
Theoretical Analysis of Fitness-Proportional Selection:
Landscapes and Efficiency

Frank Neumann
Max-Planck-Institut für Informatik

66123 Saarbrücken, Germany

Pietro S. Oliveto
University of Birmingham

Birmingham, UK

Carsten Witt
Technical University of Denmark

Kgs. Lyngby, Denmark

ABSTRACT

We investigate theoretically how the fitness landscape influ-
ences the optimization process of population-based evolu-
tionary algorithms using fitness-proportional selection. Con-
sidering the function OneMax, we show that it cannot be
optimized in polynomial time with high probability regard-
less of the population size. This is proved by a generaliza-
tion of drift analysis. For populations of at most logarith-
mic size, the negative result transfers to any function with
unique optimum. Based on these insights, we investigate
the effect of scaling the objective function in combination
with a population that is not too small and show that then
such algorithms compute optimal solutions for a wide range
of problems in expected polynomial time. Finally, relation-
ships with (1+λ) EAs and (1,λ) EAs are described.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Theory, Algorithms, Performance

Keywords: Genetic algorithms, Running time analysis, Se-
lection, Theory

1. INTRODUCTION

Evolutionary computation methods have been shown to be
very successful for a wide range of optimization problems.
Especially, if there are no good problem-specific algorithms
available for a new problem at hand, they often produce
good results without much development effort. To apply an
evolutionary algorithm to a new problem it is just neces-
sary to think about a suitable representation for the solu-
tion space, some variation operators, and a selection method
which determines the individuals that produce offspring and/
or constitute the population of the next generation.

The aim of this paper is to contribute to the theoretical
understanding of selection methods within an evolutionary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal, Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

algorithm. We focus on fitness-proportional selection which
has originally been proposed for the use in genetic algorithms
[4]. Recently, it has been shown that fitness-proportional
selection does not work on linear functions with non-zero
weights when the population size is 1 [3]. The reason for
this is that the search process is not guided towards opti-
mal solutions. Since the mechanism was proposed to work
with population based algorithms, a natural question that
arises when considering this work is to ask whether larger
populations can help to make such an approach efficient. We
consider a simple population- and mutation-based genetic al-
gorithm and examine whether this algorithm achieves an op-
timal solution efficiently for OneMax and a general class of
functions if the population is at least polynomially bounded.
Our results show that larger populations still cannot help
to solve even the simple OneMax problem efficiently. For
the first time, widely recognized problematic issues of the
fitness-proportional selection mechanism [2] are rigorously
proved. In fact it is generally accepted that as the process
evolves, the selection pressure becomes lower and lower until
random search occurs.

To achieve this result we make use of several probabilistic
tools. One way of analyzing evolutionary algorithms with
respect to their runtime behavior is by carrying out a drift
analysis [7]. In the past, such analyses mainly focused on one
single individual in the population. In the context of pop-
ulations, the analysis of probabilistic family trees is known
[10], however, this technique is mainly suited for uniform se-
lection and does not deliver super-polynomial lower bounds.
In this paper, we extend the method of drift analysis to a
whole population by measuring the quality of a population
using a potential function. It turns out that a trivial poten-
tial function that looks at only the best individual from a
population is not sufficient for a general lower bound. Our
potential is defined more carefully in order to capture the
status of the whole population in a single random variable.
Therefore, the techniques developed in this paper may be
of independent interest for analyzing population-based evo-
lutionary algorithms on more complicated problems in the
future.

After having presented these negative results, we con-
sider how to make evolutionary algorithms based on fitness-
proportional selection successful. In many experimental stud-
ies it is reported that fitness-proportional selection is very
sensitive with respect to the differences of the different func-
tion values that a function may attain. A popular method
to compensate the weakness of fitness-proportional selection
is to use fitness-scaling methods which increase the proba-

bility of having good search points in the population. See
[2] for a review of popular scaling functions and methods.

We examine how the fitness landscape changes by using
a simple scaling mechanism based on the original function
value and the population size. We rigorously prove that such
an algorithm using fitness-proportional selection obtains an
optimal solution for the OneMax function quickly. After-
wards, we generalize these ideas and show that the algorithm
is also efficient on each function where a direct application of
the method of fitness-based partitions leads to a polynomial
upper bound for the well-known (1+1) EA. Finally, we look
more deeply into the selection pressure. For a high selection
pressure, we point out situations where simple evolutionary
algorithms using fitness-proportional selection considerably
outperform the elitist version of the algorithm. This is based
on relationships with (1+λ) EAs and (1,λ) EAs.

The rest of the paper is organized as follows. In Section 2,
we introduce the algorithm that is subject to our investiga-
tions. Section 3 introduces the drift analysis for populations
and proves the lower bound on OneMax for populations
of almost arbitrary size as well as for small populations in
the case of functions with unique optimum. In Section 4,
we show how to change the landscape by a simple scaling
mechanism such that the algorithm becomes successful on a
wide range of problems, and in Section 5 we discuss the im-
pact of selection pressure for the optimization process. We
finish with concluding remarks.

2. SIMPLE GENETIC ALGORITHM

Our goal is to examine the use of fitness-proportional se-
lection within a simple population based algorithm. We
consider a simple genetic algorithm based on this selection
method. The algorithm does not use recombination oper-
ators because we want to focus on the impact of fitness-
proportional selection on populations. Hence we keep the
algorithm as simple as possible.

As a convention, all populations are assumed as multisets,
i. e., may contain duplicates of search points.

Algorithm 1 (Simple Genetic Algorithm (SGA)).

1. Create a parent population P consisting of µ randomly
chosen individuals.

2. C := ∅.

3. While |C| < µ do

• Select one individual x of P according to fitness-
proportional selection.

