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ABSTRACT
Diversity mechanisms are key to the working behaviour of
evolutionary multi-objective algorithms. With this paper, we
contribute to the theoretical understanding of such mecha-
nisms by means of rigorous runtime analysis. We consider
the OneMinMax problem for which it has been shown in [11]
that a standard benchmark algorithm called (µ+1)-SIBEA is
not able to obtain a population with optimal hypervolume
distribution in expected polynomial time if the population
size is relatively small. We investigate the same setting as in
[11] and show that (µ + 1)-SIBEA is able to achieve a good
approximation of the optimal hypervolume distribution very
efficiently. Furthermore, we study OneMinMax in the con-
text of search-based diversity optimization and examine the
time until (µ+1)-SIBEA with a search-based diversity mech-
anism has obtained a population of maximal diversity cover-
ing the whole Pareto front.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and
Problem Complexity

Keywords
Evolutionary multi-objective optimization, Diversity, Run-
time analysis, Theory

1. INTRODUCTION
Most probably one of the greatest success stories of evolu-

tionary computation lies in the area of evolutionary multi-
objective optimization [6, 7]. Evolutionary algorithms are
frequently applied to various multi-objective problems in im-
portant areas such as renewable energy [13] and water net-
work distribution [17]. Using an evolutionary algorithm for
a given multi-objective problem, the population of an EA is
evolved into a set of solutions which represents the trade-offs
according to the given objective functions.
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In contrast to high profile applications of evolution-
ary multi-objective optimization, the theoretical foundations
lack far behind their practical success. The main reason
for this is that population-based evolutionary algorithms are
hard to analyze. For multi-objective problems this especially
holds if a population is used which is not able to cover the
whole Pareto front. The key part of an evolutionary algo-
rithm for multi-objective optimization is the selection step
which decides which individuals are transfered in the next
generation. Almost all selection methods follow the princi-
ple of Pareto dominance in an explicit or implicit way. Algo-
rithms such as NSGA-II, SPEA2, and IBEA basically differ in
the way they differentiate between incomparable solutions.

With this paper, we contribute to the theoretical under-
standing of evolutionary multi-objective optimization and
study the runtime until they have achieved important goals.
The area of runtime analysis has become a major contributor
to the theory of evolutionary computation over the last 20
years (see the books [3, 10] for comprehensive presentations).
Theoretical runtime results on the hypervolume-based algo-
rithms are rather rare. Results have been obtained for the
µ-distribution maximizing the hypervolume indicator [1, 2]
and the behaviour of simple hypervolume-based algorithms
for simple benchmark functions [5, 11]. We first consider a
simple hypervolume-based algorithm called (µ + 1)-SIBEA,
which is inspired by the famous SMS-EMOA [4]. For the
OneMinMax problem, it has been shown in [11] that (µ+1)-
SIBEA is not able to achieve a population having maximal
hypervolume in the case of µ =

√
n when starting with a

worst-case initial population. In this paper we consider the
same setting and show that (µ+ 1)-SIBEA is able to obtain a
good approximation of the optimal hypervolume in expected
polynomial time.

After having obtained this result, we turn our attention to
another recent development in evolutionary multi-objective
optimization, namely decision space diversity [12, 15, 16].
Here the goal is to obtain a set of Pareto optimal solutions
that differ according to the underlying search space. Such
a set of solutions can be very valuable to decision makers
who are able to judge solutions in an intuitive way, but with-
out quantifying their knowledge in terms of an objective
function. Having a diverse set of solutions according to the
components of a solution therefore gives the decision maker
more options of implementing a good solution in different
ways. Initial studies on the runtime behaviour for search
space diversity optimization have been obtained in [9].

Again, we consider OneMinMax and analyze the runtime
of diversity optimization techniques for evolutionary multi-



Algorithm 1: (µ+ 1)-SIBEA.
Start with an initial population P consisting of µ
elements from S.
repeat forever

Select x from P uniformly at random;
x′ ← mutate(x);
P̂ ← P ∪ {x′};
Let z be a randomly chosen individual with
cH(z, P̂ ) = minx∈P̂ cH(x, P̂ );
P ← P̂ \ {z};

objective optimization. We consider the case µ = n + 1, i.e.
the population can cover the whole Pareto front and inves-
tigate how a population of maximum search space diver-
sity covering the whole front can be obtained by (µ + 1)-
SIBEA incorporating a search space diversity mechanism.
We point out that although the problem is very simple, there
are non optimal populations where the diversity can not be
improved by 1-bit flips. Considering 2-bit flips, we show that
a population of maximal diversity is obtained in expected
time O(n3 logn).

The paper is structured as follows. In Section 2, we intro-
duce the algorithm and the setup that is subject to our inves-
tigations. Section 3 shows our approximation results for the
hypervolume indicator and µ ≤

√
n. Our results for maxi-

mizing search space diversity are presented in Section 4 and
finally we finish with some concluding remarks.

2. PRELIMINARIES
We start by introducing some basic concepts regarding hy-

pervolume maximization and search space diversity opti-
mization using evolutionary algorithms in the following.

