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ABSTRACT
Evolutionary algorithms have been frequently used to deal
with dynamic optimization problems, but their success is
hard to understand from a theoretical perspective. With
this paper, we contribute to the theoretical understanding
of evolutionary algorithms for dynamic combinatorial op-
timization problems. We examine a dynamic version of
the classical vertex cover problem and analyse evolution-
ary algorithms with respect to their ability to maintain a
2-approximation. Analysing the different evolutionary al-
gorithms studied by Jansen et al. [6], we point out where
two previously studied approaches are not able to maintain
a 2-approximation even if they start with a solution of that
quality. Furthermore, we point out that the third approach
is very effective in maintaining 2-approximations for the dy-
namic vertex cover problem.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

Keywords
Dynamic Vertex Cover Problem; Local Search; (1+1) EA;
Combinatorial Optimisation.

1. INTRODUCTION
Evolutionary algorithms have been frequently applied to

dynamic optimization problems. With this paper, we con-
tribute to the theoretical understanding of evolutionary al-
gorithms for one of the most classical combinatorial opti-
mization problems, namely the vertex cover problem. The
vertex cover problem is a well-known NP-hard combinatorial
optimisation problem with various applications in schedul-
ing, networking, bioinformatics, etc [1, 4, 9]. Several algo-
rithms are known that achieve a 2-approximation for this
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problem. The goal of our investigations is to contribute to
the understanding of how evolutionary algorithms can main-
tain a 2-approximation when dynamic changes such as edge
addition and deletion are applied to the current graph. We
study different variants of the classical Randomised Local
Search (RLS) and (1+1) EA that have already been inves-
tigated for the static vertex cover problem in the context of
approximations. This includes a node-based representation
examined in [3, 8, 7] as well as different edge-based repre-
sentations analyzed in [6].

For both of the representations there are hard instances in-
troduced [3, 6] in which with high probability a 2-approxima-
tion solution can not be found in less than exponential time
by means of (1+1) EA. Nevertheless, inspired by the ap-
proximation algorithms for the vertex cover problem using
maximal matchings, Jansen et al. [6] have suggested that
evolutionary algorithms using edge-based representation in-
stead of the node-based representation can solve the prob-
lem faster. They have shown that with edge-based repre-
sentation and a fitness function that penalizes edges sharing
nodes, the algorithm can find a 2-approximation solution
in O(m logm) where m denotes the number of edges in the
given graph.

We adapt the three approaches of Jansen et al. [6] to
the dynamic vertex cover problem [5] where edges may be
added or deleted from the graph. For the first two ap-
proaches, we point out where they are not able to maintain
2-approximations for the dynamic vertex cover problem. In
contrast to this, we show that the third approach maintains
solutions of that quality very efficiently.

The rest of the paper is structured as follows. In Sec-
tion 2 the problem definition is given and the algorithms
are introduced. Section 3 and 4 include hard instances of
the dynamic vertex cover problem for the node-based and
edge-based approaches respectively. Run time behaviour of
the edge-based approach with the complex fitness function
is analysed in Section 5 and the conclusion is presented in
the last section.

2. ALGORITHMS AND THE DYNAMIC VER-
TEX COVER PROBLEM

The vertex cover problem can be defined as follows. Given
a graph G = (V,E) with vertex set V = {v1, . . . , vn} and
edge set E = {e1, . . . , em}, the goal is to find the minimum
subset of nodes, VC ⊆ V , that covers all edges, i. e. ∀e ∈
E, e ∩ VC 6= ∅.



Algorithm 1 Node-Based RLS (RLSNB)

1: The initial solution, s, is given: a bit-string of size
n which used to be a 2-approximation solution before
changing the graph.

2: Set s′ = s
3: Select i ∈ {1, . . . , n} uniformly at random and flip ith

bit of s′

4: If f(s′) ≤ f(s) then s := s′

5: If stopping criteria not met continue at line 2

Algorithm 2 Node-Based (1+1) EA ((1+1) EANB)

1: The initial solution, s, is given: a bit-string of size
n which used to be a 2-approximation solution before
changing the graph.

2: Set s′ = s
3: Flip each bit of s′ with probability 1

n
4: If f(s′) ≤ f(s) then s := s′

5: If stopping criteria not met continue at line 2

In dynamic version of vertex cover problem, the given in-
stance is subject to the addition and deletion of edges. We
assume that these changes happen one by one each τ itera-
tions where τ ∈ poly(n) and poly(n) is a polynomial function
in n.

In most of the work on the vertex cover problem using
evolutionary algorithms, the natural node-based representa-
tion is used [3, 8, 7]. In this representation the search space
is {0, 1}n where n is the number of nodes in the graph. A
potential solution is a search point s ∈ {0, 1}n describing a
selection of nodes, i. e. the 1-bits identify the nodes that are
in the cover-set for that solution:

VC(s) = {vi ∈ V | si = 1}.

In the work of Jansen et al. [6] the edge-based represen-
tation is introduced for this problem. In this representation
the search space is {0, 1}m where m is the number of edges
in the graph, and a search point s ∈ {0, 1}m describes a
selection of edges E(s) = {ei ∈ E | si = 1}. The cover set
then is the subset of all vertices that are on either side of
the selected edges:

VC(s) = {v ∈ V | ∃e ∈ E(s) : v ∈ e}.

Note that in the dynamic version of the problem, the size
of the bit-string corresponding to a search point increases
and decreases when edges are added or removed respectively.
In our analysis, m is the largest number of edges in the graph
at all stages.

