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Abstract. Linear functions play a key role in the runtime analysis of
evolutionary algorithms and studies have provided a wide range of new
insights and techniques for analyzing evolutionary computation meth-
ods. Motivated by studies on separable functions and the optimization
behaviour of evolutionary algorithms as well as objective functions from
the area of chance constrained optimization, we study the class of objec-
tive functions that are weighted sums of two transformed linear functions.
Our results show that the (1+1) EA, with a mutation rate depending
on the number of overlapping bits of the functions, obtains an optimal
solution for these functions in expected time O(n logn), thereby gener-
alizing a well-known result for linear functions to a much wider range of
problems.

1 Introduction

Runtime analysis is one of the major theoretical tools to provide rigorous in-
sights into the working behavior of evolutionary algorithms and other random-
ized search heuristics [27,20,12]. The class of pseudo-Boolean linear functions
plays a key role in the area of runtime analysis. Starting with the simplest linear
functions called OneMax for which the first runtime analysis has been carried
out, a wide range of results have been obtained for the general class of linear
functions. This includes the study of Droste, Jansen and Wegener [14] who were
the first to obtain an upper bound of O(n log n) for the (1+1) EA on the general
class of pseudo-Boolean linear functions. This groundbreaking result has been
based on a very lengthy proof and subsequently a wide range of improvements
have been made in terms of the development of new techniques for the analysis
as well as the precision of the results. The proof has been simplified signifi-
cantly using the analytic framework of drift analysis [15] by He and Yao [16].
Jägersküpper [18,19] provided the first analysis of the leading coefficient in the
bound O(n log n) on the the optimisation time for the problem. Furthermore,
advances to simplify proofs and getting precise results have been made using the
framework of multiplicative drift [10]. Doerr, Johannsen and Winzen improved
the upper bound result to (1.39 + o(1))en lnn [9]. Finally, Witt [28] improved
this bound to en lnn + O(n) by using adaptive drift analysis [6,7]. We expand
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such investigations for the (1+1) EA into a wider class of problems that are
modelled by two transformed linear functions. This includes classes of separable
functions and chance constrained optimization problems.

1.1 Separable Functions

As an example, consider the separable objective function

f(x) =

n/2∑
i=1

wixi

2

+

√√√√ n∑
i=n/2+1

wixi (1)

where wi ∈ Z+, 1 ≤ i ≤ n, and x = (x1, . . . , xn) ∈ {0, 1}n. The function f
consists of two objective functions

f1(x1, . . . , xn/2) =

n/2∑
i=1

wixi

2

and f2(xn/2+1, . . . , xn) =

√√√√ n∑
i=n/2+1

wixi.

Here f1 is the square of a function linear in the first half of variables and f2
is the square root of a linear function in the remaining variables. Some investiga-
tions on how evolutionary algorithms optimize separable fitness functions have
been carried out in [13]. It has been shown that if the different functions only
have a small range, then the (1+1) EA optimizes separable functions efficiently if
the different separable functions themselves are easy to be optimized. However,
in our example above the two separable functions may take on exponentially
many values but both functions on their own are optimized by the (1+1) EA
in time O(n log n) using the results for the (1+1) EA on linear functions. This
holds as the transformation applying the square in f1 or the square root in f2
does not change the behavior of the (1+1) EA. The questions arises whether the
O(n log n) bounds also holds for the function f which combines f1 and f2. We
investigate this setting of separable functions for the more general case where
the objective function is given as a weighted sum of two separable transformed
linear functions. For technical reasons, we consider a (1+1) EA with potentially
reduced mutation probability depending on the number of overlapping bits of
the two functions.

1.2 Chance Constrained Problems

Another motivation for our work comes from problems from the area of chance
constrained optimization [2] and considers the case where the two functions are
overlapping or are even defined on the same set of variables. Recently evolution-
ary algorithms have been used for chance constrained problems which motivates
our investigations. In a chance constrained setting the input involves stochastic
components and the goal is to optimize a given objective function under the con-
dition that constraints are met with high probability or that function values are
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guaranteed with a high probability. Evolutionary algorithms have been designed
for the chance constrained knapsack problem [29,30,1], chance constrained stock
pile blending problems [31], and chance constrained submodular functions [24].

