
Evolutionary Diversity Optimization Using Multi-Objective
Indicators

Aneta Neumann
The University of Adelaide
School of Computer Science

Adelaide, Australia

Wanru Gao
The University of Adelaide
School of Computer Science

Adelaide, Australia

Markus Wagner
The University of Adelaide
School of Computer Science

Adelaide, Australia

Frank Neumann
The University of Adelaide
School of Computer Science

Adelaide, Australia

ABSTRACT
Evolutionary diversity optimization aims to compute a set of so-
lutions that are diverse in the search space or instance feature
space, and where all solutions meet a given quality criterion. With
this paper, we bridge the areas of evolutionary diversity optimiza-
tion and evolutionary multi-objective optimization. We show how
popular indicators frequently used in the area of multi-objective
optimization can be used for evolutionary diversity optimization.
Our experimental investigations for evolving diverse sets of TSP
instances and images according to various features show that two
of the most prominent multi-objective indicators, namely the hyper-
volume indicator and the inverted generational distance, provide
excellent results in terms of visualization and various diversity
indicators.
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1 INTRODUCTION
Evolutionary algorithms have been used for a wide range of opti-
mization problems and to discover novel designs for various en-
gineering problems [6, 9]. Diversity plays a crucial role when de-
signing evolutionary algorithms as it often prevents the algorithms
from premature convergence. In recent years, evolutionary diver-
sity optimization has gained increasing attention [1, 13, 23, 30, 31].
Evolutionary diversity optimization uses an evolutionary algorithm
in order to compute a diverse set of solutions that all fulfill given
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quality criteria. Presenting decision makers with such alternative
designs that are all of good quality gives them a variety of design
choices and helps to better understand the space of good solutions
for the problem at hand. Related to evolutionary diversity optimiza-
tion is the concept of novelty search [27, 28]. Here evolutionary
algorithms are used to discover new designs without focusing on
an objective. The goal of novelty search is to explore designs that
are different to the ones previously obtained. This paper focuses
on evolutionary diversity optimization. We are interested in com-
puting a diverse set of high quality solutions that can be presented
to a decision maker.

Arguably, the most prominent area of evolutionary computation
where a diverse set of solutions is sought is evolutionary multi-
objective optimization [8]. Given a set of usually conflicting objec-
tive functions, the goal is to compute a set of solutions representing
the different trade-offs of the considered functions. Evolutionary
algorithms have been widely applied to multi-objective optimiza-
tion problems and it is one of the key success areas for applying
evolutionary algorithms. Over the years, many evolutionary multi-
objective algorithms have been developed. Popular algorithms,
among many others, are NSGA-II [10], NSGA-III[15], MOEA/D [33],
and IBEA [34]. Making them applicable to the area of evolutionary
diversity optimization provides huge potential for high performing
evolutionary diversity optimization approaches. With this paper,
we bridge the areas of evolutionary diversity optimization and
evolutionary multi-objective optimization. We consider popular in-
dicators from the area of evolutionary multi-objective optimization
and show how to make them applicable in the area of evolutionary
diversity optimization.

Ulrich and Thiele [31] have introduced the framework for evolu-
tionary diversity optimization. They studied how to evolve diverse
sets of instances for single-objective problems to the underlying
search space. Furthermore, this diversity optimization approach
has been introduced into multi-objective search [30]. In [13], an
evolutionary diversity optimization process has been introduced to
evolve instances of the Traveling Salesperson problem (TSP) based
on given problem features. This approach evolves TSP instances
that are hard or easy to solve for a given algorithm, and diversity
is measured according to a weighted distribution in terms of the
differences in feature values. Afterwards, the approach has been
adapted in order to create variations of a given image that are close
to it but differ in terms of the chosen image features [1].

An important question that arises when using evolutionary di-
versity optimization for more than one criterion or feature is how
to measure the diversity of a given set of solutions. The weighted
contribution approach used in [1, 12] has the disadvantage that it
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heavily depends on the chosen weightening of the features and
does not distribute that well for two or three dimensions. In [23], an
evolutionary diversity optimization approach has been introduced
that aims to minimize the discrepancy of the solution set in the
feature space. It has been shown that using the star discrepancy
as a diversity measure achieves sets of higher diversity than the
previous approaches using weighted contributions.

In this paper, we show how to use popular indicators from the
area of evolutionary multi-objective optimization for evolutionary
diversity optimization. Indicators play a prominent role in the area
of evolutionary multi-objective optimization and are frequently
used to assess the quality of solution sets produced by evolutionary
multi-objective algorithms [34, 35]. Based on the evaluation of this
indicator the selection for survival is carried out. We show how to
adapt popular indicators in the area of evolutionary multi-objective
optimization to evolutionary diversity optimization. We study im-
portant indicators such as the hypervolume indicator (HYP), the
inverted generational distance (IGD), and the additive epsilon ap-
proximation (EPS), and compare them in terms of their ability to
lead to high quality and diverse sets of solutions.

We investigate these indicators for the problems of evolving TSP
instances and constructing diverse sets of images as already studied
in the literature. Our results show that HYP and IGD are well suited
for evolutionary diversity optimization. They obtain the best results
for their respective indicator and also obtain sets of solutions of a
better discrepancy when comparing them to the discrepancy-based
approach given in [23].

The outline of the paper is as follows. In Section 2, we introduce
evolutionary diversity optimization and present our approach of
using multi-objective indicators in this context. In Sections 3 and 4,
we describe our diversity optimization for two problems: diverse
sets of images and diverse sets of TSP instances. Finally, we draw
some conclusions.