Jansen et al. [6] have suggested that this representation
can help evolutionary algorithms solve the problem faster.
They first investigated the fitness function

f(s) = |VC(s)|+ (|V |+ 1) · |{e ∈ E | e ∩ VC(s) = ∅}|. (1)

The first part of this fitness function is the cardinality of the
cover set which needs to be minimised. The second part is
a penalty for the edges that this set does not cover.

For f(s) of Equation 1, they have managed to show that
a (1+1) EA performs equally poor in worst cases for both
defined representations. Furthermore, Jansen et al. [6] have
shown that with adding a penalty for adjacent edges to the
fitness function, the (1+1) EA with edge-based representa-
tion can solve the vertex cover problem in O(m logm). The

Algorithm 3 Edge-Based RLS (RLSEB)

1: The initial solution, s, is given: a bit-string of size
m which used to be a 2-approximation solution before
changing the graph.

2: Set s′ = s
3: Select i ∈ {1, . . . ,m} uniformly at random and flip ith

bit of s′

4: If f(s′) ≤ f(s) then s := s′

5: If stopping criteria not met continue at line 2

Algorithm 4 Edge-Based (1+1) EA ((1+1) EAEB)

1: The initial solution, s, is given: a bit-string of size
m which used to be a 2-approximation solution before
changing the graph.

2: Set s′ = s
3: Flip each bit of s′ with probability 1

m
4: If f(s′) ≤ f(s) then s := s′

5: If stopping criteria not met continue at line 2

fitness function with an extra penalty that they have used
is defined as

fe(s) = f(s) + (|V |+ 1) · (m+ 1)

·|{(e, e′) ∈ E(s)× E(s) | e 6= e′, e ∩ e′ 6= ∅}|.(2)

The fitness function fe(s) is inspired by the well-known
approximation algorithm that finds a 2-approximation for
the vertex cover problem based on a maximal matching [2].

In this paper, we analyse the behaviour of RLS and the
(1+1) EA on the dynamic vertex cover problem with similar
approaches that were studied in [6] on vertex cover problem.
These algorithms are supposed to modify the given solution
if needed to make it keep its quality of 2-approximation, af-
ter an edge has been added to or deleted from the graph.
In our runtime analysis, we measure runtime by the number
of fitness evaluations to reach a certain goal. The expected
runtime refers to the expected number of fitness evaluations
to reach the desired goal. In our case, the goal is to re-
compute a 2-approximation after one or more sequentially
applied dynamic changes have occurred.

The Node-Based RLS (RLSNB) and Node-Based (1+1) EA
((1+1) EANB) are defined in Algorithm 1 and Algorithm 2,
respectively. Similarly, Edge-Based RLS (RLSEB) and Edge-
Based (1+1) EA ((1+1) EAEB) using the fitness function
f(s) are presented in Algorithm 3 and 4, respectively. The
definition of the algorithms for the third approach is quite
similar to the second approach except that for comparing
two solutions in line 4, where instead the fitness function
with the extra penalty of Formula 2 is used. In the follow-
ing sections, we denote the RLS and (1+1) EA variants of
the third approach by RLSe and (1+1) EAe, respectively.

3. HARD INSTANCE FOR NODE-BASED AP-
PROACH

In this section, we introduce a bipartite graph for which it
is hard to maintain a 2-approximation solution by means of
RLSNB and (1+1) EANB . We go even further by showing
that for our instance and a sequence of dynamic changes,
only a very bad approximation will be found by these two
algorithms. In our instance, both of the algorithms stick to
a local optimum with a bad approximation ratio of Ω(n1−ε),



Figure 1: G1, a hard instance for node-based ap-
proach

ε > 0 a small constant, if the graph is subject to a polyno-
mial number of changes. In this section, we assume that
τ ≥ n(3+δ), δ > 0 a small constant. An Illustration of our
instance, G1, is given in Figure 1.
G1 = (V,E) is a bipartite graph and the set of nodes,

V , is partitioned into two sets W = {a1, . . . , ag′} and U =
{b1, . . . , bk}. If n denotes the total number of nodes, then
we assume that k = 1

3
nε and g′ = n− 1

3
nε. Initially, g = 2k

nodes from part W are connected to all the nodes of part U ,
i. e. the sub-graph consisting of nodes U∪{a1, . . . , ag} and all
edges between them, which we denote by G1

′, is a complete
bipartite graph. The other nodes, {ai | g + 1 ≤ i ≤ g′},
are initially not adjacent to any edge, but will be connected
to the nodes of part U one by one. In other words, the
dynamic changes that the graph is subject to, are adding
edges {{ai, bj} | g + 1 ≤ i ≤ g′, 1 ≤ j ≤ k}. Among these,
edges {e | ai ∈ e} are added prior to edges {e | ai+1 ∈ e};
and edge {ai, bj}, is added prior to edge {ai, bj+1}. The
number of these edges is (g′ − g) · k = (n − nε) · ( 1

3
nε) =

O(n1+ε).

Property 1. The optimal solution for G1 at all stages
of dynamic changes, is the set U of size k.

Proof. At all stages, the sub-graph G′1 is a complete
bipartite graph; and a vertex cover for a complete bipartite
graph, contains at least all of the nodes of one of the parts.
Therefore, either all the nodes of U need to be in the solution
or all the nodes {ai | 1 ≤ i ≤ g}. Since g = 2k, any cover
set containing {ai | 1 ≤ i ≤ g}, has a size of at least 2k;
whereas any cover set containing U has a size of at least k.
Therefore, the optimal solution has a size of at least k.