Runtime analysis results have been obtained for restricted settings of the
knapsack problem [26,32] where the weights are stochastic and the constraint
bound has to be met with high probability. The analysis for the case of stochas-
tic constraints and the class of submodular function [5] and the knapsack prob-
lem [29] already reveal constraint functions that are a linear combination of the
expected weight and the standard deviation of a solution when using Cheby-
shev’s inequality for constraint evaluation. Such functions are the subject of our
investigations.

To make the type of problems that we are interested in clear, we state the
following problem. Given a set of m items E = {e1, . . . , em} with random weights
wi, 1 ≤ i ≤ m. We assume that the weights are independent and each wi is
distributed according to a normal distribution N(µi, σ

2
i ), 1 ≤ i ≤ m. We assume

µi ≥ 0 and σi ≥ 0, 1 ≤ i ≤ m. Our goal is to

minW subject to Pr(w(x) ≤W ) ≥ α (2)

where w(x) =
∑n
i=1 wixi, x ∈ {0, 1}m, and α ∈ ]0, 1[. The problem given in

Equation (2) is usually considered under additional constraints, e.g. spanning
tree constraints in [17], which we do not consider in this paper.

According to [17] the problem given in Equation 2 is equivalent to minimizing
the fitness function

g(x) =

m∑
i=1

µixi +Kα

(
m∑
i=1

σ2
i xi

)1/2

(3)

where Kα is the α-fractile point of the standard normal distribution.
The fitness function g is a linear combination of the expected value of a

solution which is a linear function and the square root of its variance where
the variance is again a linear function. In order to understand the behaviour
of evolutionary algorithms on fitness functions obtained for chance constrained
optimization problems, our runtime analysis for the (1+1) EA covers such fitness
functions if we assume the reduced mutation probability mentioned above.

1.3 Transformed Linear Functions

In our investigations, we consider the much wider class of problems where a
given fitness function is obtained by the linear combination of two transformed
linear functions. The transformations applied to the linear functions only have
to be monotonically increasing in terms of the functions values of the linear
functions. This includes the setting of separable functions and chance constrained
problems described previously. Furthermore, we do not require that the two
linear functions are defined on the same number of bits.

The main result of our paper is an O(n log n) upper bound for the (1+1) EA
with mutation probability 1/(n+s) on the class of sums of two transformed linear
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functions where s is the number of bits for which the two linear functions overlap.
This directly transfers to the separable problem type given in Equation 1 with
standard bit mutation probability 1/n and to the chance constraint formulation
given in Equation 3 when using mutation probability 1/(2n).

The outline of the paper is as follows. In Section 2, we formally introduce
the problem formulation for which we analyze the (1+1) EA in this paper. We
discuss the exclusion of negative weights in our setup in Section 3 and present
the O(n log n) bound in Section 4. Finally, we finish with some discussion and
conclusions.

2 Preliminaries

The (1+1) EA shown in Algorithm 1 (generalized with a parameter s discussed
below; classically s = 0 is assumed) is a simple evolutionary algorithm using
independent bit flips and elitist selection. It is very well studied in the theory of
evolutionary computation [3] and serves as a stepping stone towards the analysis
of more complicated evolutionary algorithms. As common, in the area of runtime
analysis, we measure the run time of the (1+1) EA by the number of iterations of
the repeat loop. The optimization time refers to the number of fitness evaluations
until an optimal solution has been obtained for the first time, and the expected
optimization time refers to the expectation of this value.

2.1 Sums of Two Transformed Linear Functions without Constraints

We will study the (1+1) EA on the scenario given in (1) and (3), assuming
no additional constraints. In fact, we will generalize the scenario to the sum
of two transformed pseudo-Boolean linear functions which may be (partially)
overlapping. Note, that in (1) there is no overlap on the domains of the two linear
functions and the transformations are the square and the square root, whereas
in (3) there is complete overlap on the domains and the transformations are the
identity function and the square root.

