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ABSTRACT
In this paper, we present evolutionary racer (EVOR) that is
a simulated car dynamically controlled by an online evolu-
tionary algorithm (EA). The key distinction between EVOR
and earlier car racing methods is that it considers car rac-
ing as a dynamic optimization problem which is addressed
by an evolutionary algorithm. Our approach calculates a car
trajectory based on a controller decision and adjusts this de-
cision according to the suitability of its resultant trajectory
with the current track status. Furthermore, it allows to in-
tegrate features such as opponent handling implicitly. Our
experimental results show that EVOR outperforms current
best AI controllers on a wide range of tracks.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

Keywords
Dynamic Optimization; Online Algorithms; Simulated Car
Racing

1. INTRODUCTION
Simulated car racing is a widely popular computer game.

The open racing car simulator (TORCS) race engine [4] pro-
vides a good testbed to test car racing algorithms. The sim-
ulated car racing (SCR) championship series [9? ] have en-
abled further expansion of these capabilities specially for ar-
tificial intelligence (AI) approaches. In recent years, there has
been a boost of AI based car racing algorithms implemented
on the TORCS framework. Rule based controllers [7, 10, 16],
fuzzy inference systems [13, 15], and artificial neural net-
works [5, 6] are some examples of the existing methods for
simulated car racing.
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There are already some car racing methods in which the
controller learn using an evolutionary algorithm though an
off line process [13, 16? ]. However, due to the optimiza-
tion capabilities, evolutionary algorithms have great poten-
tial to be the core of the controller rather than an offline learn-
ing approach. Using an EA method as a car racer not only
enables the controller designers to reduce the need for do-
main knowledge, but also reduces computational overhead
in the pre-processing phase (e.g. neural network-based con-
trollers) or parameter tuning phase. Note that preparing do-
main knowledge is not an easy task specially if there are not
enough/accurate information available about the environ-
ment. It is well-known that fuzzy systems lead today’s gen-
eral controller design in computer games domain [13] as well
as real-life control systems (such as cruise controllers [12]).
EA can be a good alternative to this approach.

Controlling a car can be viewed as a dynamic optimization
problem and EAs have been widely applied to dynamic op-
timization [? ]. In fact a driver needs to apply optimal steer,
acceleration, clutch, brake and gear controller values dynam-
ically to drive fast and safe. In case of driving, the problem
environment is represented by a diverse set of factors includ-
ing car position, orientation, speed, current road condition
as well as other environmental factors such as wind, rain
and obstacles. All these factors are changing over the time
deviating the current optimum from the previous optimum
(controller values) to a new position in the search space. Ac-
cordingly, it would be beneficial to take these dynamic fac-
tors into account and try to find optimal solutions during the
run. Simply this is the scenario almost any generic dynamic
optimization process encounters. In this study, we investi-
gate how dynamism in a car controlling environment can be
addressed by an online evolutionary algorithm.

In an EA based car controller, the actuator values can be
represented as the genes of the individual. Then the natural
optimization problem would be to find the best combination
of the controller values under dynamic circumstances. A fea-
sible evaluation criteria is based on how much a car trajectory
resultant from the current controller values in an individual
would fit the current track. This strategy is simple to realize
because it does not rely on heavy domain knowledge. Also,
in such an approach, unlike other car racing approaches that
need special mechanisms to handle opponents [1, 16], there is
no need for such extra specialized modules. Instead, a fitness
based strategy could implicitly optimize the trajectory con-



sidering opponents as another level in the fitness criteria. As
a proof of concept, we present an implementation of a simu-
lated driver EVOR consisting an evolutionary optimizer for
its controller. We conduct a series of experiments to investi-
gate the performance of this new driver on a diverse set of
standard benchmark tracks. For the majority of the cases it
outperforms existing best AI based drivers.

The organization of the paper is as follows. Section 2 de-
scribes strengths and limitations of existing AI approaches
and also the widely used mechanisms in physical controllers.
Section 3 explains the core of our evolutionary dynamic opti-
mizer and section 4 describes additional features integrated
to enhance overall performance. In Section 5 we conduct a
series of experiments and analyses of the results. Finally, Sec-
tion 6 concludes with the highlights and future directions.

