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ABSTRACT
The generalized travelling salesperson problem is an impor-
tant NP-hard combinatorial optimization problem where lo-
cal search approaches have been very successful. We inves-
tigate the two hierarchical approaches of Hu and Raidl [9]
for solving this problem from a theoretical perspective. We
examine the complementary abilities of the two approaches
caused by their neighbourhood structures and the advan-
tage of combining them into variable neighbourhood search.
We first point out complementary abilities of the two ap-
proaches by presenting instances where they mutually out-
perform each other. Afterwards, we introduce an instance
which is hard for both approaches, but where a variable
neighbourhood search combining them finds the optimal so-
lution in polynomial time.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

Keywords
Generalized Travelling Salesperson Problem; Local Search;
Variable Neighbourhood Search; 2-OPT; Combinatorial Op-
timisation.

1. INTRODUCTION
Metaheuristics [6] such as local search, simulated anneal-

ing and various types of evolutionary algorithms have been
successfully applied to a wide range of problems from combi-
natorial optimization. Despite their large practical success,
it is very difficult to understand how and why they work on
important classes of problems.
One of the best known local search approaches is the Lin-

Kernighan heuristic for the well-known Travelling Salesper-
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son problem (TSP). This heuristic is built on the classical
2-opt operator for the TSP. While extremely successful, it is
still very hard to understand the success of these approaches
from a theoretical perspective. Theoretical results on differ-
ent types of metaheuristics for the TSP have been presented
in [4, 12, 17] and the impact of different local search strate-
gies and their combination with evolutionary algorithms on
different types of problems have been analysed in [15, 16] by
rigorous runtime analyses. The runtime analysis of meta-
heuristics has provided a lot of rigorous new insights into
the working principles of these algorithms and we refer the
reader to the three books [13, 1, 10] for comprehensive pre-
sentations. Despite this progress and the advancement of
methods for analysing metaheuristics, understanding and
analysing the run of even simple metaheuristics on classical
problems such as run of local search on TSP remains chal-
lenging, and obtaining theoretical results that match prac-
tical experience is to a large extend an open problem.

With this paper, we contribute to the theoretical under-
standing of local search methods for the generalized travel-
ling salesperson problem (GTSP). The problem is given by
a set of cities with distances between them. Furthermore,
the cities are divided into clusters and the goal is to find a
tour of minimal cost that visits one city from each cluster
exactly once. Different heuristic approaches for the GTSP
have been presented in recent years [7, 14, 5, 9]. We investi-
gate the two hierarchical approaches for solving the GTSP
presented in [9]. Both approaches construct an overall solu-
tion based on an upper and lower level. The Cluster-Based
approach uses a permutation on the clusters in the upper
level and finds the best node selection based on that permu-
tation on the lower layer. The Node-Based approach selects
a spanning node for each cluster and then works on finding
the best permutation of the chosen nodes. Hu and Raidl [9]
have combined the two approaches into a variable neigh-
bourhood search algorithm and shown that this leads to a
high performing algorithm for the GTSP.

We investigate the two approaches from a theoretical per-
spective and point out complementary abilities. Our aim is
to show situations where one of the approaches gets stuck
in a local optimum and the other approach is able to per-
form well and achieves an optimal solution. This gives a
deeper insight into the working principles of these two com-
mon approaches and highlights their complementary abili-
ties. To gain these structural insights, our instances should
be simple enough for theoretical treatment. As we are con-



sidering hierarchical approaches working with two solution
layers, it is very difficult to argue in general about the run of
metaheuristics on these problems. The only runtime anal-
ysis that we are aware of is the analysis of simple evolu-
tionary algorithms in the context of bilevel optimization for
the generalized minimum spanning tree problem [2] and the
generalized travelling salesperson problem [3] in the context
of parameterized complexity which shows that evolutionary
algorithms using a cluster-based approach perform well for
these problems if the number of clusters is small. We con-
centrate on instances with a small number of clusters to get
further insights into hierarchical approaches for the GTSP.
In particular, we present instances where the two approaches
mutually outperform each other. Furthermore, we present
an instance where both local search approaches are not able
to achieve an optimal solution, but a combination of them
into a variable-neighbourhood search reaches an optimal so-
lution.
The outline of the paper is as follows. Section 2 introduces

the problem and the algorithms that are subject to our in-
vestigations. In Section 3, we introduce a hard instance
for the Cluster-Based approach which is easy to solve for
Node-Based approach. Section 4 includes an instance easy
for Cluster-Based approach and difficult for Node-Based ap-
proach and Section 5 introduces the third instance which is
difficult for both of them but an algorithm that combines
the two approaches can solve it easily. Finally, we finish
with some concluding remarks in Section 6.

