimize submodular functions.
The multi-objective counterpart of RLS and (1+1) EA are the simple evolutionary multi-
objective optimizer (SEMO) [25] and global SEMO (GSEMO) [15]. Both algorithms
have been studied in detail, see [5, 7, 12, 15, 16]. We consider the GSEMO given in
Algorithm 2. For the multi-objective algorithm, we set z(x) = f(x) iff x ∈ F and
z(x) = −1 iff x ̸∈ F and consider the multi-objective problem

g(x) := (z(x), |x|0),

where |x|0 =
∑n

i=1(1 − xi) denotes the number of 0-bits in the given bitstring x. We
write g(x) ≥ g(y) iff ((z(x) ≥ z(y)) ∧ (|x|0 ≥ |y|0)) holds. If g(x) ≥ g(y) holds, we
say that y is dominated by x. The solution y is strictly dominated by solution x iff
g(x) ≥ g(y) and g(x) ̸= g(y). In the end, we focus on the solution x∗ = argmaxx∈P z(x)
of GSEMO and study the quality of this solution.

We study the expected number of iterations (of the repeat loop) of (1+1) EA and
GSEMO until their feasible solution x∗ is for the first time an α-approximation of an
optimal feasible solution OPT, i.e. f(x∗)/OPT ≥ α holds. Here α denotes the inves-
tigated approximation ratio for the considered problem. We call the expected num-
ber of iterations to reach an α-approximation, the expected (run)time to achieve an
α-approximation.

3 Monotone Submodular Functions with a Uniform Constraint

In this section, we investigate submodular functions with one uniform constraint. In
the case of one uniform constraint of size r, a solution x ∈ X is feasible if it has at most
r elements. Hence, we have F = {x : x ∈ X ∧ |x|1 ≤ r}.

6 Evolutionary Computation Volume x, Number x

Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms

3.1 Lower bound for (1+1) EA

We consider the (1+1) EA and show that this approach has to cope with local optima
with a large inferior neighbourhood. Getting trapped in these local optima, we show
that the algorithm finds it hard to achieve an approximation ratio greater than 1/2 + ε
where ε > 0 is a constant.

Based on our previously defined fitness function, we have v(x) = max{0, |x|1 − r}
as we are considering problems with one uniform constraint. To show the upper bound
on the approximation ratio, we consider an instance of the Max-r-Cover problem.

Our instance is obtained from a bipartite graph which has already been investi-
gated in the context of the vertex cover problem [13]. Let G = (V1 ∪ V2, E) be the com-
plete bipartite graph on V1 = {v1, . . . , vεn} and V2 = {vεn+1, . . . , vn} where |V1| = εn
and |V2| = (1 − ε)n for ε < 0.1. The ground set is given by the set of edges E
and each node vi ∈ V1 ∪ V2 is identified with the subset of edges adjacent to vi, i.e.
Ei = {e ∈ E : e ∩ vi ̸= ∅}. Let EV1 and EV2 be the set of subsets corresponding to the
nodes of V1 and V2, respectively. We consider the (1+1) EA working with bitstrings of
length n where the set Ei is chosen iff xi = 1, 1 ≤ i ≤ n.

For the constraint, we set r = (1−2ε+δ)·n, where δ, 0 < δ < ε, is an arbitrary small
positive constant as an upper bound on the number of sets. Furthermore, we require
εn ≤ r which is equivalent to 1−2ε+δ ≤ ε. This implies that EV1 is an optimal solution
covering the whole ground set E and can be achieved by setting 1/2 > ε ≥ (1− δ)/3.

We consider the solution xℓ where r subsets of EV2 a no subset of EV1 is selected.
The value of an optimal solution is OPT = ε (1− ε)n2/2 and we have f(xℓ) = r · (εn)/2.
The approximation ratio of xℓ is α(xℓ) = f(xℓ)/OPT = (1 − 2ε + δ)/(1 − ε). Setting
ε = (1− δ)/3 we get

α(xℓ) = (1− 2(1/3− δ/3) + δ)/(1− 1/3 + δ/3)

= (1/3 + 5δ/3)/(2/3 + δ/3)

= (1 + 5δ)/(2 + δ).

