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Abstract

Chance constrained optimization problems allow
to model problems where constraints involving
stochastic components should only be violated with
a small probability. Evolutionary algorithms have
been applied to this scenario and shown to achieve
high quality results. With this paper, we contribute
to the theoretical understanding of evolutionary al-
gorithms for chance constrained optimization. We
study the scenario of stochastic components that are
independent and Normally distributed. Consider-
ing the simple single-objective (1+1) EA, we show
that imposing an additional uniform constraint al-
ready leads to local optima for very restricted sce-
narios and an exponential optimization time. We
therefore introduce a multi-objective formulation
of the problem which trades off the expected cost
and its variance. We show that multi-objective evo-
lutionary algorithms are highly effective when us-
ing this formulation and obtain a set of solutions
that contains an optimal solution for any possible
confidence level imposed on the constraint. Fur-
thermore, we prove that this approach can also be
used to compute a set of optimal solutions for the
chance constrained minimum spanning tree prob-
lem. Experimental investigations on instances of
the NP-hard stochastic minimum weight dominat-
ing set problem confirm the benefit of the multi-
objective approach in practice.

1 Introduction
Many real-world optimization problems involve solving opti-
mization problems that contain stochastic components [Ben-
Tal et al., 2009]. Chance constraints [Charnes and Cooper,
1959] allow to limit the probability of violating a constraint
involving stochastic components. In contrast to limiting
themselves to ruling out constraint violations completely, this
allows to deal with crucial constraints in a way that allows to
ensure meeting the constraints with high confidence (usually
determined by a confidence level α) while still maintaining
solutions of high quality with respect to the given objective
function.

Evolutionary algorithms have successfully been applied
chance constrained optimization problems [Poojari and
Varghese, 2008; Liu et al., 2013]. Recent studies investigated
the classical knapsack problem in static [Xie et al., 2019;
Xie et al., 2020; Neumann et al., 2022] and dynamic set-
tings [Assimi et al., 2020] as well as complex stockpile blend-
ing problems [Xie et al., 2021a] and the optimization of sub-
modular functions [Neumann and Neumann, 2020]. Theo-
retical analyses for submodular problems with chance con-
straints, where each stochastic component is uniformly dis-
tributed and has the same amount of uncertainty, have shown
that greedy algorithms and evolutionary Pareto optimization
approaches only lose a small amount in terms of approxima-
tion quality when comparing against the corresponding de-
terministic problems [Doerr et al., 2020; Neumann and Neu-
mann, 2020] and that evolutionary algorithms significantly
outperform the greedy approaches in practice. Other recent
theoretical runtime analyses of evolutionary algorithms have
produced initial results for restricted classes of instances of
the knapsack problem where the weights are chosen ran-
domly [Neumann and Sutton, 2019; Xie et al., 2021b].

For our theoretical investigations, we use runtime analy-
sis which is a major theoretical tool for analyzing evolution-
ary algorithms in discrete search spaces [Neumann and Witt,
2010; Jansen, 2013; Doerr and Neumann, 2020]. In order to
understand the working behaviour of evolutionary algorithms
on broader classes of problems with chance constraints, we
consider the optimization of linear functions with respect to
chance constraints where the stochastic components are inde-
pendent and each weight wi is chosen according to a Normal
distribution N(µi, σ

2
i ). This allows to reformulate the prob-

lem by a deterministic equivalent non-linear formulation in-
volving a linear combination of the expected expected value
and the standard deviation of a given solution.

We investigate how evolutionary algorithms can deal with
chance constrained problems where the stochastic elements
follow a Normal distribution. We first analyze the classical
(1+1) EA on this problem formulation and we show that im-
posing a simple cardinality constraint for a simplified class of
instances leads to local optima and exponential lower bounds
for the (1+1) EA. In order to deal with the issue of the
(1+1) EA not being able to handle even simple constraints
due to the non-linearity of the objective functions, we in-
troduce a Pareto optimization approach for the chance con-