2. PROBLEM AND ALGORITHMS
We consider the generalized travelling salesperson prob-

lem (GTSP) which can be described as follows. The input
is given by a (un)directed complete graph G = (V,E, c) with
n = |V | nodes, a cost function c : E → R+ on the edges, and
a partitioning of V into m clusters V1, V2, . . . , Vm. The goal
is to find a cycle of minimum cost that visits exactly one
node from each cluster.
A solution for this problem consists of two parts. A set

of spanning nodes P = {p1, p2, . . . , pm} where pi ∈ Vi, and
a Hamiltonian tour on the graph G[P ] = G(P, {e ∈ E | e ⊆
P}) induced by P , i.e. the graph consisting of the spanning
nodes and all edges between them. Following [9], we present
a candidate solution as S = (P, π) where P = {p1, . . . , pm} is
the spanning node set and π = (π1, . . . , πm) is a permutation
of the given clusters. Let pπi be the chosen node for cluster
Vπi , 1 ≤ i ≤ m. Then the cost of a solution S = (P, π) is
given by

c(S) = c(pπm , pπ1) +

m−1∑
i=1

c(pπi , pπi+1).

2.1 Cluster-Based Local Search
In the Cluster-Based approach, constructing the permu-

tation of clusters constitutes the upper layer and the node
selection is done in the lower layer.
Let π = (π1, · · · , πm) be a permutation of the m clusters.

The 2-opt neighbourhood of π is given by

N(π) = {π′ | 1 ≤ i < j ≤ m,

π′ = (π1, · · · , πi−1, πj , πj−1, · · · , πi, πj+1, · · · , πm)}

The cluster-based local search (CBLS) algorithm working
with this neighbourhood structure is given in Algorithm 1.

Algorithm 1 Cluster Based Local Search (CBLS)

1: Choose a permutation π = (π1, . . . , πm).
2: Find the optimal set of spanning nodes P with respect

to π to obtain the solution S = (P, π).
3: for π′ ∈ N(π) do
4: Find an optimal set of nodes P ′ = {p′1, . . . , p′m} with

respect to π′ to obtain the solution S′ = (P ′, π′).
5: if c(S′) < c(S) then
6: S = S′

7: GO TO 3
8: end if
9: end for

Algorithm 2 Node Exchange Neighbourhood Local Search
(NEN-LS)

1: Choose P = {p1, p2, . . . , pm}, pi ∈ Vi.
2: Let π be the permutation of clusters obtained by per-

forming a 2-opt local search on G[P ] and S = (P, π) be
the resulting solution.

3: for P ′ ∈ N ′(P ) do
4: Let π′ be the permutation of clusters obtained from

π by performing a 2-opt local search on G[P ′] and
S′ = (P ′, π′) be the resulting solution.

5: if c(S′) < c(S) then
6: S = S′

7: GO TO 3
8: end if
9: end for

CBLS starts with an initial permutation of clusters. At each
step, a new permutation π′ is selected from the 2-opt neigh-
bourhood of π, where π is the current permutation of clus-
ters. Then the lower layer uses the shortest path algorithm
given in [11] to find the best spanning node set. The run-
time of the algorithm to compute an optimal set of spanning
nodes for a given permutation using this algorithm is O(n3).

The new solution S′ = (P ′, π′) replaces the old one S =
(P, π) if it is of less cost and the algorithm terminates if no
better permutation can be found in the 2-opt neighbourhood
of the current solution π.

2.2 Node-Based Local Search
In the Node-Based approach, selection of the spanning

nodes is done in the upper layer and the lower level consists
of finding a shortest tour on the spanning nodes.

