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ABSTRACT
Recently Ulrich and Thiele [14] have introduced evolution-
ary algorithms for the mixed multi-objective problem of max-
imizing fitness as well as diversity in the decision space. Such
an approach allows to generate a diverse set of solutions which
are all of good quality. With this paper, we contribute to
the theoretical understanding of evolutionary algorithms for
maximizing the diversity in a population that contains sev-
eral solutions of high quality. We study how evolutionary al-
gorithms maximize the diversity of a population where each
individual has to have fitness beyond a given threshold value.
We present a first runtime analysis in this area and study the
classical problems called OneMax and LeadingOnes. Our re-
sults give first rigorous insights on how evolutionary algo-
rithms can be used to produce a maximal diverse set of so-
lutions in which all solutions have quality above a certain
threshold value.

1. INTRODUCTION
Evolutionary algorithms have been widely used for com-

plex optimization problems. Most evolutionary algorithms
incorporate certain diversity mechanisms which ensure that
the population consists of a diverse set of individuals [3, 15].
From an optimization point of view this is often beneficial
to prevent premature convergence to a locally optimal solu-
tion [9]. From a design point of view, this is interesting as a
diverse set of solutions gives different design choices of high
quality. This is especially important as practitioners in the ar-
eas of engineering and manufacturing may have a clear pref-
erence for certain solutions even if they have similar quality
according to the used fitness functions which evaluate the
quality of a given solution.

With this paper, we contribute to the theoretical under-
standing of diversity mechanisms used in evolutionary al-
gorithms. We study evolutionary algorithms in a rigorous
way using runtime analysis [1, 8, 10]. Previous studies in
the field of runtime analysis in the context of diversity have
examined how different diversity mechanisms influence the
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ability of an algorithm to obtain an optimal solution [5, 6].
In this paper, we consider diversity from a different per-

spective. We are interested in how evolutionary algorithms
can achieve a diverse set of solutions that all have acceptable
quality. Evolutionary algorithms for the problem of maxi-
mizing the diversity of a set of solutions where each of these
solution has fitness above a given threshold value v have
been introduced by Ulrich and Thiele [14]. Their algorithm
called NOAH iteratively improves solutions according to qual-
ity and diversity of the population. Furthermore, decision
space diversity has been examined for hypervolume-based
search in the context of multi-objective optimization [13].

For our theoretical investigations, we work with a fixed
threshold v. Our goal is to study population-based algo-
rithms until they have obtained a population of maximum
diversity where all solutions x ∈ P have fitness at least v.
The subject of our investigations is a classical (µ + 1)-EA
that starts maximizing the diversity of the population after
all the solutions have reached fitness v. The plain version
of the (µ + 1)-EA has already been studied by Witt [16] for
classical problems such as OneMax and LeadingOnes. We will
study these problems in the context of diversity optimization
and show in a rigorous way how evolutionary algorithms are
able to maximize the diversity of a population for OneMax
and LeadingOnes.

The paper is organized as follows. In Section 2, we in-
troduce the algorithm that is subject of our investigations
when considering diversity maximization. Our analysis for
the classical OneMax problem is presented in Section 3 and
Section 4 shows our results for the LeadingOnes problem. Fi-
nally, we finish with some concluding remarks to topics for
future work.

2. DIVERSITY MAXIMIZATION
In this section we introduce the basic ideas of the diversity

optimization of a simple single-objective problem. We are
interested in pseudo-Boolean functions f : X → R that map
elements of the search space X = {0, 1}n to real values.

There are many ways to measure the difference between
different individuals. Since pseudo-Boolean functions are
defined on bit-strings, we use Hamming distance

H(x, y) =
n∑
i=1

|xi − yi|,

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ {0, 1}n, to evalu-
ate the difference between two individuals.

According to [12, 13], a diversity measurement should have
the following properties:



Algorithm 1: (µ+1)-EAD

1 Initialize P with µ n-bit binary strings which are chosen
uniformly at random from {0, 1}n.

2 Choose s ∈ P uniformly at random.
3 Produce s′ by flipping each bit of s with probability 1/n

independently from each other. Add s′to P .
4 Let z ∈ P be a randomly chosen individual with the

worst fitness value.
5 If f(z) ≥ v, then execute OptDiv(P ), otherwise eliminate
z from P .

6 Repeat step 2 to 5 until termination criterion is reached.

1. Twinning: Duplicate solutions in a population should
not change the diversity.

2. Monotonicity in Varieties: Adding a new solution which
is not in a population should increase the set diversity.

3. Monotonicity in Distance: D(P ′) ≥ D(P ) with |P | =
|P ′| holds, if all pairs of P ′ are at least as dissimilar as
all pairs of P (according to some given distance func-
tion).

