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Abstract. Uncertainties in real-world problems impose a challenge in
finding reliable solutions. If mishandled, they can lead to suboptimal
or infeasible solutions. Chance constraints are a natural way to capture
uncertain problem parameters. They model probabilistic constraints in-
volving the stochastic parameters and an upper bound of probability that
mimics the confidence level of the solution. We focus on the knapsack
problem with stochastic profits to guarantee a certain level of confidence
in the profit of the solutions. We present a bi-objective fitness formu-
lation that uses expected profit and standard deviation to capture the
chance constraints. This formulation enables optimising the problem in-
dependent of a specific confidence level. We evaluate the proposed fitness
formulation using well-known evolutionary algorithms GSEMO, NSGA-
II and MOEA/D. Moreover, we introduce a filtering method that refines
the interim populations based on the confidence levels of its solutions.
We evaluate this method by applying it along with GSEMO to improve
the quality of its population during optimisation. We conduct extensive
experiments to show the effectiveness of these approaches using several
benchmarks and present a detailed analysis of the results.

Keywords: Evolutionary algorithms · Multi-objective optimisation · Chance
constraints

1 Introduction

Real-world optimisation problems become challenging when they have uncertain
problem parameters or uncontrollable environmental changes. In most real-world
situations, these uncertainties are inevitable, such as highly dynamic load de-
mands in the power grids [5], uncertain cost estimates in budgeting [4], uncertain
weather conditions affecting transportation systems [17], and mine optimisation
under uncertainty [31,36]. It is crucial to capture the effects of uncertain param-
eters to identify risks and avoid disastrous failures and high recovery costs. For
example, weather conditions heavily impact the transportation time schedules of
commercial vessels. In this scenario, uncertainties in transportation time impact
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predetermined deadlines and could result in additional costs for maritime com-
panies [17]. It is important to consider the implications of stochastic problem
components to have a more realistic view of the problem conditions and identify
safe and reliable solutions.

Chance constraints are a natural way to model uncertainties in problems.
A chance constraint defines a small valued upper bound for the probability
(0 < α < 1/2) that a particular constraint may be violated [10,25,9]. It means
a solution is feasible if the likelihood of its constraint violation is equal to or
below α. Moreover, this probabilistic constraint allows us to attribute a certain
confidence level to the solutions of a stochastic optimisation problem. Chance
constraints can be used to design practical applications for stochastic optimi-
sation problems in many fields such as mining [40,31], power systems [13,5],
communication systems [1] and transportation [37,17].

In this paper, we consider a variation of the classical knapsack problem. The
deterministic knapsack problem [16] is a classical NP-hard combinatorial optimi-
sation problem. It has been considered in different settings in the literature, such
as with stochastic weights [38,39], with stochastic profits [24] and other dynamic
and stochastic settings [12,3,2,33,34,32,34]. This paper focuses on the knapsack
variant with deterministic weights and stochastic profits. While the deterministic
constraint on the weights remains the same as in the classical knapsack problem,
we introduce a chance constraint on the profits to capture the uncertainties in
profits [24]. This problem model can be beneficial in many real-world problems,
such as modelling complex planning problems like mine design and mining ac-
tivity scheduling, which will allow discovering plans to achieve the maximum
profit with a higher confidence level.

We consider the evolutionary algorithms to address the target problem.
Evolutionary approaches perform well in addressing stochastic optimisation
problems, including chance-constrained problems [3,10,30]. In particular, multi-
objective evolutionary approaches optimise the problem by considering multiple
objectives simultaneously. They generate a set of solutions that gives a trade-
off of optimal solutions concerning the objectives. This final population provide
more insights into improving the algorithms and search space than having a sin-
gle solution as the outcome [6,7]. Therefore, multi-objective algorithms help one
to make informed decisions when selecting a solution to implement.

1.1 Related Work

The early literature on evolutionary computation for chance-constrained prob-
lems considers computationally expensive methods like simulations and sampling
to cater for chance constraints [11,2,42,15,19,18,20,9]. More recent studies have
looked into tail-bound inequalities, which more efficiently deal with chance con-
straints [24,38,3,43,29,28,23,22].

The chance-constrained knapsack problem with deterministic profits and
stochastic weights are considered in several papers [38,39,28]. Yue et al. 2019
[38] present how to use well-known deviation inequalities like Chebyshev’s in-
equality and Chernoff bound to estimate the probability of constraint violation.
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In [39], where the same knapsack problem variation is considered, they intro-
duce problem-specific operators for EAs with both single- and multi-objective
formulations. Assmi et al. [3] study the evolutionary approaches focusing on
the dynamic chance-constrained knapsack problem with stochastic weights and
a dynamic weight bound. In addition to the objective function on the profit
of a given stochastic solution, a second objective is introduced to address the
dynamic capacity constraint. It captures the minimal capacity bound for the
solution that meets the chance constraints.

Run-time analysis is an essential topic in studying problems with chance
constraints. The first paper on run time analysis for chance constraint problems
considers the knapsack problem with stochastic weights [26]. This work considers
different cases of the problem and studies the run time of (1+1) EA for them.
In [41], they perform the run time analysis of simple EAs for chance-constrained
knapsack problems with uniform weights. The papers [27] and [35] study the run
time of simple EAs for different chance-constrained problems. In[27], the authors
consider single- and multi-objective EAs for chance-constrained problems with
customarily distributed random problem variables. They also show how to use
the proposed evolutionary approaches for chance-constrained minimum spanning
tree problems [27]. In [35], they analyse the run time of random local search and
(1+1) EA for the chance-constrained makespan problem.