Given a spanning nodes set P , the node exchange neigh-
bourhood N ′(P ) is defined as

N ′(P ) = {P ′ | P ′ = {p1, · · · , pi−1, p
′
i, pi+1, . . . , pm},

p′i ∈ Vi \ {pi}, 1 ≤ i ≤ m}

Note that the lower level involves solving the classical
TSP; therefore, poses in general an NP-hard problem on
its own. For our theoretical investigations, we consider two
algorithms NEN-LS and NEN-LS*. NEN-LS computes a
permutation on the lower level using 2-opt local search and
is therefore not guaranteed to reach an optimal permutation
π for a given spanning node set P . NEN-LS* uses an optimal
solver to find an optimal permutation π for a given spanning
node set P . Such a permutation can be obtained in time
O(m22m) using dynamic programming programming [8] and
is practical if the number of clusters is small. We use NEN-



Algorithm 3 Node Exchange Neighbourhood Local
Search* (NEN-LS*)

1: Choose P = {p1, p2, · · · , pm}, pi ∈ Vi.
2: Find a minimum-cost permutation π for G[P ] and let

S = (P, π) be the resulting solution.
3: for P ′ ∈ N ′(P ) do
4: Find a minimum-cost permutation π′ for G[P ′] and

let S′ = (P ′, π′) be the resulting solution.
5: if c(S′) < c(S) then
6: S = S′

7: GO TO 3
8: end if
9: end for

LS* and show where it gets stuck in local optima even if the
travelling salesperson problem on the lower level is solved to
optimality.
NEN-LS and NEN-LS* (see Algorithms 2 and 3) start

with a spanning node set P and search for a good or optimal
permutation with respect to P . Then each solution P ′ ∈
N ′(P ) together with its permutation π′ is considered and
S′ = (P ′, π′) replaces the current solution S = (P, π) if it
is of smaller cost. Both algorithms terminate if there is no
improvement possible in the neighbourhood N ′(P ) of the
current solution P .

2.3 Variable Neighbourhood Search
Now we describe the combination of two approaches into

variable neighbourhood search. We use a general variable
neighbourhood scheme which explores different neighbour-
hood structures. The algorithm uses the two neighbourhood
structures of CBLS and NEN-LS.
Let S = (P, π) be a solution to the GTSP. We define the

two neighbourhoods N1 and N2 based on the 2-opt neigh-
bourhood N and the node exchange neighbourhood N ′ as

• N1(S) = {S′ = (P ′, π′) | π′ ∈ N(π), P ′ = optimal set
of nodes with respect to π′}

• N2(S) = {S′ = (P ′, π′) | P ′ ∈ N ′(P ), π′ = order of
clusters obtained by 2-opt from π on G[P ′]}

Combining the two local searches of Cluster-Based ap-
proach and Node-Based approach is done by alternating
between N1 and N2. N1 is the first neighbourhood to be
searched and N2 is used when a local optimum has been
found with respect to N1. The resulting variable neighbour-
hood search (VNS) algorithm is given in Algorithm 4.

3. BENEFITS OF NEN-LS
In this section, we present an instance of the problem that

can not be solved by CBLS. In contrast to this, NEN-LS
finds an optimal solution in polynomial time.
We consider the undirected graph, G1 = (V,E) which is

illustrated in Figure 1. The graph has n nodes and 6 clusters
Vi, 1 ≤ i ≤ 6. Cluster V1 contains n/12 white and n/12 grey
nodes. We denote by V1W the subset of white nodes and
by V1G the subset of grey nodes of cluster V1. Each other
cluster Vj , 2 ≤ j ≤ 6, consists of n/6 white nodes. The node
set V = ∪6

i=1Vi of G1 is given by the nodes of the different
clusters.
The edge set E consists of 4 types of edges which we define

in the following.

Algorithm 4 Variable Neighborhood Search (VNS)

1: Choose an initial solution S = (P, π).
2: l = 1
3: while l ≤ 2 do
4: for S′ ∈ Nl(S) do
5: if c(S′) < c(S) then
6: S = S′

7: l=1
8: GO TO 3
9: end if
10: end for
11: l = l + 1
12: end while

Figure 1: An instance of the problem, easy for
Node-Based approach and hard for Cluster-Based
approach

• Type A: Edges of this kind have a cost of 1. All edges
between clusters 2 and 3, and between clusters 4 and
5 and also between clusters 6 and 1, are of this kind.

