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ABSTRACT

Run-of-Mine stockpiles are essential components in the mining
value chain because they can be used as temporary storage to bal-
ance inflow and outflow and provide an opportunity for blending
material. Stockpile schedulers plan stockpile recovery to balance
throughput and material specifications to deliver for the supply
chain’s next stage. There are technical limits on deliveries where
“failure to meet” can lead to significant penalty fees, increased op-
erational costs due to poor operational plans or over-delivery to
material specifications. Currently, human experts determine the
planning of stockpile recovery in practice. However, this approach
is error prone due to the complex distribution of materials within a
stockpile and the inability to foresee upcoming deliveries efficiently.
In this paper, we model the stockpile recovery problem as a combi-
natorial optimization problem considering technical restrictions in
real-world issues, and we investigate multiple scenarios and exper-
iments. We apply deterministic and randomized greedy algorithms,
as well as ant colony optimization algorithms integrated with local
search. We compare all algorithms with a rule of thumb heuristic
to evaluate our methodology’s quality. Our findings show that ant
colony optimization outperforms other algorithms, and the variant
integrated with swap and insert local search operators finds the
best solutions.
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1 INTRODUCTION

Trucks transport mineral materials extracted from mines to Run-
of-Mine (ROM) stockpiles, and multiple stockpiles together form
a stockyard. To fulfill the next step in the mining value chain up-
stream, the stockpile scheduler should select a blend of stacked
material in ROM stockyard to prepare for delivering with respect
to the end-user requirements such as chemical concentration and
particle size distribution limits. We refer to this operation as where
the scheduler plans how the stockpiles should be reclaimed for
deliveries as stockpile recovery [7, 9].

Chemical concentrations impose limitations on the target grade
quality of the valuable material such as copper and iron in the pro-
vided packages to fulfill a request. In addition, undesirable chemical
contaminants exist that should be inside of pre-defined ranges for
the different deliveries. Consequently, the scheduler typically aims
to maintain the target quality grade of deliveries while being as
close as possible to the contaminant limits. Another technical re-
quirement is to limit particle size to avoid overwhelming crushing
pieces of equipment with excessive material, that is hard to crush.

These technical restrictions are essential in stockyard manage-
ment. If the scheduler fails to meet these specified requirements in
deliveries, significant financial penalty fees are incurred that are
proportionate to the degree of violation to be paid to the end-user.

In the stockyard, recovery machinery such as front-end loaders
or bucket wheel reclaimers perform reclamation operations. Recla-
mation operations require that machines move in the stockyard
and reclaim cuts from the stockyard. A cut refers to a portion of
stacked material in the stockpile where it can vary in size (such as
increment of 1000-5000 tonnes of materials) depending on planning
resources. These reclaiming operations take time, as machinery
moves from one position to another, and thus cost are incurred for
the operation.

The task of stockyard management is to schedule the reclaiming
operations, i.e. to determine the sequence of reclamation operations
for end-user requests. In scheduling, it is essential to maintain
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the quality grade of deliveries and to perform stockpile recovery
operations considering the operation costs efficiently.

Currently, in practice, human experts determine the reclamation
sequence planning often using rules of thumb. For example, they
know that high-quality material should be mixed with low-quality
material to meet the target quality grade and confine the contam-
inants as close as possible to the limit range. However, human
planning is subject to error due to the complexities in the stockyard
and subject to multiple operational restrictions. Moreover, human
planning is a limited decision-making procedure where it is hard
to foresee upcoming stockpile recovery scheduling requests. As
a result, human planning can lead to poor reclaiming sequences
where it incurs penalty fees, unexpected losses in practice, and
perturbations in stockyard management.

Therefore, for efficient stockyard management, we require an
optimal stockyard recovery planning to meet the specifications,
technical restrictions, and minimize the operation costs. We also
desire to incorporate the capability in efficient planning for multiple
deliveries.

1.1 Related Work

Stockpiles are essential components in the supply chain optimiza-
tion problems in the mining industry, and hence have been studied
comprehensively. For example, in the open-pit mine production
scheduling, the main aim is to optimize how the material should
be extracted from the open-pit mine, while considering mine block
models and other restrictions. Stockpiles are used as a component
to maximize the net present value and to maintain lower-grade
valuable material for future processing [13, 15].

Stockpiles have been also considered as a component in opti-
mization of reclaimer machines job scheduling such as dry bulk
handling for coal terminals. However, these studies only focus on
the job scheduling of the reclaimer machines, and they consider
the stockpiles as a dry bulk component in their model of supply
chain optimization [1, 8, 18]. As a drawback, their approaches only
consider a weighted average quality for the whole stockpiles, and
neglect to investigate the stockpile at a higher resolution consider-
ing cuts with different characteristics.