2 INDICATOR-BASED DIVERSITY
OPTIMIZATION

Let I ∈ X be a search point in a given search space X , f : X →

Rd a function that assigns to each search point a feature vector
and q : X → R be a function assigning a quality score to each
x ∈ X [3]. Diversity is defined in terms of a function D : 2X →

R which measures the diversity of a given set of search points.
Considering evolutionary diversity optimization, the goal is to find
a set P = {I1, . . . , Iµ } of µ solutions maximizing D among all sets
of µ solutions under the condition that q(I ) ≥ α holds for all I ∈ P ,
where α is a given quality threshold. Here µ is the size of the set
that we are aiming for, which determines the parent population
size in our evolutionary diversity optimization approach.

We propose to use a very well-established concept, i.e., the use
of indicators from multi-objective optimization. In multi-objective
optimization, a function д : X → Rd containing d objectives is
given and all objectives should be optimized at the same time. As
the given objectives are usually conflicting, one is interested in the
trade-offs with respect to the given objective functions. Indicators
in the area of multi-objective optimization have been used for many
years to compare sets of solutions in the objective space, either for
the purposes of comparing algorithm performance, or for use within
an algorithm to drive a diversified search. Similarly to the diver-
sity measure D in evolutionary diversity optimization, an indicator
I : 2X → R measures the quality of a set of solutions according to
some indicator function I. The immediate problem with applying

multi-objective optimization indicators is that diversity lacks the
notion of dominance. In the context of multi-objective optimiza-
tion, the optimal solutions are also referred to as non-dominated
solutions. A solution x is called non-dominated (or Pareto optimal)
if there is no other solution that is at least as good as x with re-
spect to every objective and better in at least one objective. As
multi-objective approaches aim to compute a set of non-dominated
solutions, they reject dominated solutions over time. In evolutionary
diversity optimization, every solution meeting the quality criteria is
eligible and only the diversity among such solutions matters. Hence,
we have to adapt the multi-objective indicators in a way that makes
all solutions meeting the quality criterion non-dominated. We do
this by ensuring that all solutions are incomparable when applying
these indicators. For a more comprehensive introduction to domi-
nance we refer the interested reader to [5], which is present in a
large number of multi-objective optimization indicators.

In the following sections, we will first present existing multi-
objective optimization indicators and our transformations to deal
with the dominance issue. Then, we introduce the generic (µ + λ)-
EAD and the concrete variants that will form the basis for our
subsequent experimental studies on diversity optimization.

2.1 Multi-objective optimization indicators for
diversity optimization

In this article, we use three quality indicators evaluating the quality
of a given set of objective vectors S . For a given set of search points
P (called the population) and a function д : X → Rd , we define
S = {д(x) | x ∈ P} as the set of objective vectors of P .

• Hypervolume (HYP): HYP is the volume covered by the set of
objective vectors S with respect to a given reference point r .
The hypervolume indicator measures the volume of the dom-
inated space of all solutions contained in a set S ⊆ Rd . This
space is measured with respect to a given reference point
r = (r1, r2, . . . , rd ). The hypervolume HYP(S, r ) of a given
set of objective vectors S with respect to r is then defined as
HYP(S, r ) = VOL

(
∪(s1, ...,sd )∈S [r1, s1] × · · · [rd , sd ]

)
with

VOL(·) being the Lebesgue measure.
• Inverted generational distance (IGD): IGD measures S with
respect to a given reference set R. It calculates the average
distance of objective vectors in R to their closest points in S .
We have IGD(R, S) = 1

|R |

∑
r ∈R mins ∈S d(r , s), where d(r , s)

is the Euclidean distance between r and s in the objective
space.

• Additive epsilon approximation (EPS): EPS measures the
approximation quality of the worst approximated point
in R that S achieves. For finite sets S,R ⊂ Rd , the addi-
tive approximation of S with respect to R (assuming all
objectives are to be minimized) is defined as α(R, S) :=
maxr ∈R mins ∈S max1≤i≤d (si −ri ). To get a sensitive indica-
tor that can be used to guide the search, we consider instead
the set {α({r }, S) | r ∈ R} of all approximations of the points
in R. We sort this set decreasingly and call the resulting se-
quence Sα (R, S) := (α1, . . . ,α |R |) (see [4, 32]).

While other indicators could also be used for driving diversity
optimization, we do not intend to highlight differences of the in-
dicators as this has been subject to many papers. Instead, we will
focus on demonstrating that they can in-fact be used as a tool
out-of-the-box to explore the space of combinations of instance
features.
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Figure 1: Reference set in 3D using 112 objective vectors. The
normal vector that goes through the centre of the square
goes through the origin. We use 1012 feature vectors in our
experiments. Note that all solution vectors are by definition
on the Pareto front, i.e., in the unit square.

These three indicators cannot be applied immediately, as there
is no reference set (which some indicators require) and one has
to deal with the issue of dominance as there is no preference of
one feature value over the other. For example, let us consider two
scaled features and visualize the combinations as points in a two-
dimensional unit square. In this case, we would like to cover the
entire square evenly, without preferring one region over the other,
and in particular we cannot say that one area is preferred over
another – a naive multi-objective optimization setup for this two-
dimensional problem might focus, for example, only on the area
near the origin.

We propose two approaches to deal with this challenge: (1) trans-
formation of the two-dimensional problem into a three-dimensional
problem, (2) doubling the number of dimensions.

2.1.1 Problem Transformation. Whenwe are interested in cover-
ing a two-dimensional feature space, we canmitigate the problem of
EPS-/HYP-preferred regions by transforming the two-dimensional
problem into a three-dimensional one. We do so as follows:

(1) We place the unit square with its original x/y-coordinates in
the three-dimensional space using z = 0.

