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ABSTRACT

Randomized Search heuristics are frequently applied to
NP-hard combinatorial optimization problems. The runtime
analysis of randomized search heuristics has contributed
tremendously to their theoretical understanding. Recently,
randomized search heuristics have been examined regard-
ing their achievable progress within a fixed time budget.
We follow this approach and present a first fixed budget
runtime analysis for a NP-hard combinatorial optimization
problem. We consider the well-known Traveling Salesperson
problem (TSP) and analyze the fitness increase that random-
ized search heuristics are able to achieve within a given fixed
budget.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms and
Problem Complexity

Keywords

Traveling Salesperson Problem; fitness gain; theory

1. INTRODUCTION
Randomized Search heuristics (RSH) such as randomized

local search, evolutionary algorithms and ant colony opti-
mization have become very popular in recent years to solve
a wide range of hard combinatorial optimization problems.
Regarding them as classical randomized algorithms [11], a
lot of progress has been made in recent years on their the-
oretical understanding [1, 6]. Initially, most of the studies
were focused on simple example functions [4]. Gradually,
the analysis on combinatorial optimization [10, 12, 14] prob-
lems was also established. We refer the textbook of Neumann
and Witt [13] for a comprehensive presentation on the run-
time analysis of randomized search heuristics for problems
from combinatorial optimization.

All these studies on analyzing of time complexity were
based on a single perspective, the expected optimization
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time. There were slight variations on this considering
the number of iterations/generations or fitness evaluations.
Jansen and Zarges [7] and Zhou et al. [18] pointed out that
there is a gap between the empirical results and the theo-
retical results obtained on the optimization time. Theoreti-
cal research most often yields asymptotic results on finding
the global optimum while practitioners concern more about
achieving some good result within a reasonable time bud-
get. Furthermore, it is beneficial to know how much progress
an algorithm can make given some additional time budget.
Experimental studies on this topic have been carried out in
the domain of algorithm engineering [15] and the term fixed
budget runtime analysis has been introduced by Jansen and
Zarges [8].

So far, the fixed budget analysis has been conducted for
very simple test functions, on which the considered random-
ized search heuristics such as randomized local search and
the (1+1) EA follow a typical search trajectory [3, 7, 8] with
high probability. This implies that on these functions the de-
velopment of the best fitness over time forms an almost de-
terministic curve that describes the algorithm’s typical be-
havior. Given such a strong relation between fitness and
time, and the availability of upper and lower tail bounds, it
is then possible to derive tight upper and lower bounds on
the expected fitness increase over any given period of time.

The goal of obtaining tight upper and lower bounds is only
feasible for functions where randomized search heuristics
show a typical search trajectory and tail bounds are available
to bound deviations from this trajectory. This usually does
not apply to hard combinatorial problems like the Traveling
Salesperson Problem, and currently no fixed-budget analy-
sis is available for such problems. We argue that for these
problems fixed budget results can be obtained by relaxing the
above goal towards only considering lower bounds on the ex-
pected fitness gain. Lower bounds can be determined based
on the expected minimum improvement made in an itera-
tion. In this manner there is no requirement for obtaining
tail bounds, which drastically widens the scope of problems
that can be tackled with this approach. Even though lower
bounds on the expected fitness gain may not be tight, they
provide proven guarantees on the progress made by a RSH.
The aim of this approach is to establish guarantees on the ex-
pected fitness gain for various kinds of RSH, hence providing
guidance for choosing, designing, and tuning RSH such that
they find high-fitness solutions in short time.

This study provides a starting point for fixed-budget anal-
ysis of randomized search heuristics for combinatorial op-
timization problems. In particular, we consider random-



ized local search (RLS) and (1+1) Evolutionary Algorithm
((1+1) EA) on the famous Traveling Salesperson Problem
(TSP). We analyze TSP instances on Manhattan and Eu-
clidean instances in the setting of smoothed complexity [16].
Smoothed analysis provides a generic framework to analyze
algorithms like 2-Opt for TSP with the capability to interpo-
late between average and worst case analysis. This analysis
was first proposed by Spielman and Teng [16] focusing on
the simplex algorithm to explain the discrepancy between
its exponential worst case runtime and the fast performance
in practice. The probabilistic model proposed by Englert et
al. [5] is a reminiscence of the original smoothed analysis
model. Later, these results were refined by Manthey and
Veestra [17]. Here, we will adhere to the initial analysis by
Englert et al. [5] as our major focus is on transferring these
results to a fixed budget analysis of RSH.

We build on the analysis of Englert et al. [5] for 2-Opt
which allows to get bounds on the expected progress of a
2-Opt operation in the smoothed setting. First, we obtain
fixed budget results based on the minimum improvement
that RLS and (1+1) EA can make in one iteration. We further
improve these results, following [5], by analyzing a sequence
of consecutive 2-Opt steps together to identify linked pairs.
Interestingly, considering only single improving steps gives
a constant lower bound on the progress achievable in each of
the t iterations whereas the analysis of a sequence of consec-
utive 2-Opt steps gives a larger expected progress per step if
t is large.