In the context of mining stockpiles, Lu and Myo [11, 12] study
stockpile recovery optimization considering cuts in the stockpiles.
Their model considers the minimization of the movement by a
bucket wheel reclaimer machine. For this purpose, they calculated
the movement by Euclidean distance, and they applied mixed in-
teger programming for a small scale of the problem considering
two requests and two stockpiles in a single period. However, their
approach and model is limited: (1) the calculation of reclaimer
machine movement cost in practice is more complicated than a
simple Euclidean distance; (2) the stockyard in practice is bigger
and the resolution of cuts can determine the size and complexity
of the stockpile recovery problem; (3) in planning for deliveries,
it is essential to schedule deliveries for a longer period to fore-
see the future; (4) reclaimer machines also can be other types of
machines that can reclaim in different directions; and (5) more tech-
nical restrictions exist than a weighted average quality to meet the
specified requirements in practice.

We can see that there exists a gap in the literature where it is
required to investigate and analyze the stockpile recovery problem
and to address real-world features of this problem.

1.2 Our Contribution

In this paper, we consider the stockyard recovery scheduling as a
technical challenge in the upstream mining value chain.

We define the problem as a combinatorial optimization problem
where the stockyard is a directed graph with precedence constraints
connecting the cuts. These precedence constraints impose how
the cuts in the stockpiles can be accessed. To address technical
restrictions and stockpile management objectives, we introduce a
lexicographic objective function for optimization considering the
importance of target grade qualities and operation costs where the
former has a higher priority.

To simulate the stockyard, we use the information provided by
our industrial partner, where they created cuts and stockpiles using
real depositing GPS data of trucks in practice. We define multiple
scenarios and experiments to represent a stockyard in practice with
different complexities of technical restrictions in the problem.

The goal in this study is to model the stockpile recovery problem
considering various objective functions and multiple technical re-
strictions. We desire to develop an approach for efficient scheduling
independent of stockyard and reclaimer machine types. As we ex-
pand the scenarios in this study, we aim to improve the modelling
to be more like a real-world problem.

We intend to find potential solutions where each solution is a
reclaiming sequence plan for different scenarios. A good solution
should meet the target grade qualities as closely as possible while
minimizing the operation cost.

Because we are dealing with a real-world problem, we model
the problem and use methodologies so that we can tackle various
objective functions, non-linear constraints and further technical
restrictions here and in future extensions.

Our search space is constrained by precedence constraints that
impose how the cuts can be reclaimed with respect to physical
requirements. To deal with these constraints, we develop method-
ologies that can construct a valid reclaiming sequence step by step.
In this manner, we can easily adhere to the precedence constraints,
and it can always lead to a valid solution with respect to these
constraints.

The algorithms that we consider range from a deterministic and
a randomized greedy algorithm (GA) to an ant colony optimiza-
tion (ACO) algorithm. We also investigate permutation-based local
search operators integrated with ACO. All these algorithms con-
struct a solution step by step with a solution construction heuristic
appropriate for our objective.

The rest of the paper is organized as follows. In the next section,
we define the stockpile recovery combinatorial optimization prob-
lem. Next, we introduce the lexicographic objective function and its
components. Afterward, we present the scenarios of the problem
for investigation. Following, we describe the optimization algo-
rithms and our methodology to deal with the problem. We setup
experiments and report on the behavior and quality of obtained
solutions and algorithms for different scenarios. We benchmark
against a rule of thumb heuristic called the Pilgrim Step Reclaiming
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Figure 1: Schematic of the stockyard. Cut (1-1-1) is the entry
cut for stockpile recovery where it is the first cut on stock-
pile 1, top bench and first cut from South-to-North direction.

cut (1-1-1)
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Heuristic. We observe that the randomization of greedy algorithms
can help obtain better solutions in the scenarios, and that ant colony
optimization can outperform all algorithms. Finally, we finish with
some concluding remarks and some suggestions for future work.

2 PROBLEM STATEMENT

In the following, we define the stockpile recovery optimization
problem.

The problem inputs are stockyard structure, reclamation time
matrix, information on required deliveries, and available reclaimer
machines. We aim to find a sequence of reclamation of cuts in the
stockyard to fulfill optimization problem objectives for efficient
stockpile management.

The stockyard’s structure includes information on multiple stock-
piles and information about cuts in each stockpile. We model a
stockyard as a directed graph G = (C, &) without cycles, where
C ={cy,c2,...,cn} is the set of cuts containing n available cuts in
the stockyard. Each cut c¢; has multiple properties including the per-
centage of valuable and contaminant elements in the cut denoted
by m; i where k = 1,2, ..., K shows the set of chemical elements.
Another property denotes how much material is available in the
cut by measuring the tonnage of ¢; denoted by Ton;.

& is the set of edges connecting cuts and shows the immediate
predecessors, where cut i must be reclaimed before j when the
reclaimer direction is d and we show a reclamation operation by
(i, j,d). Precedence constraints determine the validity of a solution.
If it fails for a part of the solution, the solution is impossible to
be processed. To perform a reclamation operation, a reclaimer ma-
chine can move between two cuts i and j and perform reclamation
operation on c;.

