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Abstract. Incorporating user preferences into evolutionary multi-ob-
jective evolutionary algorithms has been an important topic in recent
research in the area of evolutionary multi-objective optimization. We
present a very simple and yet very effective modification to the Approx-
imation-Guided Evolution (AGE) algorithm to incorporate user prefer-
ences. Over a wide range of test functions, we observed that the resulting
algorithm called iAGE is just as good at finding evenly distributed so-
lutions as similarly modified NSGA-II and SPEA2 variants. However,
in particular for ”difficult” two-objective problems and for all three-
objective problems we see more evenly distributed solutions in the user
preferred region when using iAGE.

Keywords: multi-objective optimisation, approximation, user prefer-
ence

1 Introduction

Many real-world optimization problems consist of multiple objectives that con-
flict with each other. Solving a multi-objective optimization (MOO) problem
usually means finding a set of trade-offs regarding the given objective functions.
The set of all trade-offs according to the given objective functions is called the
Pareto front of the underlying MOO problem. Since the size of the Pareto front
can grow exponentially for discrete problems and can even be infinite for con-
tinuous problems, evolutionary algorithms on MOO problems have to restrict
themselves to a smaller set of solutions which should be a good approxima-
tion of the Pareto front. There are different algorithms such as NSGA-II [4],
SPEA2 [21], or IBEA [19] which try to solve two main goals of a MOO problem:
find the Pareto front or a good approximation thereof by preferring a diversity
of non-dominated solutions.

Motivated by the studies of multiplicative and additive approximations for
multi-objective problems [3, 7, 16], the algorithm Approximation-Guided Evo-
lution (AGE) has been introduced in [2]. AGE works with a formal notion of
approximation and improves the approximation quality during its runtime with-
out having a full knowledge about the true Pareto front. The results in [2, 17]
show that, given a fixed number of evaluation, AGE outperforms state-of-the-art
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algorithms in terms of additive approximation and covered hypervolume. AGE
has later been improved in [18] to overcome the problem of over growth archive
size in high dimensional objective spaces by adapting the ε-dominance approach
and a non-random selection of parents used for next generation of population.

Recently, great efforts have been made in order to incorporate user prefer-
ences into evolutionary multi-objective optimization (EMO) where specific re-
gions in the objective space have higher priority than others. For NSGA-II, a
reference point approach has been presented in [6]. Later on, the crowding dis-
tance assignment function has been changed in order to meet the requirement of
non-even distribution of solutions along the Pareto front [10]. Zitzler et al. [22]
have shown that the weighted hypervolume indicator is a good method to inte-
grate user preferences and showed that their results are superior than the ones
obtained by NSGA-II and SPEA2, where no user preference information is con-
sidered. However, all of these hypervolume-based approaches have a negative
effect on the runtime of the algorithm because they require exponential runtime
in the number of dimensions [1]. To overcome that problem, Friedrich et al. [9]
proposed a simple approach to integrate the weight function into a wide range of
EMO algorithms, including NSGA-II and SPEA2, and showed that their results
now match the ones in [22] without changing the performance of the algorithms.

In relation to our series of works of integrating preferences into existing algo-
rithms is that presented in [13–15]. There, the authors focus on reference points
and on a performance metric for comparing algorithms with reference points.
The preference functions that are considered in our article here, however, go
beyond reference points.

We propose a new variant of AGE [2, 18] called iAGE which incorporates
user preferences into the algorithm. iAGE widens the range of preference func-
tions by using not only reference points but also preferred regions and spaces.
Furthermore, we change the selection process of AGE by considering the prefer-
ence functions as a factor to keep or discard solutions from the population while
still keep the complexity remaining unchanged. Our experimental results show
that iAGE is fast and works just as well as integrated NSGA-II and SPEA2.
Furthermore, iAGE provides more evenly distributed solutions in the preferred
region of the objective space.

The outline of this paper is structured as follows. In Section 2, we introduce
some basic definitions of multi-objective optimization and the AGE algorithm.
Section 3 shows how user preferences are incorporated into AGE and how input
parameters can affect the distribution of solutions. In Section 4, we report on
our experimental results, and compare them with the ones from NSGA-II and
SPEA2. Finally, we finish with some conclusions.

2 Preliminaries

In this section, we give a basic introduction into the setting for multi-objective
optimization, the approach of using weight function to incorporate user prefer-
ences, and the approximation-guided evolution approach.
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2.1 Multi-objective optimization

In multi-objective optimization the task is to optimize a function f = (f1, . . . , fd)
: S → Rd+ with d ≥ 2, which assigns to each element s ∈ S a d-dimensional
objective vector. Each objective function fi : S 7→ R, 1 ≤ i ≤ d, maps from
the considered search space S into the positive real values. Elements from S are
called search points and the corresponding elements f(s) with s ∈ S are called
objective vectors.

