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ABSTRACT
Using evolutionary algorithms to generate a diverse set of
solutions where all of them meet a given quality criteria has
gained increasing interest in recent years. In order to gain
theoretical insights on the working principle of population-
based evolutionary algorithms for this kind of diversity opti-
mization a first runtime analysis has been presented by Gao
and Neumann [1] on the example problems OneMax and
LeadingOnes. We continue this line of research and exam-
ine the diversity optimization process of population-based
evolutionary algorithms on complete bipartite graphs for the
classical vertex cover problem.
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1. INTRODUCTION
Evolutionary algorithms (EAs) are widely used for com-

plex problems in various areas such as combinatorial opti-
mization, bioinformatics, and engineering. EAs work with a
set of solutions called the population which is evolved dur-
ing the optimization process. The use of diversity may pre-
vent the algorithms from getting stuck in an optimal solution
and set the basis for successful crossover operators. While a
population is often used in the context of single-objective op-
timzation to obtain a single high quality solution, the use of
a population has the opportunity to produce a diverse set of
multiple solutions which are all of good quality. In this way,
a decision maker gets presented several solutions which he
can choose from in contrast to just a single one.

We want to study the diversity optimization process of
evolutionary algorithms from a theoretical perspective. The
first rigorous runtime analysis of maximizing diversity in the
decision space has been presented in [1]. In this paper, a vari-
ant of the classical (µ+ 1)-EA incorporating a mechanism to
maximize diversity in the case that solutions meet a given
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quality threshold has been analyzed. We push the runtime
analysis in this context and study special classes of the ver-
tex cover problem. For the vertex cover problem there exist
several algorithms that give a 2-approximation of an optimal
solution [2, 5]. It is possible to determine the number of exist-
ing 2-approximation solutions for the graph under investiga-
tion, therefore, we restrict ourselves to classes of graphs that
have many solutions that are 2-approximations and present
runtime results for the (µ + 1)-EA incorporating diversity
maximization for complete bipartite graphs.

2. BACKGROUND
Before discussing the population diversity, we introduce

some definitions about diversity in vertex cover problems
used in this paper. We consider the vertex cover problem
throughout the paper which is given by an undirected graph
G = (V,E). The goal is to find a minimum set of nodes
V ′ ⊆ V such that each edge is covered, i.e. for each e ∈ E,
e ∩ V ′ 6= ∅. For our investigations, we assume that the con-
sidered algorithms start with a population where each indi-
vidual is already of desired quality. Our goal is to analyze
the runtime until the evolutionary algorithms have obtained
a population of good or optimal diversity where all individ-
uals meet the quality criterion.

The solution to the vertex cover problem is represented as
binary string, where each 1-bit denotes the existence of cor-
responding node in a cover set, therefore, we use Hamming
distance H(x, y) =

∑n
i=1 |xi − yi|, where xi, yi ∈ {0, 1}n, to

evaluate the difference between two individuals.
According to [3, 4], a diversity measurement should fulfill

properties of twinning, monotonicity in varieties and mono-
tonicity in distance. Therefore the diversity of a set of solu-
tions P is defined as follows.

DEFINITION 1. For a given population P , the population di-
versity is defined as D(P ) =

∑
{x,y}∈P̂×P̂ H(x, y), where P̂ is

the set with all distinct solutions in P .

The contribution of solution x is defined as c(x) = D(P )−
D(P \ {x}), where x ∈ P.

The (µ+1)-EA with solution diversity optimization is de-
fined as (µ+1)-EAD and given in Algorithm 1. In (µ+1)-EAD,
one randomly chosen individual with least contribution of
diversity is eliminated from the solution set. The whole pro-
cess is executed for certain number of generations or until no
much improvement in diversity can be made. The initializa-
tion process is different for different problems.



Algorithm 1: (µ+1)-EAD

1 Initialize P with µ n-bit binary strings.
2 Choose s ∈ P uniformly at random.
3 Produce s′ by flipping each bit of s with probability 1/n

independently from each other.
4 Check whether s′ meets the quality criteria or not. If s′

fulfils the quality requirement, then add s′to P ,
otherwise go back to step 2.

