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Abstract. The Makespan Scheduling problem is an extensively studied
NP-hard problem, and its simplest version looks for an allocation ap-
proach for a set of jobs with deterministic processing times to two iden-
tical machines such that the makespan is minimized. However, in real
life scenarios, the actual processing time of each job may be stochastic
around an expected value with a variance under the influence of external
factors, and these actual processing times may be correlated with covari-
ances. Thus within this paper, we propose a chance-constrained version
of the Makespan Scheduling problem and investigate the performance
of Randomized Local Search and (1+1) EA for it. More specifically, we
study two variants of the Chance-constrained Makespan Scheduling prob-
lem and analyze the expected runtime of the two algorithms to obtain an
optimal or almost optimal solution to the instances of the two variants.

Keywords: Chance-constraint · Makespan Scheduling problem · RLS ·
(1+1) EA.

1 Introduction
To discover the reasons behind the successful applications of evolutionary algo-
rithms in various areas including engineering and economics, lots of researchers
made efforts to study the theoretical performance of evolutionary algorithms for
classical combinatorial optimization problems. But most of these studied prob-
lems are deterministic (such as Vertex Cover problem [4,5,10,12,21,22,24,25,26,36]
and Minimum Spanning Tree problem [3,11,18,19,31,33]), and the optimization
problems in real-world are often stochastic and have dynamic components. Hence
in the past few years, the related researchers paid attentions to the theoretical
performance of evolutionary algorithms for dynamic and stochastic combinato-
rial optimization problems [7,13,16,27,28,29] and obtained a series of theoretical
results that further advance the understanding of evolutionary algorithms.
? This work has been supported by the National Natural Science Foundation of China
under Grants 62072476 and 61872048, the Hunan Provincial Natural Science Foun-
dation of China under Grant 2021JJ40791, and the Australian Research Council
(ARC) through grant FT200100536.
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Chance-constrained optimization problems is an important class of stochastic
optimization problems. They consider that the constraints may be influenced by
the noise of stochastic components, thus their goal is to optimize the given objec-
tive function under that the constraints can be violated up to certain probability
levels [2,9,14,23]. The basic technique for solving chance-constrained optimiza-
tion problems is to convert the stochastic constraints to their respective deter-
ministic equivalents according to the predetermined confidence level. Recently,
researchers began to focus on the chance-constrained optimization problems and
analyze the theoretical performance of evolutionary algorithms for them.

The classical Makespan Scheduling problem (abbr. MSP) [1] (the simplest
version) considers two identical machines and a set of jobs with deterministic
processing times, and its aim is to allocate the jobs to the machines such that the
makespan is minimized. In real life scenarios, the actual processing time of each
job may be stochastic around an expected value with a variance, and the actual
processing times of the jobs may be correlated with covariances. Thus a chance-
constrained version of MSP, named Chance-constrained Makespan Scheduling
Problem (abbr. CCMSP), is proposed in the paper. CCMSP considers two iden-
tical machines and several groups of jobs, where the jobs have the same expected
processing time and variance if they are in the same group, and their actual pro-
cessing times are correlated by a covariance if they are in the same group and
allocated to the same machine. The goal of CCMSP is to minimize a determin-
istic makespan value and subject to the probability that the actual makespan
exceeds the deterministic makespan is no more than an acceptable threshold.

A few theoretical results have been obtained about the performance of evolu-
tionary algorithms for MSP and chance-constrained problems. Witt [32] carried
out the runtime analysis of evolutionary algorithms for MSP with two machines.
Later Gunia extended the results to MSP with a constant number of machines.
Sutton et al. [30] gave the parameterized runtime analysis of RLS and (1+1) EA
for MSP with two machines. Neumann et al. [20] proposed the dynamic version
of MSP with two machines and analyzed the performance of RLS and (1+1) EA.
Xie et al. [34] studied the single- and multi-objective evolutionary algorithms for
the Chance-constrained Knapsack problem, where they used the Chebyshev in-
equality and Chernoff bounds to estimate the constraint violation probability of
a given solution. Then Neumann et al. [17] followed the work of Xie et al. [34]
and analyzed special cases of this problem. Note that the Chance-constrained
Knapsack problem studied in the above two work does not consider the correla-
tionship among the weights of items. Thus recently Xie et al. [35] analyzed the
expected optimization time of RLS and (1+1) EA for the Chance-constrained
Knapsack Problem with correlated uniform weights. Neumann et al. [15] pre-
sented the first runtime analysis of multi-objective evolutionary algorithms for
chance-constrained submodular functions.

Within this paper, we investigate the expected runtime of RLS and (1+1) EA
for CCMSP. More specifically, we consider two special variants of CCMSP: (1).
CCMSP-1, all jobs have the same expected processing time and variance, and all
groups have the same even size; (2). CCMSP-2, all jobs have the same expected
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processing time and variance, but the groups have different sizes. For CCMSP-1,
we prove that CCMSP-1 is polynomial-time solvable by showing that RLS and
(1+1) EA can obtain an optimal solution to any instance I1 of it in expected
runtime O(n2/m) and O((k+m)n2), respectively, where n and k are the numbers
of jobs and groups considered in I1, and m = n/k. For CCMSP-2, the size
difference among groups makes the discussion complicated, thus a simplified
variant of CCMSP-2 named CCMSP-2+ is proposed: The sum of the variances
and covariances of the jobs allocated to the same machine cannot be over the
expected processing time of a job, no matter how many jobs are allocated to the
machine. We prove that CCMSP-2+ is NP-hard and that RLS can get an optimal
solution to the instance I+2 of CCMSP-2+ in expected polynomial-runtime if the
total number of jobs is odd; otherwise, an almost optimal solution to I+2 .

