
On the Impact of Utility Functions in Interactive
Evolutionary Multi-Objective Optimization

Frank Neumann and Anh Quang Nguyen

Optimisation and Logistics
School of Computer Science
The University of Adelaide
Adelaide, SA 5005, Australia

Abstract. Interactive evolutionary algorithms for multi-objective opti-
mization have gained an increasing interest in recent years. As multi-
objective optimization usually deals with the optimization of conflicting
objectives, a decision maker is involved in the optimization process when
encountering incomparable solutions. We study the impact of a decision
maker from a theoretical perspective and analyze the runtime of evolu-
tionary algorithms until they have produced for the first time a Pareto
optimal solution with the highest preference of the decision maker. Con-
sidering the linear decision maker, we show that many multi-objective
optimization problems are not harder than their single-objective coun-
terpart. Interestingly, this does not hold for a decision maker using the
Chebeyshev utility function. Furthermore, we point out situations where
evolutionary algorithms involving a linear decision maker have difficulties
in producing an optimal solution even if the underlying single-objective
problems are easy to be solved by simple evolutionary algorithms.

1 Introduction

Evolutionary algorithms (EAs) are frequently used for tackling multi-objective
optimization problems [5, 4]. Multi-Objective problems usually allow for an ex-
ponential number of trade-offs with respect to the given objective functions.
In the usual setting, solutions representing the different trade-offs according to
given objective functions are presented to the decision maker and he then has
to decide on one of these solutions for implementation.

In order to let an EA focus on regions in the objective space that are prefer-
able to a decision maker, one can add the possibility of interacting with the
algorithm. In particular, the decision maker can make the decision which solu-
tion to prefer in the case that two solutions are incomparable with respect to
the classical Pareto dominance relation which drives most evolutionary multi-
objective algorithms.

Interactive evolutionary multi-objective optimization has gained increasing
attention during the last years [10, 6]. The goal is to involve the decision maker
into the optimization process and gain knowledge about his preferences in order
to focus on the regions that he prefers during the optimization run. It should

2 Frank Neumann and Anh Quang Nguyen

be mentioned that the preferences of the decision maker are usually not known
in advance as he does not know the different possibilities of solutions and their
corresponding objective vectors before starting the run of the algorithm.

The runtime analysis of interactive evolutionary multi-objective optimization
has been started recently by Brockhoff et al. [3]. The authors considered the
algorithms iRLS and (1+1) iEA which are interactive versions of randomized
local search and the (1+1) EA [8]. The algorithms iRLS and (1+1) iEA work
on the Pareto dominance relation and use the knowledge of a decision maker
to decide between incomparable search points. The influence of a linear decision
maker using the weighted sum and a decision maker working with the Chebyshev
utility function has been analyzed for two well known example problems called
LOTZ and COCZ [3].

In this paper, we investigate the setting of Brockhoff et al. [3]. Our aim is
to give a general characterization of problems where the use of a linear decision
maker makes a multi-objective optimization problem as easy as the optimiza-
tion of its single-objective functions. Here, we assume that the multi-objective
problem consists of single-objective problems of the same type, e.g. a minimum
spanning tree problem or a shortest path problem. We show that the linear
decision maker turns such problems from a structural point of view into single-
objective problems. This implies that we can translate known runtime results of
RLS and (1+1) EA to their interactive versions in the multi-objective setting.
For a decision maker using the Chebyshev utility function, we show that there
are instances of the multi-objective setting of the knapsack problem where the
interactive algorithms have an exponential expected optimization time.

After having examined multi-objective problems with linear objective func-
tions, we turn our attention to the LeadingOnes problem. We examine multi-
objective versions motivated by recent studies in the area of black box com-
plexity [7]. Our results point out situations where iRLS and (1+1) iEA have
difficulties in obtaining optimal solution according to the linear decision maker.

The outline of the paper is as follows. In Section 2 we introduce the setting
for interactive multi-objective optimization and the algorithms that are subject
to our analysis. In Section 3, we show how the decision maker may prevent
Deteriorative Cycles where a new produced solution is worst than the previously
obtained ones .In Section 4, we present a general study on a linear decision maker
for multi-objective problems having linear objective functions. For a decision
maker using the Chebyshev utility function we show in Section 5 that there
are instances of knapsack problem leading to an exponential optimization time.
Finally, we consider the general LeadingOnes problems in Section 6 in order to
point out the situations where the linear decision maker runs into difficulties and
finish with some concluding remarks.

