
Fixed-Parameter Single Objective Search Heuristics for
Minimum Vertex Cover

Wanru Gao1, Tobias Friedrich1,2, and Frank Neumann1

1 School of Computer Science, The University of Adelaide, Australia
2 Hasso Plattner Institute, Potsdam, Germany

Abstract. We consider how well-known branching approaches for the classi-
cal minimum vertex cover problem can be turned into randomized initialization
strategies with provable performance guarantees and investigate them by exper-
imental investigations. Furthermore, we show how these techniques can be built
into local search components and analyze a basic local search variant that is sim-
ilar to a state-of-the-art approach called NuMVC. Our experimental results for
the two local search approaches show that making use of more complex branch-
ing strategies in the local search component can lead to better results on various
benchmark graphs.

1 Introduction

The parameterized analysis of heuristic search methods has gained a lot of attention dur-
ing the last few years [1, 3, 6–8, 10]. It provides a mechanism for understanding how
and why heuristic methods work for prominent combinatorial optimization problems.
There are different methods closely related to the notion of fixed parameter algorithms.
One popular paradigm to design parameterized algorithms are bounded search tree al-
gorithms which search for a good solution by branching according to different rules that
may be applied to solve the underlying problem.

For the classical vertex cover problem, different branching algorithms are available
to answer the question whether a given graph has a vertex cover of size at most k. We
investigate two common strategies resulting in fixed parameter algorithms running in
time O∗(2k) and O∗(αk)3, where α = 1.4656, to solve this problem.

We show how these search tree algorithms can be turned into initialization ap-
proaches that produce initial solutions in linear time. We start by presenting an edge-
based initialization approach which obtains a vertex cover having at most k = 2OPT−
r, 0 ≤ r ≤ OPT , nodes with probability at least

(
k

OPT

)
·2−k. Furthermore, we present

a node-based initialization approach which obtains an optimal solution with probability
at least α−OPT .

After having considered initialization approaches, we turn the branching rules into
local search approaches and investigate their behaviour on different types of graphs.
Both local search approaches start with a given vertex cover and try to find a smaller
vertex cover by searching in the infeasible region of the search space. Our edge-based

3 We use O∗(·) to describe the essential functional behavior, ignoring all terms of lower order,
that is, in exponential expressions all polynomials are omitted.

approach captures the essential ideas of a state-of-the-art local search algorithm for
minimum vertex cover called NuMVC [2]. Having a vertex cover of size k, one node is
removed to obtain a set of k− 1. If this set is still a vertex cover, the algorithm searches
for a vertex cover of size k−2 and so on. If the set is not yet a vertex cover an additional
node is taken out and a node covering an uncovered edge is chosen. We turn these ideas
in combination with our theoretical insights into an edge-based local search approach
which obtains a vertex cover of size at most k = 2OPT − r in an expected number of
2r+1 phases where each phase consists of a sequence of k local search steps.

Furthermore, we turn the node-based initialization approach into a similar local
search approach and compare both local search strategies on different benchmark
graphs. Our experimental results show that the node-based approach usually leads to
a local search approach that obtains better solutions than the edge-based local search
approach.

The paper is structured as follows. In Section 2, we provide some background ma-
terial on parameterized algorithms and the minimum vertex cover problem. Section 3
introduces our two initialization heuristics and examines them from a theoretical and ex-
perimental perspective. Section 4 presents our two local search approaches and studies
them on different types of benchmark instances. Finally, we provide some concluding
remarks.

2 Preliminaries

The vertex cover problem is one of the best-known combinatorial optimization prob-
lems. Given an undirected graph G = (V,E), the goal is to find a minimum set of
vertices V ′ such that edge has at least one end vertex in V ′. The problem is NP-hard
and several 2-approximation algorithms are known. Furthermore, the problem has been
studied extensively in the area of parameterized complexity. In fact, it is the archetyp-
ical problem in this area. Various kernelization approaches leading to fixed parameter
algorithms of different runtime quality are known.

We make use of two branching approaches from the area of parameterized com-
plexity [4]. Both have been introduced to determine whether a given graph G = (V,E)
contains a vertex cover of at most k nodes. The first approach builds on the fact that
a vertex cover has to contain for each edge at least 1 node. It starts with G, picks an
edge e = {u, v} currently not covered, and branches according to the two options of
including u or v. This allows to answer the question of whether G contains a vertex
cover of size at most k in time O∗(2k).