(2) We rotate it around the x and y axis by 45 degrees each time.
(3) We translate it such that the center point of the transformed

unit square is at (sqrt(2)/4)3 (see Figure 1).
After these steps, the normal vector that goes through the center

of the unit square also goes through the origin. This orientation
allows us to use the wide spectrum of well-established quality
indicators from the field of multi-objective optimization, designed
for assessing various aspects of solutions sets, such as convergence
and distribution – and no modifications are needed at all. Especially
for the volume- and dominance-based indicators our transformation
has the important benefit that all features are of equal importance.

As we perform the same transformation with the instance set
(i.e., our population) as well as the reference set (after rescaling it
into the unit square based on known lower and upper values for the
features), this means that the population is always on the Pareto
front; this is a situation that is not that common in multi-objective
optimization. Our goal is now to cover the reference set “evenly”,
as defined by the respective indicators.

2.1.2 Dimension doubling. To avoid the dominance issue, we
propose the following transformation. Given a feature vector p =
(p1,p2, . . . ,pd ) in the d-dimensional space, we project it into the 2d-
dimensional space by copying the original feature values and negat-
ing their copy, resulting in p′ = (p1,p2, . . . ,pd ,−p1,−p2, . . . ,−pd ).
With this, dominance between solution vectors vanishes, and we

Algorithm 1: (µ + λ)-EAD

1 Initialize the population P with µ instances of quality at least α .
2 Let C ⊆ P where |C | = λ.
3 For each I ∈ C , produce an offspring I ′ of I by mutation. If

q(I ′) ⩾ α , add I ′ to P .
4 While |P | > µ, remove an individual with the smallest loss to

the diversity indicator D.
5 Repeat step 2 to 4 until termination criterion is reached.

can employ the hypervolume indicator without the need for any
modifications.

Because we work with rescaled value ranges in [0, 1]d , the nec-
essary hypervolume reference point r has to be adequately chosen
in the 2d-dimensional space. For example. (1d ,0d ) would be based
on the ranges’ extreme values, and (2d ,1d ) would put an increased
focus on maintaining extreme points in the population.

While this transformation mitigates the dominance issue, it re-
mains an open problem how this can be made to work with the
epsilon indicator as well. The challenge here is to define an evenly
spread out reference set in the 2d-dimensional space given our
dimension doubling.

2.2 Evolutionary algorithm for optimizing
diversity

The algorithm used to optimize the feature-based population di-
versity follows the setting in [13] with modifications. Algorithm 1
shows the evolutionary algorithm used for optimizing diversity. Let
I ∈ P be an individual in a population P . A problem specific fea-
ture vector f (I ) = (f1(I ), . . . , fd (I )) is used to describe a potential
solution. The indicators are calculated based on the feature vector.

Since the indicators introduced are defined in the space of
[0, 1]d , the feature values are scaled before the calculation of
indicators. Let f max

i and f min
i be the maximum and minimum

value of a certain feature fi obtained from some initial experi-
ments. The feature values are normalized based on the formula
f ′i (I ) = (fi (I ) − f min

i )/(f max
i − f min

i ). Feature values outside the
range [f min

i , f max
i ] are set to 0 or 1, to allow the algorithm to work

with non-anticipated features values.
Based on this, we investigate the following diversity-optimizing

algorithms in this study:
• EAHYP-2D and EAEPS use the idea of transforming the two-
dimensional problem into a three-dimensional one.

• EAHYP uses the idea of doubling the dimensions.
• EAIGD uses IGD, which can be used without the need to
transform the feature vectors, as it does not consider con-
cepts like dominance or volume like HYP and EPS.

In addition, we use EADIS with discrepancy minimization, as
used in [23]. As IGD and EPS require a reference set (e.g. solutions
situated on the Pareto front), we use regular grids in the unit square
and unit cube with a resolution of 1012 solutions and 113 solutions.
The necessary hypervolume reference point r for EAHYP-2D is set
based on the extreme values of the reference set after the described
rotations; for EAHYP it is set to (2d ,1d ) to increase the focus on
extreme points.

Note that these indicators are a major differentiator from the
work in [18]. There, the approach was able of only evolving one
instance at a timewith the goal of reaching a particular target vector.
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Figure 2: Image I∗.

Notation fmin fmax Description
f1 SDHue 0.420 0.700 standard deviation hue
f2 saturation 0.420 0.500 mean saturation
f3 symmetry 0.715 0.740 reflectional symmetry
f4 hue 0.250 0.400 color descriptor
f5 GCF 0.024 0.027 Global Contrast Factor
f6 smoothness 0.906 0.918 smoothness

Table 1: Description of features for images.

In our case, we evolve an entire population of diverse instances and
do not require explicitly set targets.

3 IMAGES
In this section, we aim to evolve a diverse set of images as described
in [1]. Given an image I∗, we want to compute a diverse set of
images P = {I1, . . . , Iµ } that agree on a given quality criteria q(I )
for each I ∈ P . We will use the image I∗ given in Figure 2 for our
investigations. An image I fulfills the quality criteria q(I ) if the
mean-squared error in terms of the RGB-values of I with respect to
I∗ is less than 500. Many different features have been widely applied
to measurements of the properties of images. They often provide
a good characterization of images. We select the set of features
identified in [1]. We carry out the indicator-based evolutionary
optimization approach with respect to different multi-objective
indicators and different sets of features. Our evolutionary algorithm
evolves diverse populations of images for each indicator and for
each feature combination.

In our experiments we used the following features: standard-
deviation-hue, mean-saturation, reflectional symmetry [11],
hue [14], Global Contrast Factor [16], and smoothness [25]. Instead
of applying the star discrepancy [29] to measure diversity, we use
the multi-objective indicators as previously introduced. Otherwise,
the configuration of Algorithm 1 is the same as in [23]. In order to
produce a new solution the algorithm uses a self-adaptive offset ran-
dom walk mutation introduced in [23]. Based on a random walk on
the image this operator alters the RGB-values of the pixels visited in
a slight way such that a new but similar image is obtained. Random
walk lengths are increased in the case of a successful mutation and
decreased in the case of unsuccessful ones. For details, we refer the
reader to [23, 24].