In the study [24], the authors study single objective optimisation of profit
chance-constrained knapsack problem with simple evolutionary algorithms.
Those algorithms include (1+1) EA with standard bit-flip and heavy-tail muta-
tion operators and population-based (µ+1) EA with a specific crossover operator
specific for the knapsack problem. This study evaluates the performance of all
these algorithms using the single objective fitness evaluation. The overall results
show that (1+1) EA with heavy tail mutation operator significantly improved
over other algorithms.

1.2 Our Contribution

We introduce a bi-objective fitness function motivated by the recent study on
the evolutionary optimisation of chance-constrained problems by computing the
trade-offs concerning the expected value and variance of solutions presented
in [27]. The significance of this function is that it evaluates the fitness of a solution
independent of a specific confidence level in profit (i.e. a specific value of α). Since
this generates a set of solutions that gives a trade-off of the objectives, it allows
one to make more informed decisions when selecting a solution to implement.
For example, to identify the solution that gives the best profit with a particular
α value, we can calculate the profit of all the solutions for that confidence level
and select the solution that gives the best profit among the final population.
Also, deciding on the confidence levels before running optimisation algorithms
is not required when using the introduced fitness formulation.

This paper introduces a filtering method for chance-constrained optimisation
as a key algorithmic contribution. This method improves the effects of the pro-
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posed fitness function. We consider this filtering method with the GSEMO as a
separate algorithm to solve the chance-constrained problem.

We evaluate the effectiveness of the fitness formulation with the proposed al-
gorithm and three well-known multi-objective evolutionary algorithms. We con-
sider the global simple evolutionary multi-objective optimiser (GSEMO) [14] and
state-of-the-art algorithms: non-dominated sorting genetic algorithm (NSGA-
II) [8] and multi-objective evolutionary algorithm based on decomposition
(MOEA/D) [44]. Each of these algorithms implements a unique evolutionary
approach and allows us to see the effectiveness of the proposed fitness function
under different evolutionary techniques.

The rest of this paper is structured as follows. Section 2 covers the prelim-
inaries, including the formal introduction of the problem and profit estimates
based on concentration bounds. In Section 3, we discuss the multi-objective for-
mulation, including the fitness function and how to use the probability bounds
to estimate the confidence in the solutions’ profit. Afterwards, we introduce the
algorithms and how they address the chance-constrained problem in Section 4.
Finally, we present the experimental settings and detailed analysis of the results
in Section 5, followed by the conclusions of this work in Section 6.

2 Preliminaries

The classical knapsack problem can be defined as follows. The input is given as
n elements 1, . . . , n with associated profits pi and weight wi, 1 ≤ i ≤ n, and
weight bound B. A possible solution x ∈ {0, 1}n is represented as a bitstring of
length n such that xi = 1 holds iff the element i is selected in x. Given the profit
of x as p(x) =

∑n
i=1 pixi and weight w(x) =

∑n
i=1 wixi, the goal in the classical

knapsack problem is to find the solution x∗ that maximises p(x) subject to the
weight constraint w(x) ≤ B, i.e. x∗ = argmaxx∈{0,1}n{p(x) | w(x) ≤ B} holds.

When the profits pi of the knapsack elements are stochastic, the profit of
a solution is uncertain and varies from the expected profit. We use a chance
constraint on the profit to capture this stochastic behaviour. This constraint
ensures that for each feasible solution x, the probability that the profit will drop
below the maximal profit (P ) is at most a small probability 0 < α < 1/2.

We can formally present this problem as follows:

maxP (1)

subject to Pr(p(x) < P ) ≤ α (2)

and w(x) ≤ B (3)

When the profits pi of knapsack elements are stochastic, it is not always
possible to calculate the exact maximal profit of a solution for which it meets
the chance constraint given by Equation 2. Such calculations are often only
possible for special cases, like where the profits are independent and normally
distributed random variables. The most common alternative in literature is to
consider the tail-bound inequalities, which apply under different conditions of
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profit distribution. They can be used to define an upper bound on the probabil-
ity of constraint violation [21] and to formulate the maximal profit of a solution
subject to the chance constraint. In recent literature, Chebyshev inequality and
Hoeffding bound have been considered to derive profit estimates for the knap-
sack problem with stochastic profits [24]. We present below the profit estimates
P̂Cheb(x, α) and P̂Hoef(x, α) from the literature [24], that evaluate the maximal
profit (P ) of a feasible solution x subject to the violation of profit constraint
given by Equation (2) is at most a given α.

Let µ(x) and v(x) be the expectation and variance of profit of x, then based
on Chebyshev inequality [21], P̂Cheb(x, α) gives an estimate for the profit of
solution x with α as the maximum chance of constraint violation as follows:

P̂Cheb(x, α) = µ(x)−
√

(1− α)/α ·
√
v(x). (4)

The Hoeffding bound [21] can be used to formulate a profit estimate if the
profits are independent and distributed uniformly with the same dispersion. Let
the profits of elements be uniformly distributed as pi ∈ [µi−δ, µi+δ] where µi is
the expected profit of element i and δ is the dispersion of profits. Then, we can
estimate the profit of x holding the chance constraint with a given α as follows:

P̂Hoef(x, α) = µ(x)− δ ·
√

ln(1/α) · 2 · |x|1. (5)

3 Methods

One of the main contributions of this work is the introduction of multi-objective
fitness formulations for the profit chance-constrained problem. Here, we intro-
duce the bi-objective fitness function for the problem and how the confidence
levels are associated with the solutions in a population optimised using this
function.