The second approach makes more sophisticated decisions according to the degree
of a node with respect to the uncovered edges. Considering a degree 1 node, it’s always
safe to take its neighbor. In the case of dealing with a degree 2 node u, one has to choose
either the two neighbors v and w of u or all neighbors (including u) of v and w. Finally,
for a node u of degree at least 3, one has to choose u or all its neighbours. This approach
allows to answer the question of whether G contains a vertex cover of size at most k in
time O∗(αk), where α = 1.4656.

We build on these two fixed parameter algorithms for the decision version of the ver-
tex cover problem and study how to turn them into randomized initialization strategies

2

Algorithm 1: Edge-based Initialization Heuristic
1 C := ∅;
2 repeat
3 Let e = {u, v} be a random uncovered edge, i.e., e ∈ G[C];
4 with probability 1/2 do
5 C := C ∪ {u}
6 else
7 C := C ∪ {v}

8 until C is a vertex cover of G;
9 Return C;

with provable guarantees on their probability of achieving a solution of certain quality.
In addition, we explore how they can be turned into local search approaches and study
the performance of these approaches on benchmark instances.

For describing our algorithms we need one more piece of notation for each vertex
cover C ⊆ V of a graph G = (V,E). We denote the subgraph of G consisting of
the edges not covered by C and the corresponding non-isolated vertices by G[C] :=
(VC , EC) with

EC := E \ {e ∈ E | e ∩ C ̸= ∅} and
VC := {v ∈ V | v ∩ EC ̸= ∅}.

Furthermore, we denote by degG[C](u) the degree of a node u in G[C] and by
NG[C][u] the set of neighbours of u in G[C].

3 Initialization Strategies

We now describe two randomized initialization strategies based on the branching ap-
proaches described in the previous section. Both start with an empty set of nodes and
add vertices until a vertex cover has been obtained. The edge-based initialization out-
lined in Algorithm 1 randomly selects in each step an uncovered edge and adds one of
its endpoints chosen uniformly at random to the vertex cover.

For the edge-based initialization we can give a tradeoff between size of the obtained
vertex cover and success probability.

Theorem 1. For all r with 0 ≤ r ≤ OPT , the edge-based initialization heuristic
obtains a vertex cover of size at most k := 2 · OPT − r with probability at least(

k
OPT

)
· 2−k.

Proof. Let C∗ be an optimal solution of value OPT . For each edge e at least one of
its endpoints is contained in C∗. Hence, each step in the initialization process increases
the number of nodes chosen from C∗ by 1 with probability at least 1/2. We call a step
increasing the number of nodes already chosen from C∗ a success. OPT successes are
sufficient to obtain a vertex cover. The probability to have OPT successes during k
steps is at least

(
k

OPT

)
· 2−k.

3

Algorithm 2: Vertex-based Initialization Heuristic
1 C := ∅;
2 repeat
3 if mindeg(G[C]) = 1 then
4 Let u be a random node with degG[C](u) = 1;
5 C := C ∪NG[C][u] ; /* degree 1 rule */

6 else
7 Let u be a node chosen uniformly at random from G[C];
8 if degG[C](u) = 2 then
9 Let v, w ∈ V such that NG[C][u] = {v, w};

10 with probability α−|NG[C][v]∪NG[C][w]| do
11 C := C ∪NG[C][v] ∪NG[C][w]
12 else
13 C := C ∪NG[C][u] ; /* degree 2 rule */

14 else
15 with probability α− degG[C](u) do
16 C := C ∪NG[C][u]
17 else
18 C := C ∪ {u} ; /* degree ≥ 3 rule */

19 until C is a vertex cover of G;
20 Return C;

Observe that for r := 0 (and k = 2OPT), the edge-based initialization heuristic
therefore obtains a 2-approximation of the minimum vertex cover with probability at
least

(
2OPT
OPT

)
· 2−2OPT = Θ(1/

√
OPT). On the other hand, for r := OPT (and

k = OPT), the edge-based initialization heuristic obtains a minimum vertex cover
with probability at least 2−OPT .

We now introduce an initialization heuristic based on more complex vertex-based
branching. The vertex-based initialization given in Algorithm 2 first handles degree 1
nodes in the graph G[C]. If there is no degree 1 node in G[C] then a node u in G[C]
is chosen uniformly at random and the degree rule for u is applied in a probabilistic
way. To be more precise, if u is of degree 2 and v, w are its neighbours in G[C] then all
neighbours of v and w are added with probability α−|NG[C][v]∪NG[C][w]| while v and w
are added otherwise. Similarly, if u is of degree at least 2 in G[C] then all neighbours of
u in G[C] are added with probability at least α− degG[C](u) while u is added otherwise.