2. BACKGROUND
The TORCS framework [4] is one of the most famous frame-

works for simulated car racing. TORCS provides a free game
engine with standard features such as sensory information,
aerodynamics, friction and 3D graphics. The TORCS frame-
work is used for many racing games and competitions. A
customized version of TORCS was provided by the simu-
lated car racing (SCR) championship [9] specially aiming for
building AI controllers. This version uses a client server ar-
chitecture where client bots are connected to the related server
bots. The communication between clients and the server takes
place through the user datagram protocol (UDP) socket con-
nection. Researchers can develop their own drivers with the
interface provided by the SCR client.

Current simulated car racing approaches include expert
systems [7, 10, 16], artificial neural networks [5, 6] and fuzzy
expert systems [13, 15]. Among these approaches Autopia [13]
driver has won a great popularity due to its performance in
simulated car racing (SCR) championship series [9] in recent
years. The significance of Autopia is that it works equally
well under different road conditions. The fuzzy controller
in Autopia enables its smooth handling under different con-
ditions. Mr.Racer [16], the winner of SCR championship at
GECCO 2013 [9] is also a popular driver. This driver is based
on an expert system as the core of the controller. Mr.Racer
constructs a track model during its initial run on a new road.
The runner up ICER IDDFS of the same competition is also
an expert system. Some approaches incorporate evolution-
ary strategies to tune the parameters used in their formulas[16][13]
or genetic programming to learn the controller program [? ].
In both these cases the evolutionary process takes place in
off-line mode that is prior to the actual driving/racing.

Although EAs are used for optimizing parameters and for
learning the controller program in some current approaches,
the core of these controllers are expert systems [16] or other
AI approaches like fuzzy inferencing [13] or artificial neu-
ral networks [5]. None of these approaches have considered
the possibility to use an evolutionary algorithm as the core
of the online decision making process rather than to use it
only for parameter tuning. By using an evolutionary algo-
rithm as an online decision maker, there is no need for heavy
domain knowledge (as for expert systems), pre-processing
(as for neural networks), or tedious parameter tuning (as for
off line tuning based controllers) any more. Similar kind of
evolutionary dynamic optimizers have been used in decision
making for other real time games and proves to successful [?
].

There are simple and efficient control mechanisms used
in physical automobiles on top of the raw actuator outputs,
such as advanced brake system (ABS) [14] and traction con-
trol mechanisms [14] [3]. We can integrate these techniques
to the evolutionary controller outputs to enhance the overall
performance. Another popular feature is the auto gear sys-
tem used in real vehicles at present. We can introduce this
feature to the simulated environment also by introducing a
direct mapping [3] of gear values to the engine rpm.

3. APPROACH
Our controller is based on an evolutionary algorithm hav-

ing a population of one individual. The single individual
of the EA represents the acceleration, brake and steer actu-
ator values. Our driver is designed to have an auto gear
system, therefore, we do not optimize gear dynamically. In-
stead, gear is applied through a direct mapping of the engine
rpm (round per minute) to the gear. The clutch is also not in-
cluded in this initial version of the driver considering its less
relevance for the basic performance. Nevertheless, adding
another control value is simplified with our algorithm. In
fact, a new actuator introduces merely a new gene to the in-
dividual. The significance of the individual we use here is
that it contains a set of heterogeneous genes having different
ranges opposed to the standard binary or real valued vectors
generally used in EA’s. Hence, the standard crossover opera-
tors cannot be applied here. We use uniform mutation as the
only variation operator.

As shown in Algorithm 1 the evolutionary optimization
process runs forever. Once a new car state is received from
the sensors the algorithm adapts the optimization process ac-
cordingly. At the end of a certain time interval the data in
the current individual is converted to the actual controller
values and applied to the car. In computer game environ-
ment this interval means the simulation server timeout. This
asynchronous behavior is realized through a multi threaded
model consisting separate threads for the EA and the input/output
(I/O) communication. In practice this algorithm provides ro-
bust dynamic car controlling that could either be used in au-
tonomous vehicles or simulated car racing. Let us discuss
the components of the evolutionary algorithm in detail.