The crucial observation in our analysis is that the scenario considered here
extends the linear function problem [28] that is heavily investigated in the theory
of evolutionary algorithms. Despite the simple structure of the problem, there is
no clear fitness-distance correlation in the linear function problem, which makes
the analysis of the global search operator of the (1+1) EA difficult. If only local
mutations are used, leading to the well known randomized local search (RLS)
algorithm [4], then both the linear function problem and the generalized scenario
considered here are very easy to analyze using standard coupon collector argu-
ments [23], leading to O(n log n) expected optimization time. For the globally
searching (1+1) EA, we will obtain the same bound, proving that the problem is
easy to solve for it; however, we need advanced drift analysis methods to prove
this.

We note that the class of functions we consider falls within the more general
class of so-called monotone functions. Such functions can be difficult to optimize
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Algorithm 1: (1+1) EA for minimization of a pseudo-Boolean function
f : {0, 1}n−s → R, where s ∈ {0, . . . , n/2}
1 Choose x ∈ {0, 1}n−s uniformly at random;
2 repeat
3 Create y by flipping each bit xi of x with probability p = 1

n
;

4 if f(y) ≤ f(x) then
5 x← y;

6 until stop;

with a (1+1) EA using mutation probabilities larger than 1/n [8]; however, it
is also known that the standard (1+1) EA with mutation probability 1/n as
considered here optimizes all monotone functions in expected time O(n log2 n)
[22]. Our bound is by an asymptotic factor of log n better if s = o(n). However, it
should be noted that for s = Ω(n), the bound O(n log n) already follows directly
from [8] since it corresponds to a mutation probability of c/n for a constant c < 1.
In fact, the fitness function g(x) arising from the chance-constrained scenario
presented in (3) above would fall into the case s = n/2.

Set-up. We will investigate a general optimization scenario involving two lin-
ear pseudo-Boolean functions in an unconstrained search space. The objective
function is an arbitrarily weighted sum of monotone transformations of two lin-
ear functions defined on (possibly overlapping) subspaces of {0, 1}n−s for some
s ≥ 0, where s denotes the number of shared bits. Note that the introduction of
this paper mentions a search space of dimension n and a mutation probability
of p = 1/(n+ s) for the (1+1) EA. While the former perspective is more natural
to present, from now on, we consider the asymptotically equivalent setting of
search space dimension n − s and mutation probability p = 1/n, which eases
notation in the upcoming calculations.

Let α be a constant such that 1/2 ≤ α ≤ ln(2 − ε) ≈ 0.693 − ε/2 for some
constant ε > 0 and assume that αn is an integer. We allow the subfunctions to
depend on a number of bits in [(1 − α)n, αn], including the balanced case that
both subfunctions depend on exactly n/2 bits. Formally, we have

– linear functions

`1 : {0, 1}αn → R and `2 : {0, 1}(1−α)n → R,

where `1(y1, . . . , yαn) =
∑αn
i=1 w

(1)
i yi, and similarly `2(z1, . . . , z(1−α)n) =∑(1−α)n

i=1 w
(2)
i zi with non-negative weights w

(1)
i and w

(2)
i .

– B1 ⊆ {1, . . . , n} and B2 ⊆ {1, . . . , n}, denoting the bit positions that `1 resp.
`2 are defined on in the actual objective function f : {0, 1}n−s → R.

– The overlap count s := |B1∩B2|, where s ≤ min{(1−α)n, αn} = (1−α)n ≤
n/2

– the linear functions with extended domain `∗1(x1, . . . , xn−s) =∑
i∈B1

w
(1)

r(1)(i)
xi where r(1)(i) is the rank of i in B1 (with the
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smallest number receiving rank number 1); and analogously

`∗2(x1, . . . , xn−s) =
∑
i∈B2

w
(2)

r(2)(i)
xi; note that `∗1 and `∗2 only depend

essentially on αn and (1− α)n bits, respectively.
– monotone increasing functions h1 : R→ R and h2 : R→ R.

Then the objective function f : {0, 1}n−s → R, which w. l. o. g. is to be mini-
mized, is given by

f(x1, . . . , xn−s) = h1(`∗1(x1, . . . , xn−s)) + h2(`∗2(x1, . . . , xn−s)).