We consider the search space S = {0, 1}n, i. e. candi-
date solutions are bitstrings of length n. In multi-objective
optimization, we consider a vector-valued fitness function
f : S → Rm where m ≥ 2 is the number of objectives. In
this paper, we assume that all objective functions should be
maximized. The fitness of a search point x ∈ S is given by the
vector f(x) = (f1(x), . . . , fm(x)). We define f(x) ≥ f(x′) iff
fi(x) ≥ fi(x

′) for all i ∈ {1, . . . ,m}. In this case, we say
that the objective vector f(x) dominates the objective vector
f(x′). The set of non-dominated objective vectors is called
the Pareto front and the classical goal in multi-objective op-
timization is to obtain for each objective vector of the Pareto
front a corresponding solution. As the Pareto front for most
problems is to large evolutionary multi-objective algorithms
evolve a set of solutions that covers the Pareto front in a good
way.

Throughout this paper, we consider the problem

OneMinMax(x) := (‖x‖0, ‖x‖1)

where the number of zeros (‖x‖0) and ones (|x‖1) has to be
maximized at the same time. The problem has the property
that all search points are on the Pareto front and our goal
is to study how evolutionary multi-objective algorithms can
obtain diverse sets of solutions with respect to the search-
and objective space.

2.1 Hypervolume-Based Algorithm
The hypervolume indicator measures a set of elements in
<m (corresponding to images of elements in S) with the vol-
ume of the dominated portion of the objective space. In par-
ticular, given a reference point r ∈ Rm, the hypervolume
indicator is defined on a set P ⊂ S as

IH(P ) = λ

(⋃
x∈P

[f1(x), r1]× [f2(x), r2]× · · · × [fm(x), rm]

)
where λ(S) denotes the Lebesgue measure of a set S and
[f1(a), r1] × [f2(a), r2] × · · · × [fm(a), rm] is the orthotope
with f(a) and r in opposite corners.

We define the contribution of an element x ∈ P to the hy-
pervolume of a set of elements P as

cH(x, P ) = IH(P \ {z})− IH(P )

We analyse how the (µ+ 1)-SIBEA (see Algorithm 1) opti-
mizes the hypervolume indicator for OneMinMax. The algo-
rithm starts with a set P of µ solutions and produces in each
iteration from a randomly chosen individual x ∈ P one off-
spring x′ by mutation resulting in a population P̂ = P∪{x′}.
The mutation operator considered throughout this paper is
standard-bit mutation which flips each bit of the parent indi-
vidual x with probability 1/n. In order to obtain the popula-
tion of the new generation an individual z ∈ P ′ with mini-
mal hypervolume contribution is discarded.

We analyze how well (µ + 1)-SIBEA approximates the
Pareto front when µ � n. To measure runtime, we count
the expected number of iterations of the repeat-loop in Al-
gorithm 1 (called expected time) until the algorithm has
achieved a population of desired quality. Previous work by
Nyugen, Sutton and Neumann [11] showed that finding the
absolutely best approximation can take long, so that no ad-
vantage over other algorithms computing the full front was
visible. We show in Sections 3 that relatively good approxi-
mations, still having a 1− o(1) fraction of the maximum pos-
sible hypervolume, can be computed highly efficiently.

Since our approximations will be very good (they all lose
only a lower order term on the best-possible approxima-
tion), and since the real point of comparison is not the best-
possible approximation achievable with µ point, but rather
the true front, it will be more convenient to talk about the dis-
crepancy to the ideal solution rather than the hypervolume
achieved by our solutions. Assume that the multi-objective
optimization problem under consideration has a Pareto front
F , which gives rise to a hypervolume of IH(F ). Then for
any set of feasible solutions P , we define its (hypervolume-
)discrepancy to be disc(P ) := IH(F )−IH(P ). Note that when-
ever µ < |F |, each set |P |with |P | = µ has a positive discrep-
ancy.

2.2 Search Space Diversity Optimization
To study search space diversity optimization for

OneMinMax we consider a population size that is able
to cover the whole Pareto front, i. e. µ ≥ n + 1. We analyze
(µ+ 1)-SIBEA with a search-space diversity mechanism and
study the time until it has produced a population that is
diverse with respect to the underlying search space.

There are many ways to measure the difference between
different individuals. As discussed in [9], the diversity
measurement should have the three properties of twin-
ning, monotonicity in varieties and monotonicity in distance.



Since pseudo-Boolean functions are defined on bit-strings,
we use Hamming distance

H(x, y) =

n∑
i=1

|xi − yi|,

where xi, yi ∈ {0, 1}, to evaluate the difference between two
individuals. The diversity of a set of solutions P is defined
as the sum of Hamming distance between each pair of indi-
viduals in P . Note that in general P can be a multi-set which
may include duplicates. In order to meet the twinning prop-
erty [14, 15], duplicates are removed when computing the
diversity of a (multi-)set P based on the Hamming distance.

DEFINITION 1. For a given population P , the population di-
versity is defined as D(P ) =

∑
{x,y}∈P̂×P̂ H(x, y), where P̂ is

the set with all distinct solutions in P .

The diversity optimization is conducted until population
covers the whole Pareto-front. The contribution of solution x
to the population diversity is defined as

cD(x, P ) = D(P )−D(P \ {x}).

Taken both the population diversity and hypervolume in-
dicator into consideration, the contribution of an individual
is defined as

c(x, P ) = (cH(x, P ), cD(x, P )).

For two individuals x, y ∈ P , we define c(x, P ) < c(y, P )
if cH(x, P ) < cH(y, P ) or cH(x, P ) = cH(y, P ) ∧ cD(x, P ) <
cD(y, P ), which indicates y is better than x in quality. And
we also define c(x, P ) ≤ c(y, P ) iff cH(x, P ) ≤ cH(y, P ) ∧
cD(x, P ) ≤ cD(y, P ).