• Create an offspring x′ of x by flipping each bit of
x independently with probability 1/n.

• C := C ∪ {x′}.

4. Set P := C and go to 2.

The algorithm starts with a parent population P consist-
ing of µ individuals that are chosen uniformly at random
for the considered search space {0, 1}n. In each iteration
the new parent population is created by choosing µ times
one individual x of P = {x1, . . . , xµ} according to fitness-
proportional selection. Using fitness proportional selection,
each individual x is selected for mutation with probability

f(x)/
∑µ

i=1 f(xi) in a single selection step. Afterwards, the
selected individual is mutated by flipping each of its bits in-
dependently with probability 1/n. The µ offspring created
in this way constitute the population of the next generation.

To measure the efficiency of our algorithm, we consider the
number of fitness evaluations until our algorithm has sam-
pled an optimal search point for the first time. In order to
show that the algorithm cannot solve a specific problem, we
show that the runtime is exponential with probability expo-
nentially close to one. To this end, in Section 3 we show that
the number of generations is exponential with overwhelming
probability. It is straightforward that the number of fitness
evaluations will be even higher with the same probability.
Showing that the algorithm is efficient we prove that, in ex-
pectation, a polynomial number of fitness evaluations are
sufficient to obtain an optimal search point. The expected
number of fitness evaluations to reach an optimal search
point will be also called the “expected optimization time”
when proving polynomial upper bounds of the SGA.

3. LOWER BOUNDS

We first consider the SGA defined as Algorithm 1 on the
test problem OneMax(x) := |x| = x1 + · · · + xn. The aim
is to demonstrate that the population drifts away from the
optimum of the function. To this end, a potential function
capturing the status of the whole population is defined. This
is achieved by exponentially increasing the significance of the
levels of the OneMax function, which results in a potential
function of exponential range. The simplified drift theorem,
which was recently published by Oliveto and Witt [8], will
finally be applied to the logarithm of the potential. However,
we need the following slight modification with a parameter
r(N) that is allowed to grow with the state space and a
weaker second condition where Prob(∆t(i) ≤ −j) is used
instead of Prob(∆t(i) = −j). The theorem is proven along
the lines of the proof by Oliveto and Witt [8].

Theorem 1 (Simplified Drift Theorem). Let Xt,
t ≥ 0, be the random variables describing a Markov process
over a finite state space S ⊆ [0, N] and denote ∆t(i) :=
(Xt+1 −Xt | Xt = i) for i ∈ S and t ≥ 0. Suppose there ex-
ist an interval [a, b] in the state space, two constants δ, ε > 0
and, possibly depending on ℓ := b − a, a function r(ℓ) sat-
isfying 1 ≤ r(ℓ) = o(ℓ/log(ℓ)) such that for all t ≥ 0 the
following two conditions hold:

1. E(∆t(i)) ≥ ε for a < i < b,

2. Prob(∆t(i) ≤ −j) ≤ r(ℓ)

(1+δ)j for i > a and j ∈ N0.

Then there is a constant c∗ > 0 such that for T ∗ := min{t ≥
0: Xt ≤ a | X0 ≥ b} it holds Prob(T ∗ ≤ 2c∗ℓ/r(ℓ)) =

2−Ω(ℓ/r(ℓ)).

For the definition of our potential function, the following
notion is handy.

Definition 2. Given a population P , we define its spec-
trum (k0, . . . , kn) ∈ {0, . . . , µ}n as the vector consisting of
the frequencies of the n+ 1 possible OneMax values in the
population.

Obviously, any spectrum (k0, . . . , kn) satisfies k0 + · · · +
kn = µ. Since we analyze OneMax, only the spectra of
populations will be relevant for the optimization process.

Definition 3. The potential φc(P) of a population is de-
fined by

∑n
i=0 ki · ci, where (k0, . . . , kn) is the spectrum of P

and c > 1 is a constant.

The idea behind the exponential scaling is to bias the
potential towards good individuals and to make sure that
the potential reflects the “top” of the population sufficiently.

In the following, we will drop the index c for the sake of
readability. The following lemma shows that the potential
captures the “important” individuals of the population. Its
straightforward proof is omitted from this submission.

Lemma 4. If φ(P) ≤ cr the maximum fitness of individ-
uals in P is bounded from above by r. If φ(P) ≥ cr the
maximum fitness is at least r − logc µ.

Our aim is to show: if φ(P) > cαn for a sufficiently large
constant α < 1, e. g., α = 0.995 then the φ-value drifts away
from the optimum. We first concentrate on single individu-
als. Since the drift theorem will be applied to log(φ) in the
end, we consider the relative drift of the population, i. e., the
expected factor by which the potential is decreased. Let x
be an individual with i one-bits and let x′ be the result of
a mutation applied to x. The expected change in potential

w. r. t. x is given by E(Ri) := E(c|x
′|)/ci = E(c|x

′|−i) as the
potential of x equals ci. A drift away from the optimum is
equivalent to E(Ri) < 1. In order to compensate the bias
introduced by selection, we show that even E(Ri) < 1/2
is satisfied for appropriate choices of c and α. Note that
the following proof follows a similar structure as was nec-
essary for bounding the moment-generating function of the
absolute drift, see, e. g., Giel and Wegener [1].

Lemma 5. Choosing c = 8 as the base for φc(·) and α =
0.995, it holds for all n ≥ 5 and i ≥ αn that E(Ri) ≤ 0.48.

Proof. We prepare ourselves by bounding the relevant
transition probabilities. Let p(i, j) be the probability of cre-
ating a string with j ones from a string with i ones. We start
with the case j > i. Since it is necessary to flip at least j− i
zero-bits for an increase of size j − i, we obtain

j ≥ i ⇒ p(i, j) ≤
(

n− i

n

)j−i

≤ (1 − α)j−i,

where the last inequality follows from i ≥ αn.