Choosing δ as a small constant close to 0, this expression tends to 1/2.

Theorem 1. There are monotone submodular functions f for which the (1+1) EA under a
uniform matroid constraint may end up in bad local optima. More precisely, there is an in-
stance of the Max-r-Cover problem such that starting with xℓ, the expected waiting time for the
(1+1) EA to achieve an improvement and therefore a solution with approximation ratio greater
than (1 + 5δ)/(2 + δ) is eΩ(n).

Proof. The search point xℓ has r chosen elements and inserting any further elements
without removing any other elements is not accepted. Furthermore, removing one or
more elements without inserting any new ones covers less elements, which is therefore
also not accepted. Each selected set of EV2 covers εn elements which are not covered
by any other chosen element whereas each set of EV1 would gain an additional contri-
bution of at most (1− ε− (1− 2ε+ δ)) = ε− δ elements.

In order to have a set of EV1 included and accepted at least δn chosen sets of EV2

have to be removed. Removing δn such elements decreases the fitness by δεn2/2 and
has to be compensated choosing at least δn sets of EV1 .

Evolutionary Computation Volume x, Number x 7

T. Friedrich and F. Neumann

Hence, in order to have a new accepted solution 2δn bits have to flip in a mutation
step. The probability for this is at most

(
εn

δn

)
·
(
(1− ε)n

δn

)
·
(
1

n

)2δn

= e−Ω(n).

3.2 Upper Bound for GSEMO

We now turn to GSEMO and show that this approach does not have to cope with local
optima that may prevent the algorithm from a achieving an approximation ratio better
than 1/2. GSEMO has the ability of carrying out local search operations, but also allows
for a greedy behaviour which is beneficial in this case. The greedy behaviour of GSEMO
leads to the following result.

Theorem 2. The expected time until GSEMO has obtained a (1 − 1
e)-approximation for a

monotone submodular function f under a uniform constraint of size r is O(n2 (log n+ r)).

Proof. We first study the expected time until GSEMO has produced the solution 0n for
the first time. This solution is Pareto optimal and will therefore stay in the population
after it has been produced for the first time. Furthermore, the population size is upper
bounded by n + 1 as it contains for each i, 0 ≤ i ≤ n at most one solution having
exactly i 1-bits. The solution 0n is feasible and has the maximum number of 0-bits. This
implies that the population will not include any infeasible solution to the submodular
function f after having included 0n.

For this step, we consider in each iteration the individual y that has the minimum
number of 1-bit among all individuals in the population and denote ℓ = |y|1 the number
of 1-bits in this individual. Note, that ℓ can not increase during the run of the algorithm.
For 1 < ℓ ≤ n a solution y′ with |y′|1 = ℓ−1 is produced with probability at least ℓ/(en2)
as y′ can be produced by selecting y for mutation and flipping one of the ℓ 1-bits. The
expected waiting time to include the solution 0n for the first time into the population is
therefore upper bounded by

∑n
ℓ=1

(
ℓ

en2

)−1
= O(n2 log n).

For the remainder of the proof, we follow the ideas of the proof for the greedy
algorithm in Nemhauser et al. [30]. We show that GSEMO produces in expected time
O(n2k) for each 0 ≤ j ≤ r a solution Xj with

f(Xj) ≥

(
1−

(
1− 1

r

)j
)
· f(OPT), (1)

where f(OPT) denotes the value of a feasible optimal solution. Note, that a solution
is feasible iff it has at most r 1-bits. After having including the solution 0n into the
population this is true for j = 0. The proof is done by induction. Assume that GSEMO
has already obtained a solution fulfilling Equation (1) for each j, 0 ≤ j ≤ i < r. We
claim that choosing the solution x ∈ P with |x|1 = i for mutation and inserting the
element corresponding to the largest possible increase of f increases the value of f
by at least δi+1 ≥ 1

r · (f(OPT) − f(Xi)). Let δi+1 be the increase in f that we obtain
when choosing the solution x ∈ P with |x|1 = i for mutation and inserting the element
corresponding to the largest possible increase.

