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ABSTRACT

Parent selection in evolutionary algorithms for multi-objective
optimization is usually performed by dominance mechanisms or
indicator functions that prefer non-dominated points, while the re-
production phase involves the application of diversity mechanisms
or other methods to achieve a good spread of the population along
the Pareto front. We propose to re�ne the parent selection on evolu-
tionary multi-objective optimization with diversity-based metrics.
�e aim is to focus on individuals with a high diversity contribution
located in poorly explored areas of the search space, so the chances
of creating new non-dominated individuals are be�er than in highly
populated areas. We show by means of rigorous runtime analysis
that the use of diversity-based parent selection mechanisms in the
Simple Evolutionary Multi-objective Optimiser (SEMO) and Global
SEMO for the well known bi-objective functions OneMinMax and
Lotz can signi�cantly improve their performance. Our theoretical
results are accompanied by additional experiments that show a
correspondence between theory and empirical results.
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1 INTRODUCTION

�e area of evolutionary multi-objective optimization (EMO) de-
signs population-based evolutionary algorithms (EAs) where the
population is used to approximate the so-called Pareto front. Given
that EAs use a population which is a set of solutions for a given
problem, EAs are suited in a natural way for computing trade-o�s
with respect to two (or more) con�icting objective functions.
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Well established multi-objective evolutionary algorithms (MOEAs)
such as NSGA-II [6], SPEA2 [2], IBEA [16] have two basic principles.
First of all, the goal is to push the current population close to the
“true” Pareto front. �e second goal is to “spread” the population
along the front such that it is well covered. �e �rst goal is usually
achieved by dominance mechanisms between the search points or
indicator functions that prefer non-dominated points. �e second
goal involves the use of diversity mechanisms. Alternatively, in-
dicators such as the hypervolume indicator play a crucial role to
obtain a good spread of the di�erent solutions of the population
along the Pareto front.

In the context of EMO, parent selection is usually uniform whereas
o�spring selection is based on dominance and the contribution of
an individual to the diversity of the population. In this paper, we
explore the use of di�erent parent selection mechanisms in EMO.
�e goal is to speed up the optimization process of an EMO algo-
rithm by selecting individuals that have a high chance of producing
bene�cial o�spring. To our knowledge this is a novel approach;
the only previous work we are aware of is [14] where a MOEA
with parent selection using a so-called prospect indicator is used to
improve SMS-EMOA. �e prospect indicator evaluates the potential
(or prospect) of an individual to reproduce o�spring that dominate
itself. �eir experimental results show improvement over classical
MOEAs.

�e parent selection mechanisms studied in this paper use the
diversity contribution of an individual in the parent population to
select promising individuals for reproduction. �ese mechanisms
include ignoring individuals with a minimum diversity score, rank
of individuals in the parent population where the rank is given
based on the dominance relation and its contribution to diversity,
and the classical tournament selection (TS) where the outcome
is de�ned according to the diversity score and not in the �tness
values.

�e main assumption is that individuals with a high diversity
score are located in poorly explored or a less dense areas of the
search space, so the chances of creating new non-dominated indi-
viduals are be�er than in areas where there are several individuals.
In this sense we have designed a MOEA that focused on individuals
where the neighbourhood is not fully covered and in consequence,
force the reproduction in those areas and to the spread of the popu-
lation along the search space.

We show by means of rigorous runtime analysis that the use of
diversity-based parent selection mechanisms can signi�cantly im-
prove the performance of MOEAs. �e area of runtime analysis has
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contributed signi�cantly to the theoretical understanding of EMO
algorithms [8, 10, 11] and allows to study di�erent components of
EMO methods from a rigorous perspective.

In order to gain insights into the potential bene�ts of the diversity-
based parent selection mechanisms, we study the classical functions
OneMinMax and Lotz (Leading Ones, Trailing Zeroes) problems
introduced in [10] and [12], respectively. OneMinMax general-
izes the classical OneMax function and Lotz generalizes the well-
known LeadingOnes problem to the multi-objective case. Both
functions have been examined in a wide range of theoretical stud-
ies for variants of the SEMO algorithm. Other studies in the area
of runtime analysis of MOEAs consider hypervolume-based algo-
rithms [7, 13], namely a variant of IBEA, and MOEAs incorporating
other diversity mechanisms for survival selection [11].

We show that the use of various diversity-based parent selection
mechanisms speeds up SEMO by a factor of ordern for OneMinMax
and Lotz. For Lotz the use of rank-based parent selection can
reduce the runtime to compute the whole Pareto front from Θ(n3)
to O(n2). Studying OneMinMax, we show a similar e�ect, i. e.
that the runtime reduces from Θ(n2 logn) to O(n logn) for our best
performing rank-based parent selection methods.