To fulfil the required features, the diversity of a set of solu-
tions P is defined as the sum of Hamming distance between
each pair of individuals in P . Note that in general P can be a
multi-set which may include duplicates. In order to meet the
twinning property, duplicates are removed when computing
the diversity of a (multi-)set P based on the Hamming dis-
tance.

DEFINITION 1. For a given population P , the population di-
versity is defined as D(P ) =

∑
{x,y}∈P̂×P̂ H(x, y), where P̂ is

the set with all distinct solutions in P .

Since our aim is to find a set of solutions of different struc-
tures, we combine the classical (µ+1)-EA with diversity op-
timization process. The threshold v of fitness value is pre-
defined by the decision maker. The (µ+1)-EA with solution
diversity optimization is defined as (µ+1)-EAD. The whole
process of (µ+1)-EAD is given in Algorithm 1.

The diversity optimization is conducted until all individ-
uals in the solution set reach the fitness requirement. More-
over, once entering the diversity optimization process, the
algorithm will reject the offspring with fitness below thresh-
old. The contribution of solution x is defined as

c(x) = D(P )−D(P \ {x}).

If an offspring of acceptable quality is produced, the individ-
ual with least contribution of diversity is eliminated from the
solution set. If this solution is not unique, a solution is chosen
uniformly at random among the solutions with the smallest
diversity contribution. Algorithm 2 defines the OptDiv(P )
component.

We study our algorithm in terms of the number of fitness
evaluations until it has produced a population P with f(x) ≥
v, ∀x ∈ P that has the maximal diversity D(P ). We call this
the optimization time of the algorithm. The expected optimiza-
tion time refers to the expected number of fitness evaluations
to reach this goal.

We first analyze the time until all individuals have fitness
of at least v after having achieved such an individual for the

Algorithm 2: Diversity optimization component
OptDiv(P )

1 Choose a solution z ∈ {x ∈ P | c(x) = miny∈P c(y)}
uniformly at random.

2 Set P := P \ {z}.

first time. The process is similar to the take-over effect in a
population and we show an upper bound of O(µ logµ) for
a population of size µ in the following lemma. It will serve
later on throughout our analysis.

LEMMA 1. Having obtained a population with at least one in-
dividual of fitness at least v, the expected runtime until all individ-
uals have fitness at least v is upper bounded by O(µ logµ).

PROOF. Since there is already one individual which has
fitness value at least v, then one possible method is mak-
ing duplicates of the best solution until all µ solutions are
replaced by the replicas. The probability of making a du-
plicate of the acceptable solution when there already exists
i individuals with fitness value above the threshold in the
population is

i

µ
·
(
1− 1

n

)n
=

i

µ
· n− 1

n
·
(
1− 1

n

)n−1

>
i(n− 1)

eµn
>

i

2eµ
.

Before entering the diversity optimization process, we need
all of the µ individuals in the population set to have accept-
able fitness value. The expected waiting time for this process
is at most

µ−1∑
i=1

2eµ

i
= 2eµ

µ−1∑
i=1

1

i
= O(µ logµ).

3. OneMax
In this section, we investigate the classical OneMax prob-

lem which has been subject to numerous studies in the area
of runtime analysis of evolutionary algorithms [4, 16]. Our
goal is to understand how simple evolutionary algorithms
can maximize the diversity of its population for this simple
benchmark problem. The problem is defined as

OneMax(x) =

n∑
i=1

xi.

We first analyze until one solution has fitness at least v. To
do this, we follow the ideas of Witt [16] for the analysis of the
classical (µ+ 1)-EA.

Let v be the threshold of the fitness value, hence, the ac-
ceptable solution should have at least v 1-bits. The diver-
sity optimization process will not begin until all of the solu-
tions in the population have the fitness above the threshold.
We denote by L = maxx∈P OneMax(x) the maximal fitness
value of the current population and upper bound the time to
achieve for the first time a solution of fitness at least v.