A candidate solution x is a sub-sequence as a permutation of
cuts in C, where it represents the order of reclamation to fulfill
the optimization problem’s objectives. The total time required to
perform a reclamation task from c; to cj with direction d is given by
T; ja- 7q shows the reclamation time matrix, which is a full square
matrix for all cuts in each direction.

We can identify a cut in the stockyard by its position in the
stockyard: each stockpile has benches and a cut is a portion of
stacked material in each bench (see Figure 1 for an example).

As mentioned before, it is essential to preserve the quality of
deliveries. One objective is the average target quality which aims
to preserve the quality of deliveries where the average of chemical
contaminants in a delivery should be in a predefined range as
follows for a set of chemical elements (K)

|x|

R 1
My, = — mg i
e ] JZZI *
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Where 11y, shows the average of chemical contaminants for cuts
in in x with respect to penalty chemical element k.

k <y, <m VkeK
Because the chemical properties of cuts have different magni-
tudes with their corresponding lower and upper bound, we evaluate
the degree of violation for target quality using the bracket-operator
penalty method (rﬁxk> [4], which is calculated as follows:

Ity T if 1y, >m
i [mi| | Xk k
X My, —M
Mix, k if 1y, <m
( ) ‘ﬂ| Xk k
0 my < rhxk < myg

To calculate the violation for average target quality in x, we use:

K

01(x) = ) (1)

k=1

Another objective in stockyard recovery is the window quality.
This objective ensures that when the stockyard scheduler prepares
the packages for reclaimed material, the quality of each package
should meet another pre-defined window quality. To calculate the
violation for deviation of window quality we have:

v(x) = |in < (mjk + Mok + -2k )>

=4 :

where j here denotes the position of a cut in a delivery where we
desire to look at the window quality after three cuts are already
reclaimed for a delivery.

To consider the operation costs, a desirable objective is to have
a schedule with ability to reclaim more material in a shorter time
which it will result in reducing operation costs. For reclamation
operation (i, j, d) we have:

u(x) = Z M

(i ex TOn)

The numerator indicates the corresponding element from recla-
mation time matrix to perform a task and the denominator is the
tonnage of cut j available in stockyard information.

2.1 Objective Function

As a stockyard manager, the primary objective is to avoid paying
penalty fees with respect to the quality objectives of deliveries. If it
is possible to provide a valid solution where all quality objectives
are satisfied. The next objective is to reduce the operation costs.!
To achieve these objectives, we define the objective function for
minimization in lexicographic order:

f(x) = (01(x), 02(x), u(x))

!Note that this reflects the preferences of our industry partner. Other companies might
aim for different goals.
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where order in the objective function matters. To compare tuples
of two solutions (x and y):

f(x) < f(y)
iff 01(x) <ov1(y)Vv
(01(x) = 0v1(y) Ava(x) < 0v2(y))V
(v1(x) = v1(y) Av2(x) = v2(y) Au(x) < uly))

For example, between quality constraints, v1(x) is more important
than vz (x). The utility function denotes that the manager’s objective
is reclaiming more material in a shorter time to reduce operating
costs.

2.2 Scenarios of the Problem

We define three scenarios for investigation of the optimization
problem with different complexities. As we proceed, the problem
conditions becomes more similar to the real-world issue in the
stockyard management. For each scenario, we consider four exper-
iments for a more detailed investigation. We show an experiment
in a scenario by SC X-Y where X and Y refer to the scenario and
experiment numbers, respectively.

In the first scenario, we simulate a stockpile recovery problem
where we aim to reclaim the whole stockyard. This scenario helps
us investigate the quality of algorithms where technical restrictions
are loosened, and algorithms can demonstrate their behavior in
exploring the stockyard to obtain a low-cost reclaiming sequence.
We increase the size of stockyard in experiments, where SC1-1,
SC1-2, SC1-3 and SC1-4 denote that the stockyard contains 1, 2,
3, and 4 stockpiles, respectively, and the termination criterion in
solution construction is the reclamation of the whole stockyard. In
this scenario, we also neglect vz (x) to make it easier to tackle. For
its objective function, we have

fi(x) = (v1(x), u(x))

In the second scenario, we simulate a problem considering techni-
cal restrictions in the stockyard. We aim to optimize the reclaiming
sequence considering deliveries. We define a sequence for a deliv-
ery as x” where x” € x. Similar to the first scenario, we neglect the
window quality constraint. We define different experiments, consid-
ering the number of deliveries, where SC2-1, SC2-2, SC2-3, SC2-4
show experiments for second scenario where we plan for one, two,
three and four deliveries respectively. Moreover, we consider the
stockyard as being initially full, and thus include all stockpiles for
reclamation. The termination criterion is constructing a solution
where it plans for all deliveries in the experiment. We define the
objective function as:

A=) (1), u(x)
x'ex
In the third scenario, we make the problem more similar to real-
world problem by technical restrictions: all criteria are as same as
the second scenario, but we consider the window quality too. Our
objective function is

A= ) (o1, 02(x), u(x)
x'ex
The stated problem can be interpreted as an extended version
of Travelling Salesperson Problem (TSP) incorporating real-world

constraints and objectives. In our problem, cities and distances of
TSP are replaced with cuts and the time spent on moving from
one cut to another cut and perform a reclamation, respectively.
Instead of finding the shortest possible route, we are looking to
find a solution to deliver objectives with respect to the end-user
requirements. Note that there also exist precedence constraints in
accessing the cuts in the graph and some restrictions for preserving
target quality.