�e outline of the paper is as follows. In Section 2, we introduce
the algorithms and problems that are subject to our investigations.
Section 3 establishes the algorithmic framework used in the theoret-
ical and experimental analysis. Section 4 establishes some general
properties that enable speed-ups through diversity-based parent se-
lection. Our rigorous runtime results for OneMinMax and Lotz are
presented in Section 5 and 6, respectively. An experimental study
complementing the theoretical results is presented in Section 7.
Finally, we �nish with some concluding remarks.

2 PRELIMINARIES

In our investigations we consider problems f = (f1, . . . , fm ) :
{0, 1}n → Rm . �roughout this paper, we assume that each func-
tion fi , 1 ≤ i ≤ m should be maximized. As there is no single point
that maximizes all functions simultaneously, the goal is to �nd a
set of so-called Pareto-optimal solutions.

De�nition 2.1 (Pareto optimality). Let f : X → F , where X ⊆
{0, 1}n is called decision space and F ⊆ Rm objective space. �e
elements of X are called decision vectors and the elements of F
objective vectors. A decision vector x ∈ X is Pareto optimal if
there is no other y ∈ X that dominates x . y dominates x , denoted
asy � x , if fi (y) ≥ fi (x) for all i = 1, . . . ,m and fi (y) > fi (x) for at
least one index i . A decision vector y weakly dominates x , denoted
by y � x , if fi (y) ≥ fi (x), for all i . If neither y � x nor y � x , both
decision vectors are incomparable, denoted by y | |x . �e set of all
Pareto-optimal decision vectors X ∗ is called Pareto set. F ∗ = f (X ∗)
is the set of all Pareto-optimal objective vectors and denoted as
Pareto front.

OneMinMax and Lotz are ideal benchmark functions since both
facilitate the theoretical analysis. �is choice also allows compar-
isons with previous approaches such as [9, 10, 12]. OneMinMax
(see De�nition 2.2) has the particularity that every single solution
represents a point in the Pareto front, no search point is strictly
dominated by another. �e goal is to cover the Pareto front, i. e.
�nding individuals with i ones, for all 0 ≤ i ≤ n.

De�nition 2.2 (OneMinMax). A pseudo-Boolean function with
the objective functions

OneMinMax(x1, . . . ,xn ) :=
(
n −

n∑
i=1

xi ,
n∑
i=1

xi

)
,

where the aim is to maximize the number of zeroes and ones at the
same time.

In the case of Lotz (see De�nition 2.3), all non-Pareto optimal
decision vectors only have Hamming neighbours that are either
be�er or worse, but never incomparable to it. �is fact facilitates the
analysis of the population-based algorithms, which certainly cannot
be expected from other multi-objective optimisation problems. Note
that the Pareto front for Lotz is given by the set of n + 1 search
points {1i0n−i | 0 ≤ i ≤ n}.

De�nition 2.3 (Leading Ones, Trailing Zeroes, Lotz). A pseudo-
Boolean function {0, 1}n → N2 de�ned as

Lotz(x1, . . . ,xn ) =
©­«
n∑
i=1

i∏
j=1

x j ,
n∑
i=1

n∏
j=i
(1 − x j )

ª®¬ ,
where the goal is to simultaneously maximize the number of leading
ones and trailing zeroes in a bit-string.

We focus our analysis on two simple MOEAs, SEMO and its
variant called Global SEMO (GSEMO) because of their simplicity
and suitability for a rigorous theoretical analysis. SEMO starts with
an initial solution s ∈ {0, 1}n chosen uniformly at random. All
non-dominated solutions are stored in the population P . �en, it
selects a solution s uniformly at random from P , and a new search
point s ′ its created due to the mutation step by �ipping the i-th bit
(chosen uniformly at random from i ∈ {1, . . . ,n}) of s . �e new
population contains for each non- dominated �tness vector f (s),
s ∈ P∪{s ′}, one corresponding search point (dominated individuals
are removed from the population), and in the case where f (s ′) is
not dominated, s ′ is added to P .

In the case of GSEMO, a new solution s ′ is created by �ipping
each bit from a solution s independently with probability 1/n (for a
formal de�nition of both algorithms see [10] or Algorithm 2 where
the uniform selection has been replaced with the diversity-parent
selection scheme). For SEMO, we know that the expected running
time on OneMinMax is at most O(n2 logn) [10]. We prove that
this upper bound is asymptotically tight.

Theorem 2.4. �e expected time for SEMO to cover the whole

Pareto front on OneMinMax is Θ(n2 logn).

Proof. �e upper bound was shown in [10]. For the lower
bound, let |x |1 denote the number of 1-bits and |x |0 denotes the
number of 0-bits in x . De�ne Xt := minx ∈Pt {|x |1} if for the initial
search point x0 we have |x0 |1 ≥ n/2, and Xt := minx ∈Pt {|x |0}
otherwise. Note that, by de�nition, X0 ≥ n/2. Now, Xt = 0 is a
necessary requirement for covering the whole Pareto front at time t .
Hence we lower-bound the sought time by the expected time for
Xt to reach value 0.