A = {{vi, vj} | (vi ∈ V1W ∪ V1G ∧ vj ∈ V6)

∨(vi ∈ V2 ∧ vj ∈ V3) ∨ (vi ∈ V4 ∧ vj ∈ V5)}

• Type B: Edges of this kind have a cost of 3. All edges
connecting the nodes of cluster 1 to cluster 2 are of this
type. So are the edges that connect nodes of cluster 3
to 4 and cluster 5 to 6.

B = {{vi, vj} | (vi ∈ V1W ∪ V1G ∧ vj ∈ V2)

∨(vi ∈ V3 ∧ vj ∈ V4) ∨ (vi ∈ V5 ∧ vj ∈ V6)}

• Type C: Edges of this kind have a cost of 4. All edges
between nodes of cluster 2 and 5 and also between
clusters 3 and 6 are of this type. All edges that connect
white nodes of the first cluster to nodes of the forth
cluster are also of this type.

C = {{vi, vj} | (vi ∈ V1W ∧ vj ∈ V4)

∨(vi ∈ V2 ∧ vj ∈ V5) ∨ (vi ∈ V3 ∧ vj ∈ V6)}

• Type D: Edges of this kind have a large cost of 100.
All edges other than those of type A or B or C in this



complete graph are of Type D. Note that the edges
between grey nodes of the first cluster and the nodes
of the forth cluster are also of this type.

D = E \ {A ∪B ∪ C}

Figure 1 shows the important connections of the nodes of
this graph. For simplicity, we have drawn only one node for
each group of similar nodes with similar edges in the picture.
We say that a permutation π = (π(1), . . . , π(n)) visits the

cities in consecutive order iff π(i + 1) = (π(i) mod n) + 1,
1 ≤ i ≤ n and say that π = (π(1), . . . , π(n)) visits the cities
in reverse-consecutive order iff π(i) = (π(i+1) mod n)+1,
1 ≤ i ≤ n

Property 1. For the instance G1, each solution visiting
the clusters in consecutive or reverse-consecutive order is
optimal.

Proof. The graph consists of 6 clusters which implies
that 6 edges are needed for a tour. The least costly edges
are of type A, which are available only between 3 pairs of
clusters. Therefore, the maximum number of edges of this
type that can be used in a tour is 3. The second least costly
type of edge is B with weights of 3. This implies that no tour
can be shorter than 3 · 1 + 3 · 3 = 12. Each solution with a
permutation in consecutive or reverse-consecutive order uses
exactly three edges of weight 1 and three edges of weight 3
which implies a cost of 12 and is therefore optimal.

Theorem 2. Starting with the solution consisting of all
the white nodes and the permutation π = (1, 4, 5, 2, 3, 6),
CBLS is not able to achieve any improvement.

Proof. Starting with all white nodes and a permutation
π = (1, 4, 5, 2, 3, 6), the solution contains three Type-A edges
of cost 1 and three Type-C edges of cost 4. This implies a
total cost of 15 which is not optimal. The edges belonging
to this tour are marked solid in Figure 1. We claim that
this solution is locally optimal, i.e. can not be improved by
a 2-opt step.
When a 2-opt move is performed, depending on the differ-

ent types of edges that are removed from the current tour,
we show that the resulting tours have costs greater than 15.
Note, that all 3 edges of cost 1 are already used in the

current permutation which implies no additional edge of cost
1 can be added. We inspect the different 2-opt steps with
respect to the edges that are removed.

• If two edges of type A which have cost of 1 are removed,
two other edges need to be added and the least costly
edges that can be added have a weight of 3. This makes
the total cost of the resulting solution to be at least
15− 2 · 1 + 2 · 3 = 19 which is greater than 15.

• If one edge of type A (weight 1) and one edge of type
C (weight 4) are removed, again with the minimum
two edges of cost 3 that are added, the total cost is at
least 15− 1− 4 + 2 · 3 = 16 which is greater than 15.

• For removing two edges of Type C, there are three
options:

– Remove the edge between cluster 1 and cluster
4 and also the edge between cluster 2 and clus-
ter 5. This 2-opt results in permutation π′ =

(1, 5, 4, 2, 3, 6) which adds two edges of type D to
the solution, making the total cost greater than
15.

– Remove the edge between cluster 1 and cluster
4 and also the edge between cluster 3 and clus-
ter 6. This 2-opt results in permutation π′ =
(1, 3, 2, 5, 4, 6) which also adds two edges of typeD
to the solution, making the total cost greater than
15.