3 OPTIMIZATION METHODS

In this section, we describe the algorithms applied in this study.
We focus on algorithms that construct solutions step by step, con-
sidering the precedence constraints. Therefore, the solution is con-
structed step by step, considering available cuts in the neighborhood
to choose as a successor for a solution. We investigate deterministic
and randomized greedy algorithms, ant colony optimization, and
its variant with local search operators. We also describe a heuristic
representing a rule-of-thumb in stockyard management, namely
the Pilgrim Step Reclaiming Heuristic (PSRH). We compare the iter-
ative optimization methods with PSRH to evaluate the performance
and quality of other algorithms.

3.1 Greedy Algorithm and Randomization

Greedy algorithms are straightforward and fast in constructing a
solution for an optimization problem, and they are easy to imple-
ment. Algorithm 1 shows the procedure for deterministic greedy
algorithm (DGA). DGA starts with an S = 0, and at each time step
(t), it adds a successor component to x. For the stockpile recovery
problem, the entry cut pre-defined by the problem is the primary
successor. Next, DGA collects the available cuts (with respect to
the precedence constraints) in the initial cut neighborhood as C*
considering the precedence constraints. DGA evaluates the objec-
tive function f(cj) for performing reclamation from the initial cut
to the next cut for each cut in ¢; € C*. DGA chooses the successor
cut with the highest greediness as
¢* = argmin f(cj)
cjeCt

DGA may choose the best cuts in the stockyard early in the
planning. This act of greediness can lead to reclaiming all good
material in the stockyard early and getting trapped in local optima
to plan deliveries, because the individual deliveries are put together
in a strict sequential order. Other studies (e.g. [6]) suggest that
controlling the greediness can lead to better solutions.

Randomized Greedy Algorithm (RGA) is a simple randomized
version of DGA, which gives it the potential to find better solutions.
It has a greedy control parameter A > 0 where the selection of the
successor cut (¢*) occurs according to the probability distribution
given by

nep)?

Sesect (et
, where 77(c;) denotes the greedy function to make sure that a better

candidate has a higher chance to be selected in the neighborhood
as follows.

p(cjlCh) =

1
N
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Algorithm 1: Deterministic Greedy Algorithm (DGA)

Algorithm 3: Ant Colony optimization (ACO)

x:=0
repeat
* H .
Choose a successor cut ¢* = argming ¢ c: flcj)
x:=xUc*
until x is complete
return x

Algorithm 2: Randomized Greedy Algorithm (RGA)
x:=0
repeat

Choose a successor cut (¢*) according to probability

n(ci)*
pcjICt) = ———
! Serect nlep)
x:=xUc"

until x is complete
return x

where f’(c;) is a mapped real number of f(c;) required for selec-
tion procedure among cuts in the neighborhood. We classify all
cuts in the neighborhood in three sets (S). Set 1 contains valid solu-
tions, set 2 include solutions with v1(cj) = 0 Avz(c;j) # 0 and other
solutions are put in set 3. For each set separately, we normalize the
objective functions component wise to (0, 1) by a linear mapping
and we denote it by N(c;):

N(Cj) =N (u(cj)) + N (Z)Z(Cj)) + N (le(cj'))
to calculate f/(c;), we use:
N(Cj)+l iijésl

N(Cj)+1+10 iijESz
N(cj) +1+10+100 Otherwise.

flej) =

Note that the addition of 1 ensures that p(c;|C*) > 0 and that
the addends of 10 and 100 helps to partially preserve the order of
objective function. Our probabilistic selection represents a roulette
wheel selection where the chance of selecting a candidate in C? is
proportionate to its fitness. A determines how greedy RGA acts for
the selection procedure: as A — oo, RGA approaches the behavior
of DGA. Algorithm 2 shows the procedure for RGA.

3.2 Ant Colony optimization (ACO)

Ant Colony Optimization (ACO) is swarm-intelligence approach
that uses artificial ants [5], which has been inspired by the foraging
behavior of ants in nature. Some ants have been observed to perform
random walk to find a source of food. On their return route to the
colony, they deposit pheromone and other ants can sense it and
identify a good route instead of a random walk. More ants follow a
route, depositing more pheromone, and thus reinforce the route. In
addition, pheromone evaporates gradually to reduce the attraction
capability of untraveled edges. ACO uses artificial ants to simulate
this foraging and it has been successfully applied to combinatorial
optimization and open-pit mining scheduling problem [2, 14, 16].
Importantly for us here, ACO can be viewed as an iterative and
adaptive RGA with more control parameters.