2 Interactive Multi-Objective Optimization

Throughout this paper, we investigate the impact of a decision maker who is
involved in the optimization process for a given multi-objective problem. A

Utility Functions in Interactive EMO 3

multi-objective optimization problem is given by a function f : X → Rd that
assigns to each element x ∈ X of the considered search space X a vector
f(x) = (f1(x), . . . , fd(x)) consisting of d objective values. If not otherwise stated
we assume that each of the d objectives should be minimized. A search point
x weakly dominates a search point y (x ⪯ y) iff fi(x) ≤ fi(y), 1 ≤ i ≤ d.
We say that x strongly dominates y (x ≺ y) iff fi(x) ≤ fi(y), 1 ≤ i ≤ d and
there exists an j ∈ {1, . . . , d} with fj(x) < fj(y). Often the different objec-
tives are in conflict with each other which means that there is no single solution
which gives the minimal value for all objectives at the same time. We say that
x and y are incomparable (x ∥ y) if neither x ⪯ y nor y ⪯ x holds. The set
X∗ = {x ∈ X |̸ ∃y ∈ X with y ≺ x} is called the Pareto optimal set and the set
of corresponding objective vectors PF = {f(x) | x ∈ X∗} is called the Pareto
front.

The classical goal in multi-objective optimization is to compute a set of
solutions that contains for each element of PF a corresponding solution. An
alternative to computing such a set of trade-offs first and presenting it later
on to a decision maker who picks one of the solutions for implementation, is
to involve the decision maker in the optimization process. Asking the decision
maker can be in particular very helpful when making decisions between solutions
that are incomparable according to the Pareto dominance relation. Our goal is to
study such approaches from a theoretical perspective and examine the influence
of different types of decision makers on the optimization time.

Algorithm 1 ((1+1) iEA)
1. Choose x ∈ {0, 1}n uniformly at random
2. Repeat

– Obtain y by flipping each bit of x with probability 1/n.
– If y ⪯ x then x := y
– else if x ∥ y then x := D(x, y).

In this practice, we consider the interactive version of the classical (1+1) EA.
This algorithm called (1+1) iEA has been introduced in [3] and is shown in
Algorithm 1. (1+1) iEA starts with a solution chosen uniformly at random from
the search space X = {0, 1}n. In each iteration, a new solution y is produced
by flipping each bit of the current solution x with probability 1/n. The search
point x is replaced by y if y weakly dominates x (y ⪯ x). If y is dominated by
x (x ≺ y) then x remains unchanged. If x and y are incomparable (x ∥ y) then
the decision maker decides. The decision maker is a function D : X ×X → X
which takes two search points x and y and returns one of them.

We study our algorithm with respect to the number of fitness evaluations
until for the first time a Pareto optimal solution with the highest preference of
the decision maker has been obtained. We call this the optimization time of the
algorithm on a given problem. The expected number of fitness evaluations until
this goal has been achieved is called the expected optimization time. When con-
sidering single-objective optimization problems, the expected optimization time
is defined as the expected number of fitness evaluations until the algorithm has

4 Frank Neumann and Anh Quang Nguyen

produced for the first time an optimal solution with respect to the given objective
function.

2.1 Decision Makers

To model the decision maker, we have to specify the function D : X ×X → X.
We examine the two decision makers modelled in [3]. In the following, we assume
that all objective functions should be minimized, but the setting can be easily
adjusted in the case that some of the given objectives should be maximized.

The first is the weighted sum approach. For a given problem, the decision
maker chooses a parameter λi ∈ [0, 1], 1 ≤ i ≤ d with

∑d
i=1 λi = 1, and sets

D(x, y) = y if
d∑

i=1

λifi(y) ≤
d∑

i=1

λifi(x),

and D(x, y) = x otherwise. We call this the linear (or weighted sum) decision
maker.

We also consider a decision maker using the Chebyshev utility function

uc(f(x)) = max
i∈{1,2,...,d}

{λi · |z∗i − fi(x)|}

where z∗ = (z∗1 , z
∗
2 , . . . , z

∗
d) is a pre-defined utopian point and λi ∈ [0, 1],

1 ≤ i ≤ d with
∑d

i=1 λi = 1 are the weights determined by the decision maker.
We have D(x, y) = y for the decision maker using the Chebyshev utility

function iff uc(f(y)) ≤ uc(f(x)), and D(x, y) = x otherwise.