Throughout this paper, we consider the minimization problems of d objec-
tives. In multi-objective optimization the given objective functions fi are usually
conflicting, which implies that there is no single optimal objective vector. Instead
of this the Pareto dominance relation is defined, which is a partial order. In order
to simplify the presentation we only work with the Pareto dominance relation on
the objective space and mention that this relation transfers to the corresponding
elements of S.

The Pareto dominance relation� between two objective vectors x = (x1, . . . , xd)
and y = (y1, . . . , yd), with x, y ∈ Rd is defined as

x � y :⇔ xi ≤ yi for all 1 ≤ i ≤ d.

We say that x dominates y iff x � y. If

x ≺ y :⇔ x � y and x 6= y

holds, we say that x strictly dominates y as x is not worse than y with respect
to any objective, and at least better with respect to one of the d objectives.

The objective vectors x and y are called incomparable if

x ‖ y :⇔ ¬(x � y ∨ y � x)

holds. Two objective vectors are therefore incomparable if there are at least
two (out of the d) objectives where they mutually beat each other. An objective
vector x is called Pareto optimal if there is no y = f(s) with s ∈ S for which y ≺ x
holds. The set of all Pareto optimal objective vectors is called the Pareto front
of the problem given by f . Note that the Pareto front is a set of incomparable
objective vectors.

Even for two objectives the Pareto front might grow exponentially with re-
spect to the problem size. Therefore, algorithms for multi-objective optimization
usually have to restrict themselves to a smaller set of solutions. This smaller set
is then the output of the algorithm.

We make the notion of approximation precise by considering a weaker relation
on the objective vectors called additive ε-dominance. It is defined as

x �ε+ y :⇔ xi + ε ≤ yi for all 1 ≤ i ≤ d.

Furthermore, we also define additive approximation of a set of objective vectors
T with respect to another set of objective vectors S.



4 Anh Quang Nguyen, Markus Wagner, and Frank Neumann

Definition 1. For finite sets S, T ⊂ Rd, the additive approximation of T with
respect to S is defined as

α(S, T ) := max
s∈S

min
t∈T

max
1≤i≤d

(si − ti).

We will use Definition 1 in order to judge the quality of a population P
with respect to a given archive A that contains all non-dominated solutions seen
so far (or an approximation thereof)—effectively, the value of α(S, T ) is the
approximation value achieved for the worst-approximated solution. In this way,
we can measure how good the current population is with respect to the search
points seen during the run of the algorithm.

Although, we are only using the notion of additive approximation, we would
like to mention that our approaches can be easily adapted to multiplicative
approximation. This can be done by adjusting the definitions accordingly.

2.2 User preferences as weight functions in the objective space

User preferences provide information that guides the search process of the algo-
rithm and tells the differences among incomparable solutions. In this article, we
denote a weight function w : Rd → R which represents user preferences. In gen-
eral, w can be an arbitrary function that specifies preferences to certain regions
or points in the objective space.

In this article, we will use different weight functions for both 2- and 3-
dimensional problems, which calculate the weight of a solution based on a given
scheme value. Given a solution x = {x1, x2, · · · , xd}, the weight functions for
2-objectives problems, originally introduced in [22] and investigated in [9, 22],
are defined as follows:

– scheme = 1: Both objectives are treated equally and the weight of a solution
x is given by

w(x) = (e20x1 + e20x2)/(2 · e20)

– scheme = 2: The user preference is based on only the second objective and
the weight of a solution x is given by

w(x) = (e20x2)(e20)

– scheme = 3: Given a reference point r = {r1, r2}, solutions closer to this
point have higher user preference than the further ones. The weight of a
solution x is given by

w(x) =

{
10−5 + (3−((x1−r1)2+(x2−r2)2))

(0.001+(2(x1−r1)−2(x2−r2))2)
10−5 otherwise

For 3-objective problems, no weight functions had previously been defined. We
extended the above-defined schemes 1 and 3:
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Algorithm 1: Outline of AGE [18]

1 Initialize population P with µ random individuals;
2 Set εgrid the resolution of the approximative archive Aεgrid ;

3 foreach p ∈ P do
4 Insert offspring floor(p) in the approximative archive Aεgrid such that only

non-dominated solutions remain;

5 foreach generation do
6 Initialize offspring population O ← ∅;
7 for j ← 1 to λ do
8 Select two individuals from P (see Section 3.2 in [18]);
9 Apply crossover and mutation;

10 Add new individual to O;

11 foreach p ∈ O do
12 Insert offspring floor(p) in the approximative archive Aεgrid such that

only non-dominated solutions remain;
13 Discard offspring p if it is dominated by any point increment(a), a ∈ A;