On the other hand, the set U is a complete cover for G1

at all the stages because it is one of the partite sets of G1.
Therefore, the optimal cover set at all the stages of the graph
is U with a size of k.

The initial 2-approximation solution that is given consists
of {ai | 1 ≤ i ≤ g}. This is a 2-approximation solution
because g = 2k and the optimal solution has a size of k
as we saw in Property 1. In Sections 3.1 and 3.2 we show
that algorithms RLSNB and (1+1) EANB find a locally opti-
mal solution consisting of all nodes of W when the dynamic
changes are done and G1 is a complete bipartite graph.

Based on the fitness function f(s) that is used in the node-
based approach, we bring 6 lemmata here that hold for both
RLSNB and (1+1) EANB , and help us with the proofs in
Section 3.1, and 3.2.

Lemma 2. If the number of uncovered edges by the cur-
rent solution s is A, then any solution s′ with B uncovered
edges is rejected by RLSNB and (1+1) EANB if B > A.

Proof. Recalling Equation 1, f(s) = |VC(s)|+(n+1)·A.
Since B > A, f(s′) ≥ |VC(s′)|+ (n+ 1) · (A+ 1). Moreover,
the maximum and minimum value of |VC(s)| and |VC(s′)|
are n and 0 respectively. As a result f(s) ≤ n+ (n+ 1) · A
and f(s′) ≥ 0 + (n+ 1) · (A+ 1). Since (n+ 1) · (A+ 1) >
(n + 1) · A, this upper and lower bounds on f(s) and f(s′)
imply that f(s′) > f(s) and s′ will be rejected by RLSNB
and (1+1) EANB .

Lemma 3. If the current solution s, is a cover, any solu-
tion s′ where |VC(s′)| > |VC(s)|, is rejected by RLSNB and
(1+1) EANB.

Proof. For any solution s′ the following inequality holds:

f(s′) ≥ |VC(s′)|

Since solution s is a cover, we have f(s) = |VC(s)|. There-
fore, |VC(s′)| > |VC(s)| implies that f(s′) > f(s), which
results in rejecting s′ by RLSNB and (1+1) EANB .

Lemma 4. If the solution s is a cover, with probability
1 − e−Ω(nε), RLSNB and (1+1) EANB find a solution s′

which is a minimal cover, in time O(n1+ε logn).

Proof. According to Lemma 2, any solution that is ac-
cepted by RLSNB or (1+1) EANB after solution s, is a cover.
Assume s′ to be a cover with |VC(s′)| < |VC(s)|. Accord-
ing to Lemma 3, s′ is better in terms of fitness and will
replace solution s. Since s is not a minimal cover, there are
some extra nodes in it, removing which does not uncover
any edges while reduces the size of the cover set. The pro-
cess of removing extra nodes from the solution is similar to
optimizing OneMax [6] and is expected to be done in time
O(n logn) by RLS and (1+1) EA since |VC(s)| ≤ n.

If the expected time until all of extra nodes are removed
is Cn logn, where C is a constant, and if X is the first time
that they are removed from the solution, then by Markov’s
inequality

Prob(X ≥ 2Cn logn) ≤ 1

2

Considering nε phases of 2Cn logn steps, then

Prob(X ≥ 2Cn1+ε logn) ≤
(

1

2

)nε
As a result, with a probability in 1−e−Ω(nε) a minimal cover
will be found in time O(n1+ε logn).

Lemma 5. If the solution s is a cover before the new edge
e is added, then with probability 1− e−Ω(nε) starting with s,
(1+1) EANB and RLSNB find a solution s′ which is also a
cover after e is added, in time O(n1+ε).

Proof. Since s had been a cover before e was added, the
only edge that might not be covered by s is e. Therefore,
the number of uncovered edges is at most 1. This number
does not increase according to Lemma 2 during the process
of RLSNB and (1+1) EANB . On the other hand, there are
always two nodes (included in the uncovered edge itself) that
adding at least one of them to the solution s, results in a
cover. This move is accepted according to Lemma 2 and has
the probability of Ω(n−1) for both RLSNB and (1+1) EANB .
Therefore, the expected time until this improvement is found
is Cn, C a positive constant, and using Markov’s inequality
and nε phases of 2 ·Cn steps (similar to proof of Lemma 4),

with probability 1 − e−Ω(nε), a cover will be found in time
O(n1+ε).



Lemma 6. Consider the given solution s, a cover which
does not include bj′ ; 3 ≤ j′ ≤ k, before new edge e = {ai, bj}
is added to the graph. With probability 1 − e−Ω(nε), the re-
sulting solution of (1+1) EANB and RLSNB after e is added,
includes at least all nodes ai′ ; 1 ≤ i′ ≤ i− 1.

Proof. As s does not include bj′ ; 3 ≤ j′ ≤ k, it must
contain all ai′ ; 1 ≤ i′ ≤ i − 1; otherwise, it is not a cover
before e = {ai, bj} is added. Therefore, the only edge that
might not be covered after e is added, is e itself. The number
of uncovered edges does not increase during the process of
(1+1) EANB and RLSNB (Lemma 2); therefore, none of a-
nodes can be removed from the solution unless all b-nodes
are added at the same step. This move is not possible with
RLSNB because only single-bit flips can be done in that
algorithm. (1+1) EANB also needs to flip at least k− 2 bits

at one step which has the probability of at most e−Ω(k) =
e−Ω(nε). As a result, starting from s, with probability 1 −
e−Ω(nε), any solution accepted by (1+1) EANB and RLSNB
after e is added, includes at least all nodes ai′ ; 1 ≤ i′ ≤
i− 1.