3 Deteriorative Cycles

During the optimization run evolutionary algorithms for multi-objective opti-
mization may produce solutions that are worse than solutions obtained previ-
ously with respect to the Pareto dominance relation [9]. Evolutionary algorithms
for multi-objective optimization problems often encounter the problem of such
deteriorative cycles. This is, in particular, the case if the algorithm has already
obtained solutions that are close to the Pareto front. In this section, we study
how the decision maker may prevent such behaviour. For a detailed discussion
on the underlying principles of deteriorative cycles in the context of evolutionary
multi-objective optimization we refer the reader to [2].

The decision maker does not necessarily impose a total order on the search
space as it is the case for single-objective problems. The reason is that the order
among the search points may not be transitive.

As an example (see Figure 1) considers three search points a, b, c with ob-
jective vectors f(a) = (5, 5), f(b) = (4, 4), f(c) = (3, 6) and let the preference
of the decision maker be D(b, c) = c and D(c, a) = a. In this way, an algorithm
could move from a to b to c and back to a. Hence, an arbitrary decision maker
does not prevent the presence of deteriorative cycles.

Utility Functions in Interactive EMO 5

a = (5,5)

b = (4,4)

c = (3,6)

f 1

f 2

Fig. 1. Deteriorative cycle a → b → c → a

3.1 Linear Decision Maker and Deteriorative Cycles

In the following, we show that the linear decision maker imposes a total ordering
on the underlying search space which means that such an algorithm does not
encounter deteriorative cycles.

Theorem 2. The weighted sum decision maker induces a total order on the
search space X.

Proof. We show that an algorithm working with the Pareto dominance relation
when considering comparable search points and working with the linear decision
maker when encountering incomparable search points leads to a total order on
the search space X.

Let f : X → Rd and x ⪯ y iff fi(x) ≤ fi(y), 1 ≤ i ≤ d. We define the order
(⪯L) given by the Pareto dominance relation (⪯) and the one by the linear
decision maker as

x ⪯L y ⇔
∑
i=1

λifi(x) ≤
∑
i=1

λifi(y)

⪯L is a total order as each search point is assigned a real value that is given
by the weighted sum of its objectives.

Obviously, if x ∥ y (according to the Pareto dominance relation) then the
decision maker decides according to ⪯L.

If x ⪯ y holds, then fi(x) ≤ fi(y), 1 ≤ i ≤ d and as a consequence we have∑
i=1

λifi(x) ≤
∑
i=1

λifi(y)

6 Frank Neumann and Anh Quang Nguyen

and hence x ⪯L y. □

The previous theorem shows that the linear decision maker prevents the
presence of deteriorative cycles when working with algorithms such as (1+1) iEA.
For (1+1) iEA, it also ensures convergence to the set of optimal solutions as
the mutation operator has a positive probability of sampling any point in the
search space {0, 1}n. Having produced a solution that is minimal with respect
to ⪯L implies that (1+1) iEA will never accept a solution that is not minimal
with respect to ⪯L. We refer the reader to [8] for an nn upper bound on any
function defined on the search space {0, 1}n. Note, that there may be more than
one optimal solution with respect to the utility function of the linear decision
maker.

4 Linear Decision Maker and Linear Objective Functions

Many combinatorial optimization problems have a linear objective function that
has to be optimized under a given set of constraints. This includes well known
problems such as the knapsack problem or the minimum spanning tree problem.
In this section, we study binary optimization problems that have linear objective
functions.

4.1 Linear Objective Functions

Brockhoff et al. [3] have already made the observation that if the objective
functions are linear and the underlying utility function of the decision maker is
the weighted sum, then the expected optimization time of iRLS and (1+1) iEA
is Θ(n log n) (see Observation 2 in [3]).

Within this section, we want to examine this observation in greater detail
by studying problems with d linear objective functions and some additional
constraints. Our goal is to fit classical combinatorial optimization problems into
this framework. Many combinatorial optimization problems have linear objective
functions, but some additional constraints. Because of the presence of constraints
the optimization time is usually not Θ(n log n). However, we are able to relate
the expected optimization time to the corresponding single-objective variants
with using a decision maker working with the weighted sum.