8 Evolutionary Computation Volume x, Number x

Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms

Due to monotonicity and submodularity, we have f(OPT) ≤ f(Xi ∪ OPT) ≤
f(Xi) + rδi+1 which implies δi+1 ≥ 1

r · (f(OPT)− f(Xi)). This leads to

f(Xi+1) ≥ f(Xi) +
1

r
(f(OPT)− f(Xi)) ≥

(
1−

(
1− 1

r

)i+1
)
· f(OPT).

For i = r, we get
(
1−

(
1− 1

r

)r) · f(OPT) ≥
(
1 − 1

e

)
f(OPT). The probability for

such a step going from i to i+ 1 is lower bounded by 1
en2 and hence the expected time

until a
(
1− 1

e

)
-approximation has been obtained is at most

O(n2 log n) +
r∑

i=0

(
1

en2

)−1

= O(n2 (log n+ r)).

Max-r-Cover. Let us demonstrate the applicability of Theorem 2 by two examples.
First, reconsider the maximum coverage problem introduced in Section 2. Given a
universe U with subsets A1, A2, . . . , An ⊆ U , we want to maximize a coverage function
f(S) = |

∪
i∈S Ai| such that |S| ≤ r. Theorem 2 immediately implies:

Corollary 1. The expected time until the GSEMO has obtained a (1− 1/e)-approximation for
the Max-r-Cover problem is O(n2 (log n + r)). The achieved approximation factor is optimal,
unless P = NP [9].

Hypervolume indicator. As a second example, we consider a problem from evolu-
tionary multiobjective optimization. As discussed in Section 2, the hypervolume indi-
cator is a monotone submodular function. The hypervolume subset selection problem
(HYP-SSP), where we are given n points in Rd and want to select a subset of size k
with maximal hypervolume, therefore aims at maximizing a monotone submodular
function f : {0, 1}n → R≥0 under a uniform matroid constraint of rank r. Theorem 2
implies therefore:

Corollary 2. The expected time until the GSEMO has obtained a (1− 1/e)-approximation for
HYP-SSP is O(n2 (log n+ r)).

For dimensions d > 2 this is significantly faster than the best known exact algo-
rithm with runtimeO(nk) [3]. Note that HYP-SSP can be solved in timeO(n (k+logn))
for d = 2 [4].

4 Monotone Submodular Functions under Matroid Constraints

The previous section only studied uniform matroid constraints. We now extend this
to general matroids and intersection of k matroids and study monotone submodular
functions under constraints given by k matroids M1, . . . ,Mk.

We consider the (1+1) EA and start by analyzing the time until the algorithm has
obtained a feasible solution x with f(x) ≥ OPT/n. This result will later on serve as the
basis for the main result of this section.

Lemma 1. Let f be a monotone submodular function under k ≥ 1 Matroid constraints and
OPT be the value of an optimal solution. The expected time until (1+1) EA has obtained a
feasible solution with f(x) ≥ OPT/n is O(nk+1).

Evolutionary Computation Volume x, Number x 9

T. Friedrich and F. Neumann

Proof. The (1+1) EA starts with the initial solution chosen uniformly at random. We
first consider the expected time until the algorithm has obtained for the first time a
feasible solution, i.e. a solution x for which v(x) = 0 holds. To do this, we generalize
Proposition 10 in [33] to the case of the intersection of k matroids. Suppose that x is
an infeasible solution with ℓ = v(x). During the optimization process ℓ never increases
and there are at least ℓ/k distinct elements that can be removed to decrease ℓ. Hence,
the probability of decreasing ℓ is at least

1

n
·
(
1− 1

n

)n−1

≥ ℓ

ekn

and the expected time until a feasible solution has been produced is upper bounded by

kn∑
ℓ=1

ekn

ℓ
= O(kn (log k + log n)).