– Remove the edge between cluster 2 and cluster
5 and also the edge between cluster 3 and clus-
ter 6. This 2-opt results in permutation π′ =
(1, 4, 5, 3, 2, 6) which also adds two edges of typeD
to the solution, making the total cost greater than
15.

We have shown that no 2-opt step is accepted which com-
pletes the proof.

In contrast to the negative result for CBLS, we show that
NEN-LS is able to reach an optimal solution when starting
with the same solution.

Theorem 3. Starting with π = (1, 4, 5, 2, 3, 6), NEN-LS
finds an optimal solution for the instance G1 in O(nm2)
steps.

Proof. Starting with a solution with only white nodes
and the permutation of π = (1, 4, 5, 2, 3, 6), the lower level is
already locally optimal using the arguments in the proof of
Theorem 2. This implies that the solution does not change
unless a grey note in cluster V1 is selected.

Let P = {p1, · · · , p6} be the current set of spanning nodes.
Selecting a grey node p′1 for cluster V1 leads to the set of
spanning nodes P ′ = {p′1, p2, · · · , p6}. P ′ in combination
with the the current permutation π = (1, 4, 5, 2, 3, 6) has a
total cost of 111 as there is one edge of type D with cost
100. We now show that starting from this solution and per-
forming a 2-opt local search on the lower level results in an
optimal solution.

In order to accept a new permutation on the lower level
a solution of cost at most 111 has to be obtained. We do a
case distinction according to the different types of edges that
are removed in a 2-opt operation. If we only remove edges of
type A and C, we reach a solution with total cost of greater
than 111 using the arguments in the proof of Theorem 2.
Hence, we only need to consider the case where at least one
edge of type D is removed.

• There are two possibilities of removing one edge of type
D and one of the edge of type C leading to the permu-
tations π′ = (1, 5, 4, 2, 3, 6) and π′′ = (1, 3, 2, 5, 4, 6).
Both have two edges of type D which implies a total
cost of greater than 111 and are therefore rejected.

• Considering the case of removing the edge of type D
and one of the edges of type A, the only applicable
2-opt move leading to a different permutation results
in the permutation π′ = (1, 2, 5, 4, 3, 6). The resulting
solution has cost 16 and is therefore accepted.

Considering π′ = (1, 2, 5, 4, 3, 6), the only acceptable 2-
opt move leads to the global optimum πopt = (1, 2, 3, 4, 5, 6).
The runtime is bounded by O(nm2) as it takes O(n) time
on the upper level to selected a grey node. Furthermore,



each lower level optimization is bounded by O(m2) as either
permutations are locally optimal with respect to the span-
ning nodes or there are at most two improvements of the
permutation in the case that a grey node of cluster V1 is
selected.

4. BENEFITS OF CBLS
We now consider a situation where NEN-LS* finds it hard

to obtain an optimal solution and CBLS with the same start-
ing solution obtains an optimum in polynomial time. The
instance G2 = (V,E) is illustrated in Figure 2. There are
m clusters where m > 2, and all the clusters contain only
2 nodes; one white and one black. We refer to the white
and black nodes of cluster i, 1 ≤ i ≤ m, by viW and viB ,
respectively. We call cluster V1 the costly cluster as edges
connecting this cluster are more costly than edges connect-
ing the other clusters. The edge set E of G2 is partitioned
into 4 different types.

• Type A: Edges of this type have a weight of 1. All
connections between white nodes of different clusters
except cluster V1 are of this type.

A = {{viW , vjW } | 2 ≤ i, j ≤ m}

• Type B: Edges of this type have a weight of 2. All
connections between black nodes of different clusters
are of this type.

B = {{viB , vjB} | 1 ≤ i, j ≤ m}

• Type C: Edges of this type have a weight of m. All
edges between white node of the costly cluster and
white nodes of other clusters are of this type.

C = {{v1W , viW } | 2 ≤ i ≤ m}

• Type D: Edges of this type have a weight of m2. All
other edges in this complete graph, which consist of
all edges between a white and a black node, are of this
type.

D = E \ {A ∪B ∪ C}
= {{viW , vjB} | 1 ≤ i, j ≤ m}

We first claim that the optimal solution consists of only
black nodes. Then we bring our main theorems on the run-
time behaviour of solving this instance with the two men-
tioned approaches.