For the non-increasing steps, i. e., j ≤ i, it is necessary to
flip either exactly i− j out of i one-bits and no other bit or
at least one zero-bit. Hence, j ≤ i implies

p(i, j) ≤
(

i

i− j

)

(

1

n

)i−j (

1 − 1

n

)n−(i−j)

+ (1 − α)

≤ 1

(i− j)!

(

1 − 1

n

)n−(i−j)

+ (1 − α),

where the last inequality follows from i ≤ n. Moreover, since
n ≥ 5 is assumed,

p(i, j) ≤ 1

(i− j)!

(

1 − 1

n

)n (
n

n− 1

)i−j

+ (1 − α)

≤ (5/4)i−j

(i− j)!
· e−1 + (1 − α)

for j ≤ i. Note that the estimation holds also for i = j,
where it breaks down to p(i, i) ≤ e−1 + (1 − α).

Our aim is to prove

E(Ri) =

∑n
j=0 p(i, j) · cj

ci
=

n
∑

j=0

p(i, j) · cj−i < 0.48.

We concentrate on the last sum and treat its terms for j > i
and j ≤ i differently according to the above estimations. In
the first case, we have

n
∑

j=i+1

p(i, j) · cj−i ≤
n
∑

j=i+1

((1 − α) · c)j−i

≤
∞
∑

k=1

((1 − α) · c)k =
(1 − α) · c

1 − (1 − α) · c .

For the second case, we obtain

i
∑

j=0

p(i, j) · cj−i ≤
i
∑

j=0

(

(

5

4c

)i−j

· e−1

(i− j)!
+

1 − α

ci−j

)

≤
∞
∑

k=0

(

(

5

4c

)k

· e
−1

k!
+

1 − α

ck

)

= e5/(4c)−1 +
1 − α

1 − 1/c
.

Altogether, the sum is at most

(1 − α) · c
1 − (1 − α) · c + e5/(4c)−1 +

1 − α

1 − 1/c
,

which becomes less than 0.48 by, e. g., choosing α = 0.995
and c = 8.

In the following, the choice c = 8 is fixed.

Now for the selection. We fix a population P with spec-
trum (k0, . . . , kn) and denote by P ′ its offspring population.
Let the random variables S0, . . . , Sn – called selection fre-
quencies – denote how many individuals are chosen for mu-
tation from the respective levels of the OneMax function.
Clearly, ki = 0 implies Si = 0. We will prove that the best
and worst fitnesses from a population stay in a ratio of at
most 2 for an exponential number of steps. The reason is
that the maximum fitness is n and the minimum fitness af-
ter initialization is close to n/2. Under this assumption, the
expected Si-values are not too different from the frequencies
in the parent population.

Lemma 6. With probability 1− 2−n1−o(1)

, best and worst

fitness for all populations up to time t∗ = 2n1−γ(n)

, γ(n) an
appropriate function satisfying γ(n) = o(1), are in ratio at
most 2. Under this assumption, E(Si) ≤ 2ki for 0 ≤ i ≤ n.

Proof. Let ℓ = 0.499n and u = 0.997n. We will show
that all fitness values (i. e., OneMax values) observed up to

time t∗ = 2n1−γ(n)

are in the interval [ℓ, u] with probability

1−2−n1−o(1)

if γ(n) goes to zero slowly enough. For fitness-
proportional selection, this immediately implies E(Si) ≤ 2ki

for 0 ≤ i ≤ n. The rest of the proof in divided into the
obvious parts regarding the lower and the upper bound.

For the lower bound, we first note that due to Chernoff
bounds and the assumption µ = poly(n), all individuals from
the initial population have fitness at least ℓ with probabil-
ity 1 − 2−Ω(n). Observe that fitness-proportional selection
prefers individuals with larger number of ones. Let p(i, j) de-
note the probability of creating an individual with j < i ones

from one with i ones. It is well known that this probabil-
ity is monotone decreasing w. r. t. i (Wegener and Witt [9]),
i. e., p(i + 1, j) < p(i, j) for all i ≥ j. Hence, if we replace
fitness-proportional selection by uniform selection, the prob-
ability of creating an individual with less than ℓ ones in a
generation only increases. So the problem breaks down to
showing that Algorithm 1 with uniform selection does not
produce individuals with less than ℓ ones within t∗ steps.

The latter statement follows by fixing, in the modified
algorithm, an arbitrary individual x from the random pop-
ulation at time t∗. The individual has a lineage of length t∗

which, as the fitness function is not used, corresponds to a
purely random walk on the search space {0, 1}n. Oliveto
and Witt [8] consider this scenario implicitly in their ap-
plication of the new drift theorem w. r. t. the needle-in-a-
haystack function. They show that a random walk of length
even 2c∗n, c∗ sufficiently small, with probability 1 − 2−Ω(n)

does not create individuals with more than n − ℓ ones or,
symmetrically, more than n − ℓ zeroes. The last perspec-
tive bounds the probability of less than ℓ ones for all indi-
viduals in a single lineage of length t∗. Since there are at
most µ = poly(n) individuals, the probability of once creat-

ing an individual with less than ℓ ones is bounded by 2−Ω(n)

also for all individuals. This completes the consideration of
the lower bounds.