initialize 7 > pheromone values initialization
generate ants for initial colony ; C II

repeat

for each ant n; do

repeat
construct a solution x step by step,
probabilistically
until solution is complete
for each ant € IT* do
‘ perform local search > optional
Update best found solution x*
Update 7
until ACO termination criterion met
return x*

Algorithm 3 shows the procedure of ACO. First, ACO initializes
the pheromone matrix for the initial generation and generates a
colony contains artificial ants. Each ant performs a random walk
to construct a solution step by step. The probability distribution
that each ant uses to choose a successor (i.e. the next cut) while
constructing a solution is

[7i,j.a1%[n(c)1P

Seect[tipal®n(e)]?

where parameters a and § are control parameters in selection to
balance using pheromone or heuristic information. After all ants
finish their independent random walk, it is optional for ACO to
employ a local search on the found solutions. At the end of the
generation, ACO updates the pheromone values and its best found
solution. This procedure repeats until ACO’s termination criterion
is met.

For this study, we use a variant of ACO, namely Max-Min Ant
System (MMAS) [17]. In MMAS, only the best ant at each generation
deposits pheromone to reinforce its solution. The pheromone range
is limited to avoid becoming very big or very small. This feature
can prevent getting trapped in local optimal.

To initialize the pheromone matrix (7), we consider equal amount
of pheromone on all edges in &: 7; j 4 = 1/2. We restrict each ; ; 4

1 1
in the interval [ﬁ, 1- E] [14]. After all ants construct their

solution, the best ant at the iteration (with the best obtained solution
at iteration x”) deposits pheromone on the its solution edges as
follows,

p(cjlCh) =

. 1 o
) min{(1 - p).7; 4+ p, 1~ il if (i, j.d) € x’
Tijd = 1
" max{(1 - p).7; j 4, m} otherwise.

where 0 < p < 1 denotes the evaporation factor.

3.3 ACO with Local Search

Local search can be complimentary to ACO, because ACO explores
the search space coarsely. However local search can help to explore
in the neighborhood of a constructed solution more finely. There-
fore, after ants construct a solution, their obtained solution can be
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a good starting point for local search. We refer interested readers
to [10] for more information.

In this paper, we employ three well-known operators for permu-
tation search problems namely swap, insert and inverse operators.
Considering one solution x, these operators get two components in
x and perform a local search on the components’ position. The swap
operator exchanges two components of the solution; the insert oper-
ator shifts the second component ahead of the first component. The
inverse operator arranges all components between and including
the two components in the opposite order.

We investigate the iterative local search in the neighborhood of
all components. We call variants of MMAS integrated with local
search operators as MMAS-swp, MMAS-ins, MMAS-inv for swap,
insert and inverse operators, respectively.

3.4 Pilgrim Step Reclaiming Heuristic (PSRH)

To evaluate the above mentioned algorithms in stockpile recovery,
we employ a heuristic representing a rule of thumb that is used for
manual planning of the reclaiming sequence in practice. Pilgrim
Step Reclaiming Heuristic (PSRH) reclaims one stockpile completely
from one end to another. First, it reclaims the top bench partially,
then the lower bench for the reclaimed cut and reclamation repeats
till one end is completely reclaimed. Next, the reclaimer machine
proceeds and reclaims the rest of the stockpile alike to previous
steps from the top bench to the bottom. For example, the following
sequence follows PSRH for the first stockpile:

{(1-1-1), (1-2-1), (1-3-1), (1-4-1), (1-1-2), ..., (1-4-2), ..., (1-4-10)}

PSRH reclaims one stockpile after another, and this unique move-
ment avoids moving the reclaimer machine from one stockpile to
another before the complete reclamation of a stockpile. Due to this
behavior, the time required to perform tasks is reasonably small
and is an efficient heuristic considering the reclamation time and
cost. However, the PSRH way of reclaiming can lead to solutions
where the constraint violations vy (x) and v (x) are non-zero.

We use PSRH as a reference in practice where we can compare
and evaluate the quality of obtained reclaiming plans created by
our algorithms.

4 EXPERIMENTAL SETUP

In this section, we describe our experimental setup and the assump-
tions. We consider a real-world stockyard model provided by our
industrial partner. This stockpile has been created using the GPS
information of trucks while they stacked the stockpile with real
material. The stockyard includes four stockpiles where each has
four benches and ten cuts forming a stockyard with 160 cuts.

We identify a cut by (idstockpile-idbench-ideut) Where, cut (1-1-1)
shows the first cut in first bench of first stockpile and denotes the
entry point (see again Figure 1). There is one machine that can
reclaim cuts in one direction, which is South to North. This means
that a machine can reclaim only in one direction, but it can move
back and forth to position itself for the next reclamation.

The machine can only process one reclamation task at a time, and
the task should be completed before performing the next reclaiming
task. For scenarios 2 and 3, we assume that the required tonnage
for each delivery is 100,000 tonnes.