We provide a lower bound on the probability that the vertex-based initialization
obtains an optimal solution.

Theorem 2. The vertex-based initialization heuristic obtains a vertex cover of size
OPT with probability at least α−OPT , where α = 1.4656.

Proof. The vertex-based initialization heuristics carries out a randomized branching
according to the different rules. We distinguish the different cases regarding the degree
of a node. For any graph, there is an optimal vertex cover that does not contain the

4

Vertex cover size
90 95 100 105 110 115

Fr
eq

ue
nc

y
0

5

10

15

20

25

C125.9
EBH
VBH

Vertex cover size
182 184 186 188 190 192 194 196 198 200

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

35

brock200_4
EBH
VBH

Vertex cover size
55 60 65 70 75 80 85

Fr
eq

ue
nc

y

0

5

10

15

20

25

30

random_100p0.05
EBH
VBH

Vertex cover size
1600 1620 1640 1660 1680 1700 1720 1740 1760

Fr
eq

ue
nc

y

0

1

2

3

4

5

6

7

soc-hamsterster
EBH
VBH

Fig. 1: The histograms show the frequency that each algorithm gets the initial vertex cover of
certain size. The optimal vertex cover size of each instance is indicated with red vertical line in
each figure.

node u if u is a degree one node. We investigate the degree 2 and 3 rules and show that
each step i which requires selecting OPT i nodes corresponding to an optimal solution
occurs with probability at least α−OPT i . For a degree 2 node, there is an optimal vertex
cover that contains either the neighbors v and w of u or all the neighbors of v and
w. Note that a degree 2 rule is only applied if there is no node of degree 1 in G[C].
This implies that both v and w have to be connected to a node different from u. The
probability of selecting v and w is 1 − α−|NG[C][v]∪NG[C][w]| which is at least α−2 if
|NG[C][v] ∪NG[C][w]| ≥ 2. If |NG[C][v] ∪NG[C][w]| = 1, then v and w are connected
and we have a cycle of length 3 (u − v − w − u) for which selecting any subset of 2
nodes is optimal. Selecting u leads to an isolated edge {v, w} for which the degree 1
rule selects a single vertex and therefore situations where |NG[C][v] ∪ NG[C][w]| = 1
always lead to an optimal solution for the cycle of length 3. Finally, if u is of degree at
least 3 there is an optimal vertex cover which either contains u or all the neighbors of
u. The probability of selection u is 1− α− degG[C](u) > α−1.

Hence, the probability of selecting, in each step, a set of nodes leading to an optimal
solution is at least ℓ∏

i=1

α−OPT i = α−OPT

where are ℓ is the number of iterations of the algorithm to produce the vertex cover.

3.1 Experimental investigations

In this section, we discuss about the experiments aiming at comparing the performance
of Algorithm 1 and Algorithm 2. Both algorithms are evaluated on sample Vertex Cover
instances chosen from different benchmarks categories, which are DIMACS bench-
marks, random generated undirected graphs and real world graphs.

There are some vertex cover benchmarks that are widely used to evaluated the per-
formance of minimum vertex cover solver. One of these benchmarks is the DIMACS

5

Instance EBH VBH

Name |V | |E| OPT min Q1 median Q3 max min Q1 median Q3 max

random 50p0.1 50 117 28 31 35 36 37 40 28 29 30 31 33
random 50p0.1-2 50 139 31 34 37 38 39 43 31 32 33 34 36
random 100p0.05 100 288 58 68 72 74 75 81 59 61 62 63 67
random 100p0.05-2 100 261 58 67 71 73 75 79 58 60 61 62 66
random 500p0.01 500 1 206 284 344 353 357 362 371 292 296 298 301 308
random 500p0.01-2 500 1 282 284 344 358 362 365 372 290 298 300 302 308
soc-hamsterster 2 426 16 630 1 612 1 709 1 726 1 731 1 737 1 755 1 672 1 684 1 690 1 695 1 716
soc-wiki-Vote 889 2 914 406 486 501 508 513 532 406 406 407 409 412
web-edu 3 031 6 474 1 451 1 742 1 765 1 771 1 780 1 793 1 451 1 452 1 453 1 454 1 457
web-google 1 299 2 773 498 582 596 604 611 632 501 506 508 509 517
bio-celegans 453 2 025 249 286 293 298 300 306 254 260 263 266 277
bio-yeast 1 458 1 948 456 583 608 618 626 656 456 459 460 462 468
brock200 4 200 6 811 183 192 194 195 196 198 190 193 194 194 197
brock400 4 400 20 035 367 390 392 393 394 396 387 390 391 392 395
brock800 4 800 111 957 774 792 794 795 796 798 792 793 794 794 797
C125.9 125 787 91 102 107 108 110 114 96 100 101 102 107
C250.9 250 3 141 206 227 231 232 234 238 222 225 226 228 232
C500.9 500 12 418 443 474 479 481 483 487 467 474 476 477 480