The organization of the paper is as follows. Section 2 de-
scribes problem context and the considered algorithms. Sec-
tion 3 and section 4 contain the analysis for Manhattan and
Euclidean instances respectively. Finally, Section 5 concludes
with highlights and future directions.

2. PRELIMINARIES
The Traveling Salesperson problem (TSP) is one of the

most famous NP-hard combinatorial optimization problems.
Given a set of n cities {1, . . . , n} and a distance matrix d =
(dij), 1 ≤ i, j ≤ n, the goal is to compute a tour of minimal
length that visits each city exactly once and returns to the
origin.

A TSP instance is considered to be metric if its distance
function is in metric space. Metric space satisfies reflexivity,
symmetry and triangle inequality conditions. A pair (V, d) of
a nonempty set V and a function d : V × V → R+ is called a
metric space if for all x, y, z ∈ V the following properties are
satisfied:

• d(x, y) = 0 if and only if x = y,

• d(x, y) = d(y, x)

• d(x, z) ≤ d(x, y) + d(y, z).

We consider the case where the n cities are given by points
(xi, yi), 1 ≤ i ≤ n, in the plane and distances are given ac-
cording to the L1 or L2 metric. For a distance metric Lp the
distance of two points pi = (xi, yi) and pj = (xj , yj) is

dp(pi, pj) = (|xi − xj |p + |yi − yj |p)1/p .

L1 and L2 are called Manhattan and Euclidean metric, re-
spectively.

2.1 RLS and Simple Evolutionary Algorithm
We consider simple randomized search heuristics and ana-

lyze them with respect to the progress that they make within
a given time budget.

We investigate Randomized Local Search (RLS) (Algo-
rithm 1) and variants of the (1+1) EA (Algorithm 2). All
algorithms work with a population size of 1 and produce
1 offspring in each iteration. A basic mutation is given
by the well-known 2-Opt operator. The 2-Opt operator se-
lects two edges {u1, u2} and {v1, v2} from the tour such that
u1, u2, v1, v2 are distinct and appear in this order in the tour,
and it replaces these edges by the edges {u1, v1} and {u2, v2}.

RLS performs one 2-Opt step in each iteration to produce
an offspring. (1+1) EA chooses an integer variable s drawn
from the Poisson distribution with expectation 1 in each mu-
tation step and performs sequentially s+1 2-Opt operations.
In case s + 1 = 1, we speak of a singular mutation, or a sin-
gular generation.

The reason we are studying the (1+1) EA is that it can sim-
ulate a 2-Opt step in singular generations, which occur with
probability 1/e, e = exp(1). Moreover, it has a positive prob-
ability of generating a global optimum in every generation
through executing the right number and sequence of 2-Opt
steps. So it is guaranteed to find a global optimum in finite
time, though this time may be exponential in n.

Note that in our algorithms we consider the notion of fit-
ness with regard to the minimization of the tour-length. As
evolutionary algorithms often maximize fitness, we use the
term fitness gain to describe fitness improvements, that is, the
decrease of the tour length.

Algorithm 1 RLS

x← a random permutation of [n]
repeat

y := x
y ← apply a 2-Opt step chosen uniformly to y.
if f(y) ≤ f(x) then

x← y
end if

until forever

Algorithm 2 (1+1) EA

x← a random permutation of [n]
repeat

s from a Poisson distribution with unit expectation
y := x
for s+ 1 times do

y ← apply a 2-Opt step chosen uniformly to y.
end for
if f(y) ≤ f(x) then

x← y
end if

until forever

We study our algorithms regarding the expected progress
that they make within a given number of t iterations. We
consider the algorithms on random instances in the setting
of smoothed analysis [5, 16].

In this model, n points are placed in a d-dimensional unit

hypercube [0, 1]d for d ≥ 2. Each point vi, i = 1, 2, . . . , n, is
chosen independently according to its own probability den-

sity function fi : [0, 1]
d → [0, φ] for some parameter φ > 1. To

model worst-case instances, it is assumed that these densities



are chosen by an adversary who is trying to create the most
difficult random instances possible. By adjusting the param-
eter φ, one can tune the power of this adversary and hence
interpolate between worst and average case. For example,
for φ = 1 there is only one valid choice for the densities, and
every point is chosen uniformly at random from the unit hy-
percube. The larger φ, the more concentrated the probability
mass can be, hence the adversary becomes more powerful in
creating a worst case, and the analysis gets closer to a worst-
case analysis.

This model covers a smoothed analysis also with a slight
modification. There the adversary determines the initial dis-
tribution of points and then a slight perturbation is applied
to each position, adding a Gaussian random variable with
small standard deviation σ. There φ has to be set as 1/σ2.
The two types of instances are called φ-perturbed Manhattan
instances and φ-perturbed Euclidean instances.

Analyzing our algorithms in this setting, we may assume
that any two different tours have different function value.
Hence, both algorithms always accept strict improvements.