2 Preliminaries
Consider two identical machines M0 and M1, and k groups of jobs, where each
group Gi has mi many jobs (i.e., there are n =

∑k
i=1mi many jobs in total).

W.l.o.g., assume m1 ≤ m2 ≤ . . . ≤ mk. The j-th job in group Gi (j ∈ [1,mi],
where the notation [x, y] denotes the set containing all integers ranging from x
to y), denoted by bij , has actual processing time pij with expect value E[pij ] =
aij > 0 and variance σ2

ij > 0. Additionally, for any two jobs of the same group
Gi, if they are allocated to the same machine, then their actual processing times
are correlated with each other by a covariance ci > 0; otherwise, independent.

The Chance-constrained Makespan Scheduling Problem (abbr. CCMSP) stud-
ied in the paper looks for an allocation of the n jobs to the two machines that
minimizes the makespan M such that the probabilities of the loads on M0 and
M1 exceeding M are no more than a threshold 0 < γ < 1, where the load on Mt

(t ∈ [0, 1]) is the sum of the actual processing times of the jobs allocated to Mt.
An allocation (or simply called solution) x to an instance of CCMSP, is

represented as a bit-string with length n, x = x11 · · ·xij · · ·xkmk
∈ {0, 1}n, where

the job bij is allocated toM0 if xij = 0; otherwise,M1 (in the remaining text, we
simply say that a bit is of Gi if its corresponding job is of Gi). Denote by M0(x)
andM1(x) the sets of jobs allocated toM0 andM1, respectively, w.r.t. x. Denote
by lt(x) =

∑
bij∈Mt(x)

pij the load on Mt (t ∈ [0, 1]). Let αi(x) = |M0(x) ∩ Gi|
and βi(x) = |M1(x) ∩Gi| for all i ∈ [1, k]. The CCMSP can be formulated as:

Minimize M

Subject to Pr(lt(x) > M) ≤ γ for all t ∈ [0, 1].

Observe that the excepted value of lt(x) is E[lt(x)] =
∑
bij∈Mt(x)

aij . Con-
sidering the variance σ2

ij of each job bij and the covariance among the jobs of
the same group that are allocated to the same machine, the variance of lt(x) is
V ar[lt(x)] =

∑
bij∈Mt(x)

σ2
ij+cov[lt(x)], where cov[lt(x)] =

∑k
i=1 2ci

(|Mt(x)∩Gi|
2

)
.

Note that
(|Mt(x)∩Gi|

2

)
= 0 if 0 ≤ |Mt(x)∩Gi| ≤ 1. For the probability Pr(lt(x) >

M) with t ∈ [0, 1], as the work [34,35], we use the one-sided Chebyshev’s inequal-
ity (cf. Theorem 1) to construct a usable surrogate of the chance-constraint.
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Theorem 1. (One-sided Chebyshev’s inequality). Let X be a random variable
with expected value E[X] and variance V ar[X]. Then for any ∆ ∈ R+, Pr(X >

E[X] +∆) ≤ V ar[X]
V ar[X]+∆2 .

By the One-sided Chebyshev’s inequality, upper bounding the probability of
the actual makespan exceeding M by γ indicates that for all t ∈ [0, 1],

Pr(lt(x) > M) ≤ V ar[lt(x)]

V ar[lt(x)] + (M − E[lt(x)])2
≤ γ

⇐⇒

√
(1− γ)
γ

V ar[lt(x)] + E[lt(x)] = l′t(x) ≤M.

Thusmax{Pr(l0(x) > M),Pr(l1(x) > M)} ≤ γ hold iff L(x) = max{l′0(x), l′1(x)} ≤
M . In other words, L(x) is the tight lower bound for the value of M , if using
the surrogate of the chance-constraint by the One-sided Chebyshev’s inequality.
Therefore, l′t(x) can be treated as a new measure for the load on Mt, and the
goal of CCMSP is simplified to minimize L(x). Let t(x) = argmaxt{l′0(x), l′1(x)}.

It is not hard to derive that CCMSP is NP-hard as MSP is NP-hard. Within
the paper, we study the two specific variants of CCMSP given below.

CCMSP-1. All the n jobs have the same expected processing time aij =
a > 0 and variance σ2

ij = d > 0, and the k groups have the same covariance
c > 0 and size m > 0. Moreover, m is even.

CCMSP-2. All the n jobs have the same expected processing time aij =
a > 0 and variance σ2

ij = d > 0, and the k groups have the same covariances
c > 0. However, the k groups may have different sizes (may be even or odd).