Let P be a binary optimization problem, i. e. a problem consisting of r com-
ponents where the ith component is chosen iff xi = 1. We say that a binary
problem P with r components has a linear objective function iff the fitness of a
feasible search point x is given by f(x) :=

∑r
i=1 wixi.

Note, that we currently don’t assume any restrictions on the constraints that
have to be met in order to obtain a feasible solution.

W.l.o.g. we consider the case where we minimize d functions f1, f2, . . . , fd.
Cases where at least one of the objectives has to be maximized can be treated
in a similar way.

In the following, we assume that a solution x is either feasible for all objec-
tive functions or feasible for none of them. We consider evolutionary algorithms

Utility Functions in Interactive EMO 7

where feasible solutions are always better than infeasible solutions. For iRLS
and (1+1) iEA this implies that after the algorithms have obtained a feasible
solution for the first time, they will never accept an infeasible one. For the fol-
lowing theorem, we assume that the algorithms have already obtained a feasible
solution.

Theorem 3. Let P be a binary problem with a linear objective function and
T be an upper bound on the expected optimization time of (1+1) EA on any
input instance I of P when starting with an arbitrary feasible solution. Then the
expected optimization time of (1+1) iEA using a linear decision maker is upper
bounded by T when starting with a feasible solution.

Proof. Let I1, I2, . . . , Id be the single objective problems with objective functions

fj(x) :=
r∑

i=1

wj
ixi 1 ≤ j ≤ d

For a given fixed λj , 1 ≤ j ≤ d, with
∑d

j=1 λj = 1, let

g(x) =

d∑
j=1

λjfj(x) =

d∑
j=1

λj

(
r∑

i=1

wj
ixi

)

=
r∑

i=1

 d∑
j=1

λjw
j
i

xi =
r∑

i=1

gixi

where gi =
∑d

j=1 λjw
j
i . Note that gi is completely determined by the input

and the linear preference of the decision maker expressed by the choice of λj ,
1 ≤ j ≤ d.

We claim that (1+1) EA working on g accepts an offspring y of x iff (1+1) iEA
working on (f1, f2, . . . fd) accepts the offspring y of x.

We first assume that x and y are incomparable (x ∥ y). In this case, the
decision maker involved in (1+1) iEA accepts y iff g(y) ≤ g(x). Hence, y is
accepted iff it is accepted by (1+1) EA working on g.

Secondly, we assume that x and y are comparable. If y ⪯ x then g(y) ≤ g(x)
and y is accepted by (1+1) EA and (1+1) iEA. If x ≺ y, then g(x) < g(y) and
y is rejected by the (1+1) EA and (1+1) iEA. □

4.2 The Knapsack Problem

In the knapsack problem the input is given by n items 1, . . . , n where each item
has a positive profit pi and a positive weight wi.

We consider the multi-objective setting for the problem where the goal is to
maximize the overall profit and minimize the overall weight of the set of chosen
items. We consider the search space {0, 1}n. For a bit-string x, item i is chosen
iff xi = 1. The fitness function f : {0, 1}n → R2 is given by

8 Frank Neumann and Anh Quang Nguyen

f(x) = (p(x), w(x))

with

p(x) =
n∑

i=1

pixi and w(x) =
n∑

i=1

wixi.

In the multi-objective setting, our goal is to maximize p and minimize w
which introduces a partial order on the search points. x ⪯ y holds iff p(x) ≥ p(y)
and w(x) ≤ w(y).

In order, to put it into our framework of minimizing all objectives, we can
consider the case where we minimize w and minimize −p. If x ∥ y, the decision
maker decides whether the new solution is accepted. For a fixed λ ∈ [0, 1],
D(x,y)=y holds iff

(1− λ)w(y)− λp(y) ≤ (1− λ)w(x)− λp(x)

and D(x, y) = x otherwise.
The multi-objective formulation of the knapsack problem consists of two

linear functions without any additional constraints. It is well-known that RLS
and (1+1) EA optimize each linear function in time O(n log n) [8]. Together with
Theorem 3, we get the following result.

Theorem 4. Using the weighted sum utility function, the expected optimization
of (1+1) iEA for the Knapsack problem is O(n log n).