2.2 Minimum Improvement of a 2-Opt Step
We now summarize results by Englert et al. [5] on the

minimal improvement of a 2-Opt step. These results will
later on be used in our analysis of the randomized search
heuristics. We denote the random variables ∆ that describes
the fitness gain obtained in one iteration and ∆t the fitness
gain in t iterations. Based on the smallest improvement of
any 2-Opt step we can find the expected improvement made
in t iterations of (1+1) EA. The interval (0, ε] is determined
by an adversary. Let us first consider a fixed 2-Opt step in
which the edges e1 and e2 are exchanged with the edges e3
and e4. This 2-Opt step decreases the length of the tour by
∆(e1, e2, e3, e4) = d(e1) + d(e2)− d(e3)− d(e4).

Let ∆min denote the smallest possible improvement made
by any improving 2-Opt step:

∆min = min{∆ | ∆ > 0}.
Inspired by the original ideas of Kern [9], Chandra et al. [2]
bounded the probability that this smallest improvement lies
within the interval (0, ε] with a high probability for the uni-
form distribution.

We will make use of the following theorem by Englert et
al. [5] which gives an upper bound on the probability that an
improving 2-Opt step gives an improvement of at most ε for
the Manhattan metric.

THEOREM 1 (MANHATTAN METRIC [5, THEOREM 7]).
For the Manhattan metric and any ε > 0, it holds

Pr(∆min ≤ ε) ≤ 4!2εn4φ.

Based on this result we get a lower bound on the probabil-
ity that the smallest improvement is greater than any given ε.

Similar to the Manhattan instances, for the Euclidean in-
stances also, the minimum improvement per a 2-Opt step is
inspired by the original ideas of Kern [9]. Based on this, the
expected runtime was proved polynomial for uniform distri-
bution by Chandra et al. [2]. This was later extended for a
more generalized setting having any probability distribution
by Englert et al. [5].

LEMMA 2 (EUCLIDEAN METRIC [5, LEMMA 18]). For
the Euclidean metric and any ε > 0, it holds

Pr(∆min ≤ ε) ≤ n4 · ε · log(1/ε) · φ3.

In case the considered algorithms reach a local optimum,
we cannot guarantee a steady fitness gain. So instead we use
the fact that local optima have a good approximation ratio.
The approximation ratio for the worst local optimum with
regard to 2-Opt was proven originally in Chandra et al. [2]
for the uniform distribution. This was later generalized by
Englert et al. [5] for any probability distribution with a given
density function φ.

THEOREM 3 ([5, THEOREM 4]). Let p ∈ N ∪ {∞}. For
φ perturbed Lp instances the expected approximation ratio of the
worst tour that is locally optimal for 2-Opt is O( d

√
φ), where d

represents the dimension

As a consequence, for Manhattan and Euclidean instances
the expected approximation ratio is at most O(

√
φ) as we

consider instances in a 2 dimensional unit hypercube [0, 1]2.

3. ANALYSIS FOR MANHATTAN IN-

STANCES
In this section, we first present the analysis for RLS and

(1+1) EA based on the minimum possible improvement for
a single 2-Opt step. We later extend the analysis for the im-
provement in a sequence of consecutive 2-Opt steps.

3.1 Analysis of a Single 2-Opt Step
We start by showing a lower bound on the fitness gain

achievable by RLS.

THEOREM 4. In t iterations, RLS achieves an expected fitness
gain of Ω(t/(n6φ)) or reaches a local optimal solution with ex-
pected approximation ratio O(

√
φ).

Proof. Based on Theorem 1, we get

Pr(∆min > ε) ≥ 1− 4!2εn4φ = 1− 576εn4φ

as a lower bound on the probability that the minimum im-
provement is at least ε.

Let ∆imp denote the random variable describing the fitness
gain obtained in a single improving 2-Opt step. This is obvi-
ously no less than the minimum possible improvement ∆min.
For any fixed ε > 0, the expected fitness gain per one improv-
ing 2-Opt step can be lower bounded as follows:

E(∆imp) =

∫

∆imp

Pr(∆imp) ·∆imp

≥ Pr(∆imp ≥ ε) · ε
≥ Pr(∆min ≥ ε) · ε
= (1− 576εn4φ) · ε

Setting ε = 1/(2 · 576n4φ) we get

Pr(∆min ≥ ε) ≥ 1/2

and accordingly

E(∆imp) ≥ 1/(2304n4φ).

The number of mutations occurring in one iteration is 1
and the probability for an improving 2-Opt step is at least
1/

(

n
2

)

≥ 2/n2 if the current solution is not locally optimal.
Therefore, the expected value for the fitness gain ∆ in any
2-Opt step can be lower bounded as

E(∆) ≥ 1/(1152n6φ).



Hence, the expected value for the fitness gain in t iterations
if no locally optimal solution has been obtained in between
can be derived as E(∆t) ≥ t/(1152n6φ).

By Theorem 3, a locally optimal solution has expected ap-
proximation ratio O(

√
φ) which completes the proof.

THEOREM 5. In t iterations (1+1) EA achieves an expected fit-
ness gain of Ω(t/(n6φ)) or reaches a local optimal solution with
expected approximation ratio O(

√
φ).

Proof. The expectation for the fitness gain in an improving
2-Opt step can be derived similar to the above proof in The-
orem 4

E(∆imp) ≥ 1/(2304n4φ).