LEMMA 2. The expected time until (µ+1)−EA has obtained
a solution x with OneMax(x) ≥ v is O(µv + n log n

n−v ).
PROOF. For a certainL value, duplicates will be made from

the individuals with fitness value L before L improves. Fol-
lowing Witt [16], we assume that L remains the same before



there are min{ n
n−L , µ} duplicates of the individual with fit-

ness L.The expected time for the population to have at least
n

n−L duplicates of one of these individuals with fitness value
L is at most

min{n/(n−L),µ}∑
i=1

eµn

i(n− 1)
=

eµn

n− 1

min{n/(n−L),µ}∑
i=1

1

i

6
eµn

n− 1
ln

en

n− L

For a population set which has i individuals with fitness
value L, improvement can be made by selecting one of these
individuals and flipping one of its 0-bits. The considered
probability is

i

µ
· (n− L)

n
·
(
1− 1

n

)n−1

>
i(n− L)
eµn

Therefore the expected time for the fitness value to increase
is at most eµn

i(n−L)
.

The waiting time of the (µ+1)-EA achieving the first satis-
factory solution equals to the sum of expected time for each
L value which includes the time for increasing L and time
for duplicating individuals. The expected waiting time for
the (µ+1)-EA getting the first individual with fitness v is at
most

v−1∑
L=0

eµn

min{µ, n/(n− L)} · (n− L) +
eµn

n− 1

v−1∑
L=0

ln
en

n− L.

According to the Harmonic sum,

v−1∑
L=0

eµn

min{µ(n− L), n} 6
v−1∑
L=0

en

n− L +

v−1∑
L=0

eµ

6 en(ln en− ln(n− v)) + eµv

= en ln

(
en

n− v

)
+ eµv

eµn

n− 1

v∑
L=0

ln
en

n− L =
eµn

n− 1
ln

evnv

n(n− 1)(n− 2) · · · (n− v)

=
eµn

n− 1
ln
evnv(n− v − 1)!

n!

As stated in Stirling’s Formula, evnv < e2vnvv!

vv
√
2πv

. Hence,

ln
evnv(n− v − 1)!

n!
< ln(

e2vnv

vv
√
2πv · (n− v)

· v!(n− v)!
n!

).

The Binomial coefficients
(
n
k

)
has the property that

(n
k

)k
6

(
n

k

)
.

Hence, we get,

eµn

n− 1

v−1∑
L=0

ln
en

n− L <
eµn

n− 1
ln(

e2vnv

vv
√
2πv · (n− v)

· v!(n− v)!
n!

)

<
eµn

n− 1
ln(

e2vnv

vv
√
2πv · (n− v)

· ( v
n
)v)

=
eµn

n− 1
ln

e2v√
2πv · (n− v)

<
2eµnv

n− 1

Thus, the expected waiting time of (µ+1)EA with threshold
v is O(n log n

n−v + µv).

Due to Lemma 1, we already know that after an additional
phase ofO(µ logµ) all individuals in the population have fit-
ness at least v.

3.1 Large threshold
Firstly, we begin with a simple case where the threshold

v = n − 1. There are (n + 1) possible solutions which have
fitness value above the threshold. The composition of opti-
mal solution set depends on the population size µ.

THEOREM 1. Let v = n− 1 and µ > n+1, then the expected
optimization time of (µ+1)-EAD on OneMax is upper bounded by
O(µn+ µ logµ+ n2 logn).

PROOF. There are (n + 1) different individuals that have
fitness value above the threshold. When µ > n + 1, the op-
timal solution set should contain all of the (n + 1) different
individuals. According to our definition of diversity, dupli-
cates will not affect the diversity. Then the (µ− n− 1) other
individuals have no contribution to the diversity.

As stated in Lemma 2, the expected waiting time until (µ+1)-
EA has obtained a solution with fitness value above the thresh-
old when v = n− 1 is bounded above by O(µn+ n logn).

After the first solution with fitness value above the thresh-
old is produced, the algorithm will focus on producing other
individuals with acceptable quality. According to Lemma 1,
the expected runtime of this procedure is bounded above by
O(µ logµ).

We now work under the assumption that all individuals
have fitness at least v. Note, that (µ+1)-EAD will not accept
any solution of fitness below v. In the worst case, these µ so-
lutions are replicas, so the population diversity equals to 0 at
the beginning. The diversity can be improved by producing
new solutions from the replicas. Since the duplicates in the
population have no contribution to the diversity, they will be
replaced by the new individual which has a higher contri-
bution to the diversity. It does not matter which individual
is selected from the population to produce a new solution,
since the individual with the least contribution will always
be the one to be replaced. If the current population has i dif-
ferent individuals, the probability of creating a new solution
with fitness value v is at least

1

n
· n− i

n
·
(
1− 1

n

)n−2

>
n− i

en(n− 1)
.

The 1n solution can be produced in any stage and will stay in
the population. The probability of producing the 1n solution
is

1

n
·
(
1− 1

n

)n−1

>
1

en
.