For the remainder of the proof, we work under the assumption that a feasible solution
has already been obtained. Let x be an arbitrary feasible solution and x∗ be an optimal
solution. Furthermore let a be the element in x∗ such that f({a}) ≥ OPT/n. As f is
monotone, we have f(y) ≥ OPT/n for any feasible solution containing the element a.
According to Theorem 2.1 of [26], a feasible solution y containing a can be obtained
from any feasible solution x by introducing a and removing at most k elements from x.
The expected waiting time of (1+1) EA for such a (k+1)-bit flip isO(nk+1). Altogether,
the expected time to produce a feasible solution x with f(x) ≥ OPT/n is O(nk+1) as
O(kn (log k + log n)) = O(nk+1) for any k ≥ 1.

In the previous section, we have shown that there are local optima for submodular
functions with one uniform constraint which only constitute an approximation ratio
of most 1/2 + δ. Furthermore, the (1+1) EA requires exponential time to leave these
local optima. The following theorem shows that the (1+1) EA obtains a 1/(k + δ)-
approximation for any constant k ≥ 2 and δ in expected polynomial time. For the
case k = 1, this implies a 1/(2 + δ)-approximation in expected polynomial time as may
duplicate the single matroid constraining the search space.

Theorem 3. For any integers k ≥ 2, p ≥ 1 and real value ε > 0, the expected time until
the (1+1) EA has obtained a (1/(k + 1/p + ε))-approximation for any monotone submodular
function f under k matroid constraints is O(1ε · n

2p(k+1)+1 · k · log n).

Proof. Due to Lemma 1, a feasible solution x with f(x) ≥ OPT/n is obtained in expected
time O(nk+1). In the following, we work under the assumption that the algorithm has
obtained a feasible solution x with f(x) ≥ OPT/n. A p-exchange operation applied
to the current solution x introduces at most 2p new elements and deletes at most 2kp
elements of x. A solution y that can be obtained from x by a p-exchange operation is
called a p-exchange neighbour of x. According to [27], every solution x for which there
exists no p-exchange neighbour y with f(y) ≥ (1 + ε

n(k+1)) · f(x) is a (1/(k + 1/p+ ε))-
approximation for any monotone submodular function.

The expected waiting time for a specific p-exchange operation isO(n2p(k+1)) as the
probability for a specific p-exchange is Ω(n−2p(k+1)). The number of steps producing

10 Evolutionary Computation Volume x, Number x

Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms

from a solution x a solution y with f(y) ≥
(
1 + ε

n(k+1)

)
· f(x) is at most

log1+ ε
n(k+1)

OPT

OPT/n
= O

(
1

ε
n (k + 1) log n

)
.

Altogether, the expected time until (1+1) EA has obtained a (1/(k + 1/p + ε))-
approximation is O(1ε · n

2p(k+1)+1 · k · log n).

Colorful spanning trees. Recall the example of finding colorful spanning trees
from Section 2, which can be describes as a monotone submodular maximization prob-
lem under k = 2 Matroid constraints. By choosing p > 1/ε sufficiently large, we get the
following corollary.
Corollary 3. The expected time until the (1+1) EA has obtained a (1/2− ε)-approximation for
colorful spanning trees is O(poly(n)/ε) for all ε > 0.

5 Symmetric Submodular Functions under Matroid Constraints

We now turn to symmetric submodular functions that are not necessarily monotone.
For our analysis, we make use of the following lemma that can be obtained from [26].
Lemma 2. Let x be a solution such that no solution with fitness at least

(
1 + ε

n4

)
· f(x) can be

achieved by deleting one element or by inserting one element and deleting at most k elements.
Then x is a

(
1

(k+2)(1+ε)

)
-approximation.

Lemma 2 states that there is always the possibility to achieve a certain progress if
no good approximation has been obtained. We use this to show the following results
for GSEMO. It should be noted that the corresponding Theorem 2 in the conference
version [11] is accidentally missing the symmetry condition.

Theorem 4. The expected time until the GSEMO has obtained a
(

1
(k+2)(1+ε)

)
-approximation

for any symmetric submodular function under k matroid constraints is O(1εn
k+6 log n).

Proof. Following previous investigations, GSEMO introduces the solution 0n in the
population after an expected number of O(n2 log n) steps. This solution is Pareto op-
timal and will from that point on stay in the population. Furthermore, 0n is a feasible
solution and has the largest possible number of 0-bits. Hence, from the time 0n has
been included in the population, the population will never include infeasible solutions.