Lemma 7. Consider g < i ≤ g′ and two stages of the
graph G1: stage X at which {ai, b2} is added, and stage
Y which is before {ai+1, b1} is added. At all stages from
X to Y , a solution consisting of {a1, . . . , ai} is a locally
optimal solution for RLSNB. Moreover, with probability of
1 − e−Ω(nε), (1+1) EANB can not improve this solution in
a polynomial number of steps.

Proof. Since edges connected to ai′ ; i′ > i have not
been added to the graph yet, s, consisting of {a1, . . . , ai}, is
a cover. Therefore, any solution that has at least one uncov-
ered edge (Lemma 2) or has a larger number of nodes in the
cover set(Lemma 3) is rejected by RLSNB and (1+1) EANB .

Since the sub-graph consisting of the nodes {a1, . . . , ai}∪
U and all edges between them, is a complete bipartite graph,
any solution which is a cover, must contain either U or
{a1, . . . , ai}. Similar to Lemma 6, jumping to any solution
which contains U , in one step by RLSNB is not possible and
by (1+1) EANB has a probability of e−Ω(nε). Moreover,
among solutions containing the set {a1, . . . , ai}, s has the
minimum number of nodes in the cover set. Therefore, s is
a local optimum for RLSNB and with probability e−Ω(nε),
(1+1) EANB can not improve it in a polynomial number of
steps.

3.1 Analysis of RLSNB on G1

In this section, we first bring two lemmata that help us
identify local optimums. Using them, we analyse the be-
haviour of RLSNB on G1.

Lemma 8. Any solution s which is a minimal cover, is a
locally optimal solution for RLSNB.

Proof. Only single-bit flips can be preformed by RLSNB
which can be either adding a new node to s or removing
one from it. Since s is a cover, adding new nodes to it is
rejected according to Lemma 3 because it increases |VC(s)|.
Moreover, any move that removes a node, uncovers at least
one edge as s is a minimal cover. Therefore, according to
Lemma 2 deleting nodes from s also is rejected; hence, s is
a local optimum.

Lemma 9. Consider g < i ≤ g′ and two stages of the
graph G1: stage X at which {ai, b1} is added, and stage Y

Figure 2: A solution consisting of set W

which is before {ai+1, b1} is added. If the given solution of
RLSNB at stage X is {a1, . . . , ai−1}, then with probability

1 − e−Ω(nε), the resulting solution of the algorithm at stage
Y is {a1, . . . , ai}.

Proof. After stage X, when the edge {ai, b1} is added to
the graph, the current solution, {a1, a2, . . . , ai−1}, is not a
cover any more.

The RLSNB flips bits of search point s, one bit at a time,
to achieve an improvement on the fitness f(s). Flipping a
1 to 0 indicates removing a node from the solution; which
uncovers k edges and according to Lemma 2, is rejected.
Flipping a 0 to 1 increases |VC(s)|, but if the corresponding
node covers the new edge; then the fitness is improved by n.
If not, the fitness is increased by 1. Therefore, the only flips
that are accepted by RLSNB are the ones that add a node
that covers the new edge. The only such nodes are ai and b1.
Note that in both cases the resulting solution is worse than
a 2-approximation, because it contains i ≥ 2k + 1 nodes.

At each step, the probability of selecting one of these two
nodes is 2

n
. Therefore, the expected time until one of them

is selected is n
2

. Let X be the first time that one of them is
selected. Using Markov’s inequality and nε phases of n steps
(similar to proof of Lemma 4) with probability 1− e−Ω(nε),
the solution is improved in n1+ε steps.

If ai is added, then according to Lemma 7 the solution
is a local optimum until edge {ai+1, b1} is added. Here we
consider adding b1 to the cover set.

At this stage, i.e. before the next edge is added to the
graph, the solution {a1, a2, . . . , ai−1, b1}, is a minimal cover
and a local optimum according to Lemma 8.

Similar to the first one, when the edge {b2, ai} is added
to the graph, the current solution is no more a complete
cover. Either b2 or ai need to be added to the cover set.
The situation is similar to what we had for the first change
and will be repeated in the next stages while the b-node is
selected.

For each of the k edges {ai, bj}; 1 ≤ j ≤ k, the probability
that the b-node is added to the cover set instead of ai is 1

2
.

Therefore, with probability 1− ( 1
2
)k = 1− e−Ω(nε), at least

one of these changes results in adding ai to the selected set
of nodes. Let us assume that the {ai, bj} is the first edge
for which ai is added to the cover set. The new solution
{a1, . . . , ai, b1, . . . , bj−1} is a cover, but not a minimal cover,
because removing b-nodes from the set does not uncover any
edges. According to Lemma 4, they will be removed from
the solution and with a probability in 1−e−Ω(nε) the locally
optimal solution of {a1, . . . , ai} (Lemma 7) will be found in
time O(n1+ε logn).



Theorem 10. For G1, with probability 1 − e−Ω(nε), the
eventual resulting solution of RLSNB is the set W . The
approximation ratio of this solution is in Ω(n1−ε).