3.1 Fitness Formulations

Now, we introduce the fitness formulation as g(x) = (µ(x), v(x)), which consid-
ers the two objectives based on the expected value and variance of the solution’s
profit. Given that vmax =

∑n
i=1 σ

2
i denotes the maximal variance of the objec-

tives, the objectives µ(x) and v(x) are defined as,

µ(x) =

{∑n
i=1 µixi w(x) ≤ B

B − w(x) otherwise
(6)

v(x) =

{∑n
i=1 σ

2
i xi w(x) ≤ B

vmax + (w(x)−B) otherwise
(7)

These two conflicting objectives reflect the requirement of maximising profit
while minimising the chances of uncertainties. Therefore, we maximise the ob-
jective corresponding to the expected profit (µ(x)) and minimise the objective
corresponding to the variance of profits (v(x)). Given two feasible solutions x and
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y, we say that solution x dominates y (x ⪰ y) iff µ(x) ≥ µ(y)∧ v(x) ≤ v(y) and
we say that x strongly dominates y (x ≻ y) iff x ⪰ y∧µ(x) > µ(y)∧v(x) < v(y).
Furthermore, if a solution exceeds the weight bound (w(x) > B), the value of
each objective is penalised accordingly to capture the deterministic constraint on
weights. This ensures that any feasible solution dominates the infeasible solution
instances.

3.2 Identifying the Best Solution

The fitness function g allows bi-objective optimisation of the problem indepen-
dent of a specific confidence level (α) in the profit. The outcome of an evolution-
ary algorithm that uses g to evaluate the fitness of solutions is a set of solutions
giving a trade-off of the objectives µ and v. Given a particular confidence level
α, we need to calculate the profits of all solutions in the population for that
confidence level and choose the one giving the highest profit value as the best
solution in the population for the given α. We need to use the profit estimates
P̂Cheb and P̂Hoef (given in Equation 4 and 5) to calculate the profit of each so-
lution for the confidence level α. We define the best solution x∗ that gives the
highest profit value for α, as argmaxx∈P P̂Cheb(x, α) or argmaxx∈P P̂Hoef(x, α).

3.3 Level of Confidence in a Solution’s Profit

The fitness function g allows multi-objective optimisers to generate a population,
giving different solutions that maximise profit for specific confidence levels. Given
a population, we can associate a confidence interval for each solution, such that
the solution shows the best profit in the population for any confidence level
in the interval. First, we need to calculate the confidence level threshold for a
pair of solutions, that one solution gives a better profit than the other. Here,
we consider two solutions that do not dominate each other, which means each
solution is better concerning at least one objective, µ or v. Therefore, we consider
non-dominating solution pairs when introducing Theorem 1 and 2.

We obtain the first theorem concerning P̂Cheb profit estimate (Equation 4),
which allows us to define a minimum confidence level that the profit of one
solution becomes better than another given solution.

Theorem 1. Let 0 < α < 1, and x and y be two feasible solutions that satisfy
µ(x) > µ(y) and v(x) > v(y). If α ≥ 1

1+(RCheb(x,y))2
holds such that RCheb(x, y) =

µ(x)−µ(y)√
v(x)−

√
v(y)

then P̂Cheb(x, α) ≥ P̂Cheb(y, α).

Proof. We have,

α ≥ 1/
(
1 +RCheb(x, y)

2
)

⇐⇒ RCheb(x, y)
2 ≥ (1− α)/α
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As we assume 0 < α < 1, µ(x) > µ(y) and v(x) > v(y), we haveRCheb(x, y) >
0 and (1− α) /α > 0. This implies,

RCheb(x, y) ≥
√

(1− α)/α

⇐⇒ µ(x)− µ(y)√
v(x)−

√
v(y)

≥
√
(1− α)/α

⇐⇒ µ(x)−
√
(1− α)/α ·

√
v(x) ≥ µ(y)−

√
(1− α)/α ·

√
v(y)

⇐⇒ P̂Cheb(x, α) ≥ P̂Cheb(y, α)

This completes the proof. ⊓⊔
The above theorem defines a threshold α value for the profit between two

solutions. Let the two feasible solutions x and y satisfy µ(x) > µ(y) and v(x) >
v(y), we define α∗

Cheb(x, y) = 1/
(
1 +RCheb(x, y)

2
)
, that gives

P̂Cheb(x, α) = P̂Cheb(y, α) iff α = α∗
Cheb(x, y)

P̂Cheb(x, α) > P̂Cheb(y, α) iff α > α∗
Cheb(x, y)

P̂Cheb(x, α) < P̂Cheb(y, α) iff α < α∗
Cheb(x, y)

Next, we present a theorem based on P̂Hoef (Equation 5), which defines a
minimum confidence level for which one solution in a pair of non-dominated
solutions gives a better profit estimate. P̂Hoef is applicable when the profits have
the same dispersion, and the variances depend on the number of elements in
the solution. Similarly, the conditions in Theorem 2 are defined based on the
expected profit and number of items.