The probability of singular mutation occur in a generation
is 1/e due to the Poisson distribution with unit expectation.
The probability of an improving 2-Opt step is therefore at
least 2/(en2). Thus the expected value for the fitness gain ∆
in any 2-Opt step is

E(∆) ≥ 1/(1152en6φ).

Hence, the expected value for the fitness gain in t iterations
can be derived as E(∆t) ≥ t/(1152en6φ).

By Theorem 3, a locally optimal solution has expected ap-
proximation ratio O(

√
φ) which completes the proof.

3.2 Analysis of Linked Steps for RLS
The lower bound for the expected fitness gain presented

in previous section is based on the minimum improvement
a single 2-Opt step can make. This bound can be improved
further by considering the improvement made in a sequence
of consecutive 2-Opt steps.

The analysis of consecutive steps in Englert et al. [5] is
based on the number of disjoint pairs of 2-Opt steps linked
by an edge, such that in one step an edge is added and in the
other it is removed. Different types of linked pairs of 2-Opt
steps are considered as follows. Let {v1, v2} and {v3, v4} be
the edges that are replaced by {v1, v3} and {v2, v4} in the first
2-Opt step, and {v1, v3} and {v5, v6} be replaced by {v1, v5}
and {v3, v6} in the second 2-Opt step.

Following [5], we consider three different types of steps:

type 0: |{v2, v4} ∩ {v5, v6}| = 0.

type 1: |{v2, v4} ∩ {v5, v6}| = 1.

type 2: |{v2, v4} ∩ {v5, v6}| = 2.

As explained in [5], it is important to limit the number of oc-
currences of type 2 as no guarantee on the fitness gain made
by type 2 steps is available. We need to show that there is a
sufficient number of linked pairs of type 0 and 1 as for linked
pairs of type 0 and 1 a good progress can be guaranteed.

Due to [5, Lemma 9] there are at least t/6 − 7n(n − 1)/24
such pairs in a sequence of t consecutive 2-Opt steps. The
analysis in [5] considers all 2-Opt steps S1, . . . , St in se-
quence and constructs disjoint linked pairs (of any type) in
a greedy fashion. When processing some step Si, we search
for steps Sj and S′

j , where the two edges inserted by Si are
being removed again, if such steps exist. If either Sj or S′

j

exist, the respective pair (Si, Sj) or (Si, S
′

j) is being added to
a list of disjoint linked 2-Opt steps, and both Sj and S′

j are
being removed from the list to ensure disjointness of pairs.

The proof of [5, Lemma 9] then shows that when removing
all pairs of type 2 from this list, at least t/6 − 7n(n − 1)/24
pairs of type 0 or 1 remain.

We further improve this bound, considering the fact that
the possible number of pairs excluded is constrained by the
number of edges in the final tour.

LEMMA 6. Let u be the total number of linked pairs in an im-
proving 2-Opt sequence. Then the number of linked pairs v of type
0 or 1 in that sequence is at least u/2− n/4.

Proof. Following the argument in the proof of [5, Lemma 9]
there cannot be a type 2 linked pair that associates with an-
other type 2 linked pair. Therefore, each of the type 2 pairs
(Si, Sj) can be associated with at most two different pairs
(Sj , Sℓ) and (Sj , Sℓ′) of type 0 or 1, unless the steps Sℓ or
Sℓ′ are undefined. This happens if the edges added to the
tour in Sj are never removed. Since the final tour contains n
edges, at most n/2 pairs are excluded due to this. If we con-
sider the number of type 2 pairs as x then the total number
of pairs of type 0 or 1 must be at least x − n/2. This implies
u ≥ x + (x − n/2) and x ≤ u/2 + n/4. The number of good
pairs is therefore u− x ≥ u/2− n/4.

Using the same argument, we can improve [5, Lemma 8]
on the total number of disjoint linked pairs. There, the au-
thors show that for each processed 2-Opt step Si at most
two other steps Sj S′

j are excluded from being processed if
j or j′ is defined. Hence, for a sequence of t steps there are
at least t/3 pairs, from which we have to subtract the num-
ber of steps Si where neither j nor j′ are defined. Englert
et al. [5, Lemma 8] argue that we need to subtract a num-
ber of n(n − 1)/4 steps. However, this number can be im-
proved from n(n − 1)/4 to n/2 considering that the number
of edges in the final tour is exactly n, and Si can only be ex-
cluded if both edges inserted in the tour are never removed
again. Therefore, the total number of disjoint pairs is at least
u = t/3 − n/2. Combining the result of above Lemma 6 to
this we obtain the number of disjoint pairs of type 0 and 1.

LEMMA 7. In every sequence of t consecutive 2-Opt steps, the
number of disjoint pairs of 2-Opt steps of type 0 or 1 is at least
t/6− n/2.

Due to above Lemma 7 there are at least t/6 − n/2 such
pairs in a sequence of t consecutive 2-Opt steps. Here we
consider the probability of both 2-Opt steps in a linked pair
having improvement at least ε.