For s = 0, h1 being the square function, and h2 being the square root func-
tion, this matches the setting of separable functions given in Equation 1. This
set-up also includes the case that

f(x1, . . . , xm) = `1(x1, . . . , xm) +R
√
`2(x1, . . . , xm)

for two m-dimensional, completely overlapping linear functions `1 and `2 and an
arbitrary factor R ≥ 0, as motivated and given in Equation 3. Note that this
matches our set-up with n = 2m and s = n.

For our analysis we will make use of the multiplicative drift theorem (Theo-
rem 1) that has been introduced in [11] and was enhanced with tail bounds by
[7]. We use a slightly generalised presentation that can be found in [21].

Theorem 1 (Multiplicative Drift, cf. [11,7,21]). Let (Xt)t≥0, be a stochas-
tic process, adapted to a filtration Ft, over some state space S ⊆ {0}∪[smin, smax],
where 0 ∈ S and smin > 0. Suppose that there exists a δ > 0 such that for all
t ≥ 0

E(Xt −Xt+1 | Ft) ≥ δXt.

Then it holds for the first hitting time T := min{t | Xt = 0} that

E(T | F0) ≤ ln(X0/smin) + 1

δ
.

Moreover, Pr(T > (ln(X0/smin) + r)/δ) ≤ e−r for any r > 0.

3 Negative Weights Allow for Multimodal Functions

We will now justify that the inclusion of negative weights in the underlying linear
functions, along with overlapping domains, can lead to multimodal problems that
cannot be optimized in expected time O(n log n) any longer. In the following
example, the two linear functions depend essentially on all n bits.

Let

f(x1, . . . , xn) =

(
x1
2

+

n∑
i=2

xi

)
︸ ︷︷ ︸

h1(`1(x))

+

(∑n
i=1(1− xi)
n− 0.5

)n2

︸ ︷︷ ︸
h2(`2(x))
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Basically, the first linear function `1(x) = x1/2+
∑n
i=2 xi is a OneMax function

except for the first bit that has a smaller weight than the rest. The second linear
function `2(x) is linear in the number of zeros, i. e., corresponds to the ZeroMax
function that is equivalent to OneMax for the (1+1) EA due to symmetry
reasons. The transformation h2 that is applied to ZeroMax divides the number
of zero-bits by n−0.5 and raises the result to a large power. Essentially, the value
of h2(z) is eΘ(n) if z = n and e−Θ(n) otherwise. This puts a constraint on the
number of zero-bits. If |x|1 ≥ 1, then f is monotone increasing in `1, i. e., search
points decreasing the `1-value also decrease the f -value. However, the all-zeros
string has the largest f -value, i. e., is worst.

We can now see that all search points having one exactly one one-bit at one of
the positions 2, . . . , n are local optima. To create the global optimum from such
a point, two bits have to flip simultaneously, leading to Ω(n2) expected time to
reach the optimum from the point. The situation is similar to the optimization
of linear function under uniform constraints [25].

4 Upper Bound

The following theorem is the main result of this paper, showing that the (1+1) EA
can optimize the generalized class of functions in asymptotically the same time
as an ordinary linear function.

Theorem 2. Let f be the sum of two transformed linear functions as defined in
the set-up in Section 2.1. Then the expected optimization time of the (1+1) EA
on f is O(n log n).

The proof of Theorem 2 uses drift analysis with a carefully defined potential
function, explained in the following.

Potential function. We build upon the approach from [28] to construct a po-
tential function g(1) for `1 and a potential function g(2) for `2, resulting in a
combined potential function φ(x) = g(1)(x) + g(2)(x). The individual potential
functions are obtained in the same way as if the (1+1) EA with mutation proba-
bility 1/n was only optimizing `1 and `2, respectively, on an αn-dimensional and
(1 − α)n-dimensional search space, respectively. The key idea is that accepted
steps of the (1+1) EA on g must improve at least one of the two functions `1
and `2. This event leads to a high enough drift of the respective potential func-
tion that is still positive after pessimistically incorporating the potential loss due
to flipping zero-bits that only the other linear function depends on.