Property 4. For the graph G2 any solution containing
all black nodes is optimal.

Proof. A solution that contains only black nodes has m
edges of type B and therefore total cost of 2m.
Choosing a combination of black and white nodes implies

a connection of type D and therefore a solution of cost at
least m2. Choosing all white nodes implies 2 edges of cost
m connected to cluster V1 and m−2 edges of cost 1. Hence,
the total cost of such a solution is 2m+(m−2) which implies
that a solution selecting all black nodes is optimal.

We now show that CBLS always finds an optimal solution
due to selecting an optimal spanning nodes in time O(n3).

Figure 2: Graph G2

Theorem 5. Starting with an arbitrary permutation π,
CBLS finds an optimal solution for G2 by choosing the op-
timal spanning node set P for π in time O(n3).

Proof. As mentioned in Property 4, visiting black nodes
of the graph in any order is a globally optimal solution. For
each permutation π the optimal set of nodes is given by all
black nodes and found when constructing the first spanning
node set. Such a set P is constructed in time O(n3) by the
shortest path algorithm given in [11].

In contrast to the positive result for CBLS, NEN-LS* is
extremely likely to get stuck in a local optimum if the initial
spanning node set is chosen uniformly at random. Note,
that NEN-LS* even uses an exact solver for the lower layer.

Theorem 6. Starting with a spanning node set P chosen
uniformly at random, NEN-LS* gets stuck in a local opti-
mum of G2 with probability 1− e−Ω(n).

Proof. Selecting P = {p1, · · · , pm} uniformly at ran-
dom, the expected number of white nodes is n

2
. Using Cher-

noff bounds, the number of white nodes is at least n/4 with

probability 1 − e−Ω(n). The same applies to the number of
black nodes.

Since connecting white nodes to black nodes is costly, the
lower layer selects a permutation which forms a chain of
white nodes and a chain of black nodes connected to form a
cycle by only two edges of type D.

Let p1 be the selected node of the costly cluster V1. If
p1 is initially white, the lower layer places it at one border
between the black chain and the white chain to avoid using
one of edges of type C. This situation is illustrated in Fig-
ure 3. If p1 is initially black, then the initial solution would
look like Figure 4.

Claim 7. Starting with a random initial solution, for all
the clusters Vi, 2 ≤ i ≤ m; a change from black to white is
improving while no change from white to black is improving.

Proof. As mentioned earlier, a random initial solution
has a chain of black nodes and a chain of white nodes.



Figure 3: The initial solution for G2 if a white node
is selected for the costly cluster V1

Figure 4: A possible solution for G2 if a black node
is selected for the costly cluster V1

Changing a black node pi, i ̸= c to white results in short-
ening the chain of black nodes by removing an edge of type
B and cost 2, while the chain of white nodes gets longer by
adding an edge of type A and cost 1. The new solution is
hence improved in terms of fitness and accepted by the algo-
rithm. On the other hand, the opposite move increases the
cost of the solution; therefore in a cluster Vi, i ̸= c a change
from white to black cannot happen.
The number of selected white nodes for clusters Vi, i ̸= 1

never decreases; therefore, at all time during the run of the
algorithm we have both chains of black nodes and white
nodes, until all the black nodes change to white.

Claim 8. As long as there is at least one cluster Vi, i ̸= 1
for which the black node is selected, a change from white to
black is accepted for cluster V1 and the opposite change is
rejected.

Proof. Since there is at least one cluster Vi, i ̸= 1, for
which the black node is selected, we know that the current
solution and the new solution both have a chain of black
nodes and a chain of white nodes. If the white node of cluster
V1 is selected in the current solution, changing it to black
shortens the chain of white nodes with removing the edge of
type C while increases the number of black nodes by adding
an edge of type B. This move is accepted because the new
solution is improved in terms of cost. The result is illustrated
in Figure 4. Using similar arguments, if the black node of
cluster V1 is selected in the current solution, changing it to
white is rejected because it increases the cost.

Using Claim 7 we can conclude that all nodes pi, i ̸= 1
gradually are changed to white in the local search that is
performed in the NEN. For p1:

• If p1 is initially black, it remains black until all other
pis change to white. At this point p1 is the only black
node in the solution and is connected to two white
nodes with edges of type D and cost m2 as illustrated
in Figure 5. If it changes to white, these two edges are
removed and two edges of type C and cost m are added
to the solution (Figure 6). This change is accepted
because two edges of cost m are less costly than two
edges of cost m2.