The upper bound that is needed here is actually the result
that we prove in the upcoming Theorem 8: The maximum
number of ones in all individuals up to time t∗ is bounded

from above by u = 0.997n with probability 1 − 2−n1−o(1)

.
We can use this result already at this place without creating
a loop in the final proof. For each step, the probability that
the upper bound u or the lower bound ℓ on the fitness does

not hold is 2−n1−o(1)

. By inductively summing up failure
probabilities, the probability that a bound does not hold af-

ter t steps is at most t2−n1−o(1)

. This is still 2−n1−o(1)

for all

t ≤ t∗ = 2n1−γ(n)

if γ(n) goes to zero slowly enough.

Of course, the Si are not independent because always
S0 + · · · + Sn = µ. However, this will not be a problem
since we can apply the linearity of expectation in the fol-
lowing. We show that within the interval [80.996n, µ8n], the
potential really drifts towards smaller values. Again the rel-
ative change is estimated since the drift theorem will finally
be applied to the logarithm of φ.

Lemma 7 (Main Lemma).

1. If φ(P) ≥ 80.996n then E(φ(P ′)/φ(P)) = 1 − Ω(1).

2. Prob(φ(P ′)/φ(P) ≥ 8k) ≤ nO(1/ log log n) · 2−k for arbi-
trary P and all k ≥ 0.

Proof. To prove the first statement of the lemma, we
only consider the individuals with at least αn = 0.995n one-
bits. Since φ(P) ≥ 80.996n is assumed and φ is exponential
in the number of one-bits, the relative contribution of the
remaining individuals to the potential is 2−Ω(n). This holds
also for the next generation population P ′ since flipping
(0.996n− 0.995n)/2 = n/2000 bits in a step has probability

2−Ω(n). So, pessimistically assuming φ(P ′)/φ(P) = 1−Ω(1),
the relative contribution of the individuals with at most
0.9955n one-bits to φ(P ′) is still 2−Ω(n).

We fix an arbitrary outcome of the selection frequencies
and obtain for the expected potential of P ′ that

E(φ(P ′) | S0, . . . , Sn) =
n
∑

i=0

Si · (8i · E(Ri)),

where 8i ·E(Ri) equals the expected potential of an offspring
with parent from level i, i. e., with i one-bits. By the law of
total expectation and the linearity of expectation,

E(φ(P ′)) = E(E(φ(P ′) | S0, . . . , Sn)) =
n
∑

i=0

E(Si)·8i·E(Ri),

which is at most
n
∑

i=0

2ki · 8i · E(Ri)

due to Lemma 6.

Taking into account that only individuals with at least αn
one-bits matter, we have

E(φ(P ′)) ≤
n
∑

i=αn

2ki · 8i · E(Ri) + 2−Ω(n) · φ(P).

Finally applying Lemma 5, we obtain

E(φ(P ′)) ≤
n
∑

i=αn

2ki · 8i · 0.48 + 2−Ω(n) · φ(P)

≤
n
∑

i=αn

0.96 · ki · 8i + 2−Ω(n) = (1 − Ω(1)) · φ(P),

which proves the first part of the lemma.

To prove the second part, we assume arbitrary φ(P) and
estimate φ(P ′)/φ(P) from above using the following pes-
simistic assumptions: If an individual is chosen for muta-
tion, each flipped bit leads to an increase of the individual’s
potential. Then the relative increase of the individual’s po-
tential by the j-th mutation, 1 ≤ j ≤ µ, of a generation is
bounded from above by a factor 8Xj , where Xj denotes the
random number of flipping bits in the j-th mutation. We
bound this factor for every mutation from above by 8X∗

,
where X∗ := max{X1, . . . , Xµ} is the µ-th order statis-
tic, i. e., the maximum of these random variables. Since
Prob(Xi ≥ k) ≤

(

n
k

)

(1/n)k ≤ (nk/k!) · (1/n)k, an applica-
tion of the union bound yields Prob(X∗ ≥ k) ≤ µ/k!.

To bound the increase of the whole potential, we have to
take into account that individuals can be chosen more than
once. As before, let (k0, . . . , kn) be the spectrum of popu-
lation P and let Si, 0 ≤ i ≤ n, denote the random number
of individuals chosen from level i. Under our pessimistic
assumptions, the potential of the offspring population is at
most

φ(P ′) ≤
n
∑

i=0

Si · 8i+X∗

=
n
∑

i=0

ki · Si

ki
· 8i+X∗

≤ 8
X∗+maxi

{

Si
ki

}

· φ(P).

Hence, it remains to bound S∗ := max{Si/ki}. We al-
ready know that Si is dominated by a binomial distribution
B(µ, 2ki/µ) with parameters µ and 2ki/µ, implying that Si

is dominated by B(µ, 2/µ). Therefore, Prob(Si/ki ≥ k) ≤
(

µ
k

)

(2/µ)k ≤ 2k/k! for any i similarly as above. Finally,

using the union bound, we have Prob(S∗ ≥ k) ≤ n2k/k!.

Combining the previous insights, we consider the random
variable 8X∗+S∗

, which is an upper bound on the relative
increase of the potential. For 8X∗+S∗ ≥ 8k, or, equivalently,
X∗ +S∗ ≥ k to happen, X∗ ≥ k/2 or S∗ ≥ k/2 is necessary.
Hence,

Prob(X∗ + S∗ ≥ k) ≤ 2 ·
(

µ

(k/2)!
+
n2k/2

(k/2)!