Given an instance I of CCMSP-1 or CCMSP-2 and a solution x to I, if
||M0(x)| − |M1(x)|| ≤ 1 (i.e., |M0(x)| = |M1(x)| if n is even), then x is an equal-
solution; if ||M0(x)| − |M1(x)|| ≤ 1, and |αi(x)− βi(x)| ≤ 1 for all i ∈ [1, k] (i.e.,
αi = βi if mi is even), then x is a balanced-solution.

3 Algorithms
We study the performance of Randomized Local Search (abbr. RLS, given as Al-
gorithm 1) and (1+1) EA (given as Algorithm 2) for the two variants of CCMSP.
The two algorithms run in a similar way, randomly generating an offspring based
on the maintained solution and replacing it if the offspring is not worse than it
regarding their fitness. The difference between the two algorithms is the way to
generate offspring: With probability 1/2, RLS chooses one bit of the maintained
solution uniformly at random and flips it, and 1/2 chooses two bits of the main-
tained solution uniformly at random and flips them; (1+1) EA flips each bit of
the maintained solution with probability 1/n. The fitness function considered in
the two algorithms is the natural one, f(x) = L(x) = max{l′0(x), l′1(x)}.

4 Performance for CCMSP-1
The section starts with an observation that will be used throughout the paper.
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Algorithm 1: RLS
1 choose x ∈ {0, 1}n uniformly at random;
2 while stopping criterion not met do
3 choose b ∈ {0, 1} uniformly at random;
4 if b = 0 then
5 y ← flip one bit of x chosen uniformly at random;

6 else
7 choose (i, j) ∈ {(k, l)|1 ≤ k < l ≤ n} uniformly at random;
8 y ← flip the i-th and j-th bits of x;

9 if f(y) ≤ f(x) then
10 x← y;

Algorithm 2: (1+1) EA
1 choose x ∈ {0, 1}n uniformly at random;
2 while stopping criterion not met do
3 y ← flip each bit of x independently with probability 1/n;
4 if f(y) ≤ f(x) then
5 x← y;

Observation 1
(b x+y

2 c
2

)
+
(d x+y

2 e
2

)
≤
(
x
2

)
+
(
y
2

)
≤
(
x+y
2

)
holds for any two natural

numbers x and y.

Consider an instance I1 = (a, c, d, γ, k,m) of CCMSP-1 and a solution x to
I1. As the groups considered in I1 have the same size m, there is a variable δi(x)
such that αi(x) = m

2 + δi(x) and βi(x) = m
2 − δi(x) for any i ∈ [1, k]. Thus,

cov[l0(x)]− cov[l1(x)] = 2c

k∑
i=1

((
αi

2

)
−

(
βi
2

))
= 2c(m− 1)

k∑
i=1

δi

= c(m− 1)

(
k∑

i=1

αi(x)−
k∑

i=1

βi(x)

)
= c(m− 1) (|M0(x)| − |M1(x)|) .

Based on the conclusion, it is not hard to derive the following two lemmata.

Lemma 1. For any solution x to the instance I1 = (a, c, d, γ, k,m) of CCMSP-
1, if |M0(x)| > |M1(x)| (resp., |M1(x)| > |M0(x)|) then l′0(x) > l′1(x) (resp.,
l′1(x) > l′0(x)); if |M0(x)| = |M1(x)| then l′0(x) = l′1(x).

Lemma 2. For any solution x to the instance I1 = (a, c, d, γ, k,m) of CCMSP-
1, if x is a balanced-solution then L(x) = l′0(x) = l′1(x) gets the minimum value;
more specifically, x is an optimal solution to I1 iff x is a balanced-solution to I1.

Theorem 2. The expected runtime of RLS to obtain an optimal solution to the
instance I1 = (a, c, d, γ, k,m) of CCMSP-1 is O(n2/m) = O(kn).
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Proof. Let x0 be the initial solution maintained by RLS. Assume that |M0(x0)| >
|M1(x0)|. Thus L(x) = l′0(x0) > l′1(x0) by Lemma 1 and |M0(x0)|−|M1(x0)| ≥ 2
as n = mk is even. The following discussion first analyzes the process of RLS
to obtain the first equal-solution x1 based on x0. Five possible cases for the
mutation of RLS on x0 are listed as follows, obtaining an offspring x′0 of x0.

Case (1). Flipping a 0-bit in x0 (i.e., |M0(x
′
0)| = |M0(x0)| − 1). Observe

that L(x0) = l′0(x0) > l′0(x
′
0). As |M0(x0)| − |M1(x0)| ≥ 2, |M0(x

′
0)| ≥ |M1(x

′
0)|

and L(x′0) = l′0(x
′
0) by Lemma 1. Thus L(x′0) < L(x0) and x′0 can be accepted.

Case (2). Flipping a 1-bit in x0 (i.e., |M0(x
′
0)| = |M0(x0)| + 1). Observe

that L(x′0) = l′0(x
′
0) > l′0(x0) = L(x0), thus x′0 cannot be accepted.

Case (3). Flipping two 0-bits in x0 (i.e., |M0(x
′
0)| = |M0(x0)| − 2). If

|M0(x
′
0)| ≥ |M1(x

′
0)|, then using the reasoning for Case (1) gets that L(x′0) ≤

L(x0) and x′0 can be accepted. If |M0(x
′
0)| < |M1(x

′
0)| then |M0(x0)| = |M1(x

′
0)|

as n is even. By Lemma 1, L(x0)−L(x′0) =
√

1−γ
γ

(√
V ar[l0(x0)]−

√
V ar[l1(x′0)]

)
.