Proof. Since the initial solution is {a1, . . . , ag}, accord-
ing to Lemma 9, the resulting solution of RLSNB before
edge {ag+2, b1} is added is {a1, . . . , ag+1}, with probability

1 − e−Ω(nε). This satisfies the requirement for Lemma 9
again, and the algorithm repeats the whole process for each
of (n − nε) a-nodes. As a result, after node is added, the
algorithm finds a solution consisting of W with probability
1− (n− nε)e−Ω(nε) = 1− e−Ω(nε) (Figure 2).

There are g = n− 1
3
nε nodes in this solution, which gives

the approximation ratio of:

g

k
=
n− 1

3
nε

1
3
nε

= Ω(n1−ε)

3.2 Analysis of (1+1) EA on G1

We here introduce a lemma using which the main theorem
of this section about the behaviour of (1+1) EANB on G1

is proved.

Lemma 11. Consider g < i ≤ g′ and two stages of the
graph G1: stage X at which {ai, b1} is added, and stage
Y which is before {ai+1, b1} is added. If the given solution
of (1+1) EANB at stage X is s = {a1, . . . , ai−1}, then with

probability 1−e−Ω(nδ), the resulting solution of the algorithm
at stage Y is s′ = {a1, . . . , ai}.

Proof. The given solution {a1, . . . , ai−1} is a cover for
the graph before stage X. According to Lemma 5, after
{ai, b1} is added, the algorithm finds s1 which is a cover, in
polynomial time. Similarly, after {ai, b2} is added, a solution
s2 that is also a cover is found in polynomial time.

On the other hand, according to Lemma 6, s1 contains
all nodes ai′ ; 1 ≤ i′ ≤ i − 1. And according to Lemma 4,
it is a minimal cover because τ > O(n1+ε logn), meaning
that in addition to {a1, . . . , ai−1}, it only includes one other
node to cover {ai, b1} i. e. either ai or b1. Therefore, s1 does
not include bj′ ; 3 ≤ j′ ≤ k; which satisfies the condition of
Lemma 6 for the next stage. In other words, s2 also includes
all nodes ai′ ; 1 ≤ i′ ≤ i − 1. According to Lemma 4 it is
also a minimal cover. Any minimal solution including all
nodes ai′ ; 1 ≤ i′ ≤ i − 1 which also covers {ai, b1} and
{ai, b2}, contains either ai or b1 and b2. So far, we have
proved that (1+1) EANB finds s2 which consists of either
V1 = {a1, . . . , ai} or V2 = {a1, . . . , ai−1, b1, b2}. We here
show that (1+1) EANB finds the solution which includes
V1.

Since both V1 and V2 are covers and |V1| < |V2|, the solu-
tion consisting of V1 is less costly. Therefore, (1+1) EANB

does not accept a change from V1 to V2 but accepts the
opposite move. The probability of flipping only the bits cor-
responding to ai, b1 and b2 is(

1

n

)3 (
1− 1

n

)n−3

≥ 1

en3

As a result, a move from V2 to V1 can be performed at
expected time of at most E(T ) = en3, where T is the first
step that this move happens. Using Markov’s inequality,

Prob(T ≥ 2 · en3) ≤ 1

2

Considering n(3+δ)

2en3 phases of 2en3 steps,

Prob(T ≥ n3+δ) ≤
(

1

2

)n(3+δ)

2en3

This implies that with probability 1−e−Ω(nδ) the (1+1) EANB

finds s2 consisting of V1 in a phase of τ steps.
From this point according to Lemma 7, s2 is a local opti-

mum until {ai+1, b1} is added.

Theorem 12. For G1, with probability 1 − e−Ω(nδ), the
eventual resulting solution of (1+1) EANB is the set W .
The approximation ratio of this solution is in Ω(n1−ε).

Proof. Since the initial solution is {a1, . . . , ag}, accord-
ing to Lemma 11, the resulting solution of (1+1) EANB

before edge {ag+2, b1} is added is {a1, . . . , ag+1}, with proba-

bility 1−e−Ω(nδ). This satisfies the requirement for Lemma 11
again, and the algorithm repeats the whole process for each
node ai, g < i ≤ g′. As a result, after the last change of the
graph, the algorithm finds a solution consisting of all nodes

of W with a probability of at least 1 − (n − nε)e−Ω(nδ) =

1− e−Ω(nδ).
Similar to Theorem 10 the approximation ratio of this

solution is Ω(n1−ε).

4. HARD INSTANCE FOR STANDARD EDGE-
BASED APPROACH

In this section, we assume that τ ≥ m(4+δ), where δ >
0 is a small constant. The graph of instance G2 that we
introduce in this section as a hard instance for edge-based
approach is exactly the same asG1 with one slight difference.
The difference is that g = 2k − 1 instead of 2k.

Property 13. The optimal solution for G2 at all stages
of dynamic changes, is the set U of size k.

Proof. The proof is similar to the proof of Property 1
on G1.

Since we are using the edge-based representation in this
section, the initial solution needs to be a search point in
{0, 1}m, representing the set of selected edges. We assume
that {{ai, b1} | 1 ≤ i ≤ g} is the given initial set of selected
edges. The cover set induced from this set is {b1}∪{ai | 1 ≤
i ≤ g} which has a size of 2k; therefore, is a 2-approximation
because according to Property 13 the size of the optimal
solution is k. In what follows, we analyse the behaviour
of RLSEB and (1+1) EAEB on G2 with the given initial
solution.