LEMMA 8 ([5, LEMMA 10]). In a φ perturbed L1 instance
with n vertices, the probability that there exists a pair of type 0
or 1 in which both 2-Opt steps are improvements by at most ε is
bounded by O(n6 · ε2 · φ2).

Based on the above Lemmas (7 and 8), we can bound the
fitness gain for a given number of t iterations. Note that the
Theorem requires a lower bound on the number of iterations
as only for large enough t we can guarantee that linked 2-Opt
steps of type 0 or 1 do exist.

THEOREM 9. In t ≥ cn3 iterations, c > 3/2 constant, RLS
obtains an expected fitness gain of Ω(t/(n5φ)) unless it reaches a
local optimum. In that case, expected approximation ratio of the
solution is O(

√
φ).



Proof. Let ∆min denote the minimum possible improvement
made by any pair of type 0 or 1. Using above result in
Lemma 8,

Pr(∆min > ε) ≥ 1− n6 · ε2 · φ2.

Let ∆ be the random variable describes the fitness gain ob-
tained in a pair of linked 2-Opt steps of type 0 or 1. For any
ε > 0, the expected fitness gain E(∆) can be bounded as
follows.

E(∆) =

∫

∆

Pr(∆) ·∆

≥ Pr(∆ ≥ ε) · ε
≥ (1− n6 · ε2 · φ2) · ε.

Setting ε = 1/(2
√

(n6 · φ2)) we get Pr(∆ > ε) ≥ 1/2 and
as a consequence

E(∆) ≥ 1/(4
√

(n6 · φ2)) ≥ 1/(4n3φ).

The expected number of improving 2-Opt steps made in t
iterations is at least 2t/n2. Let t∗ be the number of improving
steps. By Lemma 7 we know there are at least t∗/6−n/2 type
0 or 1 pairs in a sequence of t∗ improving steps. As t ≥ cn3

for c > 3/2, we have 2t = (2−3/c)·t+3t/c ≥ (2−3/c)·t+3n3

and

E(t∗/6− n/2) ≥ 2t

6n2
− n

2
≥ (2− 3/c) · t

6n2
= Ω(t/n2).

A lower bound for the expected fitness gain for t iterations is
therefore

E(∆t) = E(∆) · Ω(t/n2) ≥ Ω(t/(n5φ)).

By Theorem 3, a locally optimal solution has expected ap-
proximation ratio O(

√
φ) which completes the proof.

3.3 Analysis of Linked Steps for (1+1) EA
The challenge for analyzing the (1+1) EA instead of RLS

lies in the fact that the (1+1) EA can execute multiple 2-Opt
steps in one generation. For RLS Englert et al. [5] showed
that certain pairs of improving 2-Opt steps yield a large fit-
ness increase on perturbed instances, with high probability.
Executing multiple 2-Opt steps in one generation compli-
cates this argument, as some of these mutations may not be
improving. As such, they might interfere with the mentioned
pairs, and prohibit a large fitness increase. In the following,
we show that there are sufficiently many linked 2-Opt oper-
ations that take place in generations where only one 2-Opt
step is executed.

To this end, we consider a slightly modified variant of
the (1+1) EA, which we call (1+1) EA* (see Algorithm 3).
The (1+1) EA* will exclude generations containing multiple
2-Opt steps where an edge e is being inserted in one of these
2-Opt steps and being removed in a later 2-Opt step of the
same generation.

The purpose of this modification is to enable a theoretical
analysis as some of the excluded steps are difficult to han-
dle. (1+1) EA and (1+1) EA* show identical behavior most
of the time; it is easy to show that the probability of remov-
ing an edge that was inserted in the same generation is at
most O(1/n). So (1+1) EA and (1+1) EA* are identical most
of the time, apart from a vanishingly small fraction of steps.

Algorithm 3 (1+1) EA*

x← a random permutation of [n]
repeat

Choose s from a Poison distribution with unit expectation
for s+ 1 times do

y ←Mutate(x)
end for
if f(y) ≤ f(x) then

check whether one of the above mutations has removed
an edge that was inserted in the same generation

if so, reject y. Otherwise, x← y
end if

until forever

Note that, when the (1+1) EA* does behave differently
from the (1+1) EA, it rejects a new offspring that would oth-
erwise improve the current tour. We therefore believe that
we are being pessimistic by considering the progress of the
(1+1) EA* instead of that of the (1+1) EA.

LEMMA 10. In every sequence of t generations of the
(1+1) EA*, the expected number of disjoint pairs of 2-Opt steps,
both of which are singular, is at least

t

3e2n2
− n/2,

unless a local optimum is reached beforehand.

Proof. We call a 2-Opt step improving if it does not decrease
the current fitness. A 2-Opt step is called singular if it is the
only 2-Opt step executed in that generation.

We adapt the proof of Lemma 8 in [5] to take into account
steps that are rejected by the (1+1) EA*, and the fact that the
(1+1) EA* can accept non-improving 2-Opt steps in genera-
tions with multiple 2-Opt steps.

Let S = S1, S2, . . . be a list of all 2-Opt steps executed in
t generations. Then we process this list to create a list L of
linked 2-Opt steps, both of which are singular.