In order to obtain a population which is optimal in both
hypervolume indicator and population diversity, we com-
bine the classical (µ + 1)-SIBEA with the contribution de-
fined above. The (µ+ 1)-SIBEA with solution diversity opti-
mization is defined as (µ+ 1)-SIBEAD. The whole process of
(µ+ 1)-SIBEAD is given in Algorithm 2.

When considering (µ + 1)-SIBEAD, we focus on the as-
pect of maximizing search space diversity. The selecting pro-
cess involves the hypervolume contribution as the premier
component. It has been shown in [11] that (µ + 1)-SIBEA
computes for each Pareto optimal objective vector a corre-
sponding search point, i. e. covers the whole Pareto front, in
time O(µn logn), if µ ≥ n + 1. For our investigations re-
garding search space diversity, we consider population sizes
µ = n + 1. As maximizing the hypervolume is premier goal
in (µ + 1)-SIBEAD, a population containing for each Pareto
optimal objective vector, is obtained in time O(µn logn) fol-
lowing the analysis in [11]. We will work under the assump-
tion that such a population has already been obtained and
are interested in the expected time until such a population
has maximal search space diversity.

We study our algorithm in terms of the number of fitness
evaluations until it has produced a population P that has the
optimal hypervolume indicator as well as the maximal di-
versity D(P ). The expected optimization time refers to the ex-
pected number of fitness evaluations to reach this goal. We
represent the population in a µ × n matrix where each indi-
vidual is a row. This allows us to point out when a popula-
tion has maximal diversity.

Algorithm 2: (µ+ 1)-SIBEAD

Start with an initial population P consisting of µ
elements from S.
repeat forever

Select x from P uniformly at random;
x′ ← mutate(x);
P̂ ← P ∪ {x′};
Let z be a randomly chosen individual with
c(z, P̂ ) = minx∈P̂ c(x, P̂ );
P ← P̂ \ {z};

3. APPROXIMATING THE PARETO
FRONT

In this section, we study Algorithm 1 for µ ≤
√
n. We

show that (µ+1)-SIBEA can compute approximations to the
Pareto front with discrepancy of this optimal order. Note that
the constant factor gap remaining to the absolute optimal is
not a real problem. By running the (µ + 1)-SIBEA with a
larger µ value (larger by a suitable constant factor, leading to
a constant factor increase of the runtime), we can much eas-
ier reduce the discrepancy than by trying to find the optimal
approximation for a fixed µ. The main result of this section
is as follows.

THEOREM 1. Let µ ≤
√
n. Then (µ + 1)-SIBEA in an ex-

pected number ofO(µn logn) iterations computes a set of µ points
having hypervolume-discrepancy at most 2n2/µ.

Note that for OneMinMax any search point x lies on the
Pareto front F and we have ‖x‖0 + ‖x‖1 = n for any search
point. The position f(x) of any point in the objective space
is determined by its first coordinate f1(x) = ‖x‖0. There-
fore, we can uniquely describe the position f(P ) of any set
P of µ points in the objective space via the length of the
intervals formed by consecutive points. More precisely, let
P = {x(1), . . . , x(µ)} be a set of µ search points. Assume that
P is sorted increasingly with respect to the first objective, that
is, for all i ∈ [2..µ] we have f1(x(i−1)) ≤ f1(x

(i)). Define the
length of the interval formed by these two search points on
the front by `i := f1(x

(i))− f1(x(i−1)). Define further the ar-
tificial interval lengths `1 = f1(x

(1)) and `µ+1 = n−f1(x(µ)).
Then f1(x(i)) =

∑i
j=1 `j for all i ∈ [1..µ], hence the position

of P in the objective space is indeed fully described by the
` = (`1, . . . , `µ+1).

From ` we can easily compute the discrepancy.

LEMMA 2. Let P be a population, then its discrepancy is

disc(P ) =
∑µ+1
i=1

`2i
2
+ (−r1)`1 + (−r2)`µ+1 − n/2.

PROOF. We compute

IH(F ) = (−r1 · (n− r2)) + (−r2 · (n− r1)) +
n2

2
− n

2

and

IH(P ) = (−r1·(n−r2−`1))+(−r2·(n−r1−`µ+1))+
n2

2
−
µ+1∑
i=1

`2i
2
.



Therefore, we have

disc(P ) = IH(F )− IH(P )

=

µ+1∑
i=1

`2i
2

+ (−r1)`1 + (−r2)`µ+1 − n/2.

The following lemma shows that (µ + 1)-SIBEA is always
able to achieve a good progress in terms of reducing the dis-
crepancy as long as the discrepancy is at least 2n2/µ. For
simplicity, we assume r = (0, 0) for now and generalize to
other reference points afterwards.

LEMMA 3. Let r = (0, 0) and P be the current population
with disc(P ) ≥ 2n2/µ. ThenE(disc(P ′)) ≤ (1− 1

2eµn
) disc(P )

holds for the population P ′ of the next generation.

PROOF. We first observe that the discrepancy, since it ba-
sically is the negative of the hypervolume, cannot increase
during a run of the (µ+1)-SIBEA. Therefore, we can show an
upper bound for disc(P ′) by regarding suitable events that
decrease the discrepancy, ignoring all others. The events we
regard is that the point x(i) moves one step into the direction
of the larger adjacent interval, given that this exists.