)

≤ ek/2 · 2k/2+1 · (µ+ n)

(k/2)k/2
≤ 22k+3(µ+ n)

kk/2
=: g(k),

which in turn will be bounded from above by

min

{

1,

(

1

2

)k−8 log(µ+n)/log log(µ+n)
}

if β := µ + n is chosen large enough. The last estimation
holds since k ≥ 8 log β/log log β implies

kk/2 = kk/4 · kk/4 ≥
(

log β

log log β

)
2 log β

log log β

· kk/4

≥ 2
(log log β−log log log β)· 2 log β

log log β
+(log k)· k

4

≥ 2(3/2) log β+3k+4 ≥ 22k+4(µ+ n)

2−k
,

(note that all inequalities assume growing β), which means

g(k) = 22k+3(µ+ n)/kk/2 ≤ 1/2 for all k ≥ 8 log β/log log β
and β large enough. Moreover, obviously g(k + 1)/g(k) ≤
1/2 for k ≥ 64, implying g(k) ≤ (1/2)k−8 log β/log log β for
appropriate k and β. For smaller values of k, we use the
trivial bound 1 on probabilities. Now,

(

1

2

)k−8 log β/log log β

≤
(

1

2

)k

· (µ+ n)8/log log n

=

(

1

2

)k

nO(1/log log n)

since µ = nO(1). This completes the proof of the second
part.

Now the following lower bound is merely an application
of the drift theorem w. r. t. the main lemma.

Theorem 8. Let µ = poly(n). Then the SGA needs on

OneMax with probability 1−2−n1−o(1)

at least 2n1−o(1)

gen-
erations to create a search point with more than 99.7 % one-
bits.

Proof. As motivated above, we capture the potential of
a population by ψ(P) := log8(µ8n)−log8(φ(P)) and identify
the random ψ-value at time t with the random variables Xt

from Theorem 1. We have 0 ≤ ψ(P) ≤ n+log8(µ) = n+o(n)
for all populations P and ψ takes only values from a finite
set. Moreover, the following two conditions hold:

1. E(ψ(P ′)− ψ(P)) = E(− log8(φ(P ′)/φ(P))) is at least
− log8(E(φ(P ′)/φ(P))) due to Jensen’s inquality. Ac-
cording to Lemma 7, this is Ω(1) for all P such that
ψ(P) ≤ 0.004n+ log8(µ).

2. Also according to Lemma 7, Prob(ψ(P ′) ≤ ψ(P)−k) =

Prob(log8(φ(P ′)/φ(P) ≥ k)) ≤ nO(1/log log n) · 2−k.

Choosing N := n + log8(µ), r(n) as any function of order

nO(1/log log n), a := 0.003n and b := 0.004n, Theorem 1 is in
force. We obtain

Prob(T ∗ ≤ 2c∗(b−a)/r(N))

= Prob(T ∗ ≤ 2c∗·(n/1000)·n−O(1/log log n)

)

= Prob(T ∗ ≤ 2n1−o(1)

) = 2−n1−o(1)

.

Additionally using Chernoff bounds to bound ψ(P) ≥ n/3
for the initial population, we obtain a total failure probabil-

ity of 2−n1−o(1)

.

Remark 9. Theorem 8 holds for any function where max-
imum and minimum fitness value are in ratio at most 2.

It does not seem obvious to generalize the previous result
to the case of arbitrary linear functions, i. e., functions of the
kind f(x) = w0+w1x1+ · · ·+wnxn, wi ∈ N

+ and 0 ≤ i ≤ n.
However, a lower bound can be shown for populations of
size µ ≤ (log n)/4 even for functions with a unique opti-
mum, which, w. l. o. g., is assumed to be the all-ones string.
The idea is that even a (1,µ) EA, which is a degenerate case
of the SGA for extreme functions (see Sections 4 and 5 for
details), would not be able to optimize such functions effi-
ciently. We consider a much simpler potential function now,
namely φ(P) := max{|xi| | i = 1, . . . , µ} for a population
P = {x1, . . . , xµ}. In other words, the potential measures
the maximum number of one-bits (i. e., correctly set bits) for
the individuals in the population. Moreover, in the analysis
we pessimistically assume that only individuals with φ(P)
one-bits are chosen for mutation; for this assumption the
above-mentioned monotonicity of the mutation operator is
used. Although our new, simple and straightforward choice
for φ(P) does not seem to work for the proof of Theorem 8,
it is sufficient now due to the restricted population size and a
strong drift away from the optimum, i. e., the all-ones string.
The following proof is a significant simplification of a corre-
sponding statement for the (1,µ) EA (see [5]).

Our aim is to bound the drift of the potential, i. e., ∆(P) :=
φ(P ′) − φ(P), where P ′ is the offspring population of pop-
ulation P . Since the potential only depends on the number
of ones, it suffices to study ∆i := ∆(φ(P ′) − φ(P ∗)), where
P ∗ is a population consisting of individuals with i ones only.
We show a negative drift for ∆i given that i is large enough.

Lemma 10. Given µ ≤ (logn)/4 and i ≥ n−√
n, it holds

E(∆i | ∆i 6= 0) = −1 + o(1) and Prob(∆i ≥ k | ∆i 6= 0) =

O((n1/4 logn)/k!).

Proof. In a single mutation, the probability of not de-

creasing the number of one-bits is at most
(

1 − 1
n

)n−√
n

+
√

n
n

≤ 2
5

for large enough n since it is necessary to either
maintain all one-bits or to flip at least one zero-bit. Hence,
with probability at least

(

1 − 2

5

)µ

≥
(

1

2

)(log n)/4

=
1

n1/4

the offspring population contains only individuals with less
than i ones, which means Prob(∆i < 0) ≥ n−1/4. On the
other hand, the probability that a zero-bit flips at all within
µ = O(log n) trials, a necessary condition for ∆i > 0, is at

most µ/
√
n = o(n−1/4). This means

1. Prob(∆i > 0) = o(Prob(∆i < 0))

2. Prob(∆i 6= 0) = Prob(∆i < 0) + Prob(∆i > 0) =
(1 − o(1)) · (Prob(∆i < 0)).

The unconditional drift is bounded from above according
to

E(∆i) ≤ −Prob(∆i < 0) + Prob(∆i > 0) ·
(

1 +

√
n

n

)