Selecting 0n for mutation and inserting the element that leads to the largest in-
crease in the f -value produces a solution y with f(y) ≥ OPT/n. The reason for this is
that the number of elements is limited by n and that f is submodular. Having obtained
a solution of fitness at least OPT/n, we focus in each iteration on the individual having
the largest f -value in P . Due to the selection mechanism of GSEMO a solution with
the maximal f -value will always stay in the population and the value will not decrease
during the run of the algorithm.

As long as the algorithm has not obtained a solution of the desired quality, it can
produce from its solution x with the highest f -value a feasible offspring y such that
f(y) ≥

(
1 + ε

n4

)
· f(x). The expected waiting time for this event is O(nk+2) as at most

k + 1 specific bits of x have to be flipped and using the fact that the population size is
at most n+ 1.

Evolutionary Computation Volume x, Number x 11

T. Friedrich and F. Neumann

Starting with a solution of quality at least OPT/n the number of such steps in order
to achieve an optimal solution is upper bounded by

log(1+ ε
n4)

OPT

OPT/n
= O

(
1

ε
n4 log n

)
.

Hence, the expected time to achieve a
(

1
(k+2)(1+ε)

)
-approximation is O(1εn

k+6 log n).

Maximum Cut. As an example, let us consider again the NP-hard Maximum Cut
problem, where for a given graph G = (V,E) with n vertices and nonnegative edge
weights w : E → R≥0, we want to maximize the cut function δ(S) over all S ⊆ V as de-
fined in Section 2. It is known that the greedy algorithm achieves a 0.5-approximation
while the best known algorithms achieve a 0.87856-approximation [17]. Theorem 4
immediately implies the following.

Corollary 4. The expected time until the GSEMO has obtained a 1/(3 (1+ ε))-approximation
for the Maximum Cut problem is O(1εn

7 log n).

Note that this result is presumably not tight. We conjecture that a less general
analysis can show that GSEMO achieves a 1/2-approximation.

Using the idea of p-exchanges from Theorem 3, we can improve the approximation
result of Theorem 4 with an increasing runtime depending on p.

Theorem 5. For any integers k ≥ 2, p ≥ 1 and real value ε > 0, the expected time until
the GSEMO has obtained a

(
1

((1+ε)(k+1+1/p)

)
-approximation for any symmetric submodular

function under k matroid constraints is O(1ε · n
2p(k+1)+2 · k · logn).

Proof. GSEMO produces a feasible solution x with f(x) ≥ OPT/n in expected time
O(n2 log n) (see proof of Theorem 4). After GSEMO has obtained a solution x with
f(x) ≥ OPT/n, we focus on the solution with the largest f -value in the population.

According to Lemma 3.2 of Lee et al. [27] for k ≥ 2, we have

(1 + ε)(k + 1/p) · f(S) ≥ f(C ∪ S) + (k − 1 + 1/p)f(S ∩ C) ≥ f(S ∪ C) + f(S ∩ C)

if there is no p-exchange neighbour T with f(T) ≥
(
1+ ε

n(k+1)

)
·f(S). As f is symmetric,

we have f(S) = f(X \ S) and adding f(X \ S) to both sides yields

(1 + ε)(k + 1/p+ 1)f(S) ≥ f(X \ S) + f(S ∪ C) + f(S ∩ C) ≥ f(C),

which implies f(S)/f(C) ≥ 1/((1 + ε)(k + 1+ 1/p)). The number of improvements by
a factor

(
1 + ε

n(k+1)

)
is upper bounded by

log1+ ε
n(k+1)

n = O
(
1

ε
n(k + 1) log n

)
.

Furthermore, the expected waiting time for such an improvement itO(n2p(k+1)+1)
as the population size is upper bound by n+1 and a specific p-exchange has probability
Ω(n−2p(k+1)) (see proof of Theorem 3). This completes the proof.