More precisely, let i ∈ [1..µ]. If `i < `i+1, let Ei be the
event that the (µ+1)-SIBEA picks x(i) for variation and flips
in x(i) exactly one bit and this flips from one to zero. The
probability for this event is Pr(Ei) = (1/µ)(1−1/n)n−1((n−
‖x(i)‖0)/n) ≤ 1

eµn
(n − ‖x(i)‖0). If this new individual re-

places its parent, then the new population P ′ is identical to
P except that `′i = `i + 1 and `′i+1 = `i+1 − 1. Consequently,

disc(P ′) = disc(P ) + 1
2
((`i + 1)2 − `2i + (`i+1 − 1)2 − `2i+1)

= disc(P )− (`i+1 − `i − 1)

by Lemma 2. Since we assumed `i < `i+1, such a step does
not increase discrepancy and is therefore accepted. If the
new individual does not replace its parent, then this is for the
reason that removing another individual leads to an at least
as small discrepancy. Consequently, the new (and accepted)
population P ′ again fulfills disc(P ′) ≤ disc(P )− (`i+1− `i−
1).

Similarly, if `i > `i+1, let Ei be the event that the (µ + 1)-
SIBEA picks x(i) for variation and flips in x(i) exactly one bit
and this flips from zero to one. The probability for this event
is Pr(Ei) = (1/µ)(1−1/n)n−1(‖x(i)‖0/n) ≥ 1

eµn
‖x(i)‖0, and

it results in a population P ′ with disc(P ′) ≤ disc(P ) − (`i −
`i+1 − 1).

Based on the above discussion, let us define δi = (n −
‖x(i)‖0)(`i+1 − `i − 1), if `i < `i+1, and δi = ‖x(i)‖0(`i −
`i+1 − 1), if `i > `i+1. If `i = `i+1, let δi = 0. Then

E(disc(P ′)) ≤ disc(P )− 1

eµn

µ∑
i=1

δi.

Note that ‖x(i)‖0 =
∑i
j=1 `j , so the δi can be expressed solely

via the `j . Therefore, let us define δ = δ(`1, . . . , `µ+1) :=∑µ
i=1 δi, where the δi are defined as at the beginning of this

paragraph.
We now argue that δ is smallest when the `i are sorted

decreasingly. To this aim, consider a fixed sequence of ` =
(`1, . . . , `µ+1). Let k be maximal such that `j ≥ `j+1 for

all j ∈ [1..k − 1]. In other words, k is minimal subject to
`k < `k+1. Let b be maximal such that `k+1 > `b. Define
`′ = (`1, . . . , `b−1, `k+1, `b, . . . , `k, `k+2, . . . , `µ+1). In other
words, `′ is obtained from sorting the first k + 1 entries of
`, which means removing the (k + 1)st entry and insert-
ing it between the (b − 1)st and bth entry. We show that
δ′ = δ(`′) is not larger than δ = δ(`). We use the shorthands
(. . .)0 := max{. . . , 0}, Li :=

∑i
j=1 `i, and L′i :=

∑i
j=1 `

′
i. We

start with the case the `k+2 ≤ `k (and thus also `k+2 < `k+1).
Then

δ − δ′ =
k+1∑
i=b−1

(δi − δ′i)

=Lb−1((`b−1 − `b − 1)0 − (`b−1 − `k+1 − 1)0) (1)

− δ′b

+

k−1∑
i=b

(Li − L′i+1)(`i − `i+1 − 1)0 (2)

+ δk (3)
+ Lk+1((`k+1 − `k+2 − 1)0 − (`k − `k+2 − 1)0) (4)

=Lb−1(`b−1 − `b − 1− (`b−1 − `k+1 − 1)0) (5)
− (Lb−1 + `k+1)(`k+1 − `b − 1)

−
k−1∑
i=b

`k+1(`i − `i+1 − 1)0

+ (n− Lk)(`k+1 − `k − 1)

Lk+1(`k+1 − `k+2 − 1− (`k − `k+2 − 1)0 (6)
=Lb−1(`b−1 − `k+1 − (`b−1 − `k+1 − 1)0) (7)
− `k+1(`k+1 − `b − 1)

−
k−1∑
i=b

`k+1(`i − `i+1 − 1)0 (8)

+ n(`k+1 − `k − 1) (9)
+ Lk(`k+1 − `k+2 − 1− (`k − `k+2 − 1)0 (10)
− (`k+1 − `k − 1)) (11)

+ `k+1(`k+1 − `k+2 − 1− (`k − `k+2 − 1)0.

The terms (7), (9), and (10)+(11) are easily seen to be non-
negative. (8) can be estimated by −

∑k−1
i=b `k+1(`i − `i+1 −

1)0 ≥ −
∑k−1
i=b `k+1(`i − `i+1) ≥ −`k+1(`b − `k). Conse-

quently,

δ − δ′ ≥`k+1(−(`k+1 − `b − 1)− (`b − `k) + `k+1

− `k+2 − 1− (`k − `k+2 − 1)0)

=`k+1(`k − `k+2 − (`k − `k+2 − 1)0) ≥ 0.

We continue with the case that `k+2 > `k+1, implying `k+2 >
`k. We start the same computation as above, but have to re-
place (4) and (6) by (n−Lk+1)((`k+2 − `k+1 − 1)0 − (`k+2 −
`k−1)0) = (n−Lk+1)(`k−`k+1). Continuing with this from



(5) on, we obtain

δ − δ′ =Lb−1(`b−1 − `k+1 − (`b−1 − `k+1 − 1)0)

− `k+1(`k+1 − `b − 1)

−
k−1∑
i=b

`k+1(`i − `i+1 − 1)0)

+ n+ Lk(`k − `k+1 + 1)− Lk+1(`k − `k+1)

≥0
− `k+1(`k+1 − `b − 1)

− `k+1(`b − `k)
+ n+ `k+1(`k+1 − `k − 1) = n > 0.