Using Theorem 3, similar results can be obtained for other multi-objective
versions of classical combinatorial optimization problems having linear objective
functions. For example, the runtime results on minimum spanning trees [11] and
single-source shortest paths [1] can be transferred to the corresponding multi-
objective problems when considering a linear decision maker.

5 Chebyshev utility function and the knapsack problem

In the following, we examine the use of a decision maker using the Chebyshev
utility function. Our goal is to show that this decision maker makes it much
more difficult to find the solution with the optimal preference even if there are
two linear objective functions without any additional constraints.

We consider the following trap instance called KNAP2 which has been intro-
duced in [13] in the context of the runtime analysis of evolutionary algorithms
for constraint optimization. Let p1 = n, p2 = · · · = pn = 1 and w1 = n− 1, w2 =
· · · = wn = 1. For the weight bound W = n − 1 has been chosen in [13] which
implies that in the optimal solution only the first item is chosen.

For the multi-objective setting and the Chebyshev utility function we set the
utopian point to z∗ = (2n,−2). This meets the requirement of an utopian point
as
∑n

i=1 pi = 2n− 1 < 2n and each weight is positive and therefore greater than
−2. Furthermore, we set λ1 = λ2 = 1/2.

Utility Functions in Interactive EMO 9

The optimal solution is the string x∗ = (1, 0 . . . 0) where f(x∗) = (n, n − 1)
and uc(f(x

∗)) = max{1
2 · (2n − n), 1

2 · | − 2 − (n − 1)|} = n+1
2 . x∗ dominates

the search point xl = (0, 1 . . . 1) with f(xl) = (n − 1, n − 1) and uc(f(xl)) =
max{1

2 · (2n− (n− 1)), 1
2 · | − 2− (n− 1)|} = n+1

2 . Furthermore, x∗ and xl are
incomparable to any other search point y ∈ {0, 1}n \ {x∗, xl}.

Consider a search point y where y = (0, y1) which starts with a 0-bit and
has i, 0 ≤ i ≤ n − 2, ones in the remaining part y1. Clearly f(x) = (i, i) and
uc(f(y)) = max{ 1

2 · (2n− i), 1
2 · (i+ 2)} = 2n−i

2 ≥ n+2
2 > n+1

2 .
Consider a search point y where y = (1, y1) which starts with a 1-bit and has

i, 1 ≤ i ≤ n− 1, ones in the remaining part y1. Clearly f(x) = (n+ i, n+ i− 1)
and uc(f(y)) = max{ 1

2 · (n− i), 1
2 · (n+ i− 1 + 2)} = n+i+1

2 ≥ n+2
2 > n+1

2 .

Theorem 5. Using the weighted Chebyshev utility function uc with z∗ = (2n,−2)
and λ1 = λ2 = 1/2, the optimization time of the (1+1) iEA on KNAP2 is eΩ(n)

with probability α = Ω(1).

Proof. The first bit is set with probability 1/2 to 1 and with probability 1/2 to
0 in the initial solution. We claim that this decides on whether the algorithm
ends up in the local optimum xl or the global one x∗.

Let xi = (xi
1y1) be the initial solution. Suppose that xi

1 = 0 holds (which
happens with probability 1/2). The part y1 has at least n/2 − ϵn, ϵ > 0 a
constant, 1-bits with probability 1− e−Ω(n) using Chernoff bounds.

Consider a phase of T = cn steps where c is an appropriate constant. We
claim that the number of 1-bits in y1 is at least n/2 + ϵn and that the bit x1

has not been flipped during this phase. A solution with a 0 at the first bit and i

1-bits in the y1 part has fitness (i, i) and utility value (2n−i)
2 . Hence, a solution

increasing the number of 1-bits in y1 is accepted.
As long as y1 does not contain at least n/2 + ϵn 1-bits, the probability of

increasing the number of 1-bits in y1 is at least

(n/2− ϵn)
1

n
· (1− 1/n)

n−1 ≥ (n/2− ϵn)/(en).

The expected time to have obtained a solution with at least n/2 + ϵn, ϵ > 0
a small constant, 1-bits is at most

2ϵn(en/(n/2− ϵn)) ≤ 2ϵ3en = 6eϵn.

The probability that the bit x1 has not been flipped in T steps is

(1− 1/n)T = (1− 1/n)cn >

(
1

2e

)c

.