The machine starts from the entry cut for reclamation and moves
to the next available cut with respect to precedence constraints.
A candidate solution sub-sequence is a permutation of cuts in the
stockyard where it shows the order of reclamation to satisfy con-
straints and deliver the scenario objectives efficiently. A straight-
forward example of reclamation could be starting from the entry
point and reclaim all the cuts in the first bench of the first stockpile.
For this reclamation order, the solution is as follows,

{(1-1-1), (1-1-2), (1-1-3), (1-1-4), .. ., (1-1-10)}

DGA is deterministic, and there is no parameter to configure.
However, RGA has the parameter A to control the amount of greed-
iness of the algorithm. We set A = {1, 3,5, 7, 10, 15, 20} and we name
the RGA variants as RGA-A. For MMAS, weseta =1, =2,p = 0.5
and IT* only contains best ant in the iteration. We also consider ten
ants, and the termination criterion for ACO is when 1000 genera-
tions elapsed. With respect to the scenario, a solution construction
continues until the solution is complete for all algorithms.

For the randomized algorithms, we run each for 50 times to
evaluate them fairly. We also carry out statistical comparisons
for randomized algorithms by the Kruskal-Wallis test with a 95%
confidence interval integrated with the posteriori Bonferroni test
for pair-wise comparisons [3]. We rank the obtained solutions by the
objective function’s lexicographic order to perform the statistical
test, and we use their ranks for the statistical test.

For a closer look, we report the median, best and worst solutions
obtained by the algorithms in corresponding tables. Note that for
PSRH and DGA as they are deterministic algorithms, we report
the same value. We also evaluate algorithms by success rate. This
measure is the percentage of success for algorithms in obtaining
valid solutions. While for deterministic algorithms it is 0 or 1, we
calculate the fraction out of 50 runs for randomized algorithms.

5 RESULTS AND DISCUSSION

Figure 2 provides a summary of the results by showing the signifi-
cance for all scenarios and experiments. Among other, we observe
that RGA and MMAS behave differently, while within each group
the results are not always different.

5.1 Scenario 1

Here, we assume that the problem aim is reclaiming the whole
stockyard. Table 1 lists the obtained objectives for Scenarios 1 and 2.
Note that we only report the best RGA variant for each experiment
for brevity.

For all experiments, we observe that all algorithms can obtain a
success rate of 100%. Therefore, for the evaluation, we only look
at the utility cost. We can also see that DGA outperforms PSRH,
meaning that acting deterministic greedy is better than using PSRH
for this scenario. We observe the same pattern for RGA, but with
there is a statistical difference for various experiments. We can see
for all experiments that RGA-15 and RGA-20 are not significantly
different.

RGA-1, RGA-3, RGA-5 can find solutions with large utility, as
the worst obtained utility among these variants are 25.5281, 25.1717,
24.8425, respectively. We see that as A increases, the median value
of utility decreases, where it leads to better solutions. We see for
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Table 1: Fitness values obtained for the optimized solutions in Scenarios 1 and 2

PSRH DGA best RGA MMAS MMAS-swp MMAS-ins MMAS-inv

Instance

Median (0.0, 24.6291) (0.0, 23.685) (0.0, 24.0001) (0.0, 23.1543) (0.0, 23.0988) (0.0, 23.1042) (0.0, 23.0988)

Best (0.0, 24.6291) (0.0, 23.685) (0.0, 23.3787) (0.0, 23.1502) (0.0, 23.0472) (0.0, 23.0504) (0.0, 23.0472)
SC1-1 Worst (0.0, 24.6291) (0.0, 23.685) (0.0, 24.8425) (0.0, 23.1661) (0.0, 23.1021) (0.0, 23.1535) (0.0, 23.1229)

Success rate 1 1 1 1 1 1 1

Median (0.0, 49.6518) (0.0, 48.1309) (0.0, 48.1309) (0.0, 46.6986) (0.0, 46.4339) (0.0, 46.6783) (0.0, 46.4335)

Best (0.0, 49.6518) (0.0, 48.1309) (0.0, 47.7301) (0.0, 46.598) (0.0, 46.4005) (0.0, 46.5274) (0.0, 46.3633)
SC1-2 Worst (0.0, 49.6518) (0.0, 48.1309) (0.0, 48.3392) (0.0, 46.8059) (0.0, 46.4774) (0.0, 46.7635) (0.0, 46.4756)

Success rate 1 1 1 1 1 1 1

Median (0.0, 74.6085) (0.0, 72.1901) (0.0, 72.4698) (0.0, 70.0757) (0.0, 69.7819) (0.0, 70.0914) (0.0, 69.7826)

Best (0.0, 74.6085) (0.0, 72.1901) (0.0, 71.8263) (0.0, 69.8758) (0.0, 69.501) (0.0, 69.921) (0.0, 69.54)
SC1-3 Worst (0.0, 74.6085) (0.0, 72.1901) (0.0, 76.5797) (0.0, 70.289) (0.0, 69.9158) (0.0,70.2281) (0.0, 69.9478)