Theorem 2. Let 0 < α < 1, and x and y be two feasible solutions such
that µ(x) > µ(y) and |x|1 > |y|1, holds. If α ≥ e−RHoef(x,y)

2

holds such that

RHoef(x, y) =
µ(x)−µ(y)

δ
(√

2|x|1−
√

2|y|1
) then P̂Hoef(x, α) ≥ P̂Hoef(y, α).

Proof. We have,

α ≥ e−RHoef(x,y)
2

⇐⇒ RHoef(x, y)
2 ≥ ln (1/α)

As we assume 0 < α < 1, µ(x) > µ(y), |x|1 > |y|1 and δ > 0, we have
RHoef(x, y) > 0 and ln 1

α > 0. This implies,

RHoef(x, y) ≥
√
ln(1/α)

⇐⇒ µ(x)− µ(y)

δ
(√

2|x|1 −
√
2|y|1

) ≥
√
ln(1/α)

⇐⇒ µ(x)− δ
√
ln (1/α) · 2|x|1 ≥ µ(y)− δ

√
ln (1/α) · 2|y|1

⇐⇒ P̂Hoef(x, α) ≥ P̂Hoef(y, α)

This completes the proof. ⊓⊔
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Given two feasible solutions x and y that satisfy µ(x) > µ(y) and |x|1 > |y|1,
we define a threshold value, α∗

Hoef(x, y) = e−RHoef(x,y)
2

that gives,

P̂Hoef(x, α) = P̂Hoef(y, α) iff α = α∗
Hoef(x, y)

P̂Hoef(x, α) > P̂Hoef(y, α) iff α > α∗
Hoef(x, y)

P̂Hoef(x, α) < P̂Hoef(y, α) iff α < α∗
Hoef(x, y).

It is important to note that these thresholds α∗
Cheb(x, y) and α∗

Hoef(x, y) are
applicable under the same conditions that apply to the corresponding to the
profit estimates.

The thresholds of confidence levels for solution pairs allow us to derive the
confidence value interval for which a particular solution gives the best profit
value over other solutions in a population. We define this confidence value range
for solutions in a population optimised using the fitness function g. First, we
define an ordering of the solutions for such a population.

Let the final population has m solutions {x1, . . . xm} sorted by expected
profit such that µ(x1) ≥ µ(x2) ≥ . . . ≥ µ(xm). Since it uses the fitness function
g for optimisation, the above ordering of the solutions satisfies v(x1) ≥ v(x2) ≥
. . . ≥ v(xm). Furthermore, if the knapsack elements have the same dispersion,
this ordering holds |x1|1 ≥ |x2|1 ≥ . . . ≥ |xm|1.

For all solutions pairs xi, xj ∈ {1, . . . ,m}, we calculate the confidence level
using either α∗

Cheb(x
i, xj) or α∗

Hoef(x
i, xj) and for i = 0 and j = 0 we consider

the confidence level as 1. Then, the confidence interval for the profit of solution
xk is given by the following intervals,

m
max
i=k+1

α∗
Cheb(x

i, xk) ≤ α ≤
k−1
min
i=0

α∗
Cheb(x

i, xk) (8)

m
max
i=k+1

α∗
Hoef(x

i, xk) ≤ α ≤
k−1
min
i=0

α∗
Hoef(x

i, xk) (9)

Notably, only some of the solutions in the final population will have a non-
empty interval. A solution with an empty α interval implies that it does not give
the best profit value for any confidence level.

4 Algorithms for the Chance Constrained Knapsack
Problem

This study considers three widely used multi-objective evolutionary algo-
rithms: GSEMO, NSGA-II and MOEA/D. GSEMO is the simplest form of a
multi-objective evolutionary algorithm. It uses dominance between solutions to
select the population for the next generation. The specific steps of GSEMO are
given in Algorithm 1. The initial population contains a solution where each bit
is randomly chosen. In each iteration, a parent solution x is randomly selected
from the population S, and an offspring solution y is generated by flipping each
bit in x with a probability of 1/n. If the existing solutions do not dominate y,
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Algorithm 1 GSEMO

1: Choose x ∈ {0, 1}n uniformly at random ;
2: S ← {x};
3: while stopping criterion not met do
4: choose x ∈ S uniformly at random;
5: y ← flip each bit of x independently with probability of 1

n
;

6: if ( ̸ ∃w ∈ S : w ≻ y) then
7: S ← (S ∪ {y})\{z ∈ S | y ⪰ z} ;
8: end if
9: end while

Algorithm 2 Filtering Method

0: Input: Population P0 = x1, ..., xm ordered by the decreasing order of µ(xi);
1: for k = 1 to m do
2: Calculate α∗(xi, xk) for i ∈ i, . . . ,m using either α∗

Cheb or α∗
Hoef

3: if mink−1
i=0 α∗(xi, xk) ≥ maxm

j=k+1 α
∗(xj , xk) then

4: P1 ∪ {xk}
5: end if
6: end for
7: return P1

it is added to S, and all solutions dominated by y are removed from S. These
iterations repeat until the given number of fitness evaluations are completed.

The final population of GSEMO contains solutions that do not give the best
profit value for any probability value for α. Such solutions do not add value to
the optimisation goal of finding the best solutions with given confidence levels.
For instance, Figure 1 presents final populations from GSEMO using 10 million
fitness evaluations on two problem instances that are used in the experiments.
Only the solutions marked by a blue star have a valid confidence level interval,
and those intervals compose the complete probability range [0,1]. Only these
solutions in the final population will be useful at the end of the optimisation.