Algorithm 1 (1+1)EA
x← an individual with a random set of controller values
repeat

y ←Mutate(x)
if f(y) ≥ f(x) then

x← y
end if

until forever

The individual represents the set of actuators of the car in-
cluding steer, acceleration and brake. Acceleration and brake
are represented by a single floating point variable that has a
continuous data range of -1 to +1 in which positive values
represent acceleration and negative values represent brake.
The floating point variable representing steer lies in a contin-
uous range of -90 to +90 degrees. The actual steering con-
troller values may stay in a more restricted range depending
on the car. We consider this wide range for optimal steer-
ing. If the value of a variable, generated by the algorithm,
exceeded its feasible range then it is mapped into the closest



value in the feasible range. At the timeout of the server, a car
controller output is created by converting the data in the in-
dividual to relevant actuators. The fitness of an individual is
mainly based on how much it suits the current environment.
First, We approximate the car trajectory resultant from the
control values in the current individual applied to the cur-
rent car status. Then this trajectory is evaluated based on the
track. Here, the trajectory consists of two major factors: (1)
the trajectory direction which is dependent on the optimal
path and, (2) the velocity that is dependent on the current
trajectory direction.

The strength of this fitness function is that the mutual de-
pendency of the applied steer and the applied acceleration
is implicitly addressed unlike most of other AI approaches
where these actuator values are determined separately. In
this model, a combination of these actuators are considered
at once as they are contained within the individual. Hence,
the acceleration is evaluated dependent on the steer value
implicitly as the steer is considered in the trajectory direction
for which acceleration is evaluated. These concepts will be
discussed in detail within the trajectory evaluation criteria.

3.1 Car Trajectory Approximation
The car trajectory is estimated using basic physics [14] on

motion. The trajectory is the expected path of the car de-
fined by a particular set of controller values and a car state.
We have considered two models for the trajectory estimation:
the actual circular trajectory based on car dynamics and a
linear approximation for the trajectory. For the circular tra-
jectory, the radius of the circle is determined based on the
centripetal force resultant from the lateral forces of the front
and the rear wheels. The lateral force is formed in the oppo-
site direction to the lateral velocity of the vehicle. The center
of the circle is found using the current position of the car, the
radius and the direction of the lateral forces. When the car is
on a straight line this radius is infinite. Given the centripetal
force F , velocity V and mass of the car M , using F = MV 2/r
the radius of the trajectory is calculated.

The centripetal force is formed by a combination of the lat-
eral forces for front and rear wheels of the car and is denoted
by Fcentriprital = Flat,rear + Flat,front · cos(δ) where δ rep-
resenting the steering angle. These lateral forces are depen-
dent on the slip angle α of the tires. For smaller angles the
force has a linear correlation with the slip angle hence can be
calculated by F = cα where c represents the cornering stiff-
ness. Slip angles are calculated based on the lateral and lon-
gitudinal velocities of the car Vlat, Vlong , the distances from
the front (b) and the rear (c) axles to the center of gravity of
the car, the angular motion ω and the steering angle δ. For
the front wheels this angle is calculated using the formula
αfront = arctan[(Vlateral+ω·b)/Vlong]−δ·sgn(Vlong) and for
the rear wheels using αrear = arctan[(Vlateral−ω · c)/Vlong].
This actual trajectory is defined with the lateral and longitu-
dinal velocities of the car, the angular motion, the size and
the mass of the car and the steering angle. For the consid-
ered simulation platform, the mass and the dimensions of
car are not available. Therefore, we use initial assumptions
and utilize a low pass filtering technique to update the map-
ping function of the centripetal force, for a given slip angle.
For a comprehensive description on this physics model we
refer the interested reader to the textbook of Pacejka [14].

Our second model, the linear trajectory, is an approxima-
tion to the actual circular car trajectory. In this model, we find

a straight line based on the car steering direction α and the
current car position P (xp, yp) using Y −yp = tanα ·(X−xp).
This is based on the observation that for a small distance,
a fraction of the circumference of a circle is close to a line.
This approximation works well because, in practice, only the
nearest fraction of the track is critical on the controlling de-
cision. The initial implementation of EVOR performs well
with both models although we maintain the second model
due to the simplicity, adequacy for the game environment,
and the minimal dependency on the domain knowledge.