Success rate 1 1 1 1 1 1 1

Median (0.0, 99.5444) (0.0, 96.2366) (0.0, 96.6943) (0.0,93.7738) (0.0, 93.1774) (0.0, 93.8173) (0.0, 93.2369)

Best (0.0, 99.5444) (0.0, 96.2366) (0.0, 95.8881) (0.0,93.4327)  (0.0,92.9711) (0.0, 93.4237) (0.0, 92.9587)
SC1-4 Worst (0.0, 99.5444) (0.0, 96.2366) (0.0, 106.4864) (0.0, 94.3409) (0.0, 93.497) (0.0, 94.1342) (0.0, 93.4529)

Success rate 1 1 1 1 1 1 1

Median (0.0, 15.9225) (0.0, 17.4546) (0.0, 19.4966) (0.0, 15.2188) (0.0, 17.2239) (0.0, 15.2251) (0.0, 17.1897)

Best (0.0, 15.9225) (0.0, 17.4546) (0.0, 15.4309) (0.0, 15.1747) (0.0, 15.1392) (0.0, 15.0877) (0.0, 15.0877)
SC2-1 Worst (0.0, 15.9225) (0.0, 17.4546) (0.0, 29.3699) (0.0, 15.2474) (0.0, 19.6106) (0.0, 15.2504) (0.0, 19.1453)

Success rate 1 1 1 1 1 1 1

Median (0.0, 34.7849) (0.0, 41.1948) (0.0, 37.5494) (0.0,31.8562) (0.0, 34.427) (0.0, 31.8151) (0.0, 34.4242)

Best (0.0, 34.7849) (0.0, 41.1948) (0.0, 31.2005) (0.0, 31.218) (0.0,33.5467) (0.0, 31.0527) (0.0, 33.4021)
SC2-2 Worst (0.0, 34.7849) (0.0, 41.1948) (0.0, 48.4085) (0.0, 36.0702)  (0.0,35.6118) (0.0, 35.8257) (0.0, 35.3716)

Success rate 1 1 1 1 1 1 1

Median (0.0304, 49.6518)  (0.1094, 65.5448)  (0.0743, 61.5351) (0.0, 51.3597) (0.0, 51.2627)  (0.0,51.3262) (0.0, 51.1625)

Best (0.0304, 49.6518)  (0.1094, 65.5448) (0.0, 49.9985) (0.0, 48.9855) (0.0, 48.906) (0.0, 49.4875) (0.0, 48.3031)
SC2-3 Worst (0.0304, 49.6518)  (0.1094, 65.5448)  (0.1953, 64.7137) (0.0, 52.7509) (0.0, 52.2798) (0.0, 52.6403) (0.0, 52.403)

Success rate 0 0 0.36 1 1 1 1

Median (0.1297, 65.5358)  (0.2492, 85.2887)  (0.135, 93.8736) (0.0, 67.107) (0.0, 66.7176) (0.0, 67.1275) (0.0, 67.0235)

Best (0.1297, 65.5358)  (0.2492, 85.2887) (0.0, 72.2375) (0.0, 65.3268) (0.0, 63.1248) (0.0, 64.164) (0.0, 64.8839)
SC2-4 Worst (0.1297, 65.5358)  (0.2492, 85.2887)  (0.276, 93.0093) (0.0, 68.4933) (0.0, 68.0874) (0.0, 68.0108) (0.0, 68.0841)

Success rate

0

0

0.1

1

1

1

1

experiments 2-4, RGA-20 can obtain the best solution with the
utility of 47.7301, 71.8263, and 95.8881, respectively. However, for
experiment 1, which is the most straightforward instance in our
study, RGA-5 obtains the best solution with a utility of 23.3787, but
with a higher median than the RGA variant where A > 7.

We also observe that the best solution obtained by RGA is the
same as DGA in experiment 1. However, as the stockyard’s size
becomes larger, adding randomness results in RGA outperforming
DGA. To determine the best RGA variant of experiments 2-4, we
report RGA-20, and for experiment 1. and we report RGA-5 for
experiment 1.

We see that all MMAS variants with or without local search
outperform PSRH, DGA and RGA variants. For experiment 1, the
local search variants outperform those without. Moreover, there is
no significant difference among the local search variants. However,
for experiments 2-4, we see MMAS-swp and MMAS-ins are signifi-
cantly different and better than other variants. Nonetheless, there
exists no significant difference between MMAS and MMAS-inv.

5.2 Scenario 2

In this scenario, we aim to plan the reclamation to fulfill multiple de-
liveries. We observe that PRSH and DGA can obtain zero violation
solutions for the first two experiments. However, for the last two
experiments, their obtained solutions violate the constraints. More-
over, DGA obtains worse solutions than PSRH. For this scenario,
we can see that acting greedy by DGA leads to weaker solutions,
unlike scenario 1 when the problem is more similar to real-world
conditions.