• If p1 is initially white,

Figure 5: All other clusters change to white one by
one

Figure 6: Local Optimum for G2

– If it happens to change to black, it remains black
until all other pis change to white, at which point
p1 also changes to white.

– If all other pis change to white before trying a
black node for p1, then it never changes to black.

This eventually results in a local optimum with all white
nodes selected. The algorithm only needs to traverse the
clusters on the upper layer only twice which gives O(m)
iterations on the upper layer for the algorithm to get stuck
in a local optimum. In the first traverse, for all the clusters
the white node will be selected except for the costly cluster
V1 for which the black node will be selected. In the second
traverse, that only black node will also change to white. 2

5. BENEFITS OF VNS
In this section we introduce an instance of the problem

for which both of the mentioned neighbourhood search al-
gorithms fail to find the optimal solution. Nevertheless, the
combination of these approaches as described in Algorithm 4
results in finding the global optimum.

We consider the undirected graph G3 shown in Figure 7
which has 6 clusters each containing n/6 nodes. There are
three kinds of nodes in this graph: white, grey and black.
The first cluster consists of n/12 black, n/24 white, and
n/24 grey nodes. All other clusters contain n/12 white and
n/12 black nodes. We refer to the set of white, black and
grey nodes of cluster Vi by ViW , ViB , andViG, respectively.

There are 5 types of edges in this graph, 4 of which are
quite similar to the 4 types of the instance in Section 3. The
other type, named type D below, includes the edges between
two consecutive black nodes with a cost of 1.5.

• Type A: Edges of this type have a cost of 1.

A = {{vi, vj} | (vi ∈ V1W ∪ V1G ∧ vj ∈ V6W )

∨ (vi ∈ V2W ∧ vj ∈ V3W )

∨ (vi ∈ V4W ∧ vj ∈ V5W )}

• Type B: Edges of this type have a cost of 3.

B = {{vi, vj} | (vi ∈ V1W ∪ V1G ∧ vj ∈ V2W )

∨ (vi ∈ V3W ∧ vj ∈ V4W )

∨ (vi ∈ V5W ∧ vj ∈ V6W )}



Figure 7: Graph G3 showing one node of each type
for each cluster and omitting edges of cost 100.

• Type C: Edges of this type have a cost of 4.

C = {{vi, vj} | (vi ∈ V1W ∧ vj ∈ V4W )

∨ (vi ∈ V2W ∧ vj ∈ V5W )

∨ (vi ∈ V3W ∧ vj ∈ V6W )}

• Type D: Edges of this type have a cost of 1.5.

D = {{vi, vj} | (vi ∈ VkB ∧ vj ∈ V(k+1)B , 1 ≤ k ≤ 5)

∨ (vi ∈ V6B ∧ vj ∈ V1B)}

• Type F : Edges of this kind have a large cost of 100.
All edges other than those of type A or B or C or D
in this complete graph are of Type F . Note that the
edges between grey nodes of the first cluster and the
white nodes of the forth cluster are also of this type.

F = E \ {A ∪B ∪ C ∪D}

We now show that an optimal solution visits a black node
from each cluster in consecutive or reverse-consecutive order.

Property 9. The optimal solution for the graph G3 is
visiting all black nodes with the consecutive or reverse-conse-
cutive order.

Proof. There are three kinds of nodes in this graph;
white, grey and black. Any solution that contains black
and one other kind of node has at least two edges of type
F and weight 100 which makes the total cost of that solu-
tion more than 200. A solution that visits all black nodes in
consecutive or reverse-consecutive order has 6 edges of type
D and a total cost of 9. On the other hand, if we consider
only white and grey nodes, our graph is the same as the
instance of Section 3 with the optimal solution of cost 12.
Therefore, visiting all black nodes with the cost of 9 is the
optimal solution.

We now show that the algorithms CBLS and NEN-LS may
get stuck in a local optimum.

Theorem 10. Starting with a spanning node set P con-
sisting of only white nodes and the permutation π = (1, 4, 5,
2, 3, 6), CBLS and NEN-LS get stuck in a local optimum of
G3.