Since the duplicated individuals in the population will not
affect the diversity measurement, the diversity optimization
process will not stop until the optimal diversity is reached,
which means the population set contains all possible solu-
tions that fulfil the requirement in fitness value.

The expected time for optimizing the diversity is

en+

n−1∑
i=1

en(n− 1)

n− i = en+ en(n− 1)

n−1∑
i=1

1

i

6 en+ en(n− 1) ln(en)

Hence, the expected optimization of the (µ+1)-EA on One-
Max with diversity optimization for threshold (n−1) is bounded
above by

O(µn+ n logn) +O(µ logµ) +O(n+ n2 logn)

= O(µn+ µ logµ+ n2 logn).

We now study smaller population sizes such that not all
different solutions of fitness at least v can be included in the
population. Here the (µ+1)-EAD has to obtain of subset of µ
solutions maximizing the diversity.

THEOREM 2. Let v = n− 1 and µ < n+1, then the expected
optimization time of (µ+1)-EAD on OneMax is upper bounded by
O(µn log( n

n−µ ) + n logn).

PROOF. When µ < n + 1, the population set can not con-
tains all possible solutions with fitness value above the thresh-
old. Since the all 1-bit solution only has 1 bit different to other
acceptable individuals which have 2 bits different to each
other, it will not be in the optimal solution set. Moreover,
every individual with fitness n − 1 has the same Hamming
distance to each other, therefore, it does not matter which in-
dividual is contained in the population set.

The proof for expected time of (µ+1)-EA achieving the pop-
ulation set with duplicates of an individual with fitness value
above the threshold is the same as that in Theorem 1. The ex-
pected time is at most O(µn+ n logn+ µ logµ).

It is of great possibility that the solution with all 1-bits is
introduced in some stage of the diversity optimization pro-
cess. When the population size is small, the probability to se-
lect the all 1-bit solution to produce the new solution is large.
Since all the individuals in the population have reached the
threshold, the probability of getting the 1n solution is

1

n
·
(
1− 1

n

)n−1

>
1

en
.

Then the expected time taken to produce the 1n solution is
less than en = O(n).

After the 1n solution is introduced, it will remain in the
population until the other individuals all have different pat-
terns. The probability of getting a new solution by flipping
one 1-bit of the 1n individual when there are i different solu-
tions with fitness value above the threshold is

1

µ
· n− i

n
·
(
1− 1

n

)n−1

>
n− i
eµn

.

For the µ < n + 1 situation, all of the individuals in the ex-
pected solution population should be of different structures.
Since the contribution of 1n in diversity is smaller comparing

Figure 1: The µ × n matrix represents the individuals in a
population. In the example, it is a matrix for a population
with 4 individuals which are all 8 bits in length. The 7th
column is all-1-bit column and the 3rd column is 0-bit col-
umn as defined.

to those of the individuals with fitness v, the 1n solution will
be replaced by a solution with fitness value v after the other
(µ− 1) individuals are different from each other.

Then the waiting time for achieving a population of µ dif-
ferent solutions with fitness (n − 1) from the intermediate
step is

µ−1∑
i=1

eµn

n− i = eµn

µ−1∑
i=1

1

n− i 6 eµn(lnn− ln(n− µ))

Having obtained µ individuals of fitness v = n− 1, the so-
lution 1n is removed from the population as it has the small-
est diversity contribution, and then the optimal population
is achieved.

Summing up, the expected optimization time is

O(µn+ n logn+ µ logµ) +O(n) +O(µn log(
n

n− µ ))

= O(n logn+ µn log
n

n− µ ).

3.2 Smaller thresholds
We now consider the case where n/2 ≤ v < n − 1 holds.

For convenience, we store the population in a µ × n matrix
where each individual as a row and define the column where
there is no 0-bit as all-1-bit column and the column where
there is only one 0-bit as 0-bit column. An example is shown
in Figure 1.

The following lemma shows crucial properties of a popu-
lation maximizing diversity.

LEMMA 3. Let µ 6
(
n
v

)
. The matrix of a population P repre-

sents an optimal population, if the whole matrix contains µ(n−v)
0-bits and each column contains µ(n− v)/n 0-bits.

PROOF. There are
(
n
v

)
possible solutions for the OneMax

problem with threshold v. Assuming v ≥ n/2 implies that
there have to be at least as many 1-bits as 0-bits in each in-
dividual. For µ 6

(
n
v

)
, we show that the optimal population

should contains only individuals with fitness value v, since
these individuals can make a higher contribution to the over-
all diversity. Then the total number of 0-bits in the popula-
tion can be represented as µ · (n−v), and w.l.o.g , we assume
that µ · (n− v)/n is an integer.