3.1 Experimental settings
Now, we consider the indicator-based diversity optimization for
combinations of two and three features. We select features in or-
der to combine different aesthetic and general features based on
our initial experimental investigations and previous investigations

in [22]. In this work we explore several features and features ranges
described in Table 1. We use scaled feature values while we calcu-
late the different indicators values of a given set of points. After
having consider the combination of two features, we investigate
sets of three features. Here, we select different features combin-
ing aesthetic and general features together used in the previous
experiment.

In order to obtain a clear comparison between our present ex-
periments and experiments based on the discrepancy-based evolu-
tionary algorithm introduced in [23] we work with the same range
of feature values.

We run each configuration for 2000 generations with a popula-
tion size of µ = 20 and λ = 1. To assess our results using statistical
tests, we run each combination of feature-pair and indicator 30
times. All algorithms were implemented in Matlab (R2017b) and
run on 48-core compute nodes with AMD 2.80GHz CPUs and
128GB of RAM.

3.2 Experimental results and analysis
We present a series of experiments for two- and three-feature com-
binations in order to evaluate our evolutionary diversity algorithms
based on the use of indicators from multi-objective optimization
described in Section 2.

3.2.1 Two-feature combinations. Our results are summarized in
Table 2 and Table 3. The columns represent the algorithms with
the corresponding mean value and standard deviation. The rows
represent the indicators HYP-2D, HYP, IGD, EPS and discrepancy
(DIS). For each indicator, we obtained results for all sets of features.

Additionally, we use the Kruskal-Wallis test for statistical valida-
tion with 95% confidence and subsequently apply the Bonferroni
post-hoc statistical procedure. For a detailed description of the sta-
tistical tests we refer the reader to [7]. Our experimental analysis
characterizes the behavior of the four examined indicator-based
evolutionary algorithms and discrepancy-based evolutionary algo-
rithm. In the statistical tests shown in Table 2 and Table 3, A(+)

is equivalent to the statement that the algorithm in this column
outperformed algorithm A, and A(−) is equivalent to the statement
that A outperformed the algorithm given in the column. If the algo-
rithm A does not appear, this means that no significant difference
was determined.

Figure 3 illustrates feature plots of (randomly selected) final pop-
ulations of EAHYP-2D (top), EAHYP, EAIGD and EAEPS (bottom) for
three pairs of feature combinations. In the first column, we see the
feature vectors for the final population of the four algorithms for
image based on pairs of features (f1,f2). It can be observed that
the discrepancy value for EAHYP-2D is 0.1767. This is significantly
smaller than the one for EAEPS at 0.6802. Note that smaller discrep-
ancy values are considered to be better. The middle column shows
the combination of the feature pair (f3,f4). The discrepancy value
for feature pair (f3,f4) for EAIGD is 0.2286 whereas it is 0.6015 for
EAEPS. The last column shows the final populations of the diversity
optimization when considering feature pair (f5,f6). The discrepancy
value for feature pair (f5,f6) is the smallest among all algorithms
for EAHYP-2D at 0.2182 and the highest for EAEPS at 0.6318.

In summary, we observe that EAHYP-2D, EAHYP and EAIGD
achieve a good and even coverage of the feature space, especially
in comparison with the discrepancy-based diversification (see Fig-
ure 4 for an example from [23]). Interestingly, EAEPS appears to
experience difficulties, and it achieves the worst coverage in the
search space in all scenarios.
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Figure 3: Feature vectors for final population of EAHYP-2D (top), EAHYP, EAIGD and EAEPS (bottom) for images based on pair
of features from left to right: (f1, f2), (f3, f4), (f5, f6).

Table 2: Investigations for images with 2 features. Comparison in terms of mean, standard deviation and statistical test for
considered indicators.

EAHYP-2D (1) EAHYP (2) EAIGD (3) EAEPS (4) EADIS (5)
mean st stat mean st stat mean st stat mean st stat mean st stat

H
YP

-2
D f1 ,f2 0.347 0.004 4(+) ,5(+) 0.382 0.007 3(+) ,4(+) ,5(+) 0.335 0.003 2(−) ,5(+) 0.198 0.019 1(−) ,2(−) 0.112 0.030 1(−) ,2(−) ,3(−)

f3 ,f4 0.344 0.004 2(+) ,4(+) ,5(+) 0.268 0.014 1(−) ,3(−) ,4(+) ,5(+) 0.339 0.004 2(+) ,4(+) ,5(+) 0.221 0.015 1(−) ,2(−) ,3(−) 0.105 0.025 1(−) ,2(−) ,3(−)

f5 ,f6 0.350 0.007 2(+) ,3(+) ,4(+) ,5(+) 0.342 0.004 1(−) ,4(+) ,5(+) 0.332 0.004 1(−) ,4(+) ,5(+) 0.220 0.045 1(−) ,2(−) ,3(−) 0.134 0.016 1(−) ,2(−) ,3(−)