The probability of the (1+1) EA* making an improving
2-Opt step is at least 1/

(

n
2

)

≥ 2/n2, so long as no local op-
timum has been reached. The probability that an improv-
ing step takes place in a singular generation is 1/e due to
the Poisson distribution. So, the probability of having an im-
proving and singular step is at least 2/(en2).

Let Si be such an improving and singular 2-Opt step, and
assume w. l. o. g. that edges e1, e2 are exchanged with the
edges e3, e4. Then we process Si to try to find a linked oper-
ation, which is both improving and singular. More precisely,
let Sj be the next 2-Opt step where e3 is being removed and
the outcome of that generation is accepted, if such a step ex-
ists. Let S′

j be the next 2-Opt step where e4 is being removed
and the outcome of that generation is accepted, if such a step
exists. If either Sj or S′

j exists and if one of these steps is sin-
gular, we add the corresponding pair (Si, Sj) or (Si, S

′

j) to L
and remove both Sj and S′

j from S to ensure disjointness of
pairs. Otherwise, we proceed with the next improving and
singular 2-Opt step following Si.

We estimate the probability of a step Sj occurring and be-
ing a singular step. Let A(e3) denote the event that an ac-
cepted generation contains an improving 2-Opt step where
e3 is being removed from the tour.

Let R(e3) denote the set of all edges e such that a 2-Opt
move removing e3 and e results in a strict fitness improve-
ment. Let xℓ denote the search point of the (1+1) EA* at



time ℓ, and let us regard xℓ as a set of edges in the tour.
Note that then |R(e3) ∩ xℓ| describes the number of improv-
ing 2-Opt moves where e3 is being removed from the tour.

Let ℓ be the index of the first 2-Opt step in a new gener-
ation, and let S + 1 be the random number of 2-Opt steps
being executed in that generation. If S = 0, that is, only one
2-Opt step is executed, the conditional probability of A(e3) is
given by

Pr(A(e3) | S = 0) =
|R(e3) ∩ xℓ|

(

n
2

) := p.

If S+1 > 1 operations are being executed in that generation,
the probability of A(e3) is bounded by the union bound:

Pr(A(e3) | S = s) ≤
s

∑

k=0

|R(e3) ∩ xℓ+k|
(

n
2

) .

Note that |R(e3)∩ xℓ| might increase if edges from R(e3) are
being inserted into the tour. However, the additional selec-
tion criterion on the (1+1) EA* implies that, if a following
step removes e3 and one of the edges inserted previously, in
the same generation, this sequence of 2-Opt steps will be re-
jected. Thus, only |R(e3) ∩ xℓ| edges can cause A(e3) and

Pr(A(e3) | S = s) ≤
s

∑

k=0

|R(e3) ∩ xℓ|
(

n
2

) = (s+ 1) · p.

Note that, using the union bound for S + 1 trials,

Pr(A(e3)) =

∞
∑

s=0

1

es!
· Pr(A(e3) | S = s)

≤
∞
∑

s=0

1

es!
· (s+ 1)p = 2p.

Combining this with Bayes’ Theorem, we get

Pr(S = 0 | A(e3)) =
Pr(A(e3) | S = 0) · Pr(S = 0)

Pr(A(e3))

≤ p · 1/e
2p

=
1

2e
.

It follows that the probability of finding a linked pair (Si, Sj)
or (Si, S

′

j) is at least 1/(2e), if one of the steps Sj or S′

j exists.
Recall that the expected number of singular and improv-

ing steps Si in t generations is at least 2t/(en2). Each pro-
cessed element Si excludes at most 2 other elements of S.
This leaves an expected number of 2t/(3en2) processed ele-
ments Si, each of which has a probability of 1/(2e) for pair-
ing with some Sj or S′

j , if one of them exists. A processed
element Si is excluded if neither Sj nor S′

j exist. This only
happens if both edges are never removed from the tour. Since
the final tour contains n edges, at most n/2 steps Si are ex-
cluded. Hence, the resulting expected number of pairs is at
least

t

3e2n2
− n/2.

The following Theorem now gives a lower bound on the
expected fitness gain of the (1+1) EA*.

THEOREM 11. In t ≥ cn3 generations, c > 3e2 constant,
(1+1) EA* obtains an expected fitness gain of Ω(t/(n5φ)) unless

it reaches a local optimum. In that case, expected approximation
ratio of the solution is O(

√
φ).

Proof. As in the proof of Theorem 9, we have

E(∆) ≥ 1/(4n3φ).

From Lemma 10 we know that the expected number of dis-
joint pairs of 2-Opt steps, both of which are singular, is at
least

u :=
t

3e2n2
− n

2
.

Lemma 7 implies that among these there are at least

u

2
− n

4
=

t

6e2n2
− n

2
=

(1− 3e2/c)t

6e2n2
= Ω(t/n2)

type 0 or 1 pairs. The expected fitness gain in t generations,
E(∆t), is therefore at least

E(∆) · Ω(t) ≥ Ω(t/(n5φ)).

The expected approximation ratio is proved in Theorem 3.