strained optimization problems under investigation. So far,
Pareto optimization approaches that achieved provably good
solution provided a trade-off with respect to the original ob-
jective functions and given constraints. In contrast to this, our
approach trades off the different components determining the
uncertainty of solutions, namely the expected value and vari-
ance of a solution. A crucial property of our reformulation
is that the extreme points of the Pareto front provide optimal
solutions for any linear combination of the expected value
and the standard deviation and solves the original chance con-
strained problem for any confidence level α ≥ 1/2. These in-
sights mean that the users of the evolutionary multi-objective
algorithm does not need to know the desired confidence level
in advance, but can pick from a set of trade-offs with re-
spect to the expected value and variance for all possible confi-
dence levels. We show that this approach can also be applied
to the chance constrained minimum spanning tree problem
where each edge cost is chosen independently according to
its own Normal distribution. In terms of algorithms, we an-
alyze the well-known GSEMO [Giel, 2003] which has been
frequently applied in the context of Pareto optimization [Neu-
mann and Wegener, 2006; Kratsch and Neumann, 2013;
Friedrich and Neumann, 2015; Zhou et al., 2019] and show
that it computes such an optimal set of solutions for any con-
fidence level of α ≥ 1/2 in expected polynomial time if the
population size stays polynomial with respect to the given in-
puts. Finally, we experimentally compare the (1+1) EA and
GSEMO on different stochastic instances of the NP-hard min-
imum weight dominating set problem and show that GSEMO
significantly outperforms the (1+1) EA for almost all problem
instances.

2 Chance Constrained Optimization
Problems

Our basic chance-constrained setting is given as follows.
Given a set of n items E = {e1, . . . , en} with weights wi,
1 ≤ i ≤ n, we want to solve

minW subject to Pr(w(x) ≤W ) ≥ α, (1)

where w(x) =
∑n
i=1 wixi, x ∈ {0, 1}n, and α ∈ [0, 1].

Throughout this paper, we assume that the weights are in-
dependent and each wi is distributed according to a Normal
distribution N(µi, σ

2
i ), 1 ≤ i ≤ n, where µi ≥ 1 and σi ≥ 1,

1 ≤ i ≤ n. We denote by µmax = max1≤i≤n µi and
vmax = max1≤i≤n σ

2
i the maximal expected value and max-

imal variance, respectively. According to [Ishii et al., 1981],
the problem given in Equation 1 is in this case equivalent to
minimizing

g(x) =

n∑
i=1

µixi +Kα ·

(
n∑
i=1

σ2
i xi

)1/2

(2)

where Kα is the α-fractile point of the standard Normal dis-
tribution. Throughout this paper, we assume α ∈[1/2, 1[ as
we are interested in solutions of high confidence. Note that
there is no finite value of Kα for α = 1 due to the infinite tail
of the Normal distribution. Our range of α implies Kα ≥ 0.

We carry out our investigations where there are addi-
tional constraints. First, we consider the additional constraint

Algorithm 1: (1+1) EA for minimization
1 Choose x ∈ {0, 1}n uniformly at random;
2 repeat
3 Create y by flipping each bit xi of x with

probability 1
n ;

4 if f(y) ≤ f(x) then
5 x← y;

6 until stop;

|x|1 ≥ k, which requires that at least k items are chosen
in each feasible solution. Furthermore, we consider the for-
mulation of the stochastic minimum spanning tree problem
given in [Ishii et al., 1981]. Given an undirected connected
weighted graph G = (V,E), n = |V | and m = |E| with ran-
dom weightsw(ei), ei ∈ E. The search space is {0, 1}m. For
a search point x ∈ {0, 1}m, we have w(x) =

∑m
i=1 w(ei)xi

as the weight of a solution x. We investigate the problem
given in Equation 1 and require for a solution x to be feasible
that x encodes a connected graph. We do not require a solu-
tion to be a spanning tree in order to be feasible as removing
an edge from a cycle in a connected graph automatically im-
proves the solution quality and is being taken care of by the
multi-objective algorithms we analyze in this paper. Note that
the only difference compared to the previous setting involv-
ing the uniform constraint is the requirement that a feasible
solution has to be a connected graph.

3 Analysis of (1+1) EA
The (1+1) EA (Algorithm 1) is a simple evolutionary algo-
rithm using independent bit flips and elitist selection. It is
very well studied in the theory of evolutionary computation
[Doerr, 2020] and serves as a stepping stone towards the anal-
ysis of more complicated evolutionary algorithms. As com-
mon, in the area of runtime analysis, we measure the runtime
of the (1+1) EA by the number of iterations of the repeat loop.
The optimization time refers to the number of fitness evalua-
tions until an optimal solution has been obtained for the first
time, and the expected optimization time refers to the expec-
tation of this value.