,

where we pessimistically assume a decrease of only −1 in the
case ∆i < 0 and, in the other case, allow for an additional
number of

√
n zero-bits to be flipped independently of the

zero-bits that flip necessarily for ∆i > 0 to hold. Hence,
E(∆i) = −(1−o(1)) ·Prob(∆i < 0). For the drift under the
condition ∆i 6= 0 we obtain

E(∆i | ∆i 6= 0) =
E(∆i)

Prob(∆i) 6= 0)

=
−(1 − o(1)) · Prob(∆i < 0)

(1 + o(1)) · Prob(∆i < 0)
= −1 + o(1),

which proves the first statement of the lemma. The second
statement follows similarly as in Lemma 7 by considering
the maximum number of flipping bits within µ = O(log n)

trials along with Prob(∆i 6= 0) ≥ n−1/4.

An application of Theorem 1 yields:

Theorem 11. If µ ≤ (log n)/4, the SGA needs with prob-

ability 1 − 2−Ω(n3/4/log n) at least 2Ω(n3/4/log n) generations
to optimize a function with unique optimum.

Proof. Counting only the steps where ∆i 6= 0, we estab-
lish the conditions of Theorem 1 by choosing r(N) appropri-

ately s. t. r(N) = O(n1/4 logn), δ := 1, ε := 1/2, a :=
√
n/2,

b :=
√
n. Furthermore, given population Pt at time t, we

set Xt := n− φ(Pt). Since the initial number of ones is less

than n − √
n with probability 1 − 2−Ω(n), the total failure

probality is 2−Ω(n3/4/log n).

4. SCALING

The first result from the previous section applies to One-
Max, which is a function with a small polynomial range,
namely {0, . . . , n}. We now consider whether exponential
scaling helps to make the algorithm successful. Scaling the
objective function and turning it into a fitness function that
can distinguish between search points in a better way can
only help if the population is large enough. In the extreme
case µ = 1 the algorithm performs only random search.

To obtain an efficient evolutionary algorithm using fitness-
proportional selection, we require two properties that have
to be fulfilled. On the one hand, the population size has to
be large enough such that the algorithm does not perform
random search. One the other hand, the scaling function
should ensure that at least some fraction of the individuals
with the highest fitness value are chosen for mutation.

Let g be the original fitness function. Then, for each input
x, the scaled function f is

f(x) = (µ− 1)g(x).

Let x and y be two individuals with different fitness values
such that g(x) > g(y). Then, the following property of the
scaled function holds:

f(x) ≥ (µ− 1) · f(y).

Using this property, we can lower bound the probability of
choosing one individual with highest fitness value in a selec-
tion step.

Lemma 12. Let f be a scaled fitness function of g such
that f(x) = (µ− 1)g(x) for each input x. The probability of
the SGA choosing an individual with the highest fitness value
for mutation in a single selection step when optimizing f is
at least 1/2.

Proof. Let f(x∗) be the largest fitness value currently
present in the population P , x∗ ∈ P an individual attaining
this value and r be the number of individuals in P having
fitness f(x∗). Furthermore, let f(y) be the highest possi-
ble fitness value such that f(x∗) > f(y) and consider the
individuals xi with 1 ≤ i ≤ µ sorted increasingly accord-
ing to fitness. We calculate the probability of choosing an
individual in the population of fitness f(x∗). We get

r · f(x∗)

r · f(x∗) +
∑µ−r

i=1 f(xi)

≥ f(x∗)

f(x∗) +
∑µ−1

i=1 f(xi)
≥ f(x∗)

f(x∗) + (µ− 1)f(y)
.

Using f(x∗) ≥ (µ−1)·f(y), the last expression is bounded

from below by (µ−1)·f(x)
2(µ−1)f(y)

= 1/2.

Let OneMaxs be the function that is obtained by scaling
the fitness values of OneMax in the described way. Hence

OneMaxs(x) = (µ− 1)OneMax(x).

Note that the value of a search point with respect to
OneMaxs depends on the value of OneMax and the pop-
ulation size used in the algorithm. Using the scaled func-
tion OneMaxs instead of OneMax in the evolutionary al-
gorithm, we show that the SGA turns into an efficient algo-
rithm for the problem if the population size is at least loga-
rithmic in the problem size. Note that Theorem 11 yields an
exponential lower bound for functions with unique optimum
if the population size is at most logarithmic. In general,
logarithmic population size is necessary to make a (1,µ) EA
simulate a (1+µ) EA (see [5]), which provides for the elitism
that the proof techniques from this section are based upon.

Theorem 13. Choosing µ ≥ c logn, c an appropriate
constant, the expected time until the algorithm has produced
an optimal search point for the function OneMaxs is O(µn).

Proof. From Lemma 12 it follows that an individual
with the highest fitness value in the population is chosen
with a probability of at least 1/2. The probability of produc-
ing a solution with at least the same fitness from a solution
x is at least (1 − 1/n)n ≥ 1/4 for n ≥ 2.

Therefore, the probability of not having produced an in-
dividual of fitness at least f(x∗) in an iteration of the algo-
rithm is upper bounded by

(

1 − 1

8

)µ

= αµ,

where α = 7/8 is a constant. Hence, with probability at least
1 − αµ the fitness of the best individual does not decrease
in a single iteration.