H
YP

f1 ,f2 0.525 0.012 3(+) ,4(+) ,5(+) 0.693 0.013 3(+) ,4(+) ,5(+) 0.374 0.006 1(−) ,2(−) ,4(+) 0.344 0.003 1(−) ,2(−) ,3(−) 0.363 0.014 1(−) ,2(−)

f3 ,f4 0.500 0.007 3(+) ,4(+) ,5(+) 0.681 0.010 3(+) ,4(+) ,5(+) 0.268 0.072 1(−) ,2(−) ,4(+) ,5(+) 0.280 0.010 1(−) ,2(−) ,3(−) 0.267 0.014 1(−) ,2(−) ,3(−)

f5 ,f6 0.518 0.012 2(−) ,4(+) ,5(+) 0.663 0.010 1(+) ,3(+) ,4(+) ,5(+) 0.335 0.004 2(−) ,4(+) 0.317 0.006 1(−) ,2(−) ,3(−) 0.327 0.008 1(−) ,2(−)

IG
D

f1 ,f2 0.001 0.335 2(+) ,4(+) ,5(+) 0.003 0.000 1(−) ,3(−) 0.001 0.000 2(+) ,4(+) ,5(+) 0.003 0.000 1(−) ,3(−) ,5(+) 0.005 0.001 1(−) ,3(−) ,4(−)

f3 ,f4 0.001 0.339 2(+) ,4(+) ,5(+) 0.004 0.000 1(−) ,3(−) ,5(+) 0.001 0.000 2(+) ,4(+) ,5(+) 0.003 0.000 1(−) ,3(−) ,5(+) 0.005 0.001 1(−) ,2(−) ,3(−) ,4(−)

f5 ,f6 0.002 0.332 2(+) ,5(+) 0.007 0.000 1(−) ,3(−) ,4(−) ,5(−) 0.001 0.000 2(+) ,4(+) ,5(+) 0.003 0.001 2(+) ,3(−) 0.004 0.001 1(−) ,2(+) ,3(−)

EP
S f1 ,f2 0.190 0.198 2(+) ,4(+) ,5(+) 0.498 0.011 1(−) , 3(−) 0.194 0.032 2(+) ,4(+) ,5(+) 0.402 0.039 1(−) ,3(−) ,5(+) 0.600 0.106 1(−) ,3(−) ,4(−)

f3 ,f4 0.198 0.221 2(+) ,4(+) ,5(+) 0.569 0.016 1(−) ,3(−) 0.208 0.035 2(+) ,4(+) ,5(+) 0.418 0.036 1(−) ,3(−) ,5(+) 0.615 0.069 1(−) ,3(−) ,4(−)

f5 ,f6 0.125 0.220 2(+) ,4(+) ,5(+) 0.946 0.001 1(−) ,3(−) ,4(−) 0.225 0.064 2(+) ,4(+) ,5(+) 0.397 0.110 1(−) ,2(+) ,3(−) 0.587 0.063 1(−) ,3(−)

D
IS

f1 ,f2 0.171 0.018 2(+) ,4(+) ,5(+) 0.257 0.010 1(−) ,4(+) 0.201 0.031 4(+) ,5(+) 0.686 0.064 1(−) ,2(−) ,3(−) ,5(−) 0.204 0.116 1(−) ,3(−) ,4(+)

f3 ,f4 0.234 0.031 4(+) 0.273 0.041 3(−) ,4(+) ,5(−) 0.198 0.017 2(+) ,4(+) 0.606 0.054 1(−) ,2(−) ,3(−) ,5(−) 0.228 0.059 2(+) ,4(+)

f5 ,f6 0.221 0.026 4(+) 0.263 0.070 3(−) ,4(+) ,5(−) 0.205 0.055 2(+) ,4(+) 0.633 0.158 1(−) ,2(−) ,3(−) ,5(−) 0.203 0.054 2(+) ,4(+)
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Figure 4: Feature vectors for final population of EADIS [23]
for images based on (f1, f2).

Table 3: Investigations for images with 3 features. Compari-
son in terms of mean, standard deviation and statistical test
for considered indicators.

EAHYP (1) EAIGD (2) EADIS (3)
mean st stat mean st stat mean st stat

H
YP

f1 ,f2 ,f3 0.5251 0.0122 2(+) ,3(+) 0.2096 0.0018 1(−) ,3(−) 0.2196 0.0110 1(−) ,2(+)

f1 ,f4 ,f3 0.4998 0.0071 2(+) ,3(+) 0.2142 0.0036 1(−) ,3(−) 0.2286 0.0034 1(−) ,2(+)

f5 ,f4 ,f2 0.5181 0.0122 2(+) ,3(+) 0.1785 0.0017 1(−) ,3(−) 0.1961 0.0023 1(−) ,2(+)

IG
D

f1 ,f2 ,f3 0.0146 0.0001 2(−) ,3(+) 0.0067 0.0003 1(+) ,3(+) 0.0148 0.0003 1(−) ,2(−)

f1 ,f4 ,f3 0.0150 0.0001 2(−) 0.0074 0.0002 1(+) ,3(+) 0.0151 0.0001 2(−)

f5 ,f4 ,f2 0.0193 0.0001 2(−) ,3(+) 0.0062 0.0002 1(+) ,3(+) 0.0199 0.0007 1(−) ,2(−)

D
IS

f1 ,f2 ,f3 0.3554 0.0458 2(+) ,3(−) 0.3809 0.0522 1(−) ,3(−) 0.3350 0.1002 1(+) ,2(+)

f1 ,f4 ,f3 0.3493 0.0532 2(−) 0.2860 0.0342 1(+) ,3(+) 0.3118 0.1309 2(−)

f5 ,f4 ,f2 0.4237 0.0643 2(−) ,3(−) 0.3227 0.0557 1(+) ,3(−) 0.3007 0.1467 1(+) ,2(+)

Moreover, in Table 2, we observe that the EAHYP algorithm has
the best performance among all algorithms. It has the highest hy-
pervolume values for all features combinations, and this is also
statistically significant. Also, due to the statistical tests we can say
that EAHYP-2D outperforms EAEPS and EADIS with respect to the
inverted generational distance and additive epsilon approximation
indicator measurements values for all sets of features. We observe
that EAHYP-2D considering IGD and EPS values has no significant
differences to EAIGD. In terms of discrepancy, the EAHYP-2D has a
following characteristic: for set of features (f1,f2) the EAHYP-2D out-
performs EAHYP, EAEPS and EADIS, however, it only outperforms
the EAEPS for the set of features (f3,f4) and (f5,f6).