As V ar[l0(x0)] ≥ V ar[l1(x′0)] ⇐⇒ cov[l0(x0)] ≥ cov[l1(x′0)], x′0 can be accepted
iff cov[l0(x0)] ≥ cov[l1(x′0)].

Case (4). Flipping a 0-bit and a 1-bit in x (i.e., |M0(x
′
0)| = |M0(x0)|). Using

the reasoning similar to that for Case (3), we have that x′0 can be accepted iff
cov[l0(x0)] ≥ cov[l0(x

′
0)]. Case (5). Flipping two 1-bits in x0 (i.e., |M0(x

′
0)| =

|M0(x0)| + 2). Using the reasoning similar to that for Case (2), we have that
L(x′0) > L(x0) and x′0 cannot be accepted.

Summarizing the above analysis gets that if x′0 is accepted by RLS, then it
satisfies one of the following two conditions: (1). |Mt(x′0)

(x′0)| < |M0(x0)| and
cov[lt(x′0)(x

′
0)] < cov[l0(x0)]; (2). |Mt(x′0)

(x′0)| = |M0(x0)| and cov[lt(x′0)(x
′
0)] ≤

cov[l0(x0)]. That is, the gap between the numbers of jobs in the two machines
cannot increase during the optimization process. The mutation considered in
Case (1) can be generated by RLS with probability Ω(1/4) that decreases the gap
between the numbers of jobs in the two machines by 2. As ||M0(x0)|−|M1(x0)|| ≤
n, using the Additive Drift analysis [8] gets that RLS takes expected runtime
O(n) to obtain the first equal-solution x1 based on x0.

Now we consider the expected runtime of RLS to obtain an optimal solution
x∗ based on x1. Let p(x) =

∑k
i=1 |αi(x)−βi(x)| =

∑k
i=1 |2αi(x)−m| be the po-

tential of the solution x maintained during the process, and we show that during
the optimization process the potential value cannot increase. Note that once the
first equal-solution x1 is obtained, then all solutions subsequently accepted by
RLS are equal-ones, thus only the mutations flipping a 0-bit and a 1-bit of x1
are considered below. Assume that the mutation flips a 0-bit of Gi and a 1-bit
of Gj in x1, and denoted by x′1 the solution obtained. The potential change is

∆p = p(x1)− p(x′1) = |2αi(x1)−m|+ |2αj(x1)−m| −
(
|2αi(x

′
1)−m|+ |2αj(x

′
1)−m|

)
,

where αi(x′1) = αi(x1)−1 and αj(x′1) = αj(x1)+1. The above discussion shows
that x′1 can be accepted by RLS iff ∆cov = cov[l0(x1)]− cov[l0(x′1)] ≥ 0, where

∆cov/2c = (cov[l0(x1)]− cov[l0(x′1)])/2c = αi(x1)− 1− αj(x1).

We divide the analysis for the values of ∆p and ∆V ar into four cases.
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Case (I). αi(x1) > m
2 and αj(x1) ≥ m

2 . Observe that ∆p = 0, but the value
of ∆V ar depends on the relationship between αi(x1) and αj(x1).

Case (II). αi(x1) ≤ m
2 and αj(x1) ≥ m

2 . Observe that ∆p = −4, but
∆V ar < 0, implying that x′1 cannot be accepted by RLS.

Case (III). αi(x1) > m
2 and αj(x1) < m

2 . Observe that ∆p = 4 and ∆V ar >
0, implying that x′1 can be accepted by RLS.

Case (IV). αi(x1) ≤ m
2 and αj(x1) <

m
2 . Observe that ∆p = 0, but the

value of ∆V ar depends on the relationship between αi(x1) and αj(x1).
Summarizing the analysis of the four cases gets that during the optimization

process, the potential value cannot increase. Observe that there exist i, j ∈ [1, k]
such that αi(x1) = |M0(x1) ∩ Gi| > m

2 and αj(x1) = |M0(x1) ∩ Gj | < m
2 (i.e.,

Case (III) holds), and the offspring obtained by the mutation flipping a 0-bit of
Gi and a 1-bit of Gj in x1 can be accepted. Now we consider the probability to
generate such a mutation. Let S0 ⊂ [1, k] (resp., S1 ⊂ [1, k]) such that for any
i ∈ S0, αi(x1) > βi(x1) (resp., αi(x1) < βi(x1)). Since x1 is an equal-solution,∑

i∈S0

αi(x1)− βi(x1) =
∑
i∈S1

βi(x1)− αi(x1) = p(x1)/2. (1)

Combining Equality (1) with
∑
i∈S0

αi(x1)+βi(x1) = |S0|m and
∑
i∈S1

αi(x1)+

βi(x1) = |S1|m gets
∑
i∈S0

αi(x1) =
p(x1)

4 + |S0|m
2 ≥ p(x1)

4 +m
2 and

∑
i∈S1

βi(x1) =
p(x1)

4 + |S1|m
2 ≥ p(x1)

4 + m
2 . Thus there are p(x1)