Let us finally consider the case `k < `k+2 ≤ `k+1. Again,
nothing changes except (4), which now is

δk+1 − δ′k+1

=Lk+1(`k+1 − `k+2 − 1)0 − (n− Lk+1)(`k+2 − `k − 1)0

=− n(`k+2 − `k − 1) + Lk+1((`k+1 − `k+2 − 1)0

+ `k+2 − `k − 1).

Together with (3), this becomes

δk + δk+1 − δ′k+1

=(n− Lk)(`k+1 − `k − 1)− n(`k+2 − `k − 1)

+ Lk+1((`k+1 − `k+2 − 1)0 + `k+2 − `k − 1)

=n(`k+1 − `k+2)− Lk`k+1 + `k(Lk − Lk+1)

+ Lk − Lk+1 + Lk+1(((`k+1 − `k+2 − 1)0 + `k+2)

=n(`k+1 − `k+2)− Lk`k+1 + `k`k+1 − `k+1

+ Lk+1(((`k+1 − `k+2 − 1)0 + `k+2).

Adding (1) to (2), we obtain

δ − δ′ =Lb−1(`b−1 − `k+1 − (`b−1 − `k+1 − 1)0)

− `k+1(`k+1 − `b − 1)

−
k−1∑
i=b

`k+1(`i − `i+1 − 1)0

+ n(`k+1 − `k+2)− Lk`k+1 + `k`k+1 − `k+1

+ Lk+1(((`k+1 − `k+2 − 1)0 + `k+2)

=Lb−1(`b−1 − `k+1 − (`b−1 − `k+1 − 1)0)

+ `k+1(−`k+1 + `b + 1− `b + `k − Lk − `k − 1)

+ Lk+1(((`k+1 − `k+2 − 1)0 + `k+2)

+ n(`k+1 − `k+2)

=Lb−1(`b−1 − `k+1 − (`b−1 − `k+1 − 1)0)

− Lk+1`k+1

+ Lk+1(((`k+1 − `k+2 − 1)0 + `k+2)

+ n(`k+1 − `k+2)

=Lb−1(`b−1 − `k+1 − (`b−1 − `k+1 − 1)0)

+ (n− Lk+1)(`k+1 − `k+2)

+ Lk+1(((`k+1 − `k+2 − 1)0) ≥ 0.

Let us return to our population P at the beginning of the
round regarded. We recall that its position in the objective
space is uniquely described by the sequence of the lengths
`1, . . . , `µ+1 of intervals formed by the individuals on the
front. Let `′1, . . . , `′µ+1 be a decreasing sorting of `1, . . . , `µ+1,
that is, we have `′i ≥ `′i+1 for all i ∈ [1..µ] and the multisets

formed by the two sequences are identical. Note that `′ can
be obtained from ` by a sequence of operations of the type
“remove the first element offending the decreasing order and
insert it to the left of the first element smaller than it. Above
we showed that any such operation does not increase the δ-
value of the sequence. Consequently, we have δ(`′) ≤ δ(`).
Consequently, we can estimate the drift from population P
as follows.

E(disc(P ′)) ≤ disc(P )− δ

eµn

≤ disc(P )− δ′

eµn
.

Note that when r = (0, 0) as assumed, disc(P ) only de-
pends on the set of interval lengths, so changing the order
of the intervals does not change the discrepancy. Therefore,
we can simply assume that P already gives rise to a sorted
sequence of interval lengths. We compute

δ =

µ∑
i=1

Li(`i − `i+1 − 1)0 ≥
µ∑
i=1

Li(`i − `i+1)−
µ∑
i=1

Li

and
µ∑
i=1

Li(`i − `i+1) =

µ∑
i=1

(

i∑
j=1

`j)(`i − `i+1)

=

µ∑
j=1

`j

µ∑
i=j

(`i − `i+1)

=

µ∑
j=1

`j(`j − `µ)

≥
µ∑
j=1

`2j − n`µ.

Since `µ is the smallest interval length, it is not larger than the
average interval length, that is, we have `µ ≤ n/µ. Together
with the trivial estimate Li ≤ n, we finally have

E(disc(P ′)) ≤ disc(P )− δ

eµn

≤ disc(P )− 1

eµn

( µ∑
j=1

`2j − n`µ −
µ∑
i=1

Li

)

≤ disc(P )− 1

eµn

( µ∑
j=1

`2j − n(µ+ n/µ)

)

≤ disc(P )− 1

eµn

(
2 disc(P ) + n− n(µ+ n/µ)

)

If µ ≤
√
n and disc(P ) ≥ 2n2/µ, then this yields

E(disc(P ′)) ≤ (1− 1
2eµn

) disc(P ) as desired.

PROOF OF THEOREM 1. To not obscure the main proof ar-
guments by additional technicalities, we only give the proof
for the case that r = (0, 0), that is, that the reference point
lies in the origin. There is no doubt that all other cases
can be handled in generally the same way, however, with
more tedious calculations. Since in [11] mainly the case
r = (−n2,−n2) was regarded, we add a reduction from this
case to the case r = (0, 0) at the end of this proof.



We use Lemma 3 together with the multiplicative drift the-
orem [8]. Since Lemma 3 gives a bound for the drift only for
a part of the discrepancy ranges, but the drift theorem re-
quires such a drift in the whole range, we need to artificially
prolong the process as follows.