Furthermore, EAIGD outperforms the EAHYP, EAEPS and the
EADIS with respect to IGD, EPS and DIS indicators measurements
in most of the cases and achieves the lowest values for IGDmeasure-
ments among all others algorithms for all sets of features. The best
performance achieves EAIGD for discrepancy measurements for the
combinations of features (f3,f4) and (f5,f6) with values 0.198 and
0.205. The hypervolume-based approaches EAHYP-2D and EAHYP
outperform EAIGD for all sets of features. Among all other algo-
rithms EAEPS shows the worst performance. Especially, according
to all indicators measurements and all sets of features, the EAEPS
is dominated by EAHYP and EAIGD, and this difference is statisti-
cally significant. Finally, the EADIS is dominated by EAHYP-2D and
EAHYP, EAIGD and EAEPS with respect to the HYP-2D, HYP, IGD
and EPS indicator values. Also, most results are significantly differ-
ent with respect to the HYP, IGD, EPS indicators. EADIS achieves
the best performance with respect to the DIS indicator for the com-
binations of features (f3,f4) and (f5,f6). The EADIS outperforms the
EAHYP and EAEPS in this case. For the combinations (f1,f2) with
respect to the DIS indicator, the EADIS is dominated by EAHYP-2D
and EAIGD.

3.2.2 Three-feature combinations. The triplets of features are
described in Table 1 and the results are summarized in Table 3. As

Table 4: Description of features for TSP instances.

Notation fmin fmax

f1 angle_mean 0.70 2.90
f2 centroid_mean_distance_to_centroid 0.24 0.70
f3 nnds_mean 0.10 0.70
f4 mst_dists_mean 0.06 0.15

before, the columns represent the algorithms with the correspond-
ing mean value and standard deviation, and the rows represent the
indicators. In Table 3, we compare EAHYP and EAIGD with EADIS
algorithm with respect to two multi-objective indicators and the
discrepancy measurement. Table 3 shows that EAHYP outperforms
EAIGD and EADIS for all three sets of features with respect to the
HYP indicator. In particular, for the first set of features (f1,f2,f3)
the EAHYP algorithm obtains the value 0.5251, and only 0.2096 for
IGD, and 0.2196 for discrepancy.

Comparing EAIGD to EAHYP and EADIS with respect to the IGD
indicator, we find a similar picture as for the EAHYP algorithm.
EAIGD clearly outperforms the EAHYP and EADIS for all three sets
of features. The EADIS algorithm also clearly outperforms EAHYP
and EAIGD with respect to discrepancy. Overall, EADIS achieves
improvements in terms of discrepancy value among another two
algorithms for all sets of features apart from one exception. It can
be observed that for the set of features (f1,f4,f3) EADIS does not
have a major advantage over the EAIGD.

In a nutshell, according to our statistical tests the EAHYP outper-
forms all examined algorithms with respect to the HYP indicator
values for all sets of features in case of two-feature combination.
Moreover, EAIGD outperforms EAHYP, EAEPS and EADIS with re-
spect to the IGD indicator, which was expected, but it shows no
significant difference to EAHYP-2D for the first two sets of features.
The EAEPS algorithm has the worst performance, no matter the
indicator considered. Similarly, considering our experiments for
three-feature combinations, EAHYP and EAIGD achieve the best
results, which are also statistically significant.

4 TRAVELING SALESPERSON PROBLEM
We now investigate our approaches for evolving diverse sets of
instances for the Euclidean Traveling Salesperson problem (TSP)
building on the work carried out in [13, 17, 19–21].

Our goal is to generate diverse sets of TSP instances with 50
cities in the space of [0, 1]2, which is a reasonable size of problem
for feature analysis of TSP. The instance quality is evaluated by
the approximation ratio, which is given by αA(I ) = A(I )/OPT (I ),
where A(I ) is the fitness value of the solution found by algorithm
A for the given instance I , and OPT (I ) is the size of an optimal
solution for instance I which in our case is calculated using the exact
TSP solver Concorde [2]. Within this study, A(I ) is the minimum
tour length obtained by three independent repeated runs of the
2-OPT algorithm for a given TSP instance I . As the number of
cities in an instance is 50, our algorithm chooses 1.18 as threshold
for approximation ratio, which means only TSP instances with
approximation ratios equal to or greater than 1.18 are accepted;
this follows the setting in [13].

4.1 Experimental settings
The algorithm is implemented in R [26], and the feature vectors
are calculated using the tspmeta package [17]. The hardware is
identical to that used in the image-related experiments. The features
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Figure 5: Feature vectors for final population of EAHYP-2D (top), EAHYP (2nd), EAIGD (3rd) and EAEPS (bottom) for TSP instances
based on two features from left to right: (f1, f4), (f2, f4), (f3, f4).

we use to characterize TSP instances are given in Table 4. A detailed
explanation of the features can be found in [17]. The parameter
setting follows the same setting as in [23]. The population size
µ and number of offspring generated λ of EA is set to 20 and 1
respectively. Asmentioned before in Section 2, we normalize feature
values before indicator calculations. Based on the results gathered
from some initial runs of feature-based diversity maximization
algorithm, the maximum and minimum values fmax and fmin for
each feature are determined (see Table 4). Each algorithm setting
is repeated independently for 30 times. Each experiment is run for
20000 generations and the values of all proposed indicators and
discrepancy values are reported in the following section.