4 + m
2 0-bits, each of which is in

a group Gu with αu(x1) > m
2 , and

p(x1)
4 + m

2 1-bits, each of which is in a group
Gv with αv(x1) <

m
2 . That is, RLS generates such a mutation with proba-

bility Ω(( 2m+p(x1)
4n )2) and takes expected runtime O(( n

2m+p(x1)
)2) to obtain an

offspring x′1 with p(x′1) = p(x1) − 4. Considering all possible values for the po-
tential of the maintained solution (note that 1 ≤ p(x1) ≤ n), the total expected
runtime of RLS to obtain x∗ based on x1 can be upper bounded by

n∑
t=1

O(
n2

(t+ 2m)2
) = O(n2)

n∑
t=1

(t+ 2m)−2 = O(n2)

∫ n

1

(t+ 2m)−2dt = O(n2/m).

In summary, RLS takes expected runtime O(n2/m) = O(kn) to obtain an
optimal solution to I1 based on the initial solution x0. ut

Theorem 3. The expected runtime of (1+1) EA to obtain an optimal solution
to the instance I1 = (a, c, d, γ, k,m) of CCMSP-1 is O((k +m)n2).

Proof. As the mutation of (1+1) EA may flip more than two bits simultaneously,
the reasoning given in Theorem 2 cannot be directly applied for the performance
of (1+1) EA. We first consider the expected runtime of (1+1) EA to get the
first equal-solution x1 based on the initial solution x0 that is assumed to have
|M0(x0)| > |M1(x0)|. A vector function v(x) = (|Mt(x)(x)|, b(x)) is designed for
the solutions x obtained during the process, where b(x) =

∑k
i=1

(|Mt(x)(x)∩Gi|
2

)
.

For ease of notation, let |Mt(x)(x)| = `, where ` ∈ [n2 , n] (as Mt(x)(x) is the
fuller machine by Lemma 1). Then 0 < b(x) ≤ b `mc

(
m
2

)
+
(
`%m
2

)
≤ ( `m + 1)

(
m
2

)
,

where the first ≤ holds by Observation 1. Hence the number of possible values of
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v(x) can be upper bounded by
∑n
`=n

2 +1(
`
m +1)

(
m
2

)
= O(mn2). Observe that for

any two solutions x and x′, if v(x) = v(x′) then L(x) = L(x′). Thus the number
of possible values of L(x) can be upper bounded by O(mn2) as well.

Consider a mutation flipping a t(x)-bit on x (i.e., if t(x) = 0 then flipping a
0-bit; otherwise, a 1-bit). By the discussion for Case (1) given in Theorem 2, the
solution x′ obtained by the mutation has L(x′) < L(x) and can be accepted. The
probability of (1+1) EA to generate such a mutation is Ω(1/2). Thus combining
the probability and the number of possible values of L(x) gives that (1+1) EA
takes expected runtime O(mn2) to get the first equal-solution x1 based on x0.

Now we consider the runtime of (1+1) EA to obtain an optimal solution based
on x1. As all solutions accepted subsequently are equal-ones, we take b(x) as the
potential function, where the number of possible values of b(x) can be bounded
by O(km2). By the reasoning given in Theorem 2 a mutation flipping a 0-bit
and a 1-bit obtaining an improved solution can be generated with probability
Ω((m2n )

2). Consequently, (1+1) EA takes expected runtime O(kn2) to obtain an
optimal solution based on x1. In summary, (1+1) EA takes expected runtime
O((k +m)n2) to obtain an optimal solution to I1. ut

5 Performance for CCMSP-2
The section starts with a lemma to show that the discussion for CCMSP-2 would
be more complicated than that for CCMSP-1.

Lemma 3. Given a solution x to an instance I2 = (a, c, d, γ, k, {mi|i ∈ [1, k]})
of CCMSP-2, whether l′0(x) > l′1(x) holds is unknown even if |M0(x)| > |M1(x)|.

Proof. Recall that the group Gi has size mi, and there is a variable δi(x) such
that αi(x) = mi/2 + δi(x) and βi(x) = mi/2− δi(x) for any i ∈ [1, k]. Thus

cov[l0(x)]− cov[l1(x)] = 2c

k∑
i=1

((
αi

2

)
−

(
βi
2

))
= 2c

∑k
i=1(mi − 1)δi.

Observe that 2c
∑k
i=1(mi−1)δi can be treated as a weighted version of

∑k
i=1 δi(x),

where
∑k
i=1 δi(x) > 0 due to |M0(x)| > |M1(x)|, but it is impossible to decide

whether 2c
∑k
i=1(mi−1)δi is greater than 0. Furthermore, the relationship among

the values of a, c and d are unrestricted. Consequently, it is also impossible to
decide whether or not l′0(x) > l′1(x) holds. ut

For ease of analysis, we set an extra constraint on the values of a, c and d
considered in the instances of CCMSP-2:√√√√ (1− γ)

γ

(
nd+ 2c

k∑
i=1

(
mi

2

))
< a. (2)

That is, for any solution x to any instance of CCMSP-2 and any t ∈ [0, 1],

E[lt(x)] contributes much more than
√

(1−γ)
γ V ar[lt(x)] to l′t(x) under the extra
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constraint, because
√

(1−γ)
γ V ar[lt(x)] ≤

√
(1−γ)
γ

(
nd+ 2c

∑k
i=1

(
mi

2

))
< a. The

new variant of CCMSP-2 is called CCMSP-2+ in the remaining text.
Due to the extra constraint of CCMSP-2+, for any solution x to I+2 , if

|M0(x)| > |M1(x)| (resp., |M0(x)| < |M1(x)|) then l′0(x) > l′1(x) (resp., l′0(x) <
l′1(x)). Thus it is easy to derive the following lemma.