3.1 Lower bound for (1+1) EA and uniform
constraint

We consider the (1+1) EA for the problem stated in Equa-
tion 1 with an additional uniform constraint that requires
that each feasible solution contains at least k elements, i.e.
|x|1 ≥ k holds. We show that the (1+1) EA has an expo-
nential optimization time on an even very restrictive class of
instances involving only two different weight distributions.

We use the following fitness function, which should be
minimized in the (1+1) EA:

f(x) =

{
g(x) |x|1 ≥ k
(k − |x|1) · L |x|1 < k,

where L = (1 +
∑n
i=1 µi + Kα(

∑n
i=1 σ

2
i )1/2). This gives

a large penalty to each unit of constraint violation. It implies
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n Result (1+1) EA
100 10/30
200 11/30
500 6/30

1000 3/30
1500 1/30
2000 0/30

Table 1: Success rate for the (1+1) EA on the worst case instance I .

that any feasible solution is better than any infeasible solution
and that f(x) > f(y) holds if both x and y are infeasible and
|x|1 > |y|1. Furthermore, the fitness value of an infeasible
solution only depends on the number of its elements.

We now show a lower bound on the optimization time of
the (1+1) EA for a specific instance class I containing only
two types of elements. Type a elements have weights chosen
according to N(n2 + δ, 1) and type b elements have weights
chosen according to N(n2, 2). We set δ = 1

2
√
k·1.48

. The in-
stance I has exactly n/2 elements of type a and n/2 elements
of type b. We consider Kα = 1 which matches α ≈ 0.84134,
and set k = 0.51n. Using the fitness function f , we have
the additional property for two feasible solutions x and y that
f(x) < f(y) if |x|1 < |y|1 due to an expected weight of
at least n2 for any additional element in a feasible solution.
This also implies that an optimal solution has to consist of
exactly k elements. The quality of a solution with k elements
only depends on the number of type a and type b elements it
contains. An optimal solution includes n/2 elements of type
a whereas a locally optimal solution includes n/2 elements
of type b. Note that an optimal solution has minimal vari-
ance among all feasible solutions. The (1+1) EA produces
with high probability the locally optimal solution before the
global optimum which leads to the following result.

Theorem 1. The optimization time of the (1+1) EA on the in-
stance I using the fitness function f is eΩ(n) with probability
1− e−Ω(n1/4).

A similar lower bound for a specific class of instances of
the chance constrained minimum spanning tree problem hav-
ing two types of edge weights can be obtained.

We now show the asymptotic behaviour of the (1+1) EA on
instance I through an experimental study. Table 1 shows for
n ∈ {100, 200, 500, 1000, 1500, 2000} the number of times
out of 30 runs the globally optimal solution has been obtained
before the locally optimal one. Note that it takes exponential
time to escape a locally optimal solution. It can be observed
that the fraction of successful runs obtaining the global op-
timum clearly decreases with n. For n = 2000 no globally
optimal solution is obtained within 30 runs.

4 Multi-Objective Evolutionary Algorithm
We now introduce bi-objective formulations of the chance
constrained problems with uniform and spanning tree con-
straints. We use a Pareto Optimisation approach for this
which computes trade-offs with respect to the expected
weight µ and variance v. We say that a solution z domi-
nates a solution x (denoted as z 4 x) iff µ(z) ≤ µ(x) and

Algorithm 2: Global SEMO
1 Choose x ∈ {0, 1}n uniformly at random;
2 P ← {x};
3 repeat
4 Choose x ∈ P uniformly at random;
5 Create y by flipping each bit xi of x with

probability 1
n ;

6 if @w ∈ P : w ≺ y then
7 S ← (P ∪ {y})\{z ∈ P | y � z};
8 until stop;

v(z) ≤ v(x). We say that z strongly dominates x (donated as
z ≺ x) iff z � x and µ(z) < µ(x) or v(z) < v(x).

We investigate the algorithm GSEMO [Laumanns et al.,
2004; Giel, 2003] shown in Algorithm 2, which has been fre-
quently used in theoretical studies of Pareto optimization. It
starts with a solution chosen uniformly at random and keeps
at each time step a set of non dominated solutions found
so far. In addition to being able to achieve strong theoret-
ical guarantees [Friedrich et al., 2010; Friedrich and Neu-
mann, 2015; Zhou et al., 2019], GSEMO using different
types of multi-objective formulation has shown strong per-
formance in practice [Qian et al., 2015; Qian et al., 2017;
Roostapour et al., 2022]. We study the multi-objective evo-
lutionary algorithms in terms of the expected time (measured
in terms of iterations of the algorithm) until they have pro-
duced a population which contains an optimal solution for
each α ∈ [1/2, 1[.