We proceed with the definition of the potential functions g(1) and g(2) (sim-
ilarly to Section 5 in [28]). For the two underlying linear functions we assume
their arguments are reordered according to increasing weights. Note we cannot
necessarily sort the set of all indices 1, . . . , n− s of the function f so that both
underlying linear functions have increasing coefficients; however, as we analyze
the underlying functions separately, we can each time use the required sorting
in these separate considerations.
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Definition 1. Given a linear function
∑k
i=1 wixi, where w1 ≤ · · · ≤ wk, we

define the potential function g(x1, . . . , xk) =
∑k
i=1 gixi by

gi =

(
1 +

1

n

)min{j≤i | wj=wi}−1

.

In our scenario, g(1)(z) is the potential function obtained from applying this
construction to the αn-dimensional linear function `1(z), and proceeding accord-
ingly with the (1−α)n-dimensional function g(2)(y) and `2(y). Finally, we define
φ(x) = g(1)(z) + g(2)(y).

We can now give the proof of our main theorem.

Proof (Proof of Theorem 2). Using the potential function from Definition 1, we
analyze the (1+1) EA on f , assume an arbitrary, non-optimal search point xt ∈
{0, 1}n−s and consider the expected change of g from time t to time t + 1. We
consider an accepted step where the offspring differs from the parent since this
is necessary for g to change. That is, at least one 1-bit flips and f does not
grow. Let A be the event that an offspring x′ 6= xt is accepted. For A to occur,
it is necessary that at least one of the two functions `1 and `2 does not grow.
Since the two cases can be handled in an essentially symmetrically manner (they
become perfectly symmetrical for α = n/2), we only analyze the case that `2
does not grow and that at least one bit in B2 is flipped from 1 to 0. Hence, we
consider exactly the situation that the (1+1) EA with the linear function `2 as
(1−α)n-bit fitness function produces an offspring that is accepted and different
from the parent.

Let Yt = g(2)(yt), where yt is the restriction of the search point xt at time t
to the (1−α)n bits in B2 that g(2) depends on, assuming the indices of xt to be

reordered with respect to increasing coefficients w
(2)
1 , . . . , w

(2)
(1−α)n. To compute

the drift of g, we distinguish between several cases and events in a way similar
to the proof of Th. 5.1 in [28]. Each of these cases first bounds the drift of
Yt sufficiently precisely and then adds a pessimistic estimate of the drift of
Zt = g(1)(zt), which corresponds to the other linear function on bits fromB1, i. e.,
the function whose value may grow under the event A. Note that g(1) depends
on at least as many bits as g(2) does.

Since the estimate of the drift of Zt is always the same, we present it first.
Let Z̃t+1 denote the g(1)-value of the mutated bit string x′ (restricted to the
bits in B1). If x′ is accepted, then Zt+1 = Z̃t+1; otherwise Zt+1 = Zt. If we
pessimistically assume that each bit in zt (i. e., the restriction of xt to the bits
in B1) is a zero-bit that can flip to 1, we obtain the upper bound

E
(
Z̃t+1 − Zt | Zt

)
≤ 1

n

αn∑
i=1

(
1 +

1

n

)i−1
=

1

n

(
1 + 1

n

)αn−1 − 1

1/n

≤ eα − 1 ≤ eln(2−ε) − 1 ≤ 1− ε, (4)
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where we use that α < ln(2−ε) for some constant ε > 0. Also, since Zt+1 = Zt if
the mutation is rejected and we only consider flipping zero-bits, we have under A
(the event that x′ is accepted) that

E(Zt+1 − Zt | Zt;A) ≤ E
(
Z̃t+1 − Zt | Zt

)
≤ 1− ε. (5)

Note that the estimations (4) and (5) include the case that s of the bits in zt
are shared with the input string yt of the other linear function g(2)(yt).

We next conduct the detailed drift analysis to bound E(φ(xt)− φ(xt+1) | xt),
considering certain events necessary for A. Two different cases are considered.