From the perspective of matrix representing the optimal
population, the contribution of each column has no influence



on those of other columns, so the population diversity equals
to the sum of contribution of every column in the matrix. The
contribution of each column should be maximized so that the
population diversity is maximized. If there are m 0-bits in a
column, the contribution of this column will be

m(µ−m).

The population diversity can be calculated as
n∑
i=1

mi(µ−mi),

where mi represents the number of 0-bits in the ith column.
The constraint is that the total number of 0-bits in the popu-
lation is at most µ(n− v), which can be represented as

n∑
i=1

mi 6 µ(n− v).

When µ 6
(
n
v

)
, the constraint is

n∑
i=1

mi = µ(n− v).

Before all columns are balanced in the number of 0-bits,
there exist at least two columns that one has more 0-bits than
average number and the other has less 0-bits than average
number. Let i, j, k represent the number of 0-bits in columns
which has 0-bits above, below and equal to the average num-
ber separately. Their relationship can be interpreted as j <
k < i, where i, j, k ∈ N. Reducing the unbalance rate by flip-
ping a 1-bit and a 0-bit of column with i and j. Increasing j
by 1 causes the diversity changed by

(j + 1)(µ− j − 1)− j(µ− j) = µ− 2j − 1.

Decreasing i by 1 causes the diversity changed by

(i− 1)(µ− i+ 1)− i(µ− i) = −µ− 2i− 1.

Therefore, the overall change to diversity is

(µ− 2j − 1) + (−µ− 2i− 1) = 2(i− j − 1).

Since i, j and k are all natural numbers and none of them are
equal as defined, 2(i − j − 1) should be at least 2. Hence,
whenever there is unbalance in the number of 0-bits in each
column, there exist some columns which can be changed to
gain balance and increase diversity, which implies that the
population diversity is optimized only when the 0-bits are
evenly distributed in each column. The number of each col-
umn is then µ · (n− v)/n.

We now consider the case of a small population where µ 6
n/(n− v) holds. In this case the optimal population contains
only individuals which have 0-bits in different positions.

THEOREM 3. Let µ 6 n
n−v , then the expected optimization

time of (µ+1)-EAD on OneMax is upper bounded byO(µn2 logµ).

PROOF. According to Lemma 1 and 2, it takes O(µv +
n log n

n−v ) time to achieve a population with all individuals
above the threshold.

Since the population size is µ 6 n
n−v , the population set

with optimal diversity value should contains only individu-
als which have 0-bits in different position with other individ-
uals. The matrix for the population with optimal diversity
value should only have all-1-bit columns and 0-bit columns.

In the worst case, there are µ(n − v) 0-bits that has dupli-
cates in the same column. In order to achieve the optimal
population, the number of columns with more than one 0-
bits should be decreased to 0.

At the beginning of the diversity optimization process, the
population diversity is 0 as in the worst case where there are
only duplicates. The number of all-1-bit columns is v. Be-
fore the population diversity reaches the optimal value, there
should exist at least one column that has more than one 0-
bits. Hence, one way of improving the diversity is selecting
an individual with 0-bit not in the 0-bit column and increas-
ing its contribution to diversity. Let the number of 0-bits in
ith column be represented by mi. Then flipping one 0-bit of
an individual will cause the contribution change by

(mi − 1)(µ−mi + 1)−mi(µ−mi) = −µ+ 2mi − 1.

Flipping one 1-bit in the all-1-bit column will increase the
contribution by (µ − 1). Therefore, flipping a pair of 1-bit
and 0-bit as restricted above will change its contribution by

(−µ+ 2mi − 1) + (µ− 1) = 2(mi − 1).

In order to increase the diversity, the 0-bit chosen should
fulfil the condition of mi > 1, which means the 0-bit to be
flipped should have duplicates in the same column.

Before the diversity is optimized, there should always ex-
ist a column which has more than one 0-bit. We consider the
event that selecting an individual which has an 0-bit in the
column with mi > 1 and flipping the certain 0-bit together
with a 1-bit in one of its all-1-bit columns. According to our
analysis above, this event will produce an individual that in-
creases the diversity by at least 2(mi − 1). Let the number of
0-bits with duplicates in the same column be represented by
k. Then the probability for such an event described above to
happen equals to

k

µ
· 1
n
· 1
n
·
(
1− 1

n

)n−2

>
k

eµn2
.