Since only local mutations are used, Xt can only decrease by 1.
In order to decrease Xt we have to select a parent with Hamming
distance Xt to 0n or 1n , respectively, which happens with proba-
bility 1/|Pt |. Note that |Pt | ≥ n/2 − Xt as the population contains
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individuals with Xt ,Xt + 1, . . . , dn/2e ones. Moreover, mutation
needs to �ip one of the Xt bits di�ering to 0n or 1n , respectively.
Hence

Prob(Xt+1 = Xt − 1 | Xt ) ≤
1

n/2 − Xt
· Xt
n
.

�e total expected time to decrease Xt to 0 is thus at least

n/2∑
j=1

(n
2 − j

) n
j
=

n/2∑
j=1

n2

2j −
n/2∑
j=1

n =
n2 lnn

2 −O(n2)

as
∑n/2
j=1 1/j ≥ lnn/2 = lnn − ln 2. �

�e reason for the relatively high running time is that the grow-
ing population slows down exploration. �e population can only
expand on the Pareto front in case search points with the current
highest or lowest number of ones is chosen (corresponding to a
minimum Xt -value in the proof of �eorem 2.5). Once the pop-
ulation has grown to a size of µ = Θ(n), the probability that this
happens has decreased to Θ(1/n). �is means that only a ∼ 1/n-th
fraction of the time the algorithm has a chance to expand on the
Pareto front! Uniform parent selection means that most steps are
spent idling. �e same e�ect occurs for SEMO on Lotz as proved
in [12].

Theorem 2.5 (Lemma 2 in [12]). �e expected time for SEMO to

cover the whole Pareto front on Lotz is Θ(n3).

For GSEMO we have upper bounds of the same order,O(n2 logn)
for OneMinMax [10] and O(n3) for Lotz [9], though no lower
matching bounds are available in the literature.

We remark that Lotz can also be optimised more e�ciently, in
time O(n2), by a tailored algorithm that uses local search along
individual objectives during initialisation to locate both extreme
points of the Pareto front, 0n and 1n , and then uses crossover to
produce the whole Pareto front from these points [15]. Incorporat-
ing a fairness mechanism which makes sure that each individual
produces roughly the same number of o�spring into SEMO leads to
the algorithm FEMO. For FEMO a runtime bound of Θ(n2 logn) has
been given in [12]. �e runtime analysis provided for IBEA in [13]
gives an upper bound of O(n2 logn) and O(n3) for OneMinMax
and Lotz, respectively, if the population size is set to n + 1 and
therefore does not improve on the results for SEMO given in [12].

Our aim is to develop rigorous runtime bounds of SEMO and
GSEMO introducing di�erent diversity-based parent selection. We
want to study how these mechanisms help to improve the perfor-
mance of the MOEAs.

3 DIVERSITY-BASED PARENT SELECTION

Hypervolume-based EAs have become very popular in recent years
for multi-objective optimization where the hypervolume indicator
is used as a measurement of the coverage of the population [1, 16].
�e hypervolume indicator measures a set of elements correspond-
ing to images of the individuals with the volume of the dominated
portion of the objective space. It is calculated based on the selection
of a reference point. In particular, given a reference point r ∈ Rm ,

the hypervolume indicator is de�ned on a set P ⊂ S as

IH (P) = λ
(⋃
x ∈P
[f1(x), r1] × [f2(x), r2] × · · · × [fm (x), rm ]

)
where λ(S) denotes the Lebesgue measure of a set S and [f1(a), r1]×
[f2(a), r2] × · · · × [fm (a), rm ] is the orthotope with f (a) and r in
opposite corners. We de�ne the contribution of an element x ∈ P
to the hypervolume of a set of elements P as

c(x , P) = IH (P) − IH (P \ {x}).
�e calculation of hypervolume indicator and the calculation of

the contribution are both NP-hard when the number of objectivesm
is a parameter [3, 4]. However, both can be computed in polynomial
time ifm is �xed. In the following, for bi-objective problems like
OneMinMax and Lotz, we can directly calculate the contribution
of an element by taking into account the two direct neighbours in
the objective space as follows.

De�nition 3.1 (Hypervolume contribution). For a given reference
point r = (r1, r2), we set f1(x0) = r1 and f2(xµ+1) = r2 where x0 and
xµ+1 are individuals used to estimate the hypervolume contribution,
and hereina�er µ denotes the size of the current population in
SEMO/GSEMO. Furthermore, we assume that r1 = f1(x0) < f1(x1),
r2 = f2(xµ+1) < f2(xµ ). Let the population be sorted according to
the value of f1(xi ) such that

f1(x0) < f1(x1) < f1(x2) < · · · < f1(xµ ).
�e contribution of an individual xi to the hypervolume of a popu-
lation P is then given by

HVC(xi , P) = (f1(xi ) − f1(xi−1)) · (f2(xi ) − f2(xi+1)).