Case 1: at least two one-bits in yt flip (event S1). Let Ỹt+1 denote the g(2)-
value of the mutated bit string x′, restricted to the bits in B2, under event S1

before selection. If x′ is accepted, then Yt+1 = Ỹt+1; otherwise Yt+1 = Yt. Since
gi ≥ 1 for all i, every zero-bit in yt flips to one with probability at most 1/n, and
(1− α) ≤ α, we can re-use the estimations from (4). Bounding the contribution
of the flipping one-bits from below by 2, we obtain

E
(
Yt − Ỹt+1 | Yt;S1

)
≥ 2− 1

n

(1−α)n∑
i=1

(
1 +

1

n

)i−1
≥ 2− 1

n

αn∑
i=1

(
1 +

1

n

)i−1
≥ 2− (1− ε) = 1 + ε.

Along with (4), we have

E(φ(xt)− φ(x′) | xt;S1) ≥ E
(
Yt − Ỹt+1 | Yt;S1

)
− E

(
Zt − Z̃t+1 | Zt;S1

)
≥ 2− (1− ε)− (1− ε) > ε.

Since the drift of φ is non-negative in Case 1, we estimate it from below by 0
regardless of whether A occurs or not and focus only on the event defined in the
following case.

Case 2: exactly one one-bit in yt flips (event S2). Let i∗ denote the random
index of the flipping one-bit in yt. Moreover, let the function β(i) = min{j ≤ i |
w

(2)
j = w

(2)
i } denote the smallest index at most i with the same weight as w

(2)
i ,

i. e., β(i)−1 is the largest index of a strictly smaller weight; using our assumption
that the weights are monotonically increasing with their index. If at least one
zero-bit having the same or a larger weight than bit i∗ flips, neither `2 nor g2
change (because the offspring has the same function value or is rejected); hence,
we now, without loss of generality, only consider the subevents of S2 where all
flipping zero-bits have an index of at most β(i∗). (This reasoning is similar to
the analysis of Subcase 2.2.2 in the proof of Th. 5 from [28].)

Redefining notation, let Ỹt+1 denote the g(2)-value of the mutated bit string x′

(restricted to the bits in B2) under event S2 before selection. If x′ is accepted,
then Yt+1 = Ỹt+1; otherwise Yt+1 = Yt. Recalling that A is the event that the
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mutation x′ is accepted, we have by the law of total probability

E(Yt − Yt+1 | Yt;S2) = Pr(A | S2) · E
(
Yt − Ỹt+1 | Yt;A ∩ S2

)
≥ Pr(A | S2) · E

(
Yt − Ỹt+1 | Yt;S2

)
,

where the inequality holds since the our estimation of E
(
Yt − Ỹt+1 | Yt;S2

)
be-

low will consider exactly one one-bit to flip and assume all zero-bits to flip
independently, even though already steps flipping two zero-bits right of β(i∗)
may be rejected.

Moreover, using the law of total probability and (5),

E(Zt+1 − Zt | Zt;S2) ≤ Pr(A | S2) · E
(
Z̃t+1 − Zt | Zt;S2

)
and therefore

E(φ(xt)− φ(xt+1) | xt;S2) = Pr(A | S2) · E(φ(xt)− φ(x′) | Yt;A ∩ S2)

≥ Pr(A | S2)E
(

(Yt − Ỹt+1)− (Z̃t+1 − Zt) | xt;S2

)
(6)

It holds that Pr(A | S2) ≥ (1− 1/n)n−1 ≥ e−1 since the mutation flipping i∗

is certainly accepted if no other bits flip. To bound the drift, we use that every

zero-bit j right of β(i∗) flips with probability 1/n and contributes g
(2)
j to the

difference Yt − Ỹt+1. Moreover, the flip of i∗ contributes the term g
(2)
i∗ to the

difference. Altogether,

E
(
Yt − Ỹt+1 | Yt;S2

)
=

(
1 +

1

n

)β(i∗)−1
− 1

n

β(i∗)−1∑
j=1

(
1 +

1

n

)j−1

=

(
1 +

1

n

)β(i∗)−1
− 1

n

((
1 + 1

n

)β(i∗)−1 − 1

1/n

)
= 1.