The event described in the last paragraph decreases the
number k by 1. When there are 2 0-bits in a column, these
2 duplicated 0-bits can be split into two 0-bit columns in one
iteration. Hence, it takes µ(n − v) − (n − v) steps to get the
optimal population.

Therefore the overall waiting time is

(n−v)∑
k=µ(n−v)

eµn2

k
= eµn2

n−v∑
k=µ(n−v)

1

k

6 eµn2(ln eµ(n− v)− ln(n− v))
6 eµn2 ln eµ

Hence, the expected optimization time is

O(µv + n log
n

n− v ) +O(µn2 logµ) = O(µn2 logµ).

In the following, we study how (µ+1)-EAD is able to achieve
an optimal population if µ is larger.

THEOREM 4. Let µ 6
(
n
v

)
, then the expected optimization

time of (µ+1)-EAD on OneMax is upper bounded by O(µn2(n −
v) log( n

n−v )).



PROOF. According to Lemma 2, the waiting time of (µ+1)-
EA on OneMax to achieve the first individual with fitness
value above the threshold v is O(µv + n log n

n−v ). After that,
it takes O(µ logµ) time to obtain a solution set that contains
only individuals with fitness value above the threshold as
proved in the previous section.

As proved in Lemma 3, the 0-bits should be equally dis-
tributed in all columns so that the population diversity is
optimized. The total number of 0-bits in the population is
µ(n − v). The optimal solution set should make sure that in
the corresponding matrix there are either⌈

µ(n− v)
n

⌉
or
⌊
µ(n− v)

n

⌋
0-bits in each column. Let i represent the largest number of
0-bits in a column and j represent the smallest number of
0-bits in a column. If j 6 i 6 j + 1 is fulfilled, the popula-
tion diversity is optimized. When µ(n − v)%n = 0, then the
equality stands.

Before the diversity is maximized, it should be true that
i > j. Therefore, there exists an individual that has a 0-bit in
the column with i 0-bits and a 1-bit in the column with j 0-
bits. Consider the event that selecting the certain individual
and flipping those 0-bit and 1-bit in the same iteration. The
overall change to contribution is

(−µ+ 2i− 1) + (µ− 2j − 1) = 2(i− j − 1),

which is the same as that in Lemma 3. Since i > j + 1 before
the diversity is optimized, such an event should lead to im-
provement in the diversity. The probability for such an event
happen is

1

µ
· 1
n
· 1
n
· (1− 1

n
)n−2 >

1

eµn(n− 1)
.

Hence, the expected runtime for the improvement is bounded
above by O(µn2).

In the beginning of diversity optimization process, as the
worst case, the row matrix storing the numbers of 0-bits of
each column contains (n − v) elements with value µ and v
elements with value 0. The event mentioned above decreases
the number of 0-bits in the certain column and increases the
number of 0-bits in the corresponding column. As proved
in Lemma 3, when v > µ/2, the contribution to diversity of
a column is monotonously increasing with the number of 0-
bits.

In the worst case, there are (n − v) columns which have
µ 0-bits at the beginning. Then it takes (n − v) iterations to
decrease the largest number of 0-bits in a column ,which is
defined as i, by 1. For a certain i, there are at least i individ-
uals that can be chosen to produce a child by flipping a pair
of 0-bit and 1-bit as stated in the previous paragraph.

Therefore the overall waiting time of (µ+1)-EAD on One-
Max for a population with less than

(
n
v

)
individuals is at most

µ(n−v)
n

+1∑
i=µ

(n− v) · en(n− 1) · µ
i

6 eµn2(n− v)

µ(n−v)
n

+1∑
i=µ

1

i

6 eµn2(n− v) ln( en

n− v )

Hence, the expected optimization time is bounded above by

O(µn2(n− v) log n

n− v ).

4. LeadingOnes
In this section we will discuss the expected runtime for

(µ+1)-EAD on the classical LeadingOnes problem which has
been subject to several investigations in the area of runtime
analysis [2, 16]. LeadingOnes is defined as

LeadingOnes(x) =

n∑
i=1

i∏
j=1

xj .

Similar to that of OneMax problem, the diversity optimiza-
tion on LeadingOnes problem can also be divided into two
stages. The first one is obtaining a population of all indi-
viduals with acceptable fitness value and the second one is
maximizing the population diversity.

LEMMA 4. The expected runtime until (µ+1)−EA on Leadin-
gOnes problem has obtained a solution of fitness value above the
threshold v is O(nv + µv logn).