We introduce a filtering method to remove the solutions without a valid
α interval from the interim populations. It is regularly applied to the interim
populations of GSEMO after a certain amount of fitness evaluations. Here, the
filtering method uses Equation 8 or 9 to calculate the α intervals of the solu-
tions. As the filtering method keeps only the solutions with valid α intervals, it
increases the chances that the new solutions are improved upon these solutions
and eventually improves the quality of the final population.

The steps of the filtering method are given in Algorithm 2. It takes the pop-
ulation P0 as the input, which can be either the final population or an interim
population created during the execution of GSEMO. Population P0 needs solu-
tions in the decreasing order of the expected profit value. For each solution xk,
we consider its the confidence interval (Equation 8 and 9) and add xk to the
new population P1 iff this interval is non-empty.
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uncorr-100 strong-100

Fig. 1. Trade-offs of objectives in the final populations from GSEMO.

NSGA-II is a prominent multi-objective evolutionary algorithm focusing on
diversity by finding near-optimal solutions [8]. If we consider one iteration of
the evolutionary process of NSGA-II, it creates an offspring population with an
equal number of solutions as the parent population. NSGA-II generate offspring
solutions by selecting two solutions using binary tournament selection and then
applying uniform crossover and bit-flip mutation (with a probability of 1/n).
Next, parent and offspring populations are considered together and divided into
non-dominating solution fronts. The solutions for the new population are se-
lected from the lowest to higher-ranking fronts. If the new population does not
have space to fit a front completely, the remainder of the solutions are selected
considering the crowding distance. Considering crowding distance allows diverse
solutions to be selected for the population. The NSGA-II stops when the required
number of fitness evaluations are completed.

MOEA/D optimises a multi-objective problem by decomposing it into mul-
tiple single-objective subproblems and solving them collaboratively. We set the
population size m equal to the number of knapsack elements (m = n). Then,
we define a set of even spread weight vectors λ1 . . . λm. Each weight vector is
of length two, representing the decomposition of the problem into the two sub-
problems concerning two objectives. The distance between the weight vectors
determines the neighbourhood of a solution. We use the following aggregation
function to evaluate solutions against each weight vector λj and reference point
z,

gte(x|λj , z) = max{λj
1|µ(x)− z1|, λj

2|v(x)− z2|}

The reference point z is determined by the best objective values (µ and v)
given by different solutions in the current population. This point helps to guide
the optimisation process [44]. We maintain configurations for MOEA/D similar
to other algorithms we study in this paper. We initialise the population with
randomly generated solutions. To generate offspring solutions, we use uniform
crossover and bit-flip mutation (with a probability of 1/n). Furthermore, we run
MOEA/D until it completes the given number of fitness evaluations.
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Table 1. Experimental Results using Chebyshev’s inequality

GSEMO (1) GSEMO+Filtering (2) NSGA-II (3) MOEA/D (4)
α δ mean std stat mean std stat mean std stat mean std stat

uncorr-100 (B = 2407)

0.1 25 11029.6826 76.32 2−3+4+ 11085.6072 0.00 1+3+4+ 11030.2076 66.36 1−2− 10989.8740 101.49 1−2−

50 10862.4750 61.41 3+4+ 10907.0000 0.00 3+4+ 10833.2699 64.13 1−2− 10708.3350 137.02 1−2−

0.01 25 10620.5264 71.04 2−3+4+ 10672.3379 0.00 1+3+4+ 10621.9585 60.35 1−2− 10583.7093 94.69 1−2−

50 10044.4941 49.77 3+4+ 10079.9649 0.00 3+4+ 10020.0651 53.33 1−2− 9910.1844 124.55 1−2−

0.001 25 9345.9245 55.26 2−3+4+ 9384.5150 0.00 1+3+4+ 9349.7796 42.03 1−2− 9318.3976 74.42 1−2−

50 7495.5153 17.96 3+4+ 7502.7716 0.00 3+4+ 7488.2131 23.20 1−2− 7429.7797 83.79 1−2−

strong-100 (B = 4187)

0.1 25 8507.0584 130.14 2−4+ 8606.3413 87.30 1+4+ 8582.6920 85.10 4+ 8402.1225 91.54 1−2−3−

50 8368.0306 94.01 4+ 8422.6322 67.23 4+ 8379.6138 85.94 4+ 8012.8210 220.02 1−2−3−

0.01 25 8083.9678 106.20 2−4+ 8170.3360 69.58 1+4+ 8144.0469 68.35 4+ 7991.9311 75.75 1−2−3−

50 7502.9361 59.85 2−4+ 7549.4937 41.27 1+3+4+ 7510.8080 54.00 2−4+ 7221.6377 175.65 1−2−3−

0.001 25 6770.3193 41.13 2−4+ 6814.1197 20.77 1+3+4+ 6788.1211 28.24 2−4+ 6720.6049 47.05 1−2−3−

50 4957.5449 36.78 2+4+ 4894.0039 60.21 1−3− 4945.4605 47.34 2+4+ 4847.9857 65.58 1−3−

uncorr-300 (B = 6853)

0.1 25 33935.4067 205.62 2− 34286.1802 147.53 1+3+4+ 33998.1173 348.47 2− 33804.0944 354.70 2−

50 33571.9980 260.86 2−4+ 33967.3813 159.24 1+3+4+ 33713.5615 226.47 2−4+ 32117.5366 642.48 1−2−3−

0.01 25 33237.8865 200.46 2− 33577.9421 141.75 1+3+4+ 33295.2934 339.93 2− 33108.5096 343.50 2−