4.1 Uniform Constraints
For the case of the uniform constraint |x|1 ≥ k, we consider
the objective function f(x) = (µ(x), v(x)) where

µ(x) =

{∑n
i=1 µixi |x|1 ≥ k

(k − |x|1) · (1 +
∑n
i=1 µi) |x|1 < k

v(x) =

{∑n
i=1 σ

2
i xi |x|1 ≥ k

(k − |x|1) · (1 +
∑n
i=1 σ

2
i ) |x|1 < k

Note that it gives the expected value and variance for any
feasible solution, and a large penalty for any unit of constraint
violation in each objective function if a solution is infeasible.
This implies that the objective value of an infeasible solution
is always worse than the value of a feasible solution.

As we have µi ≥ 1 and σi ≥ 1, 1 ≤ i ≤ n, each Pareto
optimal solution contains exactly k elements. This is due to
the fact that we can remove from a solution x with |x|1 > k
any element to obtain a solution y with µ(y) < µ(x) and
v(y) < v(x). We will minimize fλ(x) = λµ(x)+(1−λ)v(x)
by selecting minimal elements with respect to fλ(ei) =
λµi + (1−λ)σ2

i , 0 < λ < 1. For the special cases λ = 0 and
λ = 1, we minimize fλ by minimizing f0(x) = (v(x), µ(x))
and f1(x) = (µ(x), v(x)) with respect to the lexicographic
order. Note, that we are using fλ both for the evaluation of
a search point x as well as the evaluation of an element ei.
For each fixed λ ∈ [0, 1], an optimal solution for fλ can be
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obtained by sorting the items increasing order of fλ and se-
lecting the first k of them. For a given setX of such points we
denote by X∗λ ⊆ X the set of minimal elements with respect
to fλ. Note that all points in the sets X∗λ, 0 ≤ λ ≤ 1, are
not strongly dominated in X and therefore constitute Pareto
optimal points when only considering the set of search points
in X .

Definition 1 (Extreme point of set X). For a given set X , we
call f(x) = (µ(x), v(x)) an extreme point of X if there is a
λ ∈ [0, 1] such that x ∈ X∗λ and v(x) = maxy∈X∗

λ
v(x).

We denote by f(X) the set of objective vectors corre-
sponding to a set X ⊆ 2E , and by f(2E) the set of all objec-
tive vectors of the considered search space 2E . The extreme
points of 2E are given by the extreme points of the convex
hull of f(2E). A crucial property of the extreme points is
that they contain all objective vectors that are optimal for any
λ ∈ [0, 1]. Hence, if there is an optimal solution that can be
obtained by minimizing fλ for a (potentially unknown) value
of λ, then such a solution is contained in the set of search
points corresponding to the extreme points of 2E .

In the following, we relate an optimal solution of

g(x) =

n∑
i=1

µixi +Kα ·

(
n∑
i=1

σ2
i xi

)1/2

subject to |x|1 ≥ k.

to an optimal solution of

gR(x) = R ·
n∑
i=1

µixi +Kα ·

(
n∑
i=1

σ2
i xi

)
subject to |x|1 ≥ k.

for a given parameter R ≥ 0 that determines the weighten-
ing of µ(x) and v(x). Note that gR is a linear combination
of the expected value and the variance and optimizing gR is
equivalent to optimizing fλ for λ = R/(R+Kα) as we have
gR(x) = (R + Kα) · fλ(x) in this case. We use gR to show
that there is a weightening that leads to an optimal solution
for g following the notation given in [Ishii et al., 1981], but
will work with the normalized weightening of λ when ana-
lyzing our multi-objective approach.

Let x∗ be an (unknown) optimal solution for g and
let D(x∗) =

(∑n
i=1 σ

2
i x
∗
i

)1/2
be its standard deviation.

Lemma 1 follows directly from the proof of Theorems 1–3
in [Ishii et al., 1981] where it has been shown to hold for the
constraint where a feasible solution has to be a spanning tree.
However, the proof only uses the standard deviation of an
optimal solution and relates this to the weightening of the ex-
pected value and the variance. It therefore holds for the whole
search space independently of the constraint that is imposed
on it. Therefore, it also holds for the uniform constraint where
we require |x|1 ≥ k.