Another diversity metric applied to our framework is the crowd-

ing distance used by the NSGA-II de�ned in [6]. �e crowding
distance operator is a density metric of solutions surrounding a
particular solution in the population used to determine their extent
proximity with other solutions. A solution with a lower crowding
distance value implies that the region occupied by this solution is
crowded by other solutions. �e solutions with a higher crowding
distance value are chosen/preferred for reproduction.

Now, since both SEMO and GSEMO use a population of non-
dominated individuals, i. e. all individual have the minimum non-
domination rank possible, we can directly apply the crowding dis-
tance as our diversity metric (Algorithm 1). �e population is sorted
according to each objective function value in ascending order of
magnitude. �erea�er, for each objective function, the boundary
solutions (solutions with smallest and largest function values) are
assigned an in�nite distance value. All other intermediate solutions
are assigned a distance value equal to the absolute normalized dif-
ference of the function values of two adjacent solutions (see Line 9
of Algorithm 1, f max

m and f min
m are the maximum and minimum

values of them-th objective function).
As in previous theoretical studies, we measure the running time

as the number of function evaluations needed to fully cover the
Pareto front. �is common practice is motivated by the fact that
function evaluations are o�en the most time-consuming operations.
Note that for SEMO and GSEMO the number of function evaluations
coincides with the number of generations needed as each generation
only creates one new o�spring whose �tness is evaluated.
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Algorithm 1 Crowding Distance Operator
1: Let l := |P |.
2: for all i individuals ∈ P do

3: Set P[i].distance := 0
4: end for

5: for allm objectives do
6: Sort P according tom objective function value in ascending

order.
7: P[1].distance := P[l].distance := ∞.
8: for i = 2 to l − 1 do

9: P[i].distance := P[i].distance +
P [i+1].m−P [i−1].m

f max
m −f min

m
10: end for

11: end for

For the hypervolume contribution (HVC), according to De�ni-
tion 3.1, the reference point can be de�ned so that the current
extreme individuals in the population and individuals in intermedi-
ate empty areas have a high diversity score, and a strong in�uence
for the algorithm. In the case of the crowding distance contribution
(CDC) the same behaviour applies, extreme points in the search
space receive a high distance while intermediate individuals sur-
rounded by empty areas receive a higher distance than the ones
where the area is more crowded.

With this information we can de�ne selection mechanisms capa-
ble of selecting those extreme points and pushing the spread of the
population toward the outer areas of the search space. However, as
our theoretical analysis will show, in case the population already
contains the extreme points of the Pareto front (0n and 1n for One-
MinMax and Lotz), we need to be �exible enough to ignore those
points and select intermediate individuals surrounded by empty
areas in the search space to fully populate the Pareto front.

�e selection mechanisms de�ned in this paper use the previous
diversity contribution metrics but any other metric can be easily
applied that follows the behaviour mentioned before. Firstly, we
de�ne 3 di�erent rank-based selection schemes in which the proba-
bility of selecting individuals with a high diversity score is higher
than individuals with a lower diversity score (see De�nition 3.2).
�e �rst is called exponential; it is a rather aggressive scheme that
strongly favours the best-ranked individuals and has a very small
tail. �e second called inverse quadratic; it is much less aggressive
with a fat tail and yet a constant probability of selecting the �rst
constant ranks. And �nally, the third ranking scheme is called
Harmonic; it is the least aggressive scheme with a fat tail and only
a probability of O(1/(log µ)) for selecting the best few individuals.

De�nition 3.2 (Rank-based selection schemes). �e probability of
selecting the i-th ranked individual is

2−i∑µ
j=1 2−j

,
1

i2 ·∑µ
j=1

1
j2
,

1
i ·∑µ

j=1
1
j

for the exponential, inverse quadratic, and Harmonic ranking scheme,
respectively.

Secondly, we use the classical TS, but with a speci�c tournament
size of µ, the current size of the population. �is means we choose
µ individuals uniformly at random with replacement from the pop-
ulation and then select the individual with the highest diversity

contribution from this multi-set. Selection with replacement im-
plies that there is a chance of not selecting particular individuals,
while other individuals might be picked multiple times.

Now we introduce the diversity-based parent selection into
SEMO (see Algorithm 2) and GSEMO. We remove the uniform
parent selection from both algorithms and instead, we estimate the
diversity contribution for all the individuals in the population, and
a new individual is selected according to the diversity-based parent
selection method, and continues as the original algorithms. Our
parent selection mechanisms are not limited to these algorithms
and may prove useful on a much broader class of MOEAs.