Combining this with (5), we have

E(φ(xt)− φ(x′) | xt;S2) = E
(

(Yt − Ỹt+1)− (Z̃t+1 − Zt) | xt;S2

)
≥ 1−(1−ε) = ε.

Altogether, using (6) and our lower bound Pr(A | S2) ≥ e−1, we have the fol-
lowing lower bound on the drift under S2:

E(φ(xt)− φ(xt+1) | xt;S2) ≥ e−1ε.

Finally, we compute the total drift considering all possible one-bits that can
flip under S2. Let I be the set of one-bits in the whole bit string xt. Since the
analysis is analogous when considering an index i ∈ I, we still consider the
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situation that the corresponding linear function decreases or stays the same if
i ∈ B2, i. e., i belongs to yt and remark that an analogous event A′ with respect
to the bits B1 and the string zt can be analyzed in the same way.

Now, for i ∈ I, let Fi denote the event that bit i is the only flipping one-bit
in the considered part of the bit string and let F be the event that exactly one
bit from I flips. We have for all i ∈ I that

E(φ(xt)− φ(xt+1) | xt;Fi) ≥ e−1ε.

and therefore also E(φ(xt)− φ(xt+1) | xt;F ) ≥ e−1ε. It is sufficient to flip one
of the |I| one-bits and no other bit to have an accepted mutation, which has

probability at least (|I|/n)(1− 1/n)n−1 ≥ |I|en . We obtain the unconditional drift

E(φ(xt)− φ(xt+1) | xt) ≥
|I|
en

E(φ(xt)− φ(xt+1) | xt;Fi) ≥
|I|e−2

n
ε,

recalling that we estimated the drift from below by 0 if at least two one-bits
flip. To conclude the proof, we relate the last bound to φ(xt). Clearly, since
gi ≤ (1+1/n)n−1 ≤ e for all i ∈ {1, . . . , αn} and since each one-bit can contribute
to both g(1)(xt) and g(2)(yt), we have φ(xt) ≤ 2e|I| so that

E(φ(xt)− φ(xt+1) | xt) ≥
(
e−3ε

2n

)
φ(xt).

Hence, we have established a multiplicative drift of the potential φ with a factor
of δ = (e−3ε)/(2n) and we obtain the claimed O(n log n) bound on the expected
optimization time via the multiplicative drift theorem (Theorem 1), using X0 ≤
n(1 + 1/(n− 1))n = O(n) and smin = 1. ut

We remark that the drift factor (e−3ε)/n from the previous proof can be
improved by constant factors using a more detailed case analysis; however, since
ε can be arbitrarily small and the final bound is in O-notation, this does not
seem worth the effort.

5 Discussion and Conclusions

Motivated by studies on separable functions and objective functions for chance
constrained problems based on the expected value and variance of solutions,
we investigated the quite general setting of the sum of two transformed linear
functions and established an O(n log n) bound for the (1+1) EA.

We now would like to point out some topics for further investigations. Our
result from Theorem 2 has some limitations. First of all, the domains of the two
linear functions may not differ very much in size; more precisely they must be
within a factor of α/(1− α) ≤ (ln(2))/(1− ln(2)) ≈ 2.26. With the current pes-
simistic assumption that an improving mutation only improves one of the two
linear functions and simultaneously may flip any bit in the other function to 1



12 Frank Neumann and Carsten Witt

without the mutation being rejected, we cannot improve this to larger size differ-
ences for the domain. For the same reason, the result cannot easily be generalized
to mutation probabilities c/n for arbitrary constants c > 0 as shown for the orig-
inal case of simple linear functions in [28]. Although that paper also suggests
a different, more powerful class of potential functions to handle high mutation
probabilities, it seems difficult to apply these more powerful potential functions
in the presence of our pessimistic assumptions. With stronger conditions on α,
it may be possible to extend the present results to mutation probabilities up to
(1 + ε)/(n + s) for a positive constant ε depending on α. However, it would be
more interesting to see whether the O(n log n) bound would also hold for muta-
tion probability 1/n for all s ≥ 1, which would include the function g(x) from
the chance-constrained scenario in (3) for the usual mutation probability.
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