14 Add offsprings to population, i.e., P ← P ∪O;
15 while |P | > µ do
16 Remove p from P that is of least importance to the approximation (for

details on this step see [2]);

– scheme = 1:
w(x) = (e20x1 + e20x2 + e20x3)/(3 · e20)

– scheme = 3: Given a reference point r = (r1, r2, r3), the weight of a solution
x is given by

w(x) =

10−5 + (3−((x1−r1)2+(x2−r2)2+(x3−r3)2))
0.001+(

(x1−r1)+(x2−r2)+(x3−r3)
3 )2

10−5 otherwise

For scheme = 3 we selected a reference point of (0.5, 0.6) for the two-
dimensional problems, and (0.5, 0.6, 07) for the three-dimensional ones.

How these weight functions will be incorporated into AGE will be shown in
Section 3

2.3 Approximation-Guided Evolution

Definition 1 allows us to measure the quality of the population of an evolution-
ary algorithm with respect to a given set of objective vectors. AGE [2] is an
evolutionary multi-objective algorithm that works with this formal notion of ap-
proximation. It stores an archive A consisting of the non-dominated objectives
vectors found so far. Its aim is to minimize the additive approximation α(A,P )
of the population P with respect to the archive A.
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Algorithm 2: Function floor [18]

input : d-dimensional objective vector x, archive parameter εgrid
output: Corresponding vector v on the ε-grid

1 for i = 1 to d do v[i]←
⌊
x[i]
εgrid

⌋
;

Algorithm 3: Function increment [18]

input : d-dimensional vector x, archive parameter εgrid
output: Corresponding vector v that has each of its components increased by 1

1 for i = 1 to d do v[i]← o[i] + 1 ;

We consider the further developed version of AGE (called AGE-II in [18]).
This algorithm is parametrized by the desired approximation quality εgrid ≥ 0 of
the archive with respect to the seen objective vectors. The algorithm is shown in
Algorithm 1, and it uses the helper functions given in Algorithms 2 and 3. The
latter is used to perform a relaxed dominance check on the offspring p in Line 13.
A strict dominance check here would require an offspring to be not dominated
by any point in the entire archive. However, as the archive approximates all
the solutions seen so far (via the flooring), it might be very unlikely, or even
impossible, to find solutions that pass the strict dominance test.

3 Adding User Preferences

Interactive AGE (iAGE) is a variant of AGE that considers user preferences as
one of its parameters called scheme along with using the corresponding weight
functions, which is mentioned in Section 3.2. The selection process of iAGE fol-
lows the same structure as the original AGE [2]. Let P be the current population
where we need to remove an individual and A be the current archive. For each
solution a ∈ A, we denote the best and second best approximation α1(a), α2(a)
accordingly while p1(a) and p2(a) are solutions p ∈ P that approximates a best
and second best. In case of AGE, p ∈ P with minimum β(p) is removed from
the population where β(p) is known as the importance of solution p and defined
as

β(p) := maxa∈A{α2(a)|p1(a) = p}.
iAGE integrates the weight function into the selection process of the algorithm
to ensure that user preference is one of the factors that decides whether a solution
is removed or accepted to the next generation. We use a combination between
the weight, w(p), and the approximation to determine the importance of a given
solution p given by expression

β(p) := maxa∈A{w(p) · α2(a)|p1(a) = p}.

Let βmin := minp∈P β(p) be the minimum β-value among all individuals of
the population. The selection process removes a p from P for which β(p) = βmin
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Algorithm 4: Outline of iAGE selection process.

12 See lines 12-16 in [2], Algorithm 4
17 foreach solution p ∈ P do
18 β(p) := maxa∈A{w(p) · α2(a)|p1(a) = p}
19 while |P | > µ do
20 Remove an individual p∗ = arg minp∈P (β(p), w(p)) chosen uniformly at

random from P .
21 See lines 21-23 in [2], Algorithm 4

holds. If there are multiple solutions p of value βmin, one with the smallest weight
w value is discarded. If there are multiple solutions p with the same βmin and w
value, then the removed solution is chosen at random. Therefore, the selection
process removes an individual p from P that has the smallest vector (β(p), w(p))
according lexicographic order. The detail of the changes from Algorithm 4 in [2]
is shown in Algorithm 4 where min is taken according to lexicographic order of
the vector (β(p), w(p)).

The choice of iAGE’s parameter εgrid influences how well the set of solutions
seen so far is approximated. Interestingly, this parameter also has a small but
noticeable impact on the distribution of solutions. Some results are shown in
Figure 1. As we can see, the solutions are packed more densely with decreasing
grid size. The explanation is that the number of potential points in the archive
increases, and consequently solutions in the population are more likely to be
“responsible” for the approximation of an archive point. This, in combination
with the increasing preference, results in a higher density of solutions.