Algorithm 2 SEMO with diversity-based parent selection
1: Choose an initial solution s ∈ {0, 1}n uniformly at random.
2: Determine f (s) and initialize P := {s}.
3: loop

4: Estimate diversity contribution ∀s ∈ P .
5: Choose s ∈ P according to the parent selection mechanism.
6: Choose i ∈ {1, . . . ,n} uniformly at random.
7: De�ne s ′ by �ipping the i-th bit of s .
8: if s ′ is not dominated by any individual in P then

9: Add s ′ to P , and remove all individuals weakly dominated
by s ′ from P .

10: end if

11: end loop

4 ON DIVERSITY-BASED PROGRESS

We show that diversity-based parent selection mechanisms can
achieve a fast spread on the Pareto front F ∗. �e following argu-
ments and analyses consider the situation where the population
is located on the Pareto front. �is is trivially the case for OneM-
inMax as all search points are Pareto-optimal. For Lotz we later
supply a separate analysis that covers the process of reaching the
Pareto front.

For OneMinMax and Lotz the most promising parents are those
that have a Hamming neighbour that is on the Pareto set, but not
yet contained in the population. We call these search points good:

De�nition 4.1. With reference to a population P and a �tness
function with Pareto front F ∗, we call a search point x ∈ P ∩ X ∗
good if there is a Hamming neighbour y of x such that y ∈ X ∗ but
y < P . Otherwise, x is called bad.

A diversity measure should encourage the selection of such good
individuals.

De�nition 4.2 (diversity-favouring). We call a measure C(x , P)
diversity-favouring on S ⊆ {0, 1}n with respect to a �tness function
with Pareto front F ∗ if for all populations P and all x ,y ∈ P ∩X ∗∩S
we have the following: if x is bad and y is good then C(x , P) <
C(y, P).

Note that the de�nition is restricted to a subset S of the search
space. �e reason is to allow the exclusion of certain search points
for which the property is not true. For OneMinMax and Lotz, the
property does not hold for the extreme points on the Pareto front,
0n and 1n . We show that both HVC and CDC are both diversity-
favouring on all other search points.
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Lemma 4.3. �e hypervolume contribution HVC(x , P) is diversity-
favouring on {0, 1}n \ {0n , 1n } for both OneMinMax and Lotz if

the reference point is dominated by (−1,−1).

Proof. Let us consider an individual xi < {0n , 1n } of the sorted
population according to f1, using the notation from De�nition 3.1.
If x is bad, then there are Hamming neighbours xi−1 and xi+1 of
xi in P , the HVC(xi , P) is the minimum possible, since f1(xi ) −
f1(xi−1) = 1 and f2(xi ) − f2(xi+1) = 1 yielding HVC(xi , P) =
(f1(xi ) − f1(xi−1)) · (f2(xi ) − f2(xi+1)) = 1.

Now, let us consider a good search pointyi , that is,yi−1 oryi+1 is
not a Hamming neighbour ofyi . �en we have f1(yi )− f1(yi−1) > 1
or f2(yi ) − f2(yi+1) > 1 and in any case HVC(yi , P) = (f1(yi ) −
f1(yi−1)) · (f2(yi ) − f2(yi+1)) > 1. �us HVC(yi , P) > HVC(xi , P),
which completes the proof. �

Lemma 4.4. �e crowding distance contribution CDC(x , P) is
diversity-favouring on {0, 1}n \ {0n , 1n } for both OneMinMax and

Lotz.

Proof. By Algorithm 1 the search points with the minimum
and maximum f1 score in the population are going to have in�-
nite diversity score, regardless of the objective chosen to sort the
population.

Let us say that there is a bad individual xi with a Hamming
neighbours xi−1 and/or xi+1 contained in P . According to the
numerator of Line 9 of Algorithm 1, the di�erence between the
f1(xi−1) (or f2(xi−1)) and f1(xi+1), is the minimum possible, which
means the minimum CDC(xi , P) is assigned to the individual xi .

In the case of a good search point yi , that is, yi−1 or yi+1 are
not Hamming neighbours of yi , the di�erence between the next
contained search points in P is higher, if the di�erence between
f1(yi ) (or f2(yi )) is higher than the minimum possible, this means
CDC(xi , P) < CDC(yi , P) which completes the proof. �

Note that in both above measures 0n and 1n , if contained in the
population, will always receive a high score, regardless of whether
they are good or bad. If they are bad, there is a high chance that
a bad individual will be selected as parent in a diversity-based
parent selection mechanisms. With this in mind, the probability of
selecting a good individual can be bounded from below as follows.