PROOF. Assume L represents the largest number of lead-
ing ones among all individuals in the current population and
i represents the number of individuals with the fitness value
L. For a certain L value, we assume it will not change until
there are min{n/ ln(en), µ} duplicates of the individual with
fitness L as stated in Witt [16].

The probability for making a duplicate of the individual
with fitness L is at least

i

µ
· (1− 1

n
)n >

i(n− 1)

eµn
.

The expected runtime for making min{n/ ln(en), µ} dupli-
cates is at most

min{n/ ln(en),µ}−1∑
i=1

eµn

i(n− 1)
=

eµn

n− 1

min{n/ ln(en),µ}−1∑
i=1

1

i

6
eµn

n− 1
ln

en

ln(en)

6 2eµ ln(en)

After there exist at least min{n/ ln(en), µ} duplicates, L
will be improved by selecting an individual with fitness L
and flipping its leftmost 0-bit. The probability for this event
is

i

µ
· 1
n
· (1− 1

n
)n−1 >

i

eµn
.

Since before the improvement is made, there are already

min{n/ ln(en), µ}

replicas, i is equal to min{n/ ln(en), µ}, which makes the ex-
pected runtime be

eµn

min{n/ ln(en), µ} 6 eµ ln(en) + en

The expected runtime of the (µ+1)-EA obtaining the first
individual with fitness value above the threshold v equals



to the sum of waiting time for each L value. Therefore, the
overall waiting time is

v ·
(
2eµ ln(en) +

eµn

min{n/ ln(en), µ}

)
6 v(3eµ ln(en) + en)

In conclusion, the overall waiting time for (µ+1)−EA on
LeadingOnes problem has obtained a solution of fitness value
above the threshold v is O(nv + µv logn).

For a LeadingOnes problem with threshold v, there are 2n−v

different possible solutions. When µ > 2n−v , all of the 2n−v

different possible solutions should be contained in the op-
timal population set and there should be duplicates in the
population. According to our definition of diversity, the du-
plicates will not affect the diversity measurement.

LEMMA 5. The optimal solution of (µ+1)-EAD on LeadingOnes
with threshold v has the population diversity µ2(n− v)/4.

PROOF. Assume that there is a matrix which contains all
individuals and each individual as a row, which is similar to
the matrix for OneMax problem. Let mi equal to the number
of 0-bits in ith column. Then the contribution to diversity of
each column can be represented asmi(µ−mi) = µmi−mi

2.
In the left v columns, there are only 1-bits so the contribution
to diversity is 0. For the following (n − v) columns, when
mi = µ/2, the quadratic function reaches its maximal. The
contribution of each column has no effect on those of other
columns. Hence, if there is no duplicate in the population
and each of the (n−v) columns has µ/2 0-bits, the population
diversity equals to (µ2/4) · (n − v) = µ2(n − v)/4, which is
the maximum value.

LEMMA 6. The expected waiting time of (µ+1)-EAD on Leadin-
gOnes to achieve µ different solutions above the threshold, where
µ 6 2

n−v
2
−1, is bounded above by O(nv + µv logn+ µn logµ).

PROOF. After the first individual with fitness value above
the threshold is achieved in O(nv + µv logn) time, another
(µ−1) individuals with fitness value above the threshold are
produced before the diversity optimization process begins.
This process will take O(µ logµ) time as proved in Lemma 1.

Since the duplicates make no contribution to the diversity
and may interfere the optimization process, we should get
rid of the duplicates at the beginning of the diversity opti-
mization process. When there is duplicates in the popula-
tion, a new individual will always be accepted and replace
one of the duplicates. A new individual can be produced by
selecting an individual and flipped one bit to become one of
its undiscovered Hamming neighbours. An upper bound for
the expected number of undiscovered Hamming neighbours
of a set of individuals is given in [7] as at least n−2 ·r where
0 < |P | 6 2r and P is the set of discovered individuals. In
the LeadingOnes problem, the v leftmost bits should be all 1′s.
Only the (n − v) other bits can be either 0-bit or 1-bit so the
expected Hamming neighbours are at least n−v−2 ·r. Since
µ 6 2

n−v
2
−1, the expected number n − v − 2 · r > 2. As-

sume the number of non-duplicated individuals in the cur-
rent population is s. Then the expected number of Hamming
neighbours is equal to (n − v − 2 log s). The probability of

obtaining an undiscovered Hamming neighbour is at most

(n− v − 2 log s) · s
µ
· 1
n
·
(
1− 1

n

)n−1

>
s(n− v − 2 log s)

eµn
.