Note that Lemma 2 and Lemma 3 of Section 3 are also
valid in this section, because they are based on the fit-
ness function f(s) and not the representation. We bring
three other lemmata here which hold for both RLSEB and
(1+1) EAEB .

Lemma 14. Starting with the given solution s which is a
cover before edge e is added, with probability 1 − e−Ω(mε),
RLSEB and (1+1) EAEB find a solution s′ which is also a
cover in O(n1+ε) after e is added.

Proof. The proof of this lemma is similar to the proof of
Lemma 5 except that we are using the edge-based approach



and we should use the probability of finding the proper edge
instead of the probability of finding the proper node.

There always exists an edge (the uncovered edge itself)
adding which to s results in a cover. This move has the
probability of Ω(m−1) for both RLSEB and (1+1) EAEB .

Therefore, similar to Lemma 5, with probability 1−e−Ω(mε),
a cover will be found in O(m1+ε).

Lemma 15. For the instance G2 starting with the given
initial solution, with probability 1 − e−Ω(mε), RLSEB and
(1+1) EAEB result in a solution which is a cover at all
stages.

Proof. Using Lemma 14 as inductive steps and the ini-
tial solution as the base of induction, we can conclude that
with probability 1−e−Ω(mε), RLSEB and (1+1) EAEB result
in a solution which is a cover at all stages.

Lemma 16. Before new edge e = {ai, bj} is added to the
graph, consider the given solution s, a cover which does not
include bj′ ; 4 ≤ j′ ≤ k. With probability 1−e−Ω(mε), the re-
sulting solution of (1+1) EAEB and RLSEB after e is added,
includes at least all nodes ai′ ; 1 ≤ i′ ≤ i− 1.

Proof. The proof is similar to proof of Lemma 6. How-
ever, notice that with edge-based representation, adding and
removing nodes from the cover set of solution s can be done
by adding and removing edges from s. Since G2 is a bipar-
tite graph, adding all nodes bj′ ; 4 ≤ j′ ≤ k at one step,
requires at least k = 3 flips.

4.1 Analysis of RLSEB on G2

In this section, we analyse the behaviour of RLSEB on G2

and show that there is a stage at which this algorithm fails
to find a solution with a better approximation ratio than
3k−1
k

. We first bring a lemma that helps us with the proof.

Lemma 17. With probability 1−e−Ω(mε), the node bk can
only be added to the solution by RLSEB, at a stage in which
{ai, bk} has been added to the graph, where g + 1 ≤ i ≤ g′.

Proof. Consider stage X in which node bk is added to
the solution. If adding an edge e = {ai′ , bk}; 1 ≤ i′ ≤ g′ is
accepted, it must cover an uncovered edge; otherwise, this
move will be rejected because it increases the cardinality of
the cover set. On the other hand, according to Lemma 15,
the solution obtained by the algorithm before stage X, is a
cover; therefore the only uncovered edge is the one that is
added in stage X which we denote by en. As a result, e is
covering en; i. e. en = {ai, bk}; g + 1 ≤ i ≤ g′ which is what
the lemma claims, or, en = {ai′ , bk′}; 1 ≤ k′ ≤ k. In this
case, k′ = k because otherwise, the edge {ai′ , bk} has not
been added to the graph yet. This completes the proof.

Theorem 18. Before edge {a3k, b1} is added to G2, with

probability 1−e−Ω(mε), there is a stage at which RLSEB does
not find any solution better than 3k−1

k
-approximation.

Proof. Before {a3k, b1} is added to the graph, all edges
connected to nodes ai; 2k ≤ i < 3k, are added. We partition
these stages into k phases so that in phase i (2k ≤ i < 3k),
edges {ai, bj | 1 ≤ j ≤ k} are added.

We analyse the situation based on containing or not con-
taining the node bk in the obtained solution of at least one
stage.

• If an edge containing nodes bk is added to the solu-
tion, according to Lemma 17, it must have been added
after edge en = {ai, bk}; 2k ≤ i < 3k is added to
G2. Furthermore, adding bk to a solution s increases
|VC(s)|. If s was a cover, according to Lemma 3 this
move was rejected. Therefore, bk must have covered a
new edge. According to Lemma 15, before en is added;
the algorithm has managed to find a cover; therefore,
the only edge that may not be covered after adding en,
is en itself. Therefore, the edge containing bk, that is
added to the solution, must cover en = {ai, bk}, to be
accepted. This implies that the node ai has not been
previously added to the solution. Otherwise, en was
already covered.

Consider stage X, at which {ai, bk−1} has been added.
According to the above explanation, the solution ob-
tained at this stage (before en is added) must not con-
tain ai. Moreover, according to Lemma15, this solu-
tion is a cover. Since ai has been connected to all other
b-nodes in the past stages, all the nodes bj ; 1 ≤ j ≤
k− 1, must be included in that solution as it does not
contain ai. Similarly, all the nodes al; 1 ≤ l ≤ i − 1
must be included in that solution because bk is con-
nected to all of them and is not included in the cover
set yet.

As a result, the achieved solution by the end of stage
X, contains nodes al; 1 ≤ l ≤ i − 1 and bj ; 1 ≤ j ≤
k − 1. Since i ≥ 2k, the total number of nodes in the
cover set is at least 3k − 1.