Lemma 1 (follows from Theorems 1–3 in [Ishii et al., 1981]).
An optimal solution for g2D(X∗) is also optimal for g.

Based on Lemma 1, an optimal solution for fλ, where
λ = 2D(X∗)/(2D(X∗) + Kα), is also optimal for g. As

we are dealing with a uniform constraint, an optimal solu-
tion for fλ can be obtained by greedily selecting elements
according to fλ until k elements have been included. The ex-
treme points of the convex hull allow to cover all values of λ
where optimal solutions differ as they constitute the values
of λ where the optimal greedy solution might change and we
bound the number of such extreme points in the following.

In order to identify the extreme points of the Pareto front,
we observe that the order of two elements ei and ej with re-
spect to a greedy approach selecting always a minimal ele-
ment with respect to fλ can only change for one fixed value

of λ. We define λi,j =
σ2
j−σ

2
i

(µi−µj)+(σ2
j−σ2

i )
for the pair of items

ei and ej where σ2
i < σ2

j and µi > µj holds, 1 ≤ i < j ≤ n.
Consider the set Λ = {λ0, λ1, . . . , λ`, λ`+1} where

λ1, . . . , λ` are the values λi,j in increasing order and λ0 = 0
and λ`+1 = 1. The key observation is that computing Pareto
optimal solutions that are optimal solutions for fλ and every
λ ∈ Λ gives the extreme points of the problem.
Lemma 2. Each extreme point of the multi-objective formu-
lation is Pareto optimal and optimal with respect to fλ for at
least one λ ∈ Λ. The number of extreme points is at most
n(n− 1)/2 + 2 ≤ n2.

In the following, we assume that vmax ≤ µmax holds.
Otherwise, the bound can be tightened by replacing vmax

by µmax. The following lemma gives an upper on the ex-
pected time until GSEMO has obtained Pareto optimal solu-
tion of minimal variance. Note that this solution is optimal
for f0. We denote by Pmax the maximum population size that
GSEMO encounters during the run of the algorithm.
Lemma 3. The expected time until GSEMO has included a
Pareto optimal search point of minimal variance in the popu-
lation is O(Pmaxn

2(log n+ log vmax)).
Lemma 3 directly gives an upper bound for GSEMO on

the worst case instance I for which the (1+1) EA has an ex-
ponential optimization time. The feasible solution of mini-
mal variance is optimal for instance I . Furthermore, we have
vmax ≤ 2n and the variance can only take on O(n) differ-
ent values. which implies that Pmax = O(n) holds for in-
stance I . Therefore, we get the following result for GSEMO
on the worst case instance I of the (1+1) EA.
Theorem 2. The expected time until GSEMO has obtained
an optimal solution for the instance I is O(n3 log n).

We now present the result for the general class with a uni-
form constraint. Based on a Pareto optimal solution having
the minimal variance, GSEMO can construct all other ex-
treme points and we obtain the following result.
Theorem 3. Considering the chance constrained problem
with a uniform constraint, the expected time until GSEMO
has computed a population which includes an optimal solu-
tion for any choice of α ∈ [1/2, 1[ is O(Pmaxn

2`(log n +
log vmax)).

Proof. We assume that we have already included a Pareto op-
timal solution of minimal variance vmin into the population.
Let

vmax
λ = max

x∈2E

{
v(x) | fλ(x) = min

z∈2E
fλ(z)

}
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and

vmin
λ = min

x∈2E

{
v(x) | fλ(x) = min

z∈2E
fλ(z)

}
be the maximal and minimal variance of any optimal solution
for the linear weightening fλ.

Note that we have vmax
λ = vmin

λ for λ = 0 as the Pareto op-
timal objective vector of minimal variance is unique. Hence,
the Pareto optimal solution of minimal variance vmin = vmax

0
is a solution of maximal variance for λ = 0. Consider λi,
0 ≤ i ≤ `. We have vmax

λi
= vmin

λi+1
as the extremal point that

is optimal for fλi and fλi+1
has the largest variance for fλi

and the smallest variance for fλi+1
among the corresponding

sets of optimal solutions.
Assume that we have already included into the population

a search point x that is minimal with respect to fλi and has
maximal variance vλmax

i
among all these solutions. The so-

lution x is also optimal with respect to fλi+1 and we have
vmax
λi

= vmin
λi+1

. We let r be the number of elements contained
in x but not contained in the optimal solution y for fλi+1

that
has variance vλmax

i+1
. As both solutions contain k elements,

differ by r elements and y has maximal variance with respect
to fλi+1 , there are r2 2-bit flips that bring down the distance
d(x) = vmax