12 Evolutionary Computation Volume x, Number x

Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms

6 Discussion and Open Problems

Maximizing submodular functions under matroid constraints is a very general opti-
mization problem which contains many classical combinatorial optimization problems
like maximum cut [10, 17], maximum directed cut [18], maximum facility location [1, 6],
and others. We presented several positive and negative results for the approximation
behavior of the simple evolutionary algorithms in the framework. To the best of our
knowledge, this is the first paper on the analysis of evolutionary algorithms optimizing
submodular functions. The only result on the performance of evolutionary algorithms
under matroid constraints is by Reichel and Skutella [33]. They showed that a (1+1) EA
achieves in polynomial time a 1/k-approximation for maximizing a linear function sub-
ject to k matroid constraints.

This paper gives a first set of results, but also raises many new questions. We
briefly name a few:

• We only study the (1+1) EA and SEMO algorithms, but similar results might be
possible for population-based algorithms with appropriate diversity measures.

• Our runtime upper bounds might not be tight. It would be interesting to show
matching lower bounds, especially for comparing different algorithms and func-
tion classes.

• The proven approximation guarantees hold for very general problem classes.
Much tighter results should be possible for specific problems like Maximum Cut.

• Minimizing submodular functions is in general simpler than maximizing submod-
ular functions. However, it is not obvious what this implies for evolutionary algo-
rithms minimizing submodular functions.

• Our proofs strongly rely on the greedy-like behavior of SEMO. It might either be
possible (i) to prove a general relationship between SEMO and greedy algorithms
or (ii) to give an example where SEMO strictly outperforms a greedy strategy.

• We assume value oracle access to the fitness function f . It might be worth studying
the black box complexity of submodular functions in the sense of Lehre and Witt
[28].

• We studied submodular fitness functions which are either monotone or symmetric.
Future work should also cover submodular functions which are neither monotone
nor symmetric.

Acknowledgments

The research leading to these results has received funding from the Australian Research
Council (ARC) under grant agreement DP140103400 and from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 618091
(SAGE).

Evolutionary Computation Volume x, Number x 13

T. Friedrich and F. Neumann

References

[1] A. A. Ageev and M. Sviridenko. An 0.828-approximation algorithm for the unca-
pacitated facility location problem. Discrete Applied Mathematics, 93(2-3):149–156,
1999.

[2] H.-G. Beyer and H.-P. Schwefel. Evolution strategies – a comprehensive introduc-
tion. Natural Computing, 1(1):3–52, 2002.

[3] K. Bringmann and T. Friedrich. An efficient algorithm for computing hypervol-
ume contributions. Evolutionary Computation, 18(3):383–402, 2010.

[4] K. Bringmann, T. Friedrich, and P. Klitzke. Two-dimensional subset selection for
hypervolume and epsilon-indicator. In Annual Conference on Genetic and Evolution-
ary Computation (GECCO), pages 589–596. ACM Press, 2014.

[5] D. Brockhoff, T. Friedrich, N. Hebbinghaus, C. Klein, F. Neumann, and E. Zitzler.
On the effects of adding objectives to plateau functions. IEEE Transactions on Evo-
lutionary Computation, 13(3):591–603, 2009.

[6] G. Cornuejols, M. Fisher, and G. L. Nemhauser. On the uncapacitated location
problem. In Studies in Integer Programming, volume 1 of Annals of Discrete Mathe-
matics, pages 163 – 177. Elsevier, 1977.

[7] B. Doerr, B. Kodric, and M. Voigt. Lower bounds for the runtime of a global multi-
objective evolutionary algorithm. In IEEE Congress on Evolutionary Computation
(CEC), pages 432–439, 2013.

[8] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci., 276(1-2):51–81, 2002.

[9] U. Feige. A threshold of lnn for approximating set cover. J. ACM, 45(4):634–652,
1998.

[10] U. Feige and M. X. Goemans. Approximating the value of two power proof sys-
tems, with applications to MAX 2SAT and MAX DICUT. In 3rd Israel Symposium
on Theory and Computing Systems (ISTCS), pages 182–189, 1995.

[11] T. Friedrich and F. Neumann. Maximizing submodular functions under matroid
constraints by multi-objective evolutionary algorithms. In 13th International Con-
ference on Parallel Problem Solving from Nature (PPSN), volume 8672 of Lecture Notes
in Computer Science, pages 922–931. Springer, 2014.