3.2 Construction of the Track Model
When a driver is set on a track initially it can learn the track

model and then use this model to support further driving on
the same track. Usually, in both simulated and physical rac-
ing competitions, a brief warm up session is provided before
the race [8]. When set on a new track, EVOR drives slowly for
two laps to build the track model during the warm up phase.
EVOR is capable of constructing the track model during the
race even if there is no specific warm up phase provided.

The track model is comprised of line segments perpen-
dicular to the axis or the heading direction of the original
track, positioned on the track per each meter. This design
enables our fitness calculation based on the trajectory inter-
section with these track segments. For each sensory read-
ing, the segments related to the visible section of the track
are calculated. These new segments are then translated and
rotated to merge with the existing track segments. To cal-
culate these segments, first the right and left boundaries of
the visible track are estimated using the sensor information
1. Then, relative to the current position of the car, the perpen-
dicular segments connecting the right and left boundaries of
the track are identified. This process is repeated for each me-
ter of the visible section of the track, thus, constructing a seg-
ment per a meter. Using the information of the current dis-
tance from the track start position which is considered as the
reference point of the coordinate system and the current ro-
tation angle of the car relative to the axis of our coordinate
system, these relative segments are merged to the existing
track as absolute track segments. We use a single rotation
and a translation to merge a new (or repeating) segment to
the existing track model.

Additionally, the track is annotated with the bend infor-
mation. Straight areas, small and sharp bends are classified
based on the curvature of the track. The curvature is cal-
culated by aggregating the heading changes of consecutive
track segments. This bend information is useful in determin-
ing the optimal acceleration on a turn. A sample track model
built using this mechanism is shown in Figure 1

3.3 Trajectory Evaluation
Fitness for the considered trajectory is incremented for each

track segment that intersects with the trajectory as shown in
Figure 2. For each of these intersecting track segments, the
fitness is incremented only if the intersect point lies within
the left and right boundaries of the track. As shown in Algo-

1Note that the particular sensor distribution can be a prop-
erty of the physical car or the simulation environment in case
of gaming. For example, in the SCR default setting these sen-
sors sample the space in front of the car every 10 degrees,
spanning clockwise from -90 degrees up to +90 degrees with
respect to the car axis



Figure 1: a sample track model

Algorithm 2 fitness function
for each visible track segment s do

if trajectory intersects s at p inside the track then
fitness += distance from p to the closest track

boundary
if maximum distance possible to stop < safe dis-

tance then
fitness += speed at safe distance

else
fitness -= speed at safe distance

end if
end if

end for

rithm 2, this fitness value is calculated based on the distance
from the closest boundary to the intersection point.

As stated in the latter part of the Algorithm 2 we consider
the trajectory based fitness for the acceleration also. First we
calculate the distance to the intersection point where the cur-
rent trajectory collides with one of the left or right bound-
aries of the track (possibly in a bend). Let us call this safe
distance. This can be approximated using physics formulas
on linear motion. Similarly, the stop distance, within which
the car can be stopped if brake is applied to the current car
status, is calculated. If the safe distance is larger than the pos-
sible stop distance this means the car can have a higher speed,
still managing to stop before a collision, therefore we prefer
to accelerate more. In this case fitness is incremented based
on the calculated speed at the safe distance(i.e. the higher the
speed is, the larger the fitness increment will be). In contrast
to this scenario, if we are already too fast and close to the
track boundary (possible collision), we prefer to brake and,
hence, fitness is decremented based on the speed at the colli-
sion point (the higher the speed, the larger the fitness decre-
ment).

3.4 Mutation
Our mutation operator is specialized for the heterogeneous

genes in the individual. As explained in the beginning of the
section 3, each individual consists of two different genes with
varying data ranges. Therefore, we define two variations of

Figure 2: trajectory (long line in red) intersection with the
track segments (short lines in grey)

the uniform mutation operator specialized for each gene. At
a given mutation step the algorithm selects a mutation point
uniformly at random. Then the specific mutation operator
for the gene is applied. We have considered two standard
mutation strategies relevant to our problem representation
and the best is selected subsequently.