50 32180.0106 245.88 2−4+ 32551.5342 144.90 1+3+4+ 32311.5529 213.24 2−4+ 30782.0871 614.16 1−2−3−

0.001 25 31066.6084 186.36 2− 31372.5619 122.86 1+3+4+ 31106.1048 313.81 2− 30942.2692 309.35 2−

50 27843.2948 203.73 2−4+ 28141.7188 105.94 1+3+4+ 27950.6523 176.37 2−4+ 26624.6825 533.58 1−2−3−

strong-300 (B = 13821)

0.1 25 23809.6581 433.25 2−3− 24369.6211 216.96 1+4+ 24325.6409 294.11 1+4+ 23330.6120 412.53 2−3−

50 23594.2993 335.65 2−3−4+ 24135.2769 220.45 1+4+ 24003.0894 230.30 1+4+ 22314.8864 685.49 1−2−3−

0.01 25 23176.9548 406.27 2−3−4+ 23703.0401 197.34 1+4+ 23648.8178 262.07 1+4+ 22734.4253 387.17 1−2−3−

50 22322.7651 282.01 2−3−4+ 22797.4912 177.42 1+4+ 22656.7197 185.32 1+4+ 21176.4653 610.85 1−2−3−

0.001 25 21208.9163 322.79 2−3−4+ 21626.7053 138.64 1+4+ 21539.7126 166.67 1+4+ 20879.1124 311.52 1−2−3−

50 18388.5805 159.45 2−4+ 18647.0894 70.19 1+3+4+ 18495.6543 100.69 2−4+ 17655.0770 402.61 1−2−3−

uncorr-500 (B = 11243)

0.1 25 57076.8361 748.93 2−3− 58431.4168 311.58 1+3+4+ 57912.4733 648.06 1+2−4+ 57004.9636 781.84 2−3−

50 56690.8982 859.24 2−3−4+ 58120.8249 314.31 1+4+ 57547.3013 565.83 1+4+ 52794.2727 1321.93 1−2−3−

0.01 25 56197.0249 738.34 2−3− 57528.4355 304.43 1+3+4+ 57017.0360 635.76 1+2−4+ 56127.1101 769.25 2−3−

50 54931.1821 829.59 2−3−4+ 56312.8274 298.86 1+4+ 55758.1900 544.95 1+4+ 51138.2861 1284.89 1−2−3−

0.001 25 53456.0312 705.50 2−3− 54715.2628 282.53 1+3+4+ 54227.7939 597.99 1+2−4+ 53392.0959 729.83 2−3−

50 49451.2762 737.56 2−3−4+ 50683.8705 252.35 1+3+4+ 50185.9102 481.83 1+2−4+ 45981.8039 1169.98 1−2−3−

strong-500 (B = 22223)

0.1 25 38822.1695 692.12 2−3− 40391.0362 449.82 1+4+ 40108.0207 492.45 1+4+ 38258.0920 779.48 2−3−

50 38444.0651 620.50 2−3−4+ 40078.0983 348.70 1+4+ 39749.0757 424.25 1+4+ 36447.2634 645.37 1−2−3−

0.01 25 38026.4154 657.36 2−3− 39525.2027 425.96 1+4+ 39240.9035 453.67 1+4+ 37489.6489 742.56 2−3−

50 36864.1232 555.40 2−3−4+ 38332.2087 312.35 1+4+ 38000.8944 358.93 1+4+ 34915.4010 565.36 1−2−3−

0.001 25 35546.6995 551.64 2−3− 36827.5418 352.78 1+4+ 36538.8560 340.16 1+4+ 35095.0390 629.61 2−3−

50 31947.2385 360.70 2−3−4+ 32899.2694 206.74 1+4+ 32593.2603 203.93 1+4+ 30253.8147 356.94 1−2−3−

5 Experiments

In this work, we evaluate multi-objective evolutionary algorithms with our new
fitness function, using extensive experimentation on several benchmarks under
different chance constraint settings.

5.1 Experimental Settings

This work uses the six benchmarks in recent literature for the knapsack prob-
lem with stochastic profits [24]. These instances have different problem sizes
n ∈ {100, 300, 500} and types. This includes instances with bounded and strongly
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Table 2. Experimental Results using Hoeffding bound

GSEMO (1) GSEMO+Filtering (2) NSGA-II (3) MOEA/D (4)
α δ mean std stat mean std stat mean std stat mean std stat

uncorr-100 (B = 2407)

0.1 25 10987.3004 75.77 2− 11042.7989 0.00 1+3+4+ 10988.0942 65.74 2− 10947.9756 100.78 2−

50 10778.0078 60.20 4+ 10821.5978 0.00 3+4+ 10749.3829 62.98 2−4+ 10626.0009 135.69 1−2−3−

0.01 25 10896.5878 74.59 2− 10951.1744 0.00 1+3+4+ 10897.6552 64.40 2− 10857.9983 99.27 2−

50 10596.7649 57.61 4+ 10638.3488 0.00 3+4+ 10569.2343 60.55 2−4+ 10449.1872 132.88 1−2−3−

0.001 25 10826.9815 73.69 2− 10880.8684 0.00 1+3+4+ 10828.2588 63.38 2− 10788.9563 98.11 2−

50 10457.6924 55.62 4+ 10497.7369 0.00 3+4+ 10431.0015 58.70 2−4+ 10313.5134 130.75 1−2−3−

strong-100 (B = 4187)