[12] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt. Approximating
covering problems by randomized search heuristics using multi-objective models.
Evolutionary Computation, 18(4):617–633, 2010.

[13] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt. Approximating
covering problems by randomized search heuristics using multi-objective models.
Evolutionary Computation, 18(4):617–633, 2010.

[14] H. N. Gabow. A matroid approach to finding edge connectivity and packing ar-
borescences. J. Comput. Syst. Sci., 50(2):259–273, 1995.

14 Evolutionary Computation Volume x, Number x

Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms

[15] O. Giel. Expected runtimes of a simple multi-objective evolutionary algorithm. In
IEEE Congress on Evolutionary Computation (CEC), pages 1918–1925, 2003.

[16] O. Giel and P. K. Lehre. On the effect of populations in evolutionary multi-
objective optimisation. Evolutionary Computation, 18(3):335–356, 2010.

[17] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J.
ACM, 42(6):1115–1145, 1995.

[18] E. Halperin and U. Zwick. Combinatorial approximation algorithms for the max-
imum directed cut problem. In Twelfth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1–7, 2001.

[19] N. Hansen. The CMA evolution strategy: a comparing review. In J. Lozano, P. Lar-
ranaga, I. Inza, and E. Bengoetxea, editors, Towards a new evolutionary computation.
Advances in estimation of distribution algorithms, pages 75–102. Springer, 2006.

[20] R. Hassin and A. Levin. An efficient polynomial time approximation scheme
for the constrained minimum spanning tree problem using matroid intersection.
SIAM J. Comput., 33(2):261–268, 2004.

[21] J. Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

[22] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions. J. ACM, 48(4):761–777, July 2001.

[23] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer,
4th edition, 2007.

[24] S. Kratsch and F. Neumann. Fixed-parameter evolutionary algorithms and the
vertex cover problem. Algorithmica, 65(4):754–771, 2013.

[25] M. Laumanns, L. Thiele, E. Zitzler, E. Welzl, and K. Deb. Running time analysis of
multi-objective evolutionary algorithms on a simple discrete optimization prob-
lem. In 7th International Conference on Parallel Problem Solving from Nature (PPSN),
pages 44–53, 2002.

[26] J. Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko. Non-monotone submod-
ular maximization under matroid and knapsack constraints. In Forty-first Annual
ACM Symposium on Theory of Computing (STOC), pages 323–332, 2009.

[27] J. Lee, M. Sviridenko, and J. Vondrák. Submodular maximization over multiple
matroids via generalized exchange properties. Math. Oper. Res., 35(4):795–806,
2010.

[28] P. K. Lehre and C. Witt. Black-box search by unbiased variation. Algorithmica, 64
(4):623–642, 2012.

[29] L. Lovász. Submodular functions and convexity. In A. Bachem, B. Korte, and
M. Grötschel, editors, Mathematical Programming: The State of the Art. Springer,
1983.

[30] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maxi-
mizing submodular set functions I. Mathematical Programming, 14(1):265–294, 1978.

Evolutionary Computation Volume x, Number x 15

T. Friedrich and F. Neumann

[31] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the max-
imum of a submodular set function. Mathematics of Operations Research, 3(3):177–
188, 1978.

[32] F. Neumann and I. Wegener. Minimum spanning trees made easier via multi-
objective optimization. Natural Computing, 5(3):305–319, 2006.

[33] J. Reichel and M. Skutella. Evolutionary algorithms and matroid optimization
problems. Algorithmica, 57(1):187–206, 2010.

[34] A. Schrijver. Combinatorial Optimization – Polyhedra and Efficiency. Springer, 2003.

[35] T. Ulrich and L. Thiele. Bounding the effectiveness of hypervolume-based (µ +
λ)-archiving algorithms. In 6th International Conference on Learning and Intelligent
Optimization (LION), pages 235–249, 2012.

[36] R. Zenklusen. Matroidal degree-bounded minimum spanning trees. In Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1512–
1521. SIAM, 2012.

16 Evolutionary Computation Volume x, Number x