Lemma 4. Given an instance I+2 = (a, c, d, γ, k, {mi|i ∈ [1, k]}) of CCMSP-2+,
any optimal solution to I+2 is an equal-solution.

Lemma 5. CCMSP-2+ is NP-hard.

Proof. For the computational hardness of CCMSP-2+, the discussion is divided
based on the number of jobs considered in the instances of CCMSP-2+.

Case 1. The instances of CCMSP-2+ that consider odd many jobs.
Let I+2 = (a, c, d, γ, k, {mi|i ∈ [1, k]}) be an instance of CCMSP-2+, where

n =
∑k
i=1mi is odd. We construct an optimal solution x∗ to I+2 as follows. By

Lemma 4, x∗ is an equal-solution. Assume |M0(x
∗)| = |M1(x

∗)|+1 = n+1
2 . By the

extra constraint of CCMSP-2+, l′0(x∗) > l′1(x
∗). Thus we only need to analyze

the optimal allocation approach of n+1
2 many jobs on M0 w.r.t. x∗ such that

cov[l0(x
∗)] is minimized. By Observation 1, k

(n+1
2k
2

)
≤ cov[l0(x∗)] (i.e., each group

allocates n+1
2k many jobs to M0), but n+1

2k may be not an integer. Fortunately,
by Observation 1, it is easy to get that the optimal allocation approach of n+1

2
many jobs on M0 w.r.t. x∗ can be obtained as: For each 1 ≤ i ≤ k (assume that
the values of αj(x∗) for all 1 ≤ j < i have been specified), if

mi < (
n+ 1

2
−

i−1∑
j=1

αj(x
∗))/(k + 1− i),

then let αi(x∗) = mi; otherwise, let αi(x∗) = d(n+1
2 −

∑i−1
j=1 αj(x

∗))/(k+1−i)e.
Observe that once αi(x∗) is set as d(n+1

2 −
∑i−1
j=1 αj(x

∗))/(k + 1− i)e, then
for all i < j ≤ k, |αj(x∗) − αi(x∗)| ≤ 1 (as m1 ≤ m2 ≤ . . . ≤ mk). In a word,
the optimal solution x∗ to I+2 satisfies the following property.
Property-Odd: For any i ∈ [1, k], either αi(x∗) = mi or 0 ≤ αmax(x

∗) −
αi(x

∗) ≤ 1, where αmax(x∗) = max{α1(x
∗), . . . , αk(x

∗)}.
Case 2. The instances of CCMSP-2+ that consider even many jobs.
It can be shown that any instance of the Two-way Balanced Partition problem

can be polynomial-time reduced to an instance I+2 of CCMSP-2+ such that I+2
has even many groups and each group has odd size, where the formulation of the
Two-way Balanced Partition problem is: Given a multiset S that contains non-
negative integers such that both |S| and

∑
e∈S e are even, can S be partitioned

into two subsets S1 and S2 such that |S1| = |S2| and
∑
a∈S1

a =
∑
b∈S2

b?
The NP-hardness of the Two-way Balanced Partition problem can be shown by
reducing it to the well-known Partition problem [6]. Due to the page limit, the
detailed discussion will be given in a complete version. ut

Corollary 1. CCMSP-2 is NP-hard.
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5.1 Performance for CCMSP-2+

Theorem 4. Given an instance I+2 = (a, c, d, γ, k, {mi|i ∈ [1, k]}) of CCMSP-
2+ that considers odd many jobs (i.e., n =

∑k
i=1mi is odd), RLS takes expected

runtime O(
√
kn3) to obtain an optimal solution to I+2 .

Proof. Let x0 be the initial solution maintained by RLS. The optimization pro-
cess of RLS for x0 discussed below is divided into two phases.

Phase-1. Obtaining the first equal-solution x1 based on x0.
Let p1(x) = ||M0(x)| − |M1(x)|| be the potential of the solution x main-

tained during Phase-1. Observe that 1 ≤ p1(x) ≤ n, and the extra constraint
of CCMSP-2+ indicates that for any two solutions x′ and x′′ to I+2 , if p1(x′) <
p1(x

′′) then L(x′) < L(x′′). The mutation of RLS flipping exactly one bit in x
whose corresponding job is allocated to the fuller machine w.r.t. x, can be gener-
ated by RLS with probability Ω(1/4), and the obtained solution x′ has potential
value p1(x′) = p1(x) − 2. Combining p1(x

′) = p1(x) − 2 with the conclusion
given above gets L(x′) < L(x), and x′ can be accepted by RLS. Then using the
Additive Drift analysis [8], we can derive that Phase-1 takes expected runtime
O(n). Note that after the acceptance of x1, any non-equal-solution cannot be
accepted. W.l.o.g., assume that |M0(x1)| = |M1(x1)|+ 1.