We set T = α1 ·6eϵn. This implies that the probability of not having obtain at
least n/2+ ϵn 1-bits in y1 is upper bounded by 1/(α1) using Markov’s inequality
and the probability that x1 has not been flipped is at least(

1

2e

)α1·6eϵ

= Ω(1).

10 Frank Neumann and Anh Quang Nguyen

Having obtained this solution starting with 0 and having at least n/2+ ϵn 1-
bits in the y1 part, the utility value is at most 1.5n−ϵn

2 . A solution starting with a
1-bit and having at least n/2 1-bits in the y1-part has utility value at least 1.5n+1

2
and is therefore not accepted as an offspring. Hence, only a solution having a
1-bit at the first position is accepted if at least ϵn bits flip at the same time in a
single mutation step. The probability that ϵn bits flip in a single mutation steps
is asymptotically Poisson distributed with parameter 1 and therefore e−Ω(ϵn).
This implies that the optimization time of (1+1) iEA is eΩ(n) with probability
Ω(1). □

6 The Multi-Objective Leading Ones Problem

In this section, we investigate when using a linear utility function to model
the decision maker leads to problems in the optimization process. To do this,
we consider a generalization of the classical Leading Ones problem and present
exponential lower bounds for the considered multi-objective problem.

Leading Ones (LO) problem was first introduced in [12] and counts the num-
ber of leading ones in a given bitstring. It is defined as

LO(x) =

n∑
i=1

i∏
j=1

xj

Motivated by the work in [7], where the complexity of black-box optimization on
LO was analyzed, we introduce a new problem similar to the traditional Leading
Ones. Given a predefined vector a ∈ {0, 1}n,

LOa(x) =

n∑
i=1

i∏
j=1

(1− |xj − aj |)

counts the number of leading bits of the given solution x that agrees with
a. Given two vectors a, b ∈ {0, 1}n, we consider a bi-objective maximization
problem with objective function MLOa,b(x) = (LOa(x), LOb(x)). The goal is
to maximize both objective functions. Obviously it is possible to generalize the
problem to d objectives by having d bitstrings and measuring the agreement of a
given solution with respect to them such that d objective values are computed. In
this section, we are interested in showing lower bounds for iRLS and (1+1) iEA
when working with the linear decision maker. We will investigate the bi-objective
problem MLOa,b with a = 1t0n−t and b = 1n for a given fixed value t and
show when the algorithms are not able to obtain a solution with the maximal
preference of the decision maker. Note that the problem has two Pareto optimal
solutions, namely the strings a = 1t0n−t and b = 1n and that the weightening of
the objectives decides on which one is the string with the maximum preference
according to the linear decision maker.

As we are deadling with bi-objective problems, the weightening is decided by
one parameter λ, 0 ≤ λ ≤ 1, and utility value according to the decision maker

Utility Functions in Interactive EMO 11

is given by
λ · LOa(x) + (1− λ) · LOb(x).

As we are dealing with maximizing problems the utility value should be max-
imized as well. Note, that if λ = 1/2 then both Pareto optimal solutions have
maximum utility, whereas λ > 1/2 implies that a is the optimal solution and
λ < 1/2 implies that b is the optimal solution.

In the following, we assume that 0 < λ < 1 as λ = 0 or λ = 1 implies that
one of the objectives can be neglected and the expected optimization time would
be Θ(n2). Furthermore, we assume λ > 1/2 such that the algorithm favours a
as the optimal solution. The case λ < 1/2 can be handled in a symmetric way.

Theorem 6. Let λ > 1/2, a = 1t0n−t, and b = 1n. Then the optimization time

of (1+1) iEA on MLOa,b is at least n
k(1−λ)

2λ with probability 2−k · (1 − n−1/2)
where t = n/2 and t+ k < n holds.

Proof. If LOa(x) = LOb(x) < t holds, the probability of increasing LOa(x)
and LOb(x) is at least 1/n. Hence, after an expected number of O(nt) steps,
LOa(x) ≥ t and LOb(x) ≥ t.