Consider a run of the (µ + 1)-SIBEA. Let X0 be the dis-
crepancy of the initial population. Assume that this is at least
2n2/µ (otherwise we are done). For t > 0, define Xt as fol-
lows. If the discrepancies of all populations after iterations
0, . . . , t were at least 2n2/µ, then let Xt be the discrepancy
after round t. Otherwise letXt := Xt−1 with probability (1−

1
2eµn

) and Xt = 0 else. This defines a random process in the
nonnegative integers satisfying E(Xt) ≤ (1− 1

2eµn
)E(Xt−1)

for all t ≥ 1. Also, X0 ≤ n2 by definition of the discrep-
ancy. By the multiplicative drift theorem, it takes at most an
expected time of 2eµn(1 + ln(n2)) iterations until Xt = 0.
Consequently, the expected first time for the discrepancy to
be at most 2n2/µ, is at most 2eµn(1 + ln(n2)) = O(µn logn).

We now add a quick argument why the above is also suffi-
cient for the case that the reference point is r = (−n2,−n2).
In this case, it was shown in [11] that the maximal OneMax
value in the population never decreases and that the mini-
mal OneMax value in the population never increases. Based
on this, it was shown that after an expected number of
O(µn logn) iterations, the population contains the extreme
points (0, . . . , 0) and (1, . . . , 1). From that point on, knowing
that the population continues to contain at least one copy of
each extreme point, the discrepancy of all future populations
is independent of the reference point (apply Lemma 2 with
`1 = `µ+1 = 0). Consequently, after an initial segment of
O(µn logn) iterations, our proof above applies, and we ob-
tain the same O(µn logn) bound for the expected time com-
plexity.

4. SEARCH SPACE DIVERSITY OPTI-
MIZATION

We now turn to population sizes µ = n + 1 and investi-
gate how evolutionary algorithms can optimize search space
diversity under the condition that for each Pareto optimal
objective vector at least one search point is contained in the
population.

The following lemma shows crucial properties of a popu-
lation maximized in population diversity.

LEMMA 4. Let µ = n + k ≤ 2n, where k ≥ 1. If the popula-
tion P fulfils all of the following properties:

1. For each Pareto optimal objective vector v, there is an s ∈ P
with f(s) = v.

2. There are no duplicated individuals in P .

3. Each column of the matrix representing P has either bµ/2c
or dµ/2e 1-bits.

then P is optimal for OneMinMax in population diversity.

PROOF. According to the definition of OneMinMax, there
are (n+1) different points in the Pareto-front. Since µ ≥ n+1,
the individuals in P have to cover the entire Pareto-front in
order to be optimal in the population diversity.

Let P be a population of size µ containing no duplicate
and P ′ be the population obtained from P by replacing at
least one of its individuals x by a duplicate of the other

(µ − 1) individuals. According to the monotonicity in vari-
eties property of diversity measurement and Definition 1, we
have D(P ) > D(P ′) as P̂ = P̂ ′ ∪ {x}. This implies that no
population containing duplicates can be optimal if µ ≤ 2n.

Let matrix M represent a population P that does not con-
tain any duplicates. We show that P has maximal diversity
among all populations containing no duplicates if it contains
bµ/2c or dµ/2e 0-bits in each column.

The contribution of each column has no influence on any
other column. Hence, the population diversity equals to the
sum of the diversity contribution of every column in the ma-
trix. The contribution to population diversity of each column
can be written as mi(µ−mi), where mi represents the num-
ber of 1’s in the ith column and the overall population diver-
sity of P is given by

n∑
i=1

mi(µ−mi).

The quadratic continuous function g(x) = x(µ−x) has the
global maximum value of µ2/4 when x = µ/2. This implies
that the maximum is attained for x = bµ/2c and x = dµ/2e
when restricting the inputs of g to integers. Hence, P has
maximal diversity if it contains µ/2 1-bits in each column if
µ is even. In the case that µ is odd, P has maximal diversity
if each column has either bµ/2c or dµ/2e 1-bits.

Our proof for optimizing search space diversity will rely
on 2-bit flips. We first show that there are non-optimal pop-
ulations where (µ + 1)-SIBEAD is not able to achieve any
progress when restricted to 1-bit flips. Lemma 4 suggests
that the population with maximum diversity and full cover-
age of the Pareto-front should have balanced number of 1-
bits and 0-bits if µ = n + 1 is even. We will see in the proof
for (µ + 1)-SIBEAD that this is exactly the case. Although 1-
bit flip can improve the population diversity in most cases,
there are some situations where there does not exist 1-bit flip
that can increase the population diversity.

Some examples are included as Figure 1. The populations
shown in the example are almost balanced in all columns in
numbers of 1-bits and 0-bits but there is no 1-bit flip which
can improve the population diversity to optimality. In the
first population in Figure 1, there are only two columns
which are not balanced in the numbers of 0-bits and 1-bits,
which are the 1st and 3rd column. Either increasing the num-
ber of 1-bits or decreasing the number of 0-bits will improve
the population diversity. On the contrary, touching the other
columns will decrease the population diversity. Since the off-
sping after 1-bit flip can only replace the individual with the
same objectives in order to keep the coverage of the Pareto-
front, the change caused by a 1-bit flip depends on the Ham-
ming distance between the selected individual and its neigh-
bours in the objective space. The change to the population
diversity caused by a 1-bit flip on individual z can be repre-
sented as,

c(z) = S− − S+ −
1

2
(H(z, z′) + 1),

where S− and S+ denotes the total number of 1-bits in the
columns has one 1-bit decreased and increased respectively.
And H(z, z′) represents the Hamming distance between the
original individual z and the neighbour z′ which got re-
placed by the offspring.