Phase-2. Obtaining the first optimal solution based on x1.
Case (1). cov[l0(x1)] < cov[l1(x1)].
First of all, it is not hard to get that any mutation flipping exactly one

bit of x1 cannot get an improved solution under Case (1). Thus the following
discussion only considers the mutations flipping a 0-bit of Gi and a 1-bit of Gj
in x1 (note that the other kinds of mutations flipping two bits cannot get equal-
solutions). Denote by x′1 the obtained solution. Hence |M0(x

′
1)| = |M0(x1)| =

|M1(x
′
1)|+1 = |M1(x1)|+1 and cov[l0(x1)]−cov[l0(x′1)] = 2c(αi(x1)−1−αj(x1)).

If αi(x1)− αj(x1) ≥ 1 then cov[l0(x′1)] ≤ cov[l0(x1)], and x′1 can be accepted.
Assume that RLS obtains a solution x∗1 based on x1, on which all possible

mutations flipping exactly a 0-bit and a 1-bit of x∗1 cannot get an improved
solution, where the 0-bit and 1-bit are of Gi and Gj , respectively. Then x∗1
satisfies the property: For any 1 ≤ i 6= j ≤ k, if αi(x∗1)−αj(x∗1) ≥ 2, then all jobs
of Gj are allocated to M0 w.r.t. x∗1, i.e., αj(x∗1) = mj and βj(x∗1) = 0. In other
words, for any 1 ≤ j ≤ k, either αj(x∗1) = mj or 0 ≤ αmax(x

∗
1) − αj(x∗1) ≤ 1,

where αmax(x∗1) = max{α1(x
∗
1), . . . , αk(x

∗
1)}. Thus x∗1 satisfies Property-Odd

given in the proof of Lemma 5, and x∗1 is an optimal solution to I+2 .
For the expected runtime of RLS for Phase-2, let p21(x) = cov[l0(x)]/2c be

the potential of the solution x maintained during Phase-2. The above discussion
shows that |M0(x)| = |M1(x)|+1. Let imax = argmax{α1(x), . . . , αk(x)}. Then(
αimax (x)

2

)
≥ p21(x)

k , implying that αimax
(x) ≥ (

√
1 + 8p21(x)

k + 1)/2. Since x
does not satisfy Property-Odd, there exists a 1 ≤ j′ 6= imax ≤ k such that
αimax(x)−αj′(x) ≥ 2 but αj′(x) < mj′ . Thus βj′(x) ≥ 1. The mutation flipping
a 0-bit of Gimax and a 1-bit of Gj′ in x can be generated by RLS with probability

Ω(
αimax (x)·βj′ (x)

n2 ) = Ω(
αimax (x)

n2 ) = Ω( 1
n2

√
p21(x)
k ), and the potential value of the
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obtained solution is decreased by at least 1 compared to p21(x). Observe that
the upper bound of p21(x1) and lower bound of p21(x∗1) are

(n+1
2
2

)
and k

(n+1
2k
2

)
,

respectively. Considering all possible potential values of x, we have that the
expected runtime of RLS for Phase-2 can be bounded by

(
n+1
2
2 )∑

t=k(
n+1
2k
2 )

O(

√
kn2

√
t

) = O(
√
kn2)

∫ (
n+1
2
2 )

k(
n+1
2k
2 )

t−
1
2 dt = O(

√
kn3).

Case (2). cov[l0(x1)] ≥ cov[l1(x1)].
The main difference between the discussion for Case (2) and that for Case

(1) is that the mutation flipping one bit may generate an improved solution,
implying that the fuller machine may be M0 or M1. However, no matter which
one is the fuller machine, the value cov[lt(x)(x)] cannot increase during Phase-2,
where x is a solution maintained by RLS during Phase-2. By the reasoning given
for Case (1), for a mutation flipping exactly one 0-bit of Gi and one 1-bit of Gj
in x, if t(x) = 0 and αi(x)− αj(x) ≥ 2, or t(x) = 1 and βj(x)− βi(x) ≥ 2, then
cov[lt(x′)(x

′)] < cov[lt(x)(x)] for the obtained solution x′, and x′ can be accepted.
Let p22(x) = cov[lt(x)(x)]/2c be the potential of the solution x. Using the

reasoning similar to that given for Case (1), we can get that RLS takes expected
runtime O(

√
kn3) to obtain an optimal solution to I+2 under Case (2). ut

Theorem 5. Given an instance I+2 = (a, c, d, γ, k, {mi|i ∈ [1, k]}) of CCMSP-
2+ that considers even many jobs (i.e., n =

∑k
i=1mi is even), RLS takes expected

runtime O(n4) to obtain an equal-solution x∗ such that either |cov[l0(x∗)] −
cov[l1(x

∗)]| ≤ 2c(mk −m1 − 1) or cov[lt(x∗)(x∗)] ≤ c
4 (
n2

k − 2n+ k).