λi+1
− v(x) ≤ vmax

λi+1
− vmax

λi
. Using the multi-

plicative drift theorem [Doerr et al., 2012] where we always
choose the solution that is optimal with respect fλi+1

and has
the largest variance, the expected time to reach such as so-
lution of variance vλmax

i+1
is O(Pmaxn

2 log(vmax
λi+1
− vmax

λi
)) =

O(Pmaxn
2(log n + log vmax)). Summing up over the dif-

ferent values of i, we get O(Pmaxn
2`(log n + log vmax)) as

an upper bound on the expected time to generate all extreme
points.

4.2 Chance Constrained Minimum Spanning
Trees

We now extend the previous results to the chance constrained
minimum spanning tree problem where edge weights are in-
dependent and chosen according to a Normal distribution.
Note that using the expected weight and the variance of a
solution as objectives results in a bi-objective minimum span-
ning tree problems for which a runtime analysis of GSEMO
has been provided in [Neumann, 2007].

Let c(x) be the number of connected components of the
solution x. We consider the bi-objective formulation for
the multi-objective minimum spanning tree problem given in
[Neumann, 2007]. Let wub = n2 · max{µmax, vmax}. The
fitness of a search point x is given as f(x) = (µ(x), v(x))
where µ(x) = (c(x) − 1) · wub +

∑m
i=1 µixi and v(x) =

(c(x) − 1) · wub +
∑m
i=1 σ

2
i xi. It gives a large penalty for

each additional connected component.
We transfer the results for the multi-objective setting under

the uniform constraint to the setting where a feasible solu-
tion has to be a spanning tree. The crucial observation from
[Neumann, 2007] to obtain the extreme points is that edge
exchanges resulting in new spanning trees allow to construct
solutions on the linear segments between two consecutive ex-
treme points in the same way as in the case of the uniform
constraint. Let ` ≤ m(m − 1)/2 be the pairs of edges ei

and ej with σ2
i < σ2

j and µi > µj . Similar to Lemma 2 and
using the arguments in [Ishii et al., 1981], the number of ex-
treme points is at most ` + 2 ≤ m2 as an optimal solution
for fλ = λµ(x) + (1− λ)v(x) can be obtained by Kruskal’s
greedy algorithm. We replace the expected time of O(n2)
for an items exchange in the case of the uniform constraint
with the expected waiting time of O(m2) for a specific edge
exchange in the case of the multi-objective spanning tree for-
mulation and get the following results.

Theorem 4. Considering the chance constrained minimum
spanning tree problem, the expected time until GSEMO has
computed a population which includes an optimal solution
for any choice of α ∈ [1/2, 1[ is O(Pmaxm

2`(log n +
log vmax)).

5 Experimental investigations
We now present experimental results for the chance con-
strained version of a classical NP-hard optimization problem.
We consider the minimum weight dominating set problem.
Given a graph G = (V,E) with weights on the nodes, the
goal is to compute a set of nodes D of minimal weight such
that each node of the graph is dominated byD, i.e. either con-
tained in D or adjacent to a node in D. Let n = |V | be the
number of nodes in the given graph G = (V,E). To generate
the benchmarks, we assign each node u ∈ V a Normal distri-
bution N(µ(u), v(u)) with expected weight µ(u) and a vari-
ance v(u). We consider for each graph values of α = 1 − β
where β ∈ {10−2, 10−4, 10−6, 10−8, 10−10}. The objective
function is given by Equation 2 where we consider the chosen
nodes together with their weight probability distributions. A
solution is feasible if it is a dominating set. Therefore, we
use the fitness functions from Section 3.1 for the (1+1) EA
and Section 4.1 for GSEMO and have a large penalty term as
before for each node in V that is not dominated in the given
search point x.