5 Choose a solution z ∈ {x ∈ P | c(x) = miny∈P c(y)}
uniformly at random. Set P := P \ {z}.

6 Repeat step 2 to 5 until termination criterion is reached.

We study our algorithm in terms of the number of fitness
evaluations until it has produced a population with accept-
able quality that has the maximal or acceptable diversityD(P ).
The expected optimization time refers to the expected number
of fitness evaluations to reach this goal.

3. COMPLETE BIPARTITE GRAPHS
We start by studying complete bipartite graphs. In a com-

plete bipartite graph, the vertices can be split into two sets V1

and V2, which are of size εn and (1− ε)n respectively. There
is an edge between each pair of nodes from set V1 and V2. If
the nodes in V1 is indexed from 0 to εn − 1 and nodes in V2

is indexed from εn to n− 1, the cover set can be represented
by a binary string with length n. When ε < 1

2
, a cover set

consisting of all the nodes in V1 is the global optimum of the
problem. We use matrix to represent the population where
each row represent an individual.

In the vertex cover problem of complete bipartite graph,
we focus on the solutions which constitute a 2-approximation
of an optimal solution. The population diversity optimiza-
tion process is conducted on the population after all individ-
uals in the population meet the quality criteria.

The composition of acceptable cover sets depends on the
parameter ε. Since we focus on the 2-approximation solu-
tions, it is helpful to discuss the relationship between ε, 1

2

and 1
3

.

3.1 ε < 1/3

Assume ε < 1/3. In order to be 2-approximation to the op-
timal solution, a cover set should always include every nodes
in set V1 and at most εn other nodes in set V2. The popula-
tion is initialized with a 2-approximated solution and (µ−1)
n-bit binary strings randomly chosen from {0, 1}n.

Taken population diversity into consideration, the (µ+1)-
EAD aims at finding cover sets of size 2εn and maximize the
population diversity. In order to make sure a solution is 2-
approximated to the optimal solution set, the leftmost εn bits
in the bitstring should be set to 1. Then there are at most
εn bits need to be selected from set V2, which means in the
right (1 − ε)n bits, there are at most εn 1-bits. The diversity
optimization process can be seen as a OneMax problem with
population size µ = (1−ε)n and threshold v = (1−2ε)n. The
analysis follows the ideas about OneMax of Gao and Neu-
mann [1].

DefineP 1
ini as a population with µ individuals among which

there is at least one individual that is 2-approximation to the
optimal cover set.

THEOREM 1. Let 1−ε
ε

6 µ 6
(
(1−ε)n
εn

)
and ε < 1/3, then

expected optimization time of (µ+1)-EAD on vertex cover problem
for complete bipartite graph starting with P 1

ini is upper bounded
by O(µ3n3).

3.2 ε = 1/3

If ε = 1/3, a 2-approximation cover set can also be com-
posed of all nodes in the larger set. Then there are two types
of possible cover sets, typeA and typeB, fulfil the 2-approximation
condition, which are all nodes in set V2 and all nodes in set
V1 together with at most 1

3
n nodes in set V2. In order to max-

imize the population diversity, A should be included in the
population, since it contributes the most to the population
diversity in the left εn columns and with it the right part
can still reach optimum diversity. The average number of
0-bits in each column in the left part of matrix is at least
(µ−1)( 1

3
n)

2
3
n

= µ−1
2

< µ
2

. Then the number of 0-bits and 1-bits

in the right 2
3
n columns should be equal in order to maxi-

mize the population diversity. The population with optimal
diversity should have solution A and other (µ− 1) solutions
which have equal number of 0-bits and 1-bits in the right 2

3
n

columns which represents the set V2. The optimum popula-
tion diversity is 1

3
n(µ− 1) + 2

3
n · µ

2

4
.

DefineP 2
ini as a population with µ individuals among which

there is one solution has all nodes in set V2 and at least one
individual that includes all nodes in set V1 and at most εn
other nodes in set V2.

THEOREM 2. Let ε = 1/3 and 4 < µ <
( 2

3
n

1
3
n

)
, the expected

optimization time of (µ+1)-EAD on vertex cover problem for com-
plete bipartite graph starting withP 2

ini is upper bounded byO(µ3n3).
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