• If bk is not included in the solution of any stage; then
the cover set must include all of the nodes that are
connected to bk. At the last stage of phase 3k − 1, all
nodes al, 1 ≤ l ≤ 3k−1 are connected to bk; therefore,
the cover set that the algorithm finds at that stage
contains at least 3k − 1 edges.

In both cases, we proved that there is a stage at which the
achieved cover set contains at least 3k − 1 nodes; while the
size of the optimal cover set is k at all stages. Therefore, the
approximation ratio of the mentioned solutions is 3k−1

k
.

4.2 Analysis of EA on G2

Here we introduce two lemmata that helps us with the
proof of the main theorem about the behaviour of (1+1) EAEB

on G2. Lemma 19 is obtained similar to Lemma 7.

Lemma 19. Consider g < i ≤ g′ and two stages of the
graph G1: stage X at which {ai, b3} is added, and stage Y
which is before {ai+1, b1} is added. At all stages from X to
Y , a solution s, consisting of {a1, . . . , ai, bj}; 1 ≤ j ≤ k is
a locally optimal solution for (1+1) EAEB.

Lemma 20. Consider g < i ≤ g′ and two stages of the
graph G1: stage X at which {ai, b1} is added, and stage Y
which is before {ai+1, b1} is added. If the given solution of
(1+1) EAEB at stage X, s, includes the nodes {a1, . . . , ai−1},
then with probability 1 − e−Ω(mδ), the resulting solution of
the algorithm at stage Y also includes {a1, . . . , ai}.

Proof. The given solution s is a cover for the graph be-
fore stage X. According to Lemma 14, after {ai, b1}, {ai, b2}
and {ai, b3} are added, the algorithm finds s1, s2 and s3

which are also covering solutions, in polynomial time.



Figure 3: A solution including the set W

On the other hand, according to Lemma 16, s1, s2 and s3

contain all nodes ai′ ; 1 ≤ i′ ≤ i − 1. A covering solution
that contains the three new edges, must contain either ai
or b1, b2 and b3. Among solutions with these properties,
s3 = {{al, bj} | 1 ≤ l ≤ i} has the minimum cost and is
achievable from others at each step with a probability of at
least ( 1

m
)4(1− 1

m
)(m−4) because at most 4 bits of s need to

be flipped. Similar to proof of Lemma 11, we can conclude

that with probability 1 − e−Ω(mδ) the (1+1) EAEB finds
s3 = {{al, b1} | 1 ≤ l ≤ i} in a phase of τ steps which is due
to Lemma 19, a local optimum until {ai+1, b1} is added.

Similar to Theorem 12 we obtain the following result.

Theorem 21. For G2, with probability 1 − e−Ω(mδ), the
(1+1) EAEB finds a locally optimal solution containing the
set W (Figure 3). The approximation ratio of this solution
is in Ω(n1−ε).

5. EDGE-BASED APPROACH WITH EXTRA
PENALTY

In this section, we analyse the impact of using the fitness
function fe(s), defined in Equation 2, on the behaviour of
RLSe and (1+1) EAe. It is already proved [6] that start-
ing from any initial solution, both of these algorithms find
a maximal matching in time O(m logm), which induces a
2-approximation solution for the vertex cover problem. As
a result, considering τ ≥ m(1+δ), both algorithms find a 2-
approximation solution for the dynamic vertex cover prob-

lem with probability 1− e−Ω( mδ

logm
)
. We aim to analyse the

behaviour of the two algorithms when an initial solution
with that quality is given. Both kind of dynamic changes
on the graph, add and delete, are analysed in this section.
The following two lemmata are proved based on the fitness
function fe(s) that RLSe and (1+1) EAe use.

Lemma 22. Consider a search point s ∈ {0, 1}m which
is a matching. Any move that results in search point s′ is
rejected by RLSe and (1+1) EAe if s′ is not a matching.

Proof. We here show that for any s which is a matching
and any s′ which is not a matching, fe(s

′) > fe(s); therefore,
both algorithms reject s′.

If s′ is not a matching, fe(s
′) ≥ (|V | + 1) · (m + 1) =

(n + 1) · (m + 1). Moreover, if s is a matching fe(s) =
f(s) ≤ n + (n + 1)(m) because the maximum number of
uncovered edges is m. On the other hand, (n+1) ·(m+1) >
n+ (n+ 1)(m) which implies that fe(s

′) > fe(s)

Lemma 23. Consider a search point s ∈ {0, 1}m which
is a matching. Any move that results in search point s′ is
rejected by RLSe and (1+1) EAe if |{e ∈ E | e ∩ VC(s) =
∅}| > |{e ∈ E | e ∩ VC(s′) = ∅}|.

Proof. For any search point s′, fe(s
′) ≥ f(s′) holds.

Since solution s is a matching, fe(s) = f(s). Therefore, if
f(s′) > f(s), fe(s

′) > fe(s) also holds. Moreover, according
to Lemma 2, if the number of uncovered edges of solution
s′ is larger than that of solution s, f(s′) > f(s) holds which
completes the proof.

5.1 Analysis of RLS
In this section, using the following lemma, we prove that

RLSe maintains a 2-approximation solution in O(m) on ex-

pectation. This gives the probability of 1−e−Ω(mδ) for main-
taining the quality of the problem with τ = m(1+ε).

Lemma 24. Any search point s ∈ {0, 1}m which is a max-
imal matching, is a locally optimal solution for RLSe.

Proof. By RLSe only single-bit flips can be performed:
adding one edge to s, or deleting one edge from it. We show
that both kinds are rejected; hence s is a local optimum.