Table 1: Experimental results on instances comparing the statistics between Algorithm 1 and 2.

benchmark which is a set of challenge problems coming from the Second DIMACS
Implementation Challenge for Maximum Clique, Graph Coloring and Satisfiability [5].
The original Max Clique problems from the challenge are converted to complement
graphs and used as vertex cover problems. The random undirected graphs are generated
with a pre-defined instance size and selection rate of edges. An edge between any two
nodes is added to the graph with a certain pre-defined probability. In [9], there are a
number of real world graphs with various number of vertices and edges. The sample
graphs are selected from the undirected unweighted graphs.

Both of the algorithms are implemented in JAVA and the programs are executed for
101 independent repeated runs on each instance to obtain the statistics. The histograms
in Figure 1 are achieved by comparing the vertex cover sizes that the two algorithms
get from running on four instances from different categories. The distribution of the
solutions obtained in 101 independent runs is visualized with the histograms. In the first
histogram and those lying in the second row, it is clear that vertex-based initialization
generated smaller solutions for these two instances. For the instance brock200 4 from
DIMACS benchmarks, the vertex-based approach has higher probability to generate
better initial solutions than its edge-based counterpart.

Table 1 shows the five-number summary of each ranked set of 101 results testing on
specific instance. From Table 1, the initial solutions of real world graphs generated by
Algorithm 2 are all smaller than those from Algorithm 1. For the graphs from random
and DIMACS benchmarks, the vertex-based approach can give better initial solutions
for most times. Moreover, Algorithm 2 is able to generate solutions that are already
global optimum for some of the instances in random and real world category.

4 Local search

We now introduce local search algorithms that make use of the aforementioned branch-
ing ideas. Both local search algorithms work with a list C representing a set of nodes

6

Algorithm 3: Edge-based Local Search
1 Let C be an initial vertex cover represented as a list;
2 repeat
3 Choose a node v ∈ C uniformly at random and set C := C \ v;
4 while ((C is not a vertex cover of G) and (not termination condition)) do
5 Choose the first node v of C and set C := C \ v;
6 Let e = {u, v} be a random uncovered edge, i.e., e ∈ G[C];
7 with probability 1/2 do
8 C := C ∪ {u}
9 else

10 C := C ∪ {v}

11 until termination condition;
12 Return C;

and adding nodes to C in both algorithms always means adding them to the end of the
list.

The edge-based local algorithm (see Algorithm 3) is a simplified version of one
of the most successful approaches for solving the vertex cover problem, namely
NuMVC [2]. It starts with a vertex cover of size k + 1 and tries to find a smaller ver-
tex cover of size k by removing one node. If this step violates the property of a vertex
cover, it removes an additional node, picks an uncovered edge and adds one of its nodes
uniformly at random. After a vertex cover of size k is obtained, it continues the process
to search for a vertex cover of size k − 1 and so on.

In the following, we give an upper bound on the number of steps of edge-based
local search to find a vertex cover of size k. For our analysis, we partition the run of
edge-based local search into distinct phases of length k which consist of k iterations of
the while-loop.

Theorem 3. For all r with 0 ≤ r ≤ OPT , the edge-based local search finds a vertex
cover of size k := 2OPT − r after (expected) at most 2r+1 phases of length k.

Proof. We investigate the probability that during k steps of the while-loop a vertex
cover has been found at least once. We call this a success during a phase of k steps. Let
C∗ be a vertex cover of size OPT . As C∗ is a vertex cover, it contains for each edge
e ∈ E at least one vertex. Consider an edge e = {u, v}. At each iteration, a vertex
z ∈ C∗ is picked with probability at least 1/2 and each node of C∗ is picked at most
once as only uncovered edges are chosen. The expected number of distinct vertices
contained in C∗ during a phase of k steps is therefore at least k/2 = (2OPT − r)/2.
The probability that during the first r steps only nodes of C∗ are picked is at least 2−r.
The expected number of nodes of C∗ picked in the remaining 2OPT−2r steps (before
a vertex cover is reached) is at least OPT − r. Furthermore, it is at least OPT − r
with probability 1/2. Hence, the algorithm picks all OPT nodes during a phase of
k = 2OPT − r steps with probability at least 2−(r+1). The expected number of phases
of length k needed to find a vertex cover is therefore at most 2r+1.