Let x be the first solution in the run of the algorithm for which LOa(x) ≥ t
and LOb(x) ≥ t holds. Since all bits at positions greater than t are still uniformly
at random in x, we have x = 1t1k0[0, 1]n−k−t−1 for n−t ≥ k ≥ 2 with probability
2−k. In order to reach the optimal solution a, the algorithm has to accept an
offspring y of x that is incomparable to x. Consider a potential offspring y =
1t0c1[0, 1]n−t−c−1 of x such that x and y are incomparable. The solution y is
accepted iff

g(x)− g(y) = k − λk − λc = k(1− λ)− λc ≤ 0 ⇔ k ≤ λc

1− λ
.

This implies that in one single mutation step, c ≥ k(1−λ)
λ specific bits of the

current solution x must be flipped. The probability for such a mutation is at

most n− k(1−λ)
λ . Let T = n

k(1−λ)
2λ , then the probability to obtain such a solution

in T steps is at most n−1/2. Hence, with probability 2−k ·(1−n−1/2), the runtime

of (1+1) iEA on MLOa,b is at least n
k(1−λ)

2λ . □

The previous result shows that even multi-objective versions of simple prob-
lems such as Leading Ones can become difficult to solve when using a decision
maker with a linear utility function.

7 Conclusions

Incorporating the decision maker into the optimization process of evolutionary
multi-objective optimization has become a very popular approach. In this pa-
per, we have studied simple evolutionary algorithms from a theoretical perspec-
tive. Our studies show that important multi-objective combinatorial optimiza-
tion problems such as the multi-objective formulation of the knapsack problems,

12 Frank Neumann and Anh Quang Nguyen

multi-objective minimum spanning trees or multi-objective shortest paths be-
come as easy for iRLS and (1+1) iEA as their single-objective counterparts
when working with a linear decision maker. Furthermore, we have pointed out
for the knapsack problem that this is in general not the case when working with
the Chebyshev utility function. Our studies for the multi-objective LeadingOnes
problem show situations where the algorithms using the linear decision maker
fail to obtain a solution of maximal preference in expected polynomial time.

References

1. Baswana, S., Biswas, S., Doerr, B., Friedrich, T., Kurur, P.P., Neumann, F.: Com-
puting single source shortest paths using single-objective fitness functions. In:
Jansen, T., Garibay, I., Wiegand, R.P., Wu, A.S. (eds.) Proceedings of the 10th
International Workshop on Foundations of Genetic Algorithms (FOGA 2009). pp.
59–66. ACM Press, Orlando, USA (2009)

2. Berghammer, R., Friedrich, T., Neumann, F.: Convergence of set-based multi-
objective optimization, indicators and deteriorative cycles. Theor. Comput. Sci.
456, 2–17 (2012)

3. Brockhoff, D., López-Ibáñez, M., Naujoks, B., Rudolph, G.: Runtime analysis of
simple interactive evolutionary biobjective optimization algorithms. In: Coello,
C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN
(1). Lecture Notes in Computer Science, vol. 7491, pp. 123–132. Springer (2012)

4. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms
for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York
(2002)

5. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chich-
ester, UK (2001)

6. Deb, K., Sinha, A., Korhonen, P.J., Wallenius, J.: An interactive evolutionary
multiobjective optimization method based on progressively approximated value
functions. IEEE Trans. Evolutionary Computation 14(5), 723–739 (2010)

7. Doerr, B., Winzen, C.: Black-box complexity: Breaking the o(n logn) barrier of
leadingones. In: Hao, J.K., Legrand, P., Collet, P., Monmarché, N., Lutton, E.,
Schoenauer, M. (eds.) Artificial Evolution. Lecture Notes in Computer Science,
vol. 7401, pp. 205–216. Springer (2011)

8. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276, 51–81 (2002)

9. Hanne, T.: On the convergence of multiobjective evolutionary algorithms. Euro-
pean Journal of Operational Research 117(3), 553–564 (1999)

10. Jaszkiewicz, A., Branke, J.: Interactive multiobjective evolutionary algorithms. In:
Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.) Multiobjective Optimiza-
tion. Lecture Notes in Computer Science, vol. 5252, pp. 179–193. Springer (2008)

11. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and
the minimum spanning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)

12. Rudolph, G.: Convergence properties of evolutionary algorithms. Hamburg: Kovac
(1997)

13. Zhou, Y., He, J.: A runtime analysis of evolutionary algorithms for constrained
optimization problems. IEEE Trans. Evolutionary Computation 11(5), 608–619
(2007)