Proof. We first show that the mentioned initial solu-
tion is a local optimum for CBLS. The cost of this solu-
tion is 15 which is less than any of the edges between black
nodes and white or grey nodes which are of type F . There-
fore, any solution consisting of two kinds of nodes, black
and another kind, cannot be accepted after this solution.
Considering only white and grey nodes, the permutation
π′ = (1, 2, 3, 4, 5, 6) is better than the current one, but as
we saw in Theorem 2 of Section 3 this order can not be
achieved with Algorithm 1. A solution consisting of all the
black nodes is less costly only if they are visited in the op-
timal order of π′ = (1, 2, 3, 4, 5, 6) which is exactly the same
permutation that is better for white nodes as well. As we
discussed, this permutation is not achievable by searching
the 2-opt neighbourhood of the current solution and the
Cluster-Based approach can not find it.

Now we investigate the behaviour of NEN-LS which per-
forms a local search based on the Node-Based approach for
this instance. We show that this algorithm finds another
locally optimal solution. Starting with the initial solution
that is specified in the theorem, all black nodes can not be
selected in one step and trying any one of the black nodes
is rejected, because using two edges of type F are inevitable
which makes the solution worse than the initial solution.
The only spanning node set left in the NEN has the grey
node of the first cluster. For this selection of nodes, the 2-
opt TSP solver of the lower layer finds the optimal order of
clusters similar to what we described in Theorem 3 of Sec-
tion 3 which form a solution of cost 12. From this point any
Node-Exchange-Neighbourhood search fails to find a better
solution.

Using the combination of the two hierarchical approaches
by variable-neighbourhood search allows us to escape these
local optima. As a result VNS obtains an optimal solution
when starting with the same solution as investigated in The-
orem 10.

Theorem 11. Starting with a spanning node set P con-
sisting only of white nodes and the π = (1, 4, 5, 2, 3, 6), VNS
obtains an optimal solution in time O(n3).

Proof. This approach is supposed to start with Cluster-
Based algorithm and alternate between the two algorithms
whenever CBLS is stuck in a locally optimal solution. As we
saw, from the initial solution, Algorithm 1 can not find any
better solutions, because the initial solution is a local opti-
mum for that algorithm. Finding this out requires searching
all the 2-opt neighbourhood which can be done in constant
time, because the number of clusters is fixed. Then NEN-
LS manages to find another solution with the permutation
of π′ = (1, 2, 3, 4, 5, 6). This can also be done in polynomial
time as we described in Theorem 3 of Section 3. Then CBLS
uses this as a starting solution. As π′ = (1, 2, 3, 4, 5, 6) is an
optimal permutation the optimal set of nodes P consisting of
all black nodes is found in time O(n3) on the lower layer.



The investigations of this section have pointed out where a
combination of the two hierarchical approaches into variable
neighbourhood search gives a clear benefit to the optimiza-
tion process as it is crucial for escaping local optima of the
two single approaches.

6. CONCLUSION
Local search approaches have been shown to be very suc-

cessful for solving the generalized travelling salesperson prob-
lem. We have investigated two common hierarchical repre-
sentations together with local search neighbourhoods from a
theoretical perspective. By presenting instances where they
mutually outperform each other, we have gained new in-
sights into the complimentary abilities of the two approaches.
Furthermore, we have presented and analysed a class of in-
stances where combining the two approaches into a variable-
neighbourhood search helps to escape from local optima of
the single approaches.

Acknowledgements
The research leading to these results has received funding
from the Australian Research Council (ARC) under grant
agreements DP130104395 and DP140103400.

7. REFERENCES
[1] A. Auger and B. Doerr. Theory of Randomized Search

Heuristics: Foundations and Recent Developments.
World Scientific Publishing Co., Inc., 2011.

[2] D. Corus, P. K. Lehre, and F. Neumann. The
generalized minimum spanning tree problem: a
parameterized complexity analysis of bi-level
optimisation. In C. Blum and E. Alba, editors,
Genetic and Evolutionary Computation Conference,
GECCO ’13, Amsterdam, The Netherlands, July 6-10,
2013, pages 519–526. ACM, 2013.

[3] D. Corus, P. K. Lehre, F. Neumann, and
M. Pourhassan. A parameterized complexity analysis
of bi-level optimisation with evolutionary algorithms.
CoRR, abs/1401.1905, 2014.
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