Figure 1: The 8 × 7 matrices represent some populations
for which there is no 1-bit flip can improve the population
diversity. The last rows report the numbers of 1-bits in cor-
responding columns.

For the example in Figure 1, in order to increase the contri-
bution to the population diversity, an offspring should fulfil
the requirement of c(z) > 0, which means the columns ex-
cept for 1st and 3rd ones should all remain balanced and the
balance rate of these two columns should be increased. It is
impossible to improve the population diversity since there is
no offspring that is able to increase the contribution of these
two certain columns without decreasing the contribution of
the other columns. Flipping the first 0-bit in the all 0 bitstring
or the third 1-bit in all 1 bitstring can obtain offstring which
has the same contribution to the population diversity which
is acceptable by the algorithm. However that event will lead
to another population with the same population diversity
and there are still these two mutations do not decrease the
population diversity, which is the same situation as previ-
ous. Therefore no further improvement can be achieved by
1-bit flip for this population.

Since flipping one bit cannot guarantee the population di-
versity to be maximized, we focus on 2-bit flip to fulfil the
task.

LEMMA 5. If µ = n+1 and population diversity is not maxi-
mal, then there always exists at least one 2-bit flip in an individual
to improve the population diversity.

PROOF. By construction of the Algorithm 2, when µ =
n+1, there should exist exactly one individual in the popula-
tion which refers to each point in the Pareto-front, as proved
in Lemma 4. The event that selecting one individual and flip-
ping a 1-bit and a 0-bit of it results in an offspring with the
same objective value as its parent. The offspring can only re-
place its parent and this replacement only happens when the
offspring has a larger contribution to the population diver-
sity.

As proved in Lemma 4, in a matrix representing a popula-
tion which does not have optimal population diversity, there
must exist two columns that the number of 0-bits in one col-
umn is greater than that of the other. Let the number of 0-bits
in these two columns be s1 and s2, where s1 > s2 and both
s1 and s2 are integers. The overall contribution of the two
columns to the population diversity is s1·(µ−s1)+s2·(µ−s2).
Since s1 < s2, there must exist at least one row where there
is 0-bit and 1-bit in corresponding columns. Flipping the cer-
tain two bits does not affect the contribution of other columns
to the population diversity. The overall contribution after the
event should be

(s1 − 1)(µ− s1 + 1) + (s2 + 1)(µ− s2 − 1).

Therefore, the change of contribution is 2(s1−s2)−1. Since s1
and s2 are integers, s1−s2 ≥ 1. Hence, we get 2(s1−s2)−1 ≥
1.

Since the offspring is only compared with its parent, it is
impossible to introduce change to the other columns except
for these two columns. Therefore, there must exist at lease
one two-bit flip that should increase the population diver-
sity.

We can now prove our main result on search space di-
versity maximization for OneMinMax and show that the
(µ + 1)-SIBEAD obtains an optimal population in expected
time O(n3 logn).

THEOREM 6. Let µ = n + 1, the expected optimization
time of (µ + 1)-SIBEAD on OneMinMax is upper bounded by
O(n3 logn).

PROOF. The algorithm (µ + 1)-SIBEA obtains a popula-
tion of maximum hypervolume if µ ≥ n+1 in expected time
O(µn logn) as shown in [11]. We assume that a population
of maximal hypervolume has already been obtained and in-
vestigate how search space diversity is optimized. The Mul-
tiplicative Drift Theorem [8] is used to prove the expected
runtime bound.

DefineX(t) = DOPT−D(P ) andX(t+1) = DOPT−D(P ′),
where DOPT denotes the maximum value of the population
diversity and P ′ represents the population in the next gener-
ation of P .

Assume at time t there are k 2-bit flips that can improve
the population diversity to optimality no matter in what or-
der these k 2-bit flips happen. Such set of events exist for all
populations which are not maximized in population diver-
sity if the 2 bits selected is a 1-bit from the columns with more
than average number of 1-bits and a 0-bit from the columns
with less than average number of 1-bits. The average num-
ber of 1-bits refers to (n+ 1)/2 when n is odd and n/2 when
n is even. According to Lemma 5, such 2-bit flip always ex-
ists before the population diversity is optimized. As long as
the certain columns are not balanced in number of 1-bits and
0-bits, the 2-bit flip can improve the population diversity.

According to the algorithm, flipping these certain bits of an
individual does not affect the other individuals in the popu-
lation. The numbers of 1-bits remain the same except for the
two columns, therefore among the other (k − 1) 2-bit flips,
the 2-bit flips involving bits in the other (n− 2) columns are
still available. Since the k 2-bit flips are selected to improve
the population diversity to optimality, if there exist a 2-bit
flip involves the two columns, the number of 1-bits of the
column should still be unbalanced after the previous event.
According to Lemma 5, the other 2-bit flips can improving
the contribution to population diversity of the columns and
then the flips are acceptable. Then the order of the k 2-bit
flips does not affect the improvement.

Hence, the k 2-bit flips can be done in any order and re-
sult in a population with maximized population diversity as
assumption.

The probability for an individual to be selected and two
certain bits flipped is 1

µ
· 1
n
· 1
n
·
(
1− 1

n

)n−2 ≥ 1
eµn2 . The

probability for one of the k 2-bit flip happen is at least k· 1
eµn2 .