Let OneMax(x∗) = n − k, i. e., k bits can be flipped
to achieve an improvement. Let E1 be the event that the
current best individual is selected for mutation and an im-
provement towards the optimum is achieved. The probabil-
ity of E1 is estimated in a similar way as in the analysis of the
(1+λ) EA presented by Jansen, De Jong and Wegener [6].
Since the best individual is selected for mutation with prob-
ability at least 1/2, the probability that event E1 happens
is at least k/(2en) for each selected individual. Since µ in-
dividuals are selected for mutation in each generation, the
probability that event E1 does not happen for any of them is
less than (1−k/(2en))µ. Hence at each step the probability
an improvement occurs is bounded from below by

1 −
(

1 − k

2en

)µ

≥ 1 − e−kµ/(2en)

≥ 1 − 1

1 + kµ/(2en)
=

kµ

2en+ kµ
.

This implies that the expected number of iterations under
the condition that the fitness of the best individual in the
population does not decrease is upper bounded by

n
∑

k=1

2en+ kµ

kµ
=

n
∑

k=1

(

1 +
2en

kµ

)

≤ n+
c′n logn

µ

with c′ an appropriate constant. Since there are µ function
evaluations in each iteration and µ is at least c logn we get
an upper bound of c′′µn if no failure has happened before.

Consider a typical run of 2c′′µn steps. Assuming that
the value of the best individual in the population has not
decreased, the optimal solution is produced with probabil-
ity p1 ≥ 1/2 using Markov’s inequality. With probability

at least p2 = (1 − αµ)2c′′µn the fitness of the best indi-
vidual in the population has not decreased during the con-
sidered phase. Since µ ≥ c · logn and c is an appropri-
ate constant, we get p2 = Ω(1). Hence, with probability
p1 ·p2 = Ω(1) the optimal solution has been obtained during
that phase. We have not made any assumption on the pop-
ulation at the beginning of the considered phase. This im-
plies that the expected optimization time is upper bounded
by O((c′′µn)/(p1 · p2)) = O(µn).

It is worth to point out that the result presented in Theo-
rem 13 shows that once the objective function is scaled, the
SGA has the same asymptotic runtime for OneMax as that
of the (µ+1) EA [10] and of the (1+µ) EA [6] as long as
the population size of the algorithms is at least logarithmic
in the problem size. For smaller population sizes the two
latter algorithms have the same performance as that of the
(1+1) EA for OneMax.

The ideas for proving that scaling helps to make the algo-
rithm effective for the OneMax-problem use the following
property. With a good probability, the algorithm makes dur-
ing a phase of fixed length always progress towards an opti-
mal solution once the function is scaled. Considering prob-
lems where the fitness values can be grouped into classes
such that the probability of producing search points of a
higher fitness class with a good probability leads to the
method of fitness-based partitions which is very popular

for analyzing simple evolutionary algorithms such as the
(1+1) EA [7] and the (1+µ) EA [6]. In the following, we
want to relate runtime bounds achievable by the method of
fitness-based partitions and the (1+1) EA to the runtime of
the simple genetic algorithm using the scaling mechanism
introduced in this section. Again we will need populations
of at least logarithmic size since this allows the algorithm
to create duplicates of the best individual with probabil-
ity Ω(1).

We consider a problem where the function values can be
partitioned into different classes A1, . . . , Am such that for
two search point x and y where g(x) ∈ Ai and g(y) ∈ Aj ,
i < j, g(x) < g(y) holds. Additionally, we assume that Am

is not empty and contains only the optimal function value.
Using the method of fitness-based partitions for evolutionary
algorithms using elitism, a lower bound pi has to be found
on the probability of producing from any solution x with
g(x) ∈ Ai a solution x′ with g(x′) ∈ Aj , where j > i. Having
computed these probabilities the expected runtime of the
whole algorithm to achieve an optimal search point can then
be bounded by T ∗ =

∑m−1
i=1 p−1

i .

Theorem 14. Let g be a function that can be partitioned
into m fitness levels Ai, 1 ≤ i ≤ m. Let f be the scaled func-
tion obtained from g such that f(x) = (µ− 1)g(x). Further-
more, let pi be a lower bound on the probability of producing
from a solution x ∈ Ai a solution x′ ∈ Aj where j > i and
set T ∗ :=

∑m−1
i=1 p−1

i = poly(n). Choosing µ ≥ c logn, c an
appropriate constant, the expected optimization time of the
SGA on f is O(m · µ+ T ∗).

Proof. Let x∗ ∈ P be a solution with the highest fitness
value in the population. If f(x∗) ∈ Ai, the probability of
producing from x∗ a solution x′ with f(x′) ∈ Aj , where
j > i, is at least pi. We already know that the fitness of
the best individual in the population does not decrease with
probability 1 − αµ (see proof of Theorem 13). We consider
the probability that one of the best individuals is chosen for
mutation and that an improvement is achieved. This is done
similarly as in the proof of Theorem 13 and in [6]: In each
selection step a best individual is selected for mutation with
probability at least 1/2 (Lemma 12). Hence, the probability
that this happens in one specific iteration is at least

1 − (1 − pi/2)µ ≥ 1 − e−pi·µ/2

≥ 1 − 1

1 + pi · µ/2
=

piµ

2 + piµ
.

Considering the population size µ and summing up over
the different values of i, we get

µ ·
m−1
∑

i=1

2 + piµ

piµ
= µ ·

m−1
∑

i=1

(

1 +
2

piµ

)

= µ ·m+ 2 · T ∗.

In a phase of 2(µm + 2 · T ∗) steps, an optimal solution
is produced with probability p1 ≥ 1/2. With probability

p2 = (1−αµ)2(µm+2·T∗) the fitness of the best individual has
not decreased during that phase. We assume T ∗ = poly(n).
Hence, choosing µ ≥ c · logn, c an appropriate constant,
we get p2 = Ω(1). Therefore, the expected optimization
time is upper bounded by O((mµ + 2 · T ∗)/(p1 · p2)) =
O(mµ+ T ∗).