4.2 Experimental results and analysis
As before, three pairs of features and three triplets of features are ex-
amined. The results are compared with those from the discrepancy
minimization algorithm.

4.2.1 Two-feature combinations. Figure 5 shows some (ran-
domly drawn) populations in the feature space after running the

corresponding algorithms with consideration of certain two-feature
combinations. In these figures, the populations after optimizing the
hypervolume and inverted generational distance show good cov-
erage and distribution over the whole space. Compared to the 2D
plots from previous research [12, 23], the EAmaximizing HYP-2D is
able to generate individuals with feature vectors that are not found
in previous research. The feature vectors obtained from EAHYP-2D,
EAHYP and EAIGD are – in our opinion – nicely distributed in the
space. In respect of indicator values, the population discrepancies
of the sample populations from EAHYP-2D, EAHYP and EAIGD are
comparable to those from the algorithm minimizing discrepancy
value. Although the discrepancy values are similar, the individuals
from these three algorithms are better distributed than the previous
results [23].

Table 5 lists the results of 30 independent runs, following the
same layout as Table 2. The statistics are gathered from the final
populations after running each algorithm on the three different
two-feature combinations. The statistical values in the first three
large columns are from the EA maximizing HYP-2D, HYP and min-
imizing IGD respectively. The results show that they outperform
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Table 5: Investigations for TSP instances with 2 features. Comparison in terms of mean, standard deviation and statistical test
for considered indicators.

EAHYP-2D (1) EAHYP (2) EAIGD (3) EAEPS (4) EADIS (5)
mean st stat mean st stat mean st stat mean st stat mean st stat

H
YP

-2
D f1 ,f4 0.338 2E-3 2(+) ,4(+) ,5(+) 0.309 4E-3 1(−) ,4(+) 0.331 3E-3 4(+) ,5(+) 0.190 1E-3 1(−) ,2(−) ,3(−) 0.256 1E-2 1(−) ,3(−)

f2 ,f4 0.317 3E-3 2(+) ,4(+) ,5(+) 0.303 5E-3 1(−) ,3(−) ,4(+) 0.316 3E-3 2(+) ,4(+) ,5(+) 0.178 1E-7 1(−) ,2(−) ,3(−) 0.252 1E-2 1(−) ,3(−)

f3 ,f4 0.303 2E-2 2(+) ,4(+) ,5(+) 0.296 5E-3 1(−) ,3(−) ,4(+) ,5(+) 0.304 2E-2 2(+) ,4(+) ,5(+) 0.190 2E-3 1(−) ,2(−) ,3(−) 0.238 2E-2 1(−) ,2(−) ,3(−)

H
YP

f1 ,f4 0.645 5E-3 4(+) ,5(+) 0.638 7E-3 4(+) ,5(+) 0.639 6E-3 4(+) ,5(+) 0.424 2E-3 1(−) ,2(−) ,3(−) 0.529 3E-2 1(−) ,2(−) ,3(−)

f2 ,f4 0.609 7E-3 2(−) ,4(+) ,5(+) 0.632 1E-2 1(+) ,4(+) ,5(+) 0.621 6E-3 4(+) ,5(+) 0.398 1E-6 1(−) ,2(−) ,3(−) 0.505 2E-2 1(−) ,2(−) ,3(−)

f3 ,f4 0.584 3E-2 2(−) ,4(+) 0.621 9E-3 1(+) ,3(+) ,4(+) ,5(+) 0.595 4E-2 2(−) ,4(+) ,5(+) 0.410 2E-3 1(−) ,2(−) ,3(−) 0.485 3E-2 2(−) ,3(−)

IG
D

f1 ,f4 0.001 2E-5 4(+) ,5(+) 0.001 6E-5 3(−) ,4(+) 0.001 4E-5 2(+) ,4(+) ,5(+) 0.003 2E-5 1(−) ,2(−) ,3(−) 0.002 2E-4 1(−) ,3(−)

f2 ,f4 0.001 3E-5 2(+) ,4(+) ,5(+) 0.002 6E-5 1(−) ,3(−) ,4(+) 0.001 3E-5 2(+) ,4(+) ,5(+) 0.003 2E-10 1(−) ,2(−) ,3(−) 0.002 2E-4 1(−) ,3(−)

f3 ,f4 0.002 3E-4 4(+) ,5(+) 0.002 6E-5 3(−) ,4(+) ,5(+) 0.002 3E-4 2(+) ,4(+) ,5(+) 0.003 3E-5 1(−) ,2(−) ,3(−) 0.003 3E-4 1(−) ,2(−) ,3(−)

EP
S f1 ,f4 0.196 2E-2 2(+) ,4(+) ,5(+) 0.249 2E-2 1(−) ,3(−) ,4(+) 0.189 2E-2 2(+) ,4(+) ,5(+) 0.423 1E-3 1(−) ,2(−) ,3(−) 0.345 4E-2 1(−) ,3(−)

f2 ,f4 0.226 8E-3 2(+) ,4(+) ,5(+) 0.256 2E-2 1(−) ,3(−) ,4(+) ,5(+) 0.228 1E-2 2(+) ,4(+) ,5(+) 0.499 2E-16 1(−) ,2(−) ,3(−) 0.360 5E-2 1(−) ,2(−) ,3(−)

f3 ,f4 0.260 4E-2 4(+) ,5(+) 0.278 2E-2 4(+) ,5(+) 0.265 4E-2 4(+) ,5(+) 0.477 3E-3 1(−) ,2(−) ,3(−) 0.368 5E-2 1(−) ,2(−) ,3(−)