7

Algorithm 4: Vertex-based Local Search
1 Set α := 1.4656;
2 Let C be an initial vertex cover represented as a list;
3 repeat
4 Choose the first node v of C and set C := C \N2

G[v];
5 repeat
6 Let u be a random node with degG[C](u) = mindeg(G[C]);
7 if degG[C](u) = 1 then
8 C := C ∪NG[C][u] ; /* degree 1 rule */
9 else if degG[C](u) = 2 then

10 Let v, w ∈ V such that NG[C][u] = {v, w};
11 with probability α−|NG[C][v]∪NG[C][w]| do
12 C := C ∪NG[C][v] ∪NG[C][w]
13 else
14 C := C ∪NG[C][u] ; /* degree 2 rule */

15 else
16 with probability α− degG[C](u) do
17 C := C ∪NG[C][u]
18 else
19 C := C ∪ {u} ; /* degree ≥ 3 rule */

20 until C is a vertex cover of G (or termination condition);
21 until termination condition;
22 Return C;

We also turn the vertex-based branching approach into a vertex-based local search
algorithm (see Algorithm 4). This approach searches for a vertex cover after removing
a node together with all its neighbors. Afterwards, it tries to obtain a new vertex cover
by picking a random node of minimum degree in the graph consisting of currently all
uncovered edges. Based on the degree of this node the degree rules are applied with the
already introduced biased probabilities. The last step is iterated until a vertex cover is
found again.

4.1 Experimental investigations

We test Algorithm 3 and 4 on some sample instances to evaluate their performance.
Both algorithms are given an initial vertex cover produced by Algorithm 1 and the cut
off generation is set to 100 000. Both algorithms are implemented in JAVA and their
performance is measured by the number of iterations it takes to make improvement.

Figure 2 shows the improvement of the two algorithms on example instances over
iterations. |C| − OPT denotes the size difference between the best solution so far and
the globally optimal solution. The stairstep lines are drawn for three independent runs
for each instance and algorithm. The vertex-based heuristic makes significant improve-
ment before 2 000 generations for these three instances from the observation of the solid
lines while the solution of edge-based heuristic does not improve much until 100 000

8

log(iterations)
100 101 102 103 104 105

C

 O
PT

0

10

20

30

40

50

60

Fig. 2: The improvement of both algorithms in three example instances over iterations. The lines
in blue, red and green color represent an independent run on the instance random-50prob10,
C125.9 and bio-celegans, respectively. The dotted lines and solid lines denote the results from
Algorithm 3 and 4.

which is the cutoff bound. For the random graphs, the vertex-based approach is able to
find a global optimum before 10 000 iterations whereas the edge-based heuristic does
not reach the optimal solution before 100 000 iterations.

More results are shown in Table 2. The average best vertex cover sizes at certain
number of iterations from 10 independent runs of these two algorithms on a certain
vertex cover problem are listed in the table. From the statistics in Table 2, vertex-based
approach produces better results for 15, 15, 16 and 16 out of the 17 instances after
10 000, 50 000, 100 000 and 200 000 iterations, respectively. Moreover, Algorithm 4
has a success rate of 100% in solving 8 instances from different categories.

5 Conclusions

We have shown how well-known fixed parameter branching algorithms for the mini-
mum vertex cover problem can be turned into randomized initialization strategies and
guarantee the probabilities of obtaining good solutions. Furthermore, we have incorpo-
rated the branching rules into local search algorithms and observed that the edge-based
local search algorithm is equivalent to the core component of the state-of-the-art local
search algorithm called NuMVC. Considering the edge-based local search algorithm
from a theoretical perspective we have shown fixed parameter and trade-off results on
its performance. Additionally, we have demonstrated how the more complex vertex-
based branching rules can be incorporated into the vertex-based local search algorithm
and shown that this usually leads to better results on random graphs and social networks
than edge-based local search.

Acknowledgements

This research has been supported by the Australian Research Council (ARC) under
grant agreement DP140103400.