5. SELECTION PRESSURE

In the previous section, we have shown that scaling helps
to make the algorithm efficient. The results presented in
Theorems 13 and 14 are based on increasing the selection
pressure by using the scaled function instead of the original
one. We have shown that the selection pressure may be
increased by changing the fitness landscape such that the
algorithm can “hill-climb”up OneMax or improve from one
fitness-based partition to another.

In this section, we want to discuss scaling mechanisms
and their impact on the selection pressure a bit further. As
the selection pressure is increased the SGA resembles very
closely a (1,µ) EA (we still use µ instead of λ for the offspring
population size). The (1,µ) EA has a parent population of
one single individual. In each generation it creates µ new in-
dividuals by mutating the parent and then selects the best
one for the next generation. Hence, the behaviour of the
SGA will approach that of the (1,µ) EA as the probability
of selecting the best individual gets closer to 1 (i. e., the se-
lection pressure is increased). Consider the following scaling
function with higher selection pressure than that used in the
previous section: f(x) = (µ− 1)2g(x).

Then for any two individuals x and y such that g(x) >
g(y) it holds that f(x) ≥ (µ − 1)2 · f(y). By using similar
arguments to those of Lemma 12 we get that the probability
of selecting the best current individual x∗ is at least

f(x∗)

f(x∗) + (µ− 1)f(y)
≥ (µ− 1)2 · f(y)

(µ− 1)2f(y) + (µ− 1)(f(y)

=
µ− 1

µ− 1 + 1
= 1 − 1

µ

If µ is not too small this gives a probability of 1 − o(1)
of selecting the best individual for mutation and there is
a constant probability that all the individuals for the next
generation are obtained by mutating the current best.

Once the selection pressure is high enough the SGA will
work exactly as the (1,µ) EA. A runtime analysis compar-
ison between the (1,µ) EA and the (1+µ) EA has already
been performed [5]. In the paper a function called Cliff is
presented for which the (1,µ) EA is efficient for logarithmic
values of µ while the (1+µ) EA is inefficient for any µ value.

The Cliff function is the following:

Cliff(x) =

{

OneMax(x) − ⌊n/3⌋ if |x| ≥ n− ⌊n/3⌋
OneMax(x) otherwise.

As proved in [5] for the (1+µ) EA, an elitist selection algo-
rithm attempting to optimize this function will get trapped
on top of the cliff located at ⌈2/3n⌉ one-bits with exponen-
tially high probability. Then the expected optimization time
is exponential because n/3 bits need to be flipped for the op-
timum to be found. It is worth to point out here that the
described proof idea also holds for a (µ+λ) EA with parent
and offspring populations up to polynomial size.

On the other hand, if µ is of logarithmic size, then the
(1,µ) EA has a good enough probability of quickly falling
down the cliff and then climbing up to the optimum effi-
ciently without hardly ever going back to the cliff. As dis-
cussed previously if the selection pressure of the SGA is high
enough the results obtained in [5] for the (1,µ) EA can be
extended to the SGA considered in this paper. Hence, a
family of functions has been presented where a simple GA

using fitness-proportional selection outperforms elitist selec-
tion algorithms.

6. CONCLUSIONS

Selection methods play a crucial role in making an evolu-
tionary algorithm successful. We have examined the use
of fitness-proportional selection which has originally been
proposed to be used in genetic algorithms for population-
based evolutionary algorithms. Generalizing the drift anal-
ysis technique to capture the drift of the whole population,
we have shown that the SGA with polynomial-size popu-
lations is not able to optimize even OneMax. Moreover,
up to logarithmic population size it provably fails to op-
timize any function with unique optimum. Later on, we
have pointed out how to make evolutionary algorithms us-
ing fitness-proportional selection successful by changing the
fitness landscape due to some scaling function and discussed
its impact on the selection pressure.

References

[1] O. Giel and I. Wegener. Evolutionary algorithms and
the maximum matching problem. In Proceedings of the
20th Annual Symposium on Theoretical Aspects of
Computer Science (STACS ’03), pages 415–426.
Springer, 2003.

[2] D. E. Goldberg. Genetic Algorithms for Search,
Optimization, and Machine Learning. Addison-Wesley,
1989.

[3] E. Happ, D. Johannsen, C. Klein, and F. Neumann.
Rigorous analyses of fitness-proportional selection for
optimizing linear functions. In Proc. of GECCO ’08,
pages 953–960. ACM Press, 2008.

[4] J. Holland. Adaptation in Natural and Artificial
Systems. Univesity of Michigan Press, 1st edition,
1975.

[5] J. Jägersküpper and T. Storch. When the plus
strategy outperforms the comma strategy—and when
not. In Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI
2007), pages 25–32. IEEE Press, 2007.

[6] T. Jansen, K. A. De Jong, and I. Wegener. On the
choice of the offspring population size in evolutionary
algorithms. Evolutionary Computation, 13:413–440,
2005.

[7] P. S. Oliveto, J. He, and X. Yao. Computational
complexity analysis of evolutionary algorithms for
combinatorial optimization: A decade of results.
International Journal of Automation and Computing,
4(3):281–293, 2007.

[8] P. S. Oliveto and C. Witt. Simplified drift analysis for
proving lower bounds in evolutionary computation. In
Proc. of Parallel Problem Solving from Nature
(PPSN X), volume 5199 of LNCS, pages 82–91.
Springer, 2008.

[9] I. Wegener and C. Witt. On the optimization of
monotone polynomials by simple randomized search
heuristics. Combinatorics, Probability and Computing,
14:225–247, 2005.

[10] C. Witt. Runtime analysis of the (µ+1) EA on simple
pseudo-Boolean functions. Evolutionary Computation,
14(1):65–86, 2006.