For steer we use uniform mutation that assigns a random
value generated within the continuous range from -90 to +90.
We have also studied another alternative a nonuniform mu-
tation with a fixed distribution. This mutation changes the
current value slightly by adding a small variable drawn from
a Gaussian distribution. As observed experimentally, this
operator had a tendency to make the algorithm converge quickly
to a local optimum without exploring the search space. In
contrast, uniform mutation could preserve the global explo-
ration of the search space and enable the algorithm to con-
verge within a reasonable time. For acceleration also we have
considered the same uniform mutation operator with a dif-
ferent data range of -1 to +1.

4. ADDITIONAL FEATURES
In this section we describe the additional features intro-

duced to enhance the overall performance of our evolution-
ary controller.

4.1 Opponents Handling

Figure 3: car (rectangle in blue) trajectory (long line in red)
intersection with obstacles (circles in colors)

The opponents in front are considered as obstacles with
which intersection would reduce the fitness of a trajectory.
Based on this obstacle avoidance strategy the trajectories that
do not intersect with the obstacles are preferred over the tra-
jectories that intersect with the obstacles. For each intersect-
ing obstacle the fitness is then reduced in terms of the dis-
tance from the car to the collision point as shown in Algo-
rithm 3. For static obstacles when they are intersecting with
the car trajectory closer to the current position of the car, fit-
ness is reduced for that trajectory more. For example, as
shown in Figure 3 the obstacle that intersects with the tra-
jectory closer to the car position would reduce the fitness
more than the other obstacle intersects with the trajectory at
a greater distance in front. As per the moving obstacles the
relative distance is dependent with the opponent’s velocity.
Hence, only if the opponent velocity is less than ours it is
considered as a potential obstacle, otherwise it will not be
colliding anyway.

4.2 Fitness Adjustments for More Efficient Turn-
ing

The basic approach on fitness evaluation for acceleration
discussed in section 3 is safe although it is not very efficient.
Therefore, we introduce a slight adjustment to the fitness
evaluation criteria for acceleration to increase the considered
safe distance further where the actual distance is large or de-
crease it further where the actual distance is already small.



Algorithm 3 fitness based on opponents
for opponent o detected do

if o intersects and o’s relative speed is less than 0 then
dist := find the distance to collision point from cur-

rent car position
fitness -= (dist / max opponent car size)

end if
end for

This adjustment can mitigate any error due to track model
building. We use two linear functions to adjust the safe dis-
tance based on the sharpness of the bend at the intersection
point (in Algorithm 4) and the calculated safe distance value
(in Algorithm 5). This adjustment changes the safe distance
used in the original fitness function (in Algorithm 2). Then
the last two lines of the basic fitness function is replaced by
the Algorithm 6

Algorithm 4 angle based adjustment factor
m := ((1.0− 1.5)/(π/4))
c := 1.5
turn angle α at wall := find turn angle from track
angle based adjustment factor := m · α+ c

Algorithm 5 distance based adjustment factor
m := (0.5/100)
c := 0.5
distance based adjustment factor := m· distance to wall
+c

4.3 Stuck Management
Since EVOR always tries to find an effective trajectory, a

stuck scenario is rather rare. Nevertheless, we have taken
stuck management into account as it is still probable in the
dynamic environment specially when racing against offen-
sive opponents. Considering the small frequency of this sce-
nario it is not covered in the basic EA used for driving. Alter-
natively, we incorporate stuck management into our evolu-
tionary optimization model through another EA to optimize
actuators on stuck situations. This EA is asleep usually, once
stuck situation is observed it is awakened and the program
control switches from the regular optimization process (driv-
ing EA) to this specialized EA. Once again, when the car is
in safe position, this EA goes back to sleep mode saving its
current stuck recovery controller values in its current parent
individual. Then the regular EA runs and once again may
call the stuck EA upon a stuck situation. Then the stuck EA
resumes the optimization process from this saved individual.

If the car is at the same position without a velocity for a
specified time we consider the car is stuck. For stuck man-
agement we use a simple fitness strategy. Here, the gear is
fixed to be on reverse. The fitness is evaluated based on how
much the car position is close to the track center and the car
heads straight front. The design of this EA is similar to the
basic EA used for regular driving except for this fitness crite-
ria.