0.1 25 8463.1467 127.62 2−4+ 8561.1573 85.45 1+4+ 8537.4284 83.34 4+ 8359.7780 89.80 1−2−3−

50 8278.6327 90.26 4+ 8332.4692 64.48 4+ 8289.8107 82.34 4+ 7931.1766 215.29 1−2−3−

0.01 25 8369.3409 122.27 2−4+ 8464.4621 81.51 1+4+ 8440.2243 79.58 4+ 8268.8904 86.13 1−2−3−

50 8086.8101 82.32 2−4+ 8139.0049 58.62 1+4+ 8097.1159 74.76 4+ 7755.8441 205.27 1−2−3−

0.001 25 8297.3868 118.20 2−4+ 8390.2653 78.50 1+4+ 8365.6369 76.71 4+ 8199.1499 83.37 1−2−3−

50 7939.6195 76.38 2−4+ 7990.5545 54.16 1+4+ 7949.3455 69.17 4+ 7621.3067 197.74 1−2−3−

uncorr-300 (B = 6853)

0.1 25 33863.1544 205.08 2− 34212.8177 146.92 1+3+4+ 33925.6167 347.58 2− 33732.3132 353.55 2−

50 33428.2570 259.29 2−4+ 33821.1723 157.73 1+3+4+ 33568.9013 225.09 2−4+ 31979.7768 639.54 1−2−3−

0.01 25 33708.5096 203.93 2− 34055.7967 145.63 1+3+4+ 33769.9207 345.68 2− 33578.1622 351.09 2−

50 33119.8295 255.94 2−4+ 33507.4493 154.52 1+3+4+ 33258.2607 222.13 2−4+ 31683.9358 633.24 1−2−3−

0.001 25 33589.8465 203.05 2− 33935.3102 144.65 1+3+4+ 33650.4510 344.23 2− 33459.8965 349.19 2−

50 32883.1649 253.39 2−4+ 33266.7212 152.07 1+3+4+ 33019.9624 219.86 2−4+ 31456.9291 628.42 1−2−3−

strong-300 (B = 13821)

0.1 25 23744.0892 430.47 2−3− 24300.5479 214.96 1+4+ 24255.8224 290.79 1+4+ 23269.1109 409.90 2−3−

50 23462.9510 329.95 2−3−4+ 23997.1125 215.94 1+4+ 23864.2031 225.53 1+4+ 22197.4512 677.59 1−2−3−

0.01 25 23603.7492 424.55 2−3− 24152.7138 210.67 1+4+ 24105.8864 283.66 1+4+ 23137.0365 404.26 2−3−

50 23181.2241 317.94 2−3−4+ 23700.6927 206.31 1+4+ 23565.9430 215.36 1+4+ 21945.2578 660.78 1−2−3−

0.001 25 23496.0973 420.02 2−3−4+ 24039.3181 207.29 1+4+ 23990.8364 278.21 1+4+ 23035.6923 399.94 1−2−3−

50 22965.0474 308.79 2−3−4+ 23473.2418 198.96 1+4+ 23337.0800 207.65 1+4+ 21751.7430 648.02 1−2−3−

uncorr-500 (B = 11243)

0.1 25 56985.6975 747.83 2−3− 58337.8820 310.84 1+3+4+ 57820.1034 646.79 1+2−4+ 56914.4076 780.54 2−3−

50 56509.1689 856.18 2−3−4+ 57934.0703 312.74 1+4+ 57362.7101 563.66 1+4+ 52623.4475 1318.10 1−2−3−

0.01 25 56790.6294 745.47 2−3− 58137.6851 309.25 1+3+4+ 57621.7379 644.06 1+2−4+ 56719.9375 777.75 2−3−

50 56119.2292 849.61 2−3−4+ 57533.3999 309.31 1+4+ 56966.3749 559.02 1+4+ 52256.5983 1309.89 1−2−3−

0.001 25 56640.9485 743.66 2−3− 57984.0686 308.03 1+3+4+ 57469.5268 641.97 1+2−4+ 56570.7153 775.61 2−3−

50 55820.0179 844.58 2−3−4+ 57226.0199 306.67 1+4+ 56662.2594 555.48 1+4+ 51975.1049 1303.59 1−2−3−

strong-500 (B = 22223)

0.1 25 38739.7417 688.50 2−3− 40301.3374 447.34 1+4+ 40018.5580 488.42 1+4+ 38178.8224 775.66 2−3−

50 38280.9153 613.70 2−3−4+ 39897.8123 344.90 1+4+ 39568.7401 417.34 1+4+ 36288.1082 636.21 1−2−3−

0.01 25 38563.3178 680.78 2−3− 40109.3511 442.05 1+4+ 39826.4698 479.77 1+4+ 38008.5898 767.47 2−3−

50 37930.8422 599.17 2−3−4+ 39510.9695 336.77 1+4+ 39181.4670 402.63 1+4+ 35947.7389 616.91 1−2−3−

0.001 25 38427.9430 674.86 2−3− 39962.0501 437.99 1+4+ 39679.0754 473.17 1+4+ 37877.9658 761.19 2−3−

50 37662.2216 588.08 2−3−4+ 39214.1346 330.57 1+4+ 38884.3020 391.45 1+4+ 35686.9510 602.80 1−2−3−

correlated profit and weight values (denoted as strong-100, strong-300 and
strong-500) and instances with uncorrelated profit and weight values (denoted
as uncorr-100, uncorr-300 and uncorr-500). These problem instances are derived
from benchmarks for the deterministic knapsack problem. When adapting them
to have stochastic profits, we consider that profits are uniformly distributed as
pi ∈ [µi − δ, µi + δ] where the profit values in the benchmarks give the expected
profit µi. We consider each benchmark under two uncertainty levels, setting the
dispersion of the profits as δ ∈ {25, 50}.