4. ANALYSIS FOR EUCLIDEAN IN-

STANCES
We now turn our attention to the Euclidean instances. First

we obtain the expected progress based on a single 2-Opt step
for RLS and (1+1) EA, later improve these results by analyz-
ing a sequence of consecutive 2-Opt steps.

4.1 Analysis of a Single 2-Opt Step

THEOREM 12. In t iterations RLS achieves an expected fitness
gain of Ω(t log(nφ)/(n6φ3)) unless it reaches a local optimum. In
that case, expected approximation ratio of the solution is O(

√
φ).

Proof. Due to Theorem 2, we have

Pr(∆min < ε) ≤ n4 · ε · log(1/ε) · φ3.

Let ∆imp denote the random variable that describes the fit-
ness gain in an improving 2-Opt step. Then similar to the
proof for the Manhattan instances (Theorem 4), we get

E(∆imp) ≥ (1− (n4 · ε · log(1/ε) · φ3)) · ε.
Setting ε = c log(n4φ3)/(n4φ3) , c > 0 a constant such that
Pr(∆imp > ε) ≥ 1/2, we get

E(∆imp) ≥ c log(n4φ3)/(2n4φ3).

The number of mutations occurring in one iteration is 1
and the probability for an improving 2-Opt step is at least
1/

(

n
2

)

≥ 2/n2. Therefore, the expected value for the fitness
gain ∆ in any 2-Opt step is

E(∆) ≥ c log(n4φ3)/(n6φ3).

The expected value for the fitness gain in t iterations is

E(∆t) ≥ Ω(t log(n4φ3)/(n6φ3))

= Ω(t log(nφ)/(n6φ3)).

Having obtained a locally optimal solution during the run
implies an expected approximation ratio of O(

√
φ) according

to Theorem 3.



THEOREM 13. In t generations (1+1) EA achieves an expected
fitness gain of Ω(t log(nφ)/(n6φ3)) unless it reaches a local opti-
mum. In that case, the expected approximation ratio of the solution
is O(

√
φ).

Proof. Similar to the above proof on RLS in Theorem 12 the
expected fitness gain for an improving singular generation
can be derived as

E(∆imp) ≥ c log(n4φ3)/(2n4φ3).

The probability of a single step mutation occur in a genera-
tion is 1/e. This minimum fitness gain is due to any accepted
singular steps. Therefore, we consider only singular steps.
And the waiting time for the correct mutation is at most 2/n2.
Hence, the expected fitness gain E(∆) for any generation is

E(∆) ≥ c log(n4φ3)/(en6φ3).

The expected value for the fitness gain in t generations is de-
rived accordingly:

E(∆t) ≥ (2/(en2))εt = Ω(t log(n4φ3)/(n6φ3))

= Ω(t log(nφ)/(n6φ3)).

Having obtained a locally optimal solution during the run
implies an expected approximation ratio of O(

√
φ) according

to Theorem 3.

4.2 Analysis of Linked Steps for RLS
The above lower bounds are based on the minimum pos-

sible improvement a single 2-Opt step can make. We can fur-
ther improve this bound considering the improvement made
in a sequence of consecutive steps. Similar to the analysis
on the consecutive steps for Manhattan instances in section 3
here also we consider the set of linked pairs of type 0 and 1.
In a sequence of t iterations, there are at least t/6− n/2 such
pairs due to Lemma 7. Here we consider Lemma 14 in En-
glert et al. [5] related to the probability of existence of each
of the two types of linked pairs in a sequence of consecutive
steps for Euclidean instances. Based on these we can bound
the expected fitness gain made in t iterations.

LEMMA 14 ([5, LEMMA 14]). For φ perturbed L2 in-
stances, the probability that there exists a pair of type 0 and 1 in
which both 2-Opt steps are improvements by at most ε ≤ 1/2 is

bounded by O(n6 ·φ5 ·ε2 · log2(1/ε))+O(n5 ·φ4 ·ε3/2 log(1/ε)).

THEOREM 15. In t ≥ cn3 iterations, c > 3/2 constant, RLS

achieves an expected fitness gain of Ω(t
√

log(nφ)/(n5φ5/2)) un-
less it reaches a local optimum. In that case, the expected approxi-
mation ratio is O(

√
φ).

Proof. Using Lemma 14, the probability that the improve-
ment ∆min in a linked 2-Opt step of type 0 or 1 is less than ε
is at most

Pr(ε) = O(n6 ·φ5 · ε2 · log2(1/ε))+O(n5 ·φ4 · ε3/2 · log(1/ε)).

Following the proof ideas of Theorem 9 on the consecutive
2-Opt steps for Manhattan instances, the expected fitness
gain E(∆) for a pair of linked 2-Opt steps of type 0 or 1 can
be bounded from below as

E(∆) ≥ (1− Pr(ε)) · ε.

We set ε = c′
√

log(n6φ5)/
√

n6φ5 for a constant c′ > 0 such
that Pr(∆ > ε) ≥ 1/2. This implies

E(∆) ≥ c′
√

log(n6φ5)/(2n3φ5/2).