4.4 Auto Gear System, Traction Control and
Advanced Brake System (ABS)

Algorithm 6 fitness adjustment for efficient turning
safe distance d := find distance to wall
d *= angle based adjustment factor
d *= distance based adjustment factor
if distance to stop < d then

fitness += speed at d
else

fitness -= speed at d
end if

We incorporate some expert knowledge on standard vehi-
cle controller design to our evolutionary driver where appro-
priate. The auto gear system is an example, that we can use
the popular mapping on optimal gearing based on engine
rpm [3]. For traction control also we use a few standard rules
used in car physics [3, 14]. Similarly we apply ABS on top of
the already chosen brake value from the optimizer. The de-
tails about these techniques are not discussed here, since its
not of the major interest of this study. We refer the interested
reader to the text books [3] and [14] for more information
regarding these techniques.

4.5 Convergence and Runtime of the Algorithm
As described earlier, the EA runs forever. Based on our im-

plementation the number of possible fitness evaluations be-
tween two consecutive status updates is around 2000. While
a global convergence is not achieved within this time inter-
val, a solution of close approximation from the global op-
tima is always achieved. Note that a dynamic change does
not cause re-optimization but only a reevaluation of the cur-
rent individual immediately after the change. A typical run
of the algorithm is observed to be effective. Furthermore,
rigorous theoretical analysis is essential to obtain a deeper
understanding on the underlying dynamic optimization pro-
cess and its effectiveness.

5. EXPERIMENTAL ANALYSIS
As a proof of the concept that a simple EA works well as

a car controller we have implemented a prototype version
of EVOR to run on a simulated environment. We use a cus-
tomized version of the TORCS [4] simulator with limited sen-
sor information that is used in SCR competition [9]. We be-
lieve this setting is more realistic because in physical driving
environment also, we have access to sensor information on
the visible area of the track only. We developed EVOR as a
client communicating with a SCR-server bot [8].

We have conducted a series of experiments to compare the
performance of EVOR against other AI approaches. For that,
we have chosen 3 other best competitors of SCR champi-
onship 2013 [9] Autopia [13] the all time winner, Mr Racer [16]
the winner of SCR championship at GECCO 2013 and the
runner up ICER IDDFS of the same competition. We have
analyzed the behavior of these drivers for several groups of
tracks oval, road and dirt provided by the TORCS simulator
and also for a set of random tracks generated using the track
generator by Cardamone et al. [2]. The size and the physi-
cal factors of the tracks in the first three classes have major
differences.

We have evaluated our controller based on an established
experimental set up inspired by the SCR competition [9]. This



competition set up consists of 3 stages the warm-up, the indi-
vidual race and the final race. Similar to the competition, for
our experiments also 100000 game ticks are provided for the
warm up session. During this stage drivers can build track
models or tune any parameters. Then the cars race individu-
ally for 10000 game ticks. This time is approximately equal to
200 seconds as a game tick is around 20ms. In the final stage
the drivers race together on each track for 10 laps. The start-
ing positions of the competitors are determined according to
the results of the individual race stage. Running on several
laps means the experiment is repeated for several times, thus
guarantees the fairness of the results like any other standard
experimental setup.

Experiments were conducted in a Ubuntu Linux 12.04 PC
with 64 bit Intel i5 2.40GHz quad-core processor and 3.8GB
memory. The experiments were run on SCR [8] patched ver-
sion of TORCS 1.3.4 under the default mode. In the default
mode the damage, the lap-time and the fuel limits are en-
abled.

5.1 Oval Tracks
Oval tracks represent speedways. The shapes and slopes

slightly differ in the oval tracks provided with the TORCS
simulator. Road friction, aerodynamic and other physical ef-
fects are quite similar in all oval tracks. The results of the
four drivers raced individually on the oval tracks are shown
in Figure 4. These results show that for 4 out of 5 oval tracks
EVOR has bridged the largest distance within the given time
budget of 10000 game ticks. It is evident that EVOR’s trajec-
tory optimization has provided the better path and the speed
for these tracks than other drivers.