Lemma 4.5. Let C(x , P) be a diversity-favouring measure on

{0, 1}n \ {0n , 1n }. Consider either OneMinMax or Lotz and as-

sume the population P is a subset of the Pareto set, P ⊆ X ∗. Imagine

P being sorted according to non-increasingC(x , P) values. Consider a
parent selection mechanism based on C(x , P) such that ri is the prob-
ability of selecting the i-th element of P in the sorted sequence. �en

the probability of selecting a good individual is at least min{r1, r2, r3}
unless P already covers the Pareto front.

Proof. Before the whole Pareto front is covered by the popula-
tion P , there exists at least one good individual x in population P
with no corresponding Hamming neighbour s in the Pareto set X ∗.
�en the individuals which correspond to the Hamming neighbours
of the missing point s are good search points.

Since C(x , P) is de�ned as a diversity-favouring measure on
{0, 1}n \ {0n , 1n }, the good search points have higher contribution
than bad search points that are neither 0n nor 1n . �erefore, among

the top three ranked elements in P , there exists at least one good
individual. �e probability of selecting this good individual is at
least min{r1, r2, r3}. �

�e parent selection mechanisms thus have the following proba-
bility of selecting good individuals.

Lemma 4.6. In the se�ing described in Lemma 4.5, the probability

pgood of selecting a good individual is

(1) Ω(1) for the exponential and inverse quadratic ranking schemes,

(2) Ω(1/log µ) for the Harmonic ranking scheme,

(3) Ω(1) for TS with tournament size µ.

Proof. For the parent selection with the exponential ranking
scheme, the probability follows from Lemma 4.5, which ful�lls

r1 ≥ r2 ≥ r3 =
2−3∑µ
j=1 2−j

≥ 2−3 = Ω(1).

For the inverse quadratic ranking scheme, since
∑µ
j=1

1
j2 ≤∑∞

j=1
1
j2 = π

2/6, the probability ful�ls

r1 ≥ r2 ≥ r3 =
1

32 ·∑µ
j=1

1
j2
≥ 2

3 · π 2 = Ω(1).

In the case of Harmonic ranking scheme, since
∑µ
j=1

1
j ≤ ln µ+1,

the probability ful�ls

r1 ≥ r2 ≥ r3 =
1

3 ·∑µ
j=1

1
j
≥ 1

3 · (ln µ + 1) = Ω(1/log µ).

For the TS, the probability of selecting a good individual is at
least min{r1, r2, r3} and r1 ≥ r2 ≥ r3. In order for the individual
with the 3rd maximum contribution to be selected in the TS, the
individuals with the 1st and 2nd maximum contribution should
never be selected in the µ times (probability of (1 − 2/µ)µ ). And,
conditional on this happening, the individual with the 3rd maximum
contribution has to be chosen at least once amongst the other µ − 2
individuals in the µ times with probability 1 −

(
1 − 1

µ−2

)µ
. Hence,

the probability of selecting a good individual is at least

pgood ≥
(
1 −

(
1 − 1

µ − 2

)µ )
·
(
1 − 2

µ

)µ
≥

(
1 − 1

e

)
·
(
1 − 2

µ

)µ
using

(
1 − 1

x

)x
≤ 1/e for x > 1. Since f (x) =

(
1 − 1

x

)x
is non-

decreasing when x ≥ 1, with µ ≥ 3,
(
1 − 2

µ

) µ
2 ≥

(
1 − 2

3

) 3
2 ≥ 0.19.

�erefore, pgood ≥
(
1 − 1

e

)
· 0.192 = Ω(1). �

5 SPEEDUPS ON ONEMINMAX

For any parent selection mechanism de�ned before, the parent se-
lection is focused on selecting an individual with a high diversity
score. In the case of HVC or CDC, having a high diversity contri-
bution means that, apart from the possible exceptions of 0n and 1n ,
the parent will be good, i. e. located in a less populated area of the
Pareto front. We show that by preferring good individuals in the
parent selection, SEMO and GSEMO can quickly �nd the whole
Pareto front for OneMinMax.
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Lemma 5.1. Suppose that the probability of selecting a good in-

dividual is at least pgood. �en the expected runtime for SEMO or

GSEMO to �nd all solutions in the Pareto front on OneMinMax is

bounded above by O((n logn)/pgood).

Proof. We call a step a relevant step if the algorithm selects a
good parent on the Pareto front. We show in the following that
O(n logn) relevant steps are su�cient for covering the whole Pareto
front of OneMinMax, regardless of irrelevant steps performed. �is
shows the claim as the expected time for a relevant step is 1/pgood.

We use the accounting method (see, e. g. Section 17.2 in [5]) to
bound the number of relevant steps. Speci�cally, we count the
number of relevant steps spent selecting a good parent with i ones.
Summing up (upper bounds on) all these times across all 0 ≤ i ≤ n
will imply the claim.