The expected number of improving 2-Opt steps made in t
iterations is at least 2t/n2. Let t∗ be the number of improving
steps. By Lemma 7 we know there are at least t∗/6−n/2 type
0 or 1 pairs in a sequence of t∗ improving steps. As t ≥ cn3

for c > 3/2, we get

E(t∗/6− n/2) =
2t

6n2
− n

2
=

(2− 3/c)t

6n2
= Ω(t/n2).

A lower bound for the expected fitness gain for t iterations is
therefore

E(∆t) = E(∆) · Ω(t/n2) ≥ Ω(t
√

log(n6φ5)/(n5φ5/2))

= Ω(t
√

log(nφ)/(n5φ5/2)).

The bound on the expected approximation ratio in the case
that a locally optimal solution has been obtained holds ac-
cording to Theorem 3.

4.3 Analysis of Linked Steps for (1+1) EA
We improve the current results for (1+1) EA with the anal-

ysis for consecutive 2-Opt steps in a similar way to the anal-
ysis presented in the previous section. Again, we consider
the (1+1) EA* but conjecture that the expected fitness gain in
the (1+1) EA is no smaller than that for the (1+1) EA*. Based
on our arguments on the number of type 0 or 1 linked pairs
from Lemmas 10 and 7 and the stated Lemma 14 of [5] on the
probability of the existence of a pairs of both improving steps
we can bound the expected fitness gain in t generations.

THEOREM 16. In t ≥ cn3 generations, c > 3e2

constant, (1+1) EA* achieves an expected fitness gain of

Ω(t
√

log(nφ)/(n3φ5/2)) unless it reaches a local optimum. In
that case, the expected approximation ratio is O(

√
φ).

Proof. Following the proof ideas in above Theorem 15 we get
for a c′ > 0

E(∆) ≥ c′
√

log(n6φ5)/(2n3φ5/2).

From Lemma 10 we know that the number of disjoint pairs
of 2-Opt steps, both of which are singular, is at least

u :=
t

3e2n2
− n

2
.

Lemma 7 implies that among these there are at least

u

2
− n

4
=

t

6e2n2
− n

2
=

(1− 3e2/c)t

6e2n2
= Ω(t/n2)

type 0 or 1 pairs.
The expected fitness gain in t generations, E(∆t), is there-

fore at least

E(∆) · Ω(t/n2) ≥ Ω(t
√

log(n6φ5)/(n5φ5/2)

= Ω(t
√

log(nφ)/(n5φ5/2).

Having obtained a locally optimal solution with respect to
the 2-Opt neighbourhood implies the bound on the expected
approximation ratio according to Theorem 3.



Metric
RLS (1+1) EA

Single Step (any t) Consecutive Steps (t ≥ 3/2 · n3) Single Step (any t) Consecutive Steps (t ≥ 3e2/2 · n3)

Manhattan Ω(t/(n6φ)) Ω(t/(n5φ)) Ω(t/(n6φ)) Ω(t/(n5φ))

Euclidean Ω(t log(nφ)/(n6φ3)) Ω(t
√

log(nφ)/(n5φ5/2)) Ω(t log(nφ)/(n6φ3)) Ω(t
√

log(nφ)/(n5φ5/2))

Table 1: Expected fitness gain in t iterations for RLS and (1+1) EA for Manhattan and Euclidean instances due to single-step
and consecutive-steps analysis. The former applies for any time span t; the latter requires t = Ω(n3). The consecutive-steps
analysis was formally proven for the (1+1) EA* and transfers to the (1+1) EA if, as conjectured, the latter does not perform
worse. All fitness gains assume that no local optimum is reached. otherwise the expected approximation ratio is O(

√
φ).

5. CONCLUSIONS
We have carried out a fixed budget analysis of random-

ized local search (RLS) and variants of the (1+1) EA on the
well-known Traveling Salesperson Problem (TSP). Our anal-
ysis allows to estimate the progress, or fitness gain, that these
algorithms make within a given number of t iterations. This
is, in particular, useful as it gives a guarantee to practitioners
on the progress that such algorithms can make when decid-
ing between stopping the algorithm or giving it additional
running time.

We analyzed the algorithms in the setting of smoothed
complexity for the Manhattan and Euclidean metric. We pro-
vided lower bounds on the expected fitness gain based on the
minimum improvement the algorithms (RLS and (1+1) EA)
can make in an iteration. The results show that for any num-
ber of iterations both algorithms gain a fair improvement
based on single 2-Opt steps. We further improved these re-
sults by analyzing a sequence of consecutive 2-Opt steps to-
gether to identify linked pairs. Table 5 summarizes these re-
sults. It is observed that a larger improvement can be ob-
tained considering the consecutive steps, for this however,
the number of iterations t needs to be at least Ω(n3).

The variant of the (1+1) EA ((1+1) EA*) analyzed for
the linked steps accepts fewer solutions than the classical
(1+1) EA and therefore we expect (1+1) EA* to be slower than
(1+1) EA. Proving this is an interesting technical open prob-
lem and would give additional insights into the advantages
of mutations that make multiple changes at the same time.
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