9

Instance EBH VBH

Name |V | |E| OPT 10 000 50 000 100 000 200 000 10 000 50 000 100 000 200 000

random 50p0.1 50 117 28 29.8 29.4 28.9 28.8 28.0 28.0 28.0 28.0
random 50p0.1-2 50 139 31 33.0 32.6 32.1 32.0 31.0 31.0 31.0 31.0
random 100p0.05 100 288 58 66.7 65.4 65.1 64.8 58.0 58.0 58.0 58.0
random 100p0.05-2 100 261 58 66.4 64.8 64.3 64.0 58.0 58.0 58.0 58.0
random 500p0.01 500 1 206 284 351.3 348.8 348.2 346.6 286.4 284.9 284.4 284.4
random 500p0.01-2 500 1 282 284 357.0 354.9 353.1 352.3 286.3 284.2 284.2 284.0
bio-celegans 453 2 025 249 291.4 290.7 290.0 289.8 250.7 249.7 249.3 249.3
bio-diseasome 516 1 188 285 316.2 314.5 314.5 313.3 288.9 287.3 287.0 286.6
soc-dolphins 62 159 34 36.3 35.7 35.4 34.9 34.0 34.0 34.0 34.0
soc-wiki-Vote 889 2 914 406 502.2 502.2 502.2 502.2 406.2 406.0 406.0 406.0
ca-netscience 379 914 214 243.9 241.1 240.3 238.7 216.7 215.7 215.1 214.7
ca-Erdos992 6 100 7 515 461 819.1 808.3 801.2 794.9 461.0 461.0 461.0 461.0
C125.9 125 787 91 102.7 101.1 100.5 100.4 95.3 93.3 92.8 92.8
C250.9 250 3 141 206 228.2 226.8 226.3 225.6 232.5 231.5 231.2 230.6
MANN a27 378 702 252 261.0 260.8 260.4 260.1 252.9 252.6 252.3 252.1
MANN a45 1 035 1 980 690 705.0 705.0 705.0 705.0 701.6 694.2 693.3 692.7
MANN a81 3 321 6 480 2 221 2 241.0 2 241.0 2 241.0 2 241.0 2 241.4 2 241.1 2 239.0 2 235.1

Table 2: Performance comparison between Algorithm 3 and 4 on some sample instances. The
average vertex cover size is listed after running each algorithm for certain number of iterations

Bibliography

[1] K. Bringmann and T. Friedrich. Parameterized average-case complexity of the
hypervolume indicator. In Genetic and Evolutionary Computation Conference
(GECCO), pp. 575–582, 2013.

[2] S. Cai, K. Su, and A. Sattar. Two new local search strategies for minimum vertex
cover. In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

[3] D. Corus, P. K. Lehre, F. Neumann, and M. Pourhassan. A Parameterised Com-
plexity Analysis of Bi-level Optimisation with Evolutionary Algorithms. Evolu-
tionary Computation, 24:183–203, 2015.

[4] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

[5] D. J. Johnson and M. A. Trick, editors. Cliques, Coloring, and Satisfiability: Sec-
ond DIMACS Implementation Challenge, Workshop, October 11-13, 1993. Amer-
ican Mathematical Society, Boston, MA, USA, 1996.

[6] S. Kratsch and F. Neumann. Fixed-Parameter Evolutionary Algorithms and the
Vertex Cover Problem. Algorithmica, 65:754–771, 2013.

[7] S. Kratsch, P. K. Lehre, F. Neumann, and P. S. Oliveto. Fixed Parameter Evolu-
tionary Algorithms and Maximum Leaf Spanning Trees: A Matter of Mutation. In
11th International Conference on Parallel Problem Solving from Nature (PPSN),
pp. 204–213, 2010.

[8] S. Nallaperuma, A. M. Sutton, and F. Neumann. Parameterized Complexity Anal-
ysis and More Effective Construction Methods for ACO Algorithms and the Eu-
clidean Traveling Salesperson Problem. In Proceedings of the IEEE Congress on
Evolutionary Computation, CEC, pp. 2045–2052. IEEE, 2013.

[9] R. A. Rossi and N. K. Ahmed. The Network Data Repository with Interactive
Graph Analytics and Visualization. In AAAI, pp. 4292–4293, 2015.

[10] A. M. Sutton, F. Neumann, and S. Nallaperuma. Parameterized Runtime Anal-
yses of Evolutionary Algorithms for the Planar Euclidean Traveling Salesperson
Problem. Evolutionary Computation, 22:595–628, 2014.

10

	Fixed-Parameter Single Objective Search Heuristics for Minimum Vertex Cover
	Introduction
	Preliminaries
	Initialization Strategies
	Experimental investigations

	Local search
	Experimental investigations

	Conclusions