Since s is a matching, removing an edge from it uncovers
at least one edge, and according to Lemma 23, is rejected.
And since it is a maximal matching, adding any edge to
it will result in a solution which is not a matching, and
according to Lemma 22, is rejected.

Theorem 25. Starting with a 2-approximation solution
s, which is also a maximal matching for an instance of the
problem, RLSe maintains the quality of the solution for dy-
namic changes of adding or deleting an edge on the graph in
expected time of O(m).

Proof. We investigate the situation for adding an edge
or deleting an edge separately.

When an edge is added to the graph, s is still a matching,
but it might be or not be a maximal matching. If s is still a
maximal matching then it is a local optimum (Lemma 24)
and a 2-approximation, because all maximal matchings in-
duce a 2-approximation cover set.

If s is not a maximal matching, then only the new edge, e,
might not be covered. According to Lemma 22 and Lemma 23,
s remains matching during the process of the algorithm and
the number of uncovered edges does not increase. Moreover,
while there is an uncovered edge, there is a probability of
at least 1

m
to make an improvement, because adding the

uncovered edge to s reduces the number of uncovered edges
to 0. This means that in expectation, it takes m steps for
RLSe to find this improvement.

When an edge, e = {v1, v2}, is deleted from the graph, if
e /∈ E(s) then s is still a maximal matching and corresponds
to a 2-approximation solution. If e ∈ E(s), then it is deleted
from the solution as well. The new s is still a matching
but might be or not be a maximal matching. If s is still a
maximal matching then it is already a 2-approximation and
we are done.

We examine the case where s does not constitute a max-
imal matching anymore. If s is not a maximal matching,
then there is a non-empty set E′ such that:

E′ = {e1 | e1 ∈ E ∧ (∀e2 ∈ E(s)⇒ e1 ∩ e2 = ∅)}.

Consider the set E′′:

E′′ = {e1 | e1 ∈ E ∧ (∀e2 ∈ E(s), e1 ∩ e2 = ∅) ∧ e1 ∩ e 6= ∅}

The definition implies that E′′ ⊆ E′. Here we show that
E′ = E′′. If not, ∃e′′ ∈ E′ \E′′ which means that e′′ ∩ e = ∅



and s was not covering e′′ before removing e, and therefore
was not a maximal matching which is in contrast to the
given assumption on s.

Now we can define U1 = {e1 | e1 ∈ E′′∧v1 ∈ e1} and U2 =
{e1 | e1 ∈ E′′∧v2 ∈ e1}. We know that U1∩U2 = ∅ because
the edge containing both v1 and v2 was e which is deleted
from the graph. Therefore, U1 and U2 define a partition
over E′′ and in order to cover edges in E′′, edges from both
of these sets need to be covered. All edges in U1 include
the node v1 which implies that selecting any edge from U1

covers all other edges from this set. Similarly selecting any
edge from U2 covers all edges from this set. Therefore, using

RLSe, at each step there is a probability of |U1|
m

to cover all

edges of U1 and a probability of |U2|
m

to cover all edges of
U2.

Note that any other move is rejected: No edge can be
deleted from s, because s is a matching and deleting any edge
from it increases the number of uncovered edges; therefore
is rejected (Lemma 23). Furthermore, all edges other than
e′′ ∈ E′′ are covered by s and adding them to s results
in a solution which is not a matching; hence, is rejected
(Lemma 22).

With the mentioned probabilities of covering U1 and U2

in one step, each of them will be covered in expected time
of Cm, where C is a constant. Using Markov’s inequality
and mε phases of Cm, with probability 1− e−Ω(mε) all the
uncovered edges will be covered in O(m1+ε). The new solu-
tion is a maximal matching which induces a 2-approximation
solution.

5.2 Analysis of (1+1) EA
In this section, we consider the (1+1) EAe and analyse

maintaining a 2-approximation solution for the dynamic ver-
tex cover problem for that. We have obtained new results for
the dynamic change of adding an edge; but deleting an edge
is more complicated to analyse. The reason is that the num-
ber of uncovered edges can be as large as O(m) and when
more than one flip can happen at each step, some uncovered
edges can get covered but a smaller number of covered edges
get uncovered. The best expected optimization time for this
situation known so far is O(m logm) which is the same as
the expected time of (1+1) EAe starting from scratch.

The following theorem, gives the result of our analysis for
(1+1) EAe when edges are dynamically added to the graph.

Theorem 26. Starting with a 2-approximation solution
s, which is also a maximal matching for an instance of the
problem, (1+1) EAe maintains the quality of the solution
when one new edge is dynamically added to the graph in
expected time of O(m).

Proof. The proof is similar to the proof of the first part
of Theorem 25, except that the probability of flipping the bit
of uncovered edge in (1+1) EAe is 1

m
(1− 1

m
)(m−1). However,

this probability also gives the expected time of O(m) to
make the improvement.

6. CONCLUSION
In this paper, we have carried out rigorous runtime anal-

yses on how the different evolutionary approaches already
examined by Jansen et al. [6] (for the static vertex cover
problem) can deal with the dynamic vertex cover problem.
For the first two examined approaches, we have presented

classes of instances of bipartite graphs where adding edges
lead to bad approximation behaviours even if the algorithms
started with a 2-approximation. For the third approach, we
have shown that 2-approximations are maintained easily by
recomputing maximal matchings of the dynamically chang-
ing graph.
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