Note that, once potential gaps at i − 1 and i + 1 are �lled, there
can be no more relevant steps at i ones, due to the de�nition of a
relevant step. Hence the expected number of relevant steps at i ones
is bounded by the expected number of mutations from i needed
to �ll both these gaps. If an individual with i ones, 0 < i < n, is
selected as parent, the probability of mutation creating an individual
with i − 1 ones is at least i/n · (1 − 1/n)n−1 ≥ i/(en), and the
probability of mutation creating an individual with i + 1 ones is
at least (n − i)/n · (1 − 1/n)n−1 ≥ (n − i)/(en) (this holds both for
SEMO and GSEMO; for SEMO the factor 1/e can be removed). �e
time for �lling both gaps is at most en/i + en/(n − i). Hence there
are at most en/i + en/(n − i) relevant steps selecting a parent with
i ones. In the special cases of i = 0 or i = n the time to �ll the
neighbouring gaps simpli�es to en/n = e .

Summing over all i , the expected total number of relevant steps
is hence at most

2e +
n−1∑
i=1

(en
i
+

en

n − i

)
= 2e + 2

n−1∑
i=1

en

i
= 2

n∑
i=1

en

i
≤ 2enH (n).

As H (n) = O(logn) this completes the proof. �

Combining Lemma 4.6 and Lemma 5.1, we have proved the
following results. Note that the population size µ is always at most
n + 1 on OneMinMax and Lotz, hence for the Harmonic ranking
scheme, pgood = Ω(1/log µ) = Ω(1/logn).

Theorem 5.2. �e expected time for SEMO and GSEMO to �nd the

whole Pareto front on OneMinMax is bounded by O(n logn) for the
exponential and inverse quadratic ranking schemes, and for TS with

tournament size µ. It is bounded by O(n log2 n) for the Harmonic

ranking scheme.

As both SEMO and GSEMO with the classical uniform parent
selection need time Θ(n2 logn) on OneMinMax, our parent se-
lection schemes lead to speedups of order Θ(n) and Θ(n/logn),
respectively.

6 SPEEDUPS ON LOTZ

We now turn to the function Lotz. In contrast to OneMinMax,
where all individuals are Pareto optimal, for Lotz we have to es-
timate the time for the population to reach the Pareto front. For
SEMO the approach to the Pareto front can be estimated easily as
before reaching the Pareto front, SEMO keeps only one individual

in the population. For local mutations as used in SEMO, whenever
an o�spring is created, either the o�spring dominates the parent, or
the parent dominates the o�spring (or both, if they have the same
function values). �e population size remains unchanged before
there is a solution on the Pareto front. For any parent on the Pareto
front, SEMO only accepts its o�spring if it is also on the Pareto
front, otherwise the o�spring is dominated by the parent.

Lemma 6.1. �e expected time for SEMO to reach the Pareto front

is O(n2). Assume that a�erwards the probability of selecting a good

individual in the population is at least pgood. �e expected runtime

for SEMO to reach a population covering the whole Pareto front on

Lotz is bounded above by O(n2/pgood).

Proof. �e time for the population to �nd the �rst Pareto-
optimal point is O(n2) and has already been proved in Lemma 1
in [12]. So we can focus on the time required to �nd the whole
Pareto front. When there exists at least one good solution, among
all possible o�spring from a good solution, only the o�spring that is
also on the Pareto front will be accepted according to Algorithm 2.
Using the accounting method used to prove Lemma 5.1, we count
the number of relevant steps spent selecting a good parent with i
leading ones, 1i0n−i , and sum up all these times across all 0 ≤ i ≤ n
to prove the claim.

�e potential gaps consist of non-existing non-dominated indi-
viduals at i−1 and i+1 (1i−10n−i+1 and 1i+10n−i−1, respectively), it
is necessary to �ll those gaps, hence there can be no more relevant
steps at i leading ones. So the expected number of mutations at i
leading ones is bounded by the expected number of mutations from
i needed to �ll i − 1 and i + 1. If 1i0n−i is selected as parent, the
probability of mutation creating 1i−10n−i+1 or 1i+10n−i−1 is 1/n,
respectively. �e time for �lling both gaps (if existent) is at most
n + n. Hence there are at most 2n relevant steps selecting a parent
with i leading ones.

Summing over all i , the expected total number of relevant steps
is hence at most

n∑
i=0

2n = 2n(n + 1) = O(n2).

Noting that the expected waiting time for a relevant step is
1/pgood, the overall expected runtime for SEMO to achieve a popu-
lation covering the whole Pareto front of Lotz is upper bounded
by O(n2) +O(n2/pgood) = O(n2/pgood). �

Combining Lemma 4.6 and Lemma 6.1, we now have proved the
following results.

Theorem 6.2. �e expected time for SEMO to �nd the whole Pareto

front on Lotz is bounded by O(n2) for the exponential and inverse

quadratic ranking schemes, and for TS with tournament size µ. It is
bounded by O(n2 log µ) for the Harmonic ranking scheme.