Proof. Let x0 be the initial solution maintained by RLS. The proof runs in a
similar way to that of Theorem 4, dividing the optimization process into two
phases: Phase-1, obtaining the first equal-solution x1 based on x0; Phase-2,
optimizing the solution x1. Moreover, the analysis for Phase-1 is the same as
that given in the proof of Theorem 4, i.e., Phase-1 takes expected runtime O(n).
Now we consider Phase-2, where the solution x1 is assumed to have cov[l0(x1)] >
cov[l1(x1)]. Let ∆(x1) = cov[l0(x1)]− cov[l1(x1)]. The following discussion only
considers the mutations flipping a 0-bit of Gi and a 1-bit of Gj in x1. Denote by
x′1 the obtained solution. We have

cov[l0(x
′
1)]

=cov[l0(x1)]− 2c

[((
αi(x1)

2

)
+

(
αj(x1)

2

))
−

((
αi(x1)− 1

2

)
+

(
αj(x1) + 1

2

))]
=cov[l0(x1)] + 2c(αj(x1)− αi(x1) + 1)

and cov[l1(x′1)] = cov[l1(x1)] + 2c(βi(x1)− βj(x1) + 1) similarly.
If αj(x1) ≤ αi(x1)−1 (i.e., cov[l0(x′1)] ≤ cov[l0(x1)]) and βi(x1)−βj(x1)+1 ≤

∆(x1)/2c (i.e., cov[l1(x′1)] ≤ cov[l0(x1)]), then L(x′1) ≤ L(x1) and x′1 can be
accepted by RLS, and cov[l0(x′1)]− cov[l1(x′1)] = ∆(x1) + 2c(mj −mi).
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Now we assume that RLS obtains a solution x∗1 based on x1 such that any
mutation flipping a 0-bit and a 1-bit of x∗1 cannot get an improved solution, and
cov[l0(x

∗
1)] ≥ cov[l1(x∗1)]. Let imax = argmax{α1(x

∗
1), α2(x

∗
1), . . . , αk(x

∗
1)}. Then

the above discussion shows that for any j ∈ [1, k], if αj(x∗1) < αimax(x
∗
1)−1 then

βimax
(x∗1)− βj(x∗1) + 1 ≥ ∆(x∗1)/2c, i.e.,

(mimax − αimax(x
∗
1))− (mj − αj(x∗1)) ≥ ∆(x∗1)/2c− 1,

implying that (recall that m1 ≤ m2 ≤ . . . ≤ mk)

∆(x∗1)/2c+1 ≤ ∆(x∗1)/2c− 1+ (αimax
(x∗1)−αj(x∗1)) ≤ mimax

−mj ≤ mk −m1.

In other words, for x∗1, if there is a j ∈ [1, k] with αj(x∗1) < αimax
(x∗1) − 1,

then ∆(x∗1)/2c ≤ mk−m1−1. If there is no j ∈ [1, k] with αj(x∗1) < αimax
(x∗1)−

1, then for each j ∈ [1, k], 0 ≤ αimax
(x∗1) − αj(x

∗
1) ≤ 1. Now we bound the

value of cov[l0(x∗1)]. Let τ = |{1 ≤ j ≤ k|αj(x∗1) = αimax
(x∗1) − 1}|. Then

(k−τ)αimax
(x∗1)+τ(αimax

(x∗1)−1) = n/2 implies that αimax
(x∗1) =

n
2k +

τ
k , and

cov[l0(x
∗
1)]/2c = (k − τ)

(
αimax(x

∗
1)

2

)
+ τ

(
αimax(x

∗
1)− 1

2

)

=
n2

8k
− n

4
− (

τ2

2k
− τ

2
) ≤ n2

8k
− n

4
+
k

8
,

where τ2

2k −
τ
2 gets its minimum value −k8 when τ = k

2 .
For the expected runtime of RLS to get x∗1 based on x1, let p(x) = cov[lt(x)(x)]/2c

be the potential of x that is a solution maintained by RLS during the process.
Observe that p(x) cannot increase during the process. The probability of RLS to
generate such a mutation mentioned above is Ω(1/n2), and the potential value
decreases by at least 1. As p(x1) can be upper bounded by O(n2), using the Ad-
ditive Drift analysis [8] gets that RLS takes expected runtime O(n4) to obtain
x∗1 based on x1. In summary, RLS takes expected runtime O(n4) to obtain an
equal-solution x∗1 satisfying the claimed condition based on x0. ut

6 Conclusion
The paper studied a chance-constrained version of the Makespan Scheduling
problem and investigated the performance of RLS and (1+1) EA for it. More
specifically, the paper studied two simple variants of the problem (namely, CCMSP-
1 and CCMSP-2+) and obtained a series of results: CCMSP-1 was shown to be
polynomial-time solvable by giving the expected runtime of RLS and (1+1) EA
to obtain an optimal solution to the given instance of CCMP-1; CCMSP-2+ was
shown to be NP-hard by reducing the Two-way Balanced Partition problem to
it, but any instance of CCMSP-2+ which considers odd many jobs was shown
to be polynomial-time solvable by giving the expected runtime of RLS to obtain
an optimal solution to it.

Future work on the Chance-constrained Makespan Scheduling problem or the
chance-constrained version of other classical combinatorial optimization prob-
lems would be interesting, and these related results would further advance and
broaden the understanding of evolutionary algorithms.
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