We also investigate the impact of user preference on the distribution of so-
lutions in the final population by providing different adjustments to the weight
function. In particular, given the calculated β value for each p ∈ P , we want
to study how different adjusted weight functions overwhelm the approximation
and hence affect the selection process of the algorithm. In the following example,
three adjustment strategies d are used:

– weight strategy 1 : w(x) = w(x)

– weight strategy 2 : w(x) = sqrt(w(x))

– weight strategy 3: w(x) = ln(1 + w(x))

We show some results in Figure 2. It can be seen that the choice of the adjust-
ment strategy has hardly any impact on the distribution of points. The reason is
that the weight remains its high impact even after a logarithmic scale-down. In
addition, the approximation part of the adjustment only ensures that the archive
points are better and better approximated; the slight change in the relative posi-
tioning of “the best population point for an archive point” (after considering the
weight and the adjustment strategy) is barely noticeable in the final population
and within the typical variations of results of randomized algorithms.
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Fig. 1. Influence of εgrid on the distributions of the solutions. The underlying problem
is ZDT 1.
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Fig. 2. Influence of different adjustment strategies to the weight function of iAGE with
εgrid = 0.0005.
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Fig. 3. LZ F5, 100.000 evaluations.

4 Comparison With Other Algorithms

In our study, we investigate the performance of iAGE (using weight strategy 2)
on problems with two and three objectives. We use the jMetal framework [8] to
compare iAGE with the established algorithms NSGA-II [4], and SPEA2 [21].
Both algorithms are used as described in [9]: the weight functions are used mul-
tiplicatively to adjust either the crowding distance (NSGA-II) or the density
(SPEA2). As benchmarks, we use the benchmark families WFG [11] and LZ [12],
DTLZ [5], and ZDT [20].1

Note that we compare the final populations only visually. For the compu-
tation of indicator values, we would need reference sets: these are available for
the true Pareto fronts in the “preference free” case, but not when non-linear
preferences schemes are considered.

For many problems (mostly for the ZDT family and for DTLZ 1/2/3) we no-
ticed very few differences between the final distributions of the three algorithms.
In contrast to this, we noticed for several other problems that all algorithms
would have immense problems to achieve good approximations of the true Pareto
front when a preference function was used. Some results are shown in Figure 3.
The top row shows that all three algorithms have problems to cover the lower

1 The code is available on our project page
http://cs.adelaide.edu.au/~optlog/research/foundations.php

http://cs.adelaide.edu.au/~optlog/research/foundations.php
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Fig. 4. DTLZ 2, d=3, 100.000 evaluations.

right sections of the Pareto front, even though this was a preferred region just
as the top left section was. In the bottom row, we can observe that all algo-
rithms find solutions close to the reference point. However, NSGA-II’s solutions
are often dominated by iAGE’s, and SPEA2 itself maintains many dominated
solutions.

We conjecture that the use of a preference function can restrict the diversity
so much that it is not possible towards the end of the optimisation process to
“rediscover” certain parts of the objective space anymore. We observed such
difficulties for many functions, including DTLZ 4, many of the LZs and many of
the WFGs.

As an example that preferences in objective spaces with more than two di-
mensions are possible, and as another extension to existing work, Figure 4 shows
the results of the different algorithms on DTLZ 2, d=3. Because it is difficult
to compare the outcomes using indicator values, we compare them visually. All
three algorithms produce solution sets that follow the preference scheme. For
iAGE, we notice “ray-like” patterns for the second scheme, and circular pat-
terns around the reference point for the third scheme. NSGA-II and SPEA2,
without their sense of an approximated archive, produce sets without any ob-
vious visual structure. Consequently, we argue that iAGE produces the most
evenly distributed solutions, even though this is in the eye of the beholder.
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5 Conclusions

Evolutionary multi-objective methods are often considered in the unbiased case,
where no particular area of the objective space is favored. This is in contrast to
the actual decision making processes in the real world, where the decision maker
typically has a preference for a particular range of non-dominated solutions.

In this article, we presented a simple and yet very effective modification
to the algorithm AGE. The resulting algorithm iAGE differs from the original
AGE only of the consideration of the weight function in a single step—the over-
all low computational complexity of the algorithm remains unchanged. Over a
wide range of test functions, we observed that iAGE is just as good at finding
evenly distributed solutions as similarly modified NSGA-II and SPEA2 vari-
ants. However, in particular for ”difficult” two-objective problems and for all
three-objective problems we have seen more evenly distributed solutions in the
preferred regions of the objective space.
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