The average expected improvement by the k 2-bit flips is

DOPT −D(P )

k
=
X(t)

k
.



Then the drift can be represented as

E[X(t) −X(t+1)] ≥ k 1

eµn2
· X

(t)

k
=
X(t)

eµn2
.

In the worst case, the population in the beginning is with
the most unbalance rate. It is clear that s = X(t) ≤ DOPT .
The maximum population diversity when µ = n + 1 is µ ·
(n+1

2
)2 = (n+1)3

4
. Therefore we can get s0 ≤ (n+1)3

4
and

smin = 1.
According to the Theorem 3 in [8], the expected runtime

for maximizing the population diversity on OneMinMax is

E[T ] ≤ eµn2(1 + ln(s0/smin)) = O(n3 logn).

This completes the proof.

5. CONCLUSIONS
With this paper, we have contributed to the theoretical un-

derstanding of diversity mechanisms in evolutionary multi-
objective optimization by means of rigorous runtime anal-
ysis. We have studied a baseline algorithm called (µ + 1)-
SIBEA for the problem OneMinMax. Complementing the in-
vestigations of who have shown that for a population size
of µ =

√
n where (µ + 1)-SIBEA is not able to achieve the

optimal hypervolume, we have shown that the algorithm is
able to achieve a good approximation of the optimal hyper-
volume in time O(µn logn) for all µ ≤

√
n. For a population

size of µ = n+1, we have investigated (µ+1)-SIBEA in con-
nection with a search space diversity mechanism and shown
that the algorithm obtains a population of maximal search
space diversity covering the whole Pareto front in expected
time O(n3 logn).

Acknowledgements
Frank Neumann was supported by Australian Research
Council grants DP140103400, DP160102401.

References
[1] A. Auger, J. Bader, and D. Brockhoff. Theoretically

investigating optimal µ-distributions for the
hypervolume indicator: First results for three
objectives. In Parallel Problem Solving from Nature -
PPSN XI, 11th International Conference, pages 586–596,
2010.

[2] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. Theory
of the hypervolume indicator: optimal µ-distributions
and the choice of the reference point. In Foundations of
Genetic Algorithms, 10th ACM SIGEVO International
Workshop, FOGA 2009, pages 87–102, 2009.

[3] A. Auger and B. Doerr. Theory of Randomized Search
Heuristics: Foundations and Recent Developments. World
Scientific Publishing Co., Inc., River Edge, NJ, USA,
2011.

[4] N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA:
Multiobjective selection based on dominated
hypervolume. European Journal of Operational Research,
181(3):1653 – 1669, 2007.

[5] D. Brockhoff, T. Friedrich, and F. Neumann. Analyzing
hypervolume indicator based algorithms. In Parallel

Problem Solving from Nature - PPSN X, 10th International
Conference, pages 651–660, 2008.

[6] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B.
Lamont. Evolutionary Algorithms for Solving
Multi-Objective Problems. Kluwer Academic Publishers,
New York, 2002.

[7] K. Deb. Multi-objective optimization using evolutionary
algorithms. Wiley, Chichester, UK, 2001.

[8] B. Doerr, D. Johannsen, and C. Winzen. Multiplicative
drift analysis. Algorithmica, 64(4):673–697, 2012.

[9] W. Gao and F. Neumann. Runtime analysis for
maximizing population diversity in single-objective
optimization. In Genetic and Evolutionary Computation
Conference, GECCO 2014, pages 777–784, 2014.

[10] F. Neumann and C. Witt. Bioinspired Computation in
Combinatorial Optimization: Algorithms and Their
Computational Complexity. Springer-Verlag New York,
Inc., New York, NY, USA, 1st edition, 2010.

[11] A. Q. Nguyen, A. M. Sutton, and F. Neumann.
Population size matters: Rigorous runtime results for
maximizing the hypervolume indicator. Theoretical
Computer Science, 561, Part A:24 – 36, 2015. Genetic and
Evolutionary Computation.

[12] O. M. Shir, M. Preuss, B. Naujoks, and M. T. M.
Emmerich. Enhancing decision space diversity in
evolutionary multiobjective algorithms. In Evolutionary
Multi-Criterion Optimization, 5th International Conference,
EMO 2009, pages 95–109, 2009.

[13] R. Tran, J. Wu, C. Denison, T. Ackling, M. Wagner, and
F. Neumann. Fast and effective multi-objective
optimisation of wind turbine placement. In Genetic and
Evolutionary Computation Conference, GECCO 2013,
pages 1381–1388, 2013.

[14] T. Ulrich, J. Bader, and L. Thiele. Defining and
optimizing indicator-based diversity measures in
multiobjective search. In Parallel Problem Solving from
Nature - PPSN XI, 11th International Conference, pages
707–717, 2010.

[15] T. Ulrich, J. Bader, and E. Zitzler. Integrating decision
space diversity into hypervolume-based multiobjective
search. In Genetic and Evolutionary Computation
Conference, GECCO 2010, Proceedings, pages 455–462,
2010.

[16] T. Ulrich and L. Thiele. Maximizing population
diversity in single-objective optimization. In 13th
Annual Genetic and Evolutionary Computation Conference,
GECCO 2011, pages 641–648, 2011.

[17] F. Zheng, A. R. Simpson, and A. C. Zecchin. Improving
the efficiency of multi-objective evolutionary
algorithms through decomposition: An application to
water distribution network design. Environmental
Modelling and Software, 69:240–252, 2015.