We investigate the graphs cfat200-1, cfat200-2, ca-GrQC
and Erdoes992, which are sparse graphs chosen from the net-
work repository [Rossi and Ahmed, 2015]. Each expected
weight µ(u) is an integer chosen independently and uni-
formly at random in {n2, . . . , 2n2} and the variance v(u)
is an integer chosen independently and uniformly at random
in {n3, . . . , 2n3} for cfat200-1 and cfat200-2 and an integer
chosen uniformly at random in {n, . . . , n2} for ca-GrQC and
Erdoes992. For the graphs cfat200-1 and cfat200-2 (out of the
DIMACS benchmark set), which consist of 200 nodes each,
we give each algorithm a budget of 3n3 log n fitness evalua-
tions. This choice for a relatively small number of nodes is
based on common results in the area of runtime analysis. It
assumes that the population size is of the order n and that
2-bit flips (costing a factor of n2) involving a coupon col-
lector effect (factor log n) constitute the essential part of the
optimization process. The constant ”3” is a bit larger than the
usual factor ”e” (Eulerian number) often seen in runtime anal-
yses and gives the algorithms a slightly larger budget which
would reduce failure probabilities during the run of an al-
gorithm. For the graphs ca-GrQc and Erdos992 (out of the
collaboration network benchmark set), which consist of 4158
and 6100 nodes, respectively, we allocate a budget of 10 mil-
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Graph β
(1+1)EA GSEMO

Mean Std Mean Std p-value

cfat200-1

0.01 615469 12021 626202 11513 0.001
1.0E-4 636723 19943 643582 11206 0.015
1.0E-6 667611 19663 656385 10960 0.017
1.0E-8 681564 19466 666926 10780 0.005

1.0E-10 692730 18762 676124 10629 <0.001

cfat200-2

0.01 288254 18040 276098 3210 0.088
1.0E-4 302916 19961 287393 3449 0.044
1.0E-6 314384 20010 295782 3634 0.004
1.0E-8 319220 20135 302745 3792 0.003

1.0E-10 327220 20609 308822 3932 0.003

ca-GrQc

0.01 24344710794 411165633 23236020190 447391144 <0.001
1.0E-4 24332158128 466137785 23236140253 447391988 <0.001
1.0E-6 224293904677 387409045 23236229429 447392614 <0.001
1.0E-8 24423330281 408171625 23236303447 447393135 <0.001

1.0E-10 24311919118 394911901 23236368046 447393585 <0.001

Erdos992

0.01 83558837836 652555275 82921436413 428375728 <0.001
1.0E-4 83542519561 509659520 82921667294 428376235 <0.001
1.0E-6 83491356567 658566586 82921838782 428376612 0.001
1.0E-8 83569455144 833572201 82921981120 428376925 0.001

1.0E-10 83500515574 585825391 82922105349 428377198 <0.001

Table 2: Results for stochastic minimum weight dominating set with different confidence levels of α where α = 1− β.

lion fitness evaluations to each run. The goal is here to inves-
tigate the quality of the results obtained within a reasonable
time budget. GSEMO spends its whole fitness budget on a
single run whereas for the (1+1) EA the budget is equally di-
vided among the 5 runs for the different 5 values of α. For
each graph and α combination we obtain 30 results as de-
scribed before. Note that the although GSEMO obtains in one
run results for each value of α, the results for a fixed graph
and α combination are independent of reach other. We re-
port on the mean and standard deviation of the result obtained
for (1+1) EA and GSEMO and use the Mann-Whitney test to
compute the p-value in order to examine statistical signifi-
cance. We call a result statistically significant if the p-value
is at most 0.05.

The results are shown in Table 2. It can be observed that
GSEMO outperforms the (1+1) EA for 18 out of the 20 set-
tings in terms of the mean value that is achieved in 30 runs.
All results are statistically significant. Overall, this shows a
clear advantage of using the multi-objective model presented
in this paper. We finally report on the maximum population
size Pmax during the runs as this is an important parameter in
the runtime analysis we carried out. Our experiments show
that the maximum population is in general small and does not
grow exponentially with the number of nodes of the given
graph. The maximum population size of GSEMO during any
of the 30 runs has been 127 for cfat200-1, 34 for cfat200-2,
15 for ca-GrQc, and 7 for Erdos992. This shows the the
maximum population size stays moderate for the problem in-
stances we investigated experimentally.

6 Conclusions
With this paper, we provided the first analysis of evolutionary
algorithms for chance constrained combinatorial optimization
problems with Normally distributed variables. For the case of
uniform constraints we have shown that there are simple in-

stances where the (1+1) EA has an exponential optimization
time. Based on these insights we a multi-objective formula-
tion which allows Pareto optimization approaches to compute
a set of solutions containing for every possible confidence of
α an optimal solution. Finally, we showed the effectiveness
of our multi-objective approach by investigating the chance
constrained setting of the minimum weight dominating set
problem.
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