�e analysis of GSEMO turns out to be more di�cult than the
analysis of SEMO. �e reason is that the approach to the Pareto front
becomes harder to analyse. With global mutations, GSEMO can
create incomparable search points while approaching the Pareto
front. �is means that the population can expand in size while
approaching the Pareto front, and even a�er the whole population
has reached the Pareto front, it is possible to create search points
o� the Pareto front that are accepted in the population.
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Experiments in Section 7 indicate that this behaviour does not
slow down the algorithm by more than a constant factor. However,
proving that the bound O(n2) for SEMO also holds for GSEMO
turns out to be very challenging and is le� for future work.

7 EXPERIMENTS

�e experimental approach is focused on the analysis of SEMO and
GSEMO and its performance with and without the diversity-based
parent selection mechanisms. We are interested in observing if we
can speed up the performance from the classical approaches.

�is also allows a more detailed comparison of the HVC, the
CDC, and the parent selection methods. In the case of the HVC,
we have de�ned two reference points, (−1,−1) and (−n,−n). For
the �rst reference point, a slight preference to the extreme points
is provided while with the second, the in�uence of the extreme
points become very strong. �is particular characteristic became
an interesting feature to observe in the case of the ranking-based
selection schemes, and expose a potential �aw for the case of HVC
with low (or high in the case of minimisation) reference point or
CDC (since it assigns in�nite value to the extreme points) and the
parent selection mechanisms that focus very aggressively toward
the extreme points, as we shall see below.

Since we are interested in the time required to �nd the Pareto
front, we have de�ned that outcome as a stopping criterion, and
we repeat the experimental framework for 100 runs with problem
size n = 100 for all algorithmic approaches and report the mean
and standard deviation (STD) as our metrics of interest.

In Table 1 we have summarized and divided the results of our
experimental framework into 2 sections. �e �rst section (upper
part), refers to the mean and STD of generations required to �nd
the Pareto front for the classic SEMO and GSEMO that use uniform
parent selection for both test functions. �e second section (lower
part), refers to the mean and STD of generations required to �nd
the Pareto front for SEMO and GSEMO with the di�erent diversity-
based parent selection schemes.

As we mentioned before, a parent selection mechanisms that is
extremely focused on the extreme points can be potentially dan-
gerous, and to exemplify this, we have introduced a deterministic
selection mechanism which we have named Highest Diversity Con-
tribution (HDC): always select the individual with the highest di-
versity contribution. We also have de�ned a modi�ed version of the
uniform random selection used by SEMO and GSEMO, that we call
non-minimum uniform at random selection (NMUARS), where the
individuals with the minimum diversity score in the population are
ignored and one individual is selected uniformly at random from
all individuals with a non-minimum diversity score. In this sense
individuals with high diversity score have be�er probabilities to
be selected and the approach is �exible enough to choose between
extreme and intermediate individuals.

As can be seen in Table 1, HDC fails to �nd the Pareto front for
OneMinMax and Lotz in the case of GSEMO for both diversity-
based metrics. Due to the mutation mechanism, once it starts
expanding the Pareto set, the algorithm may create an o�spring far
from the parent, leaving unexplored areas between them, and since
the parent selection is only focused on the current extreme individ-
uals, it will expand the Pareto set until it reaches the individuals

{0n , 1n }, and it will continue selecting those individuals ignoring
the intermediate ones, leaving the population in a stagnation state.
�is observation also justi�es why we introduced parent selection
schemes of varying degree of aggressiveness.

Finally, for any other parent selection de�ned in this paper, we
have achieved an signi�cant speed up in the performance of SEMO
and GSEMO of around one order of magnitude. As can be observed
in Table 1, SEMO and GSEMO with diversity-based parent selection
mechanisms are able to �nd the Pareto front faster than its classical
versions, i. e. fewer generations are required for both test functions.
Note that the problem size n = 100 is relatively moderate; as our
theoretical results prove, speedups over the original algorithms will
grow further when the problem size is increased.

8 CONCLUSIONS

Diversity plays a crucial role in the area of EMO. So far, diversity-
based parent selection has not been the main focus on algorithm
design. In this paper, we have shown that diversity-based parent
selection can signi�cantly speed up EMO algorithms. Our theo-
retical results on OneMinMax and Lotz show that a linear factor
can be saved for the investigated se�ings and this is con�rmed by
our experimental results showing a speedup of one magnitude for
problems of size n = 100.

For future work, it would be interesting to study the bene�t of
diversity-based parent selection on more complex problems. From a
theoretical perspective, combinatorial optimization problems such
as minimum spanning tress and covering problems for which SEMO
has already been studied would be natural candidates. On the
experimental side, it would be interesting to integrate the presented
diversity-based parent selection methods into state-of-art EMO
algorithms and evaluate their performance on well-established
benchmark sets.
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