For all experiments, among RGA variants, we see no significant
difference where 3 < A < 10. Moreover, in experiment 1, we observe
that the RGA-1 success rate is 94%; however, other RGA variants
are 100% successful. For experiment 1, we report RGA-10, where it
can obtain the best solution among RGA variants. For experiment
2, we see that RGA-1, RGA-3, RGA-7, RGA-15, and RGA-20 success
rates are at least 90%. Among RGA-10, RGA-15, and RGA-20 where
all are non-significant different from each other, we report RGA-10
because its success rate is 100% and it can obtain reasonably good
solutions. Experiments 3 and 4 are more challenging instances
because we can see that as the number of deliveries increases, the
resources in the stockyard are close to being exhausted. It makes it
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Experiment. 1

Experiment. 2 Experiment. 3 Experiment. 4

(b) Scenario 2 (a) Scenario 1

(c) Scenario 3

NS p<005  p<00l  p<0.001

Figure 2: Significance plot of statistical test for randomized
algorithms. p denotes the p-value and NS refers to no signif-
icant difference.

harder for the algorithm to provide non-zero violations for all the
deliveries. For experiment 3, we observe that among RGA variants,
as A increases, the success rate decreases from 80% to 8%. We report
RGA-10 as the best RGA variant for experiment 3. For experiment 4,
the success rate for RGA variants decreases from 34% to 0%, where
RGA-15 success rate is zero. We report RGA-5 as the best RGA
variant where it can find the best solution (0.0, 72.2375).

Similar to experiments 2-4 in scenario 1, we see no significant
difference between MMAS and MMAS-inv. We also observe that
MMAS with or without local search outperforms PSRH, DGA and
RGA variants. The success rate for all MMAS variants is 100%,
where it enables us to only look at their utility function to compare
them more easily. We can see that in experiments 1 and 2, MMAS-
ins outperforms MMAS-swp. However, in experiments 3 and 4, with
more complicated instances, MMAS-swp is the best among the two.
However, in experiment 4, as the most challenging experiment in
this scenario, all MMAS variants are not significantly different.

5.3 Scenario 3

This scenario is the most challenging one and the most similar to
the real-world application which considers window quality. Table 2
lists the results. In all experiments, we observe that PSRH and DGA
obtain valid solutions, where DGA can obtain the best solutions.
Among RGA variants for experiments 1-3, we see that variants with
3 < A £ 7 are non-significant different from each other, and the
same behavior applies to the variants with 10 < 1 < 20.

RGA-3 and RGA-5 obtain solutions with a higher partial success
rate. Similar to other scenarios, MMAS and its variants outperform
other algorithms, and for experiments 1-3, all show a 100% success
rate. However, for experiment 4, we see an occasional success for
only the MMAS variants. This could be because of the way the
experiments were defined: almost all resources are exhausted, and
it is hard to find a solution without violating the quality objectives.

For experiment 1, RGA-10, RGA-15 and RGA-20 obtain their best
solutions with zero violation with utility of 17.0583, 17.1489 and
16.714 with algorithm success rates of 68%, 44% and 42% respectively.
Similarly, For experiment 2, RGA-5, RGA-7, RGA-20 obtain their
best solutions as zero-violation with utility of 34.3946, 34.6121 and
34.332 with their success rates as 42%, 20% and 2% respectively.
It shows that for these complex scenarios in both experiments,
some RGA variants are able to find better solutions than MMAS
but with a lower success rate. It shows that there exists room for
improvement of MMAS variants with a proper tuning of MMAS
and improve MMAS ability to explore the search space better. For
experiment 1-3, RGA-20 is the best RGA variant.

Experiment 4 of this scenario is the most difficult instance for our
study. We can see that all RGA variants are unsuccessful. However,
all MMAS variants can obtain a valid solution but note that the
success rate of MMAS is low. It demonstrates that MMAS and its
variants can find a good solution. However, the algorithm’s quality
for robustness in finding valid solutions in multiple runs could be
improved. For experiment 4, we RGA-3 is the best RGA variant. It
can obtain a solution where v1(x) = 0 as (0.0, 0.3736, 84.114) and it
is the best solution among all RGA variants.

6 CONCLUSIONS

In this paper, we have modeled the stockpile recovery problem as a
combinatorial optimization problem with a lexicographic objective
function considering technical restrictions in practice. We have used
optimization methods to construct a reclaiming sequence plan step
by step to meet the precedence constraints in solving the problem.
For this purpose, we have explored the use of deterministic and
randomized greedy algorithms. We have also employed MMAS as a
variant of the ACO algorithm, and we considered three local search
operators for it, namely swap, insert, and inversion.

In our experiments, which have covered a variety of real-world
aspects, we have observed that adding randomness to the determin-
istic greedy algorithm has helped it find better solutions when the
scenario is more similar to the real world problem. We have also
seen that MMAS - especially with a local search - can outperform
other algorithms with a high success rate.

In this initial study, we have used a number of default parameters
for the algorithms. For future studies, it could be interesting (1) to
investigate automated tuning of the algorithms, (2) to study other
ACO variants, and (3) to develop local search operators that are
specific to this reclamation problem.
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