Therefore the total time for obtaining a population with µ
different individuals is

µ−1∑
s=1

eµn

s(n− v − 2 log s)
= eµn

µ−1∑
s=1

1

s(n− v − 2 log s)

6 eµn

µ−1∑
i=1

1

s

6 eµn ln(eµ)

Hence, it takes at most O(µn logµ) time to get a popula-
tion set with no duplicates in it. Taken all stages into consid-
eration, the expected runtime of (µ+1)-EAD on LeadingOnes
to achieve µ solutions above the threshold is bounded above
by

O(nv + µv logn) +O(µ logµ) +O(µn logµ)

= O(nv + µv logn+ µn logµ).

Now, we show an upper bound for LeadingOnes that holds
for µ ≤ 2

n−v
2
−1.

THEOREM 5. Let µ 6 2
n−v

2
−1, then expected optimization

time of (µ+1)-EAD on LeadingOnes is upper bounded by O(nv +
µv logn+ µn log(µ(n− v))).

PROOF. According to Lemma 4, it takes at most O(nv +
µv logn+µn logµ) time for (µ+1)-EAD on LeadingOnes to get
a population of µ different individuals.

After the duplicates are replaced by different solutions, if
each column has µ/2 0-bits, the population diversity should
equal to the maximal value µ2n/4 as proved in Lemma 5. In
the worst case, the initial value ofmi of each column is either
µ or 0. In order to increase the diversity of the population,
mi value of each column should either increase or decrease
to µ/2. Since the duplicates does no contribution to the pop-
ulation diversity, in this process, it should be guaranteed that
the new individual produced is not a replica of any existing
individuals.

Let si and ti represent the number of 0-bits and 1-bits in
the ith column separately. Then |si − ti| = di can be re-
garded as the balance rate of 0-bits and 1-bits in the ith col-
umn. Consider the event that selecting an individual ran-
domly and flipping one of its 0-bits or 1-bits to decrease the
balance rate of the column. When si < ti, this event will
cause the contribution si · ti change by

(si + 1)(µ− si − 1)− si(µ− si) = µ− 2si − 1,

as the contribution to diversity of other columns will not
change. Since si+ti = µ and si < ti, si < µ/2. Then the con-
tribution change is at least 0. At the beginning of this stage,
there is no duplicate in the population and in each iteration,
it should be guaranteed that there is no duplicate introduced
to the population. Since there is no duplicates in the parent
population, there should exists at most min{ti, si} individ-
uals that are only different in the chosen column from any



other individuals. Therefore, there exist at least |si − ti| indi-
viduals which have no replicas in pattern without consider-
ing the selected column , which also means there should be
at least (si − ti) 0-bits that can be flipped without making a
duplicates. The probability for such an event to happen is

1

µ
· 1
n
·
(
1− 1

n

)n−1

>
1

eµn
.

In a population which is not optimized, there should be∑n−v
i=0 |si − ti| different mutations that can lead to diversity

improvement through the event we described in the last para-
graph. At first, we assume there are either all 1-bits or all
0-bits in each column which makes the total number of fea-
sible mutation equals to µ(n − v). After each mutation, the
number of feasible mutation is decreased by 2 according to
the definition of balance rate. Let d =

∑n−v
i=0 |si − ti|, then

the expected time for the improvement is at most eµn/d. For
the optimized population, the balance rate of each column
should be 0. Before the population diversity is maximized,
one bit flipping as discussed above causes the balance rate of
the certain column decreased by 2. Hence, the total waiting
time for the population diversity to be maximized is

µ(n−v)/2∑
d=1

eµn · 1
d
6

1

2
eµn ln(eµ(n− v))

Hence, the overall runtime of (µ+1)-EAD on LeadingOnes is
bounded above by O(n2 + µv logn+ µn log(µ(n− v))).

Conclusions
The population of an evolutionary algorithm can be used to
generate a diverse set of solutions where all solutions are
of good quality. We examined such approaches in a rigor-
ous way by a first runtime analysis and studied a (µ+1)-EAD

which maximizes the diversity of the population once all so-
lutions have fitness beyond a given threshold value v. Our
results for the classical benchmark problems OneMax and
LeadingOnes show that the algorithm is efficiently maximiz-
ing diversity of the population.

Our investigations should set the basis for analysis of di-
versity maximization for classical combinatorial optimization
problems and it would be an interesting topic for future work
to study the investigated (µ+1)-EAD on classical combinato-
rial optimization problems such as the traveling salesperson
problem or the vertex cover problem.
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