D
IS

f1 ,f4 0.222 2E-2 2(+) ,4(+) ,5(+) 0.353 2E-2 1(−) ,3(−) ,4(+) 0.249 2E-2 2(+) ,4(+) 0.589 4E-3 1(−) ,2(−) ,3(−) ,5(−) 0.292 5E-2 1(−) ,4(+)

f2 ,f4 0.230 2E-2 2(+) ,4(+) ,5(+) 0.274 2E-2 1(−) ,4(+) ,5(+) 0.252 1E-3 4(+) ,5(+) 0.609 1E-16 1(−) ,2(−) ,3(−) ,5(−) 0.336 4E-2 1(−) ,2(−) ,3(−) ,4(+)

f3 ,f4 0.418 6E-2 4(+) 0.416 3E-2 4(+) 0.401 7E-2 4(+) ,5(+) 0.719 6E-3 1(−) ,2(−) ,3(−) ,5(−) 0.448 9E-2 3(−) ,4(+)

Table 6: Investigations for TSP instances with 3 features.
Comparison in terms of mean, standard deviation and sta-
tistical test for considered indicators.

EAHYP (1) EAIGD (2) EADIS (3)
mean st stat mean st stat mean st stat

H
YP

f1 ,f2 ,f3 0.4511 1E-2 2(+) ,3(+) 0.4261 7E-3 1(−) ,3(+) 0.3385 6E-3 1(−) ,2(−)

f1 ,f3 ,f4 0.4579 8E-3 2(+) ,3(+) 0.4260 6E-3 1(−) ,3(+) 0.3430 6E-3 1(−) ,2(−)

f2 ,f3 ,f4 0.4478 8E-3 2(+) ,3(+) 0.4262 6E-3 1(−) ,3(+) 0.3430 6E-3 1(−) ,2(−)

IG
D

f1 ,f2 ,f3 0.0083 3E-4 2(−) ,3(+) 0.0075 2E-4 1(+) ,3(+) 0.0110 1E-4 1(−) ,2(−)

f1 ,f3 ,f4 0.0082 2E-4 2(−) ,3(+) 0.0077 1E-4 2(+) ,3(+) 0.0107 1E-4 1(−) ,2(−)

f2 ,f3 ,f4 0.0086 2E-4 2(−) ,3(+) 0.0080 2E-2 2(+) ,3(+) 0.0112 8E-5 1(−) ,2(−)

D
IS

f1 ,f2 ,f3 0.4115 3E-2 2(+) ,3(+) 0.4839 3E-2 1(−) ,3(−) 0.4399 2E-2 1(−) ,2(+)

f1 ,f3 ,f4 0.5220 4E-2 3(−) 0.5474 3E-2 3(−) 0.4757 2E-2 1(+) ,2(+)

f2 ,f3 ,f4 0.4669 3E-2 2(+) 0.5111 3E-2 1(−) ,3(−) 0.4667 2E-2 2(+)

the evolutionary algorithms minimizing EPS and discrepancy in
all four indicators. Both EAHYP-2D and EAIGD achieve significant
improvements in all four indicators after running for 20000 genera-
tions. It is not a surprise that EAHYP-2D outperforms the other three
algorithms in terms of hypervolume covered. It also shows com-
parable performance in optimizing IGD and other indicators. The
same behavior is observed for EAIGD, which outperforms EAEPS
and EADIS and maximizes HYP relatively well. EADIS is designed
for the purpose of minimizing the population discrepancy value.
However, based on the statistical analysis, it does not obtain better
population discrepancy than EAHYP-2D or EAIGD after 20000 gener-
ations. Similar to what we have observed in the image-based study
in Section 3, the results of EAEPS are not as good as those from the
algorithms optimizing HYP-2D, HYP and IGD. No significant im-
provement in population diversity is achieved using this algorithm.
We have experimented with target grids of higher resolution to mit-
igate local-sensitivity issues that exist despite the use of the vector
Sα (R), however, the computational costs have been prohibitively
high. We conjecture that EAEPS needs to grow its reference set just
like the approximation-guided algorithm AGE [32] does.

4.2.2 Three-feature combinations. For three-feature combina-
tions, the indicators examined are the hypervolume and the inverted

generational distance. The results from optimizing these two indi-
cators are compared with those from minimizing the discrepancy
value. The statistics gathered from 30 repeated runs of each setting
are included in Table 6. The three-feature combinations under ex-
amination in this paper are the same as in [23]. Table 6 summarizes
the indicator values of the final populations after running the three
algorithms on the three three-feature combinations. Both of the
IGD values and HYP values of the final populations from EAIGD and
EAHYP are better than those from EADIS. Although both algorithms
do not perform very well in minimizing discrepancy for most three-
feature combinations, EAHYP is able to achieve a smaller average
discrepancy value than EADIS in feature combination (f1,f3,f4) and
a comparable average value in feature combination (f2,f3,f4). The
minimum discrepancy values obtained by EAHYP for the three dif-
ferent feature combinations are all smaller than the corresponding
values from EADIS.

5 CONCLUSIONS
We have proposed a new approach for evolutionary diversity opti-
mization. It bridges the areas of evolutionary diversity optimization
and evolutionary multi-objective optimization and shows how tech-
niques developed in evolutionary multi-objective optimization can
be used to come up with diverse sets of solutions of high quality for
a given single-objective problem. Our investigations demonstrated
that well-established multi-objective performance indicators can be
used to achieve a good diversity of sets of solutions according to a
given set of features. The advantages of our approaches are (i) their
simplicity and (ii) the quality of diversity achieved as measured by
the respective indicators. The best performing approaches use HYP
or IGD as indicators. We have shown that they achieve excellent
results in terms of all indicators and often even outperform the
discrepancy-based approach [23] when measuring quality in terms
of discrepancy. This is surprising as they are not tailored towards
this measure.
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