We evaluate the performance of algorithms with different objective formu-
lations by considering the results they generate for each benchmark setting for
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several α values, α ∈ {0.1, 0.01, 0.001}. Each algorithm uses 10 million fitness
evaluations in a single execution, which allows them to evaluate the same number
of solutions despite the differences in the number of iterations.

Since the fitness function allows the multi-objective optimisation algorithms
to run independently of specific α values, after one execution, we can get the
maximal profit for different α values. We present the results considering the
summary of 30 independent runs of each algorithm.

We test for the statistical significance validity of the results using the Kruskal-
Wallis test with 95% confidence with the Bonferroni post-hoc statistical proce-
dure. Let X be the number given for the methods in the table header; the
statistical comparison X+ or X− indicates that the method in the column out-
performs X or vice versa. If there is no significant difference between the two
methods, respective numbers do not appear. The maximal profits from each
method are given as mean, std and stat, representing the mean, standard devi-
ation and statistical comparison with results from other methods, respectively.
Furthermore, each row indicates the highest mean maximal profit in bold text,
comparing the mean values given by the four methods.

5.2 Experimental Results

First, we consider bi-objective optimisation of the problem instances where prof-
its have the same dispersion. Table 1 presents the P̂Cheb results for δ = 25, 50.
When considering the results from the prevailing algorithms: GSEMO, NSGA-II
and MOEA/D, we can see different performances based on the problem size. For
problem instances with 100 items (i.e.: uncorr-100 and strong-100), GSEMO pro-
duces better results over MOEA/D for all settings and some cases of NSGA-II.
However, when it comes to instances with 300 or more items, NSGA-II gives the
best results compared to GSEMO and MOEA/D for overall settings. However,
when considering the results when using the proposed Filtering method with
GSEMO, we can see those results are significant across most of the settings. The
statistical comparisons also confirm that GSEMO with the Filtering method
inevitably produces better results than running the standard GSEMO alone.
Moreover, we can see that GSEMO+Filtering results are superior to MOEA/D
results in all the settings.

GSEMO+Filtering and NSGA-II can be identified as the two best al-
gorithms according to P̂Cheb results in Table 1. While the mean values of
GSEMO+Filtering are higher than the mean values of NSGA-II, the statis-
tical comparison between the two methods gives more insights. We can see
that results for the strongly correlated and bounded instances (strong-100, -
300 and -500) from both instances do not show significant differences. However,
for uncorrelated instances (with 100, 300 and 500 elements), we can see that
GSEMO+Filtering is capable of producing better results that show significantly
higher than NSGA-II results according to statistical tests.

The experimental results concerning P̂Hoef are given in Table 1.The difference
between P̂Cheb and P̂Hoef results is, P̂Hoef gives higher results for α = 0.001 and
vice versa for α = 0.1 and 0.01. GSEMO produces better results than NSGA-II
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and MOEA/D in a lesser number of settings in P̂Hoef results than it does in
P̂Cheb results. Statistical significance shows that GSEMO+Filtering results are
not inferior to other methods across all settings. NSGA-II produce results that
are similar to GSEMO+Filtering results for strong-100, -300 and -500 instances.
However, for uncorrelated problem instances, GSEMO+Filtering gives better
results over NSGA-II, especially when δ = 25. Moreover, similar to results in
Table 1, the highest mean value and lowest standard deviation in P̂Hoef results
are demonstrated by GSEMO+Filtering.

When Filtering is applied in an interim population, the solutions with valid
confidence intervals remain, therefore the population do not lose its quality.
Then, the optimisation process improves upon these solutions without the nega-
tive impacts of having a larger population with a similar quality. Among the re-
sults, both GSEMO+Filtering and NSGA-II show great results. However, consid-
ering mean, standard deviation and statistical comparisons, GSEMO+Filtering
is the most promising approach to solve the types of problem instances focused
in this study.

6 Conclusions

We examined popular multi-objective evolutionary approaches to solve the profit
chance-constrained knapsack problem. Thereby, we introduced a bi-objective fit-
ness evaluation for evolutionary algorithms to address this problem. This fitness
function evaluates the solutions irrespective of the required confidence level in
the profit. Therefore, the outcome of evolutionary methods gives us a popula-
tion that includes solutions providing the best profit value for different confidence
levels. Thus, our approach only requires us to decide on the required confidence
levels after running algorithms. It also eliminates the requirement of running
algorithms multiple times to obtain results for different confidence levels.

As a key algorithmic component, we introduced a filtering method to GSEMO
to filter the population at regular intervals of fitness evaluations. It keeps only
the solutions with a valid α interval in the interim populations, enabling the new
offspring solutions in the next generations to improve upon these solutions. The
experimental investigations show that the results from the filtering method inte-
grated with GSEMO are often better than those obtained by standard GSEMO,
NSGA-II and MOEA/D. The final population produced by our algorithms al-
low us to make informed decisions and examine solution quality concerning the
expected profit versus the associated risks with their implementation.
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