5.2 Road Tracks
The 15 road tracks shown in Figure 4 are diverse. They

are significantly different to each other with regard to many
aspects unlike oval or dirt tracks that share similar condi-
tions within the group. The selected set of road tracks repre-
sent all different sub groups within the road group provided
with the TORCS simulator. The road tracks can be of various
shapes, widths, as well as of road friction. For example, the
road friction may vary significantly from paved roads like
forza to snowy slippery roads like alpine-2. And also the cur-
vature of bends varies from mild bends in forza and g-tracks
to large bends in alpines or sharp bends in corkscrew. EVOR
has traveled the largest distance for the majority of the road
tracks. For some tracks like forza, wheel-2 and g-track-2 hav-
ing good road friction and moderate bends Mr.Racer was bet-
ter. The major reason is that unlike Mr.Racer, EVOR was not
specially tuned for specific friction parameters. Furthermore,
for two tracks with a very sharp bend, corkscrew and street-1
Autopia was the best. In this kind of sharp triangle shaped
bends EVOR’s race line optimization becomes weak. How-
ever, this kind of bends are rather unlikely in natural tracks.
For all other road tracks including real tracks like alpines, ru-
udskogen etc., EVOR has reported the longest traveled dis-
tance.

5.3 Dirt Tracks
Dirt tracks are different from the other two groups with

their sandy road conditions and bumps. The results of the
four drivers raced individually on dirt tracks are shown in
Figure 4. Results show that Autopia has bridged the longest
raced distance for individual races for all dirt tracks while

EVOR was catching up closely and the other competitors
stayed reasonably behind. EVOR currently addresses the
slipperiness of the tracks well with its traction control. We
believe that by incorporating bump detection feature to EVOR,
we can improve its performance on dirt tracks further.

5.4 Random Tracks
These tracks are generated from the TORCS compliant ran-

dom track generator presented in Cardemone et al. [2]. These
tracks consist of a combination of road and dirt conditions.
Results show that EVOR has traveled the longest distance
for the half of the random tracks (see Figure 4).

5.5 Race with Opponents
For all the tracks considered in the individual race round,

we have then tested the racing performance with opponents
also. For each track all the competitors were set to race to-
gether for 10 laps. The starting grid was based on the per-
formance in the individual race. The results are shown in
Table 1. The end results are quite similar to the previous ex-
periment that generally the winners of the individual race
are the winners of the race with opponents too. However,
there are some interesting scenarios due to opponents ob-
served during these experiments. Due to the strengths of
opponent handing and stability EVOR could win three ad-
ditional races in the final round than the previous individual
race round. These were on tracks forza and wheel-2 previously
won by Mr.Racer and torcello-mountain-snow won by Autopia
in the individual race round. These effects are depicted in
the results shown in Figure 4 and Table 1. Although, EVOR
has lost one track, namely ole-road-1 that won in the previous
individual race round. ICER with good bump detection ca-
pabilities won this race where as other drivers had problems
with high damage rate in this high bumpy road thus could
not complete the race. This was not observed in the individ-
ual race round as its only held for 10000 ticks within which
most of the drivers could stay in the TORCS damage limit of
10000. Nevertheless, EVOR could win 19 out of 30 races in
the opponents round that is even better than the 17 out of 30
in the individual race round. From the rest of 11 races EVOR
could become the first runner up reporting a small time gap
from the winner’s time for most of the cases.

6. CONCLUSION AND FURTHER WORK
This study has remodeled the controlling of a vehicle as a

dynamic optimization problem. The problem was then ad-
dressed by a simple evolutionary optimizer to optimize the
actuator outputs in a dynamic environment. As a proof of the
concept EVOR, a simulated driver implementation based on
this approach is presented. Experiments were conducted to
benchmark this driver on a diverse set of tracks and to com-
pare the performance against existing best AI approaches.
EVOR has outperformed current best AI controllers for the
majority of the tested tracks. More broadly, this study re-
veals the potential of the evolutionary optimizer as a physi-
cal car controller specially in areas like cruise control where
only fuzzy rule based controllers are currently being inves-
tigated. Future work will be concentrated on introducing
bump detection and noise handing capabilities to EVOR to
perform better on dirt tracks and in noisy environment.
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