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ABSTRACT
We present the first parameterized analysis of a standard (1+1)

Evolutionary Algorithm on a distribution of vertex cover problems.

We show that if the planted cover is at most logarithmic, restarting

the (1+1) EA every 𝑂 (𝑛 log𝑛) steps will find a cover at least as

small as the planted cover in polynomial time for sufficiently dense

random graphs 𝑝 > 0.71. For superlogarithmic planted covers, we

prove that the (1+1) EA finds a solution in fixed-parameter tractable

time in expectation.

We complement these theoretical investigations with a number

of computational experiments that highlight the interplay between

planted cover size, graph density and runtime.

CCS CONCEPTS
• Theory of computation→ Theory of randomized search
heuristics.
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1 INTRODUCTION
Combinatorial problems with planted solutions have been an im-

portant subject of study on a wide range of settings. In this scenario,

a fixed solution is hidden within a large random structure such as a

graph. The canonical example of this is the planted clique problem
where a fixed complete subgraph of size 𝑘 is placed within a large

Erdős-Rényi random graph on 𝑛 ≫ 𝑘 vertices. The task is to either

recover the hidden solution [2] or one of size at least 𝑘 [12]. These

problems have important applications in cryptography [13] for ex-

ample. In the context of randomized search heuristics, Storch [21]
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investigated the planted clique problem for random local search

(RLS) and the (1+1) EA. More recently, Doerr et al. [7] consid-

ered randomly generated propositional satisfiability problems with

planted assignments and proved that the (1+1) EA requires at most

𝑂 (𝑛 log𝑛) time to solve this problem provided that the constraint

density is high enough.

Planted vertex covers have recently been studied in the context

of systematically incomplete data [4] in networks. In this view, true

node interactions can only be observed among some core set 𝐶 ,

whereas a potentially much larger set of fringe nodes lies outside

this sphere of observability. This may occur, for example, in social

networks and communication data sets [20] where a company only

knows about links within the company and between an employee

and the outside world, but not about links between external entities.

This translates to a planted vertex cover problem on a graph𝐺 =

(𝑉 , 𝐸). An adversary knows of a subset 𝐶 ⊆ 𝑉 which is a vertex

cover, and the task is to identify a set as close to 𝐶 as possible.

In the G(𝑛, 𝑘, 𝑝) model, a graph 𝐺 = (𝑉 , 𝐸) is constructed on

a set 𝑉 of 𝑛 vertices by taking a size-𝑘 subset 𝐶 ⊆ 𝑉 to be the

core. An edge appears in 𝐺 with probability 𝑝 unless it connects

two vertices in 𝑉 \ 𝐶 , in which it occurs with probability zero.

Therefore, 𝐺 is guaranteed to have a 𝑘-vertex cover. Note that a

graph can be constructed from this model by drawing a standard

Erdős-Rényi graph and subsequently deleting all edges that connect

fringe vertices.

This model is a special case of the stochastic block model of
random graphs from network theory [10] in which the vertex set is

partitioned into 𝑟 disjoint communities and edge probabilities are

specified by a symmetric 𝑟×𝑟 matrix 𝑃 where a vertex in community

𝑖 is connected to a vertex in community 𝑗 with probability 𝑃𝑖 𝑗 . The

stochastic block model allows for the generation of graphs from

which the community subgraphs might be recovered partially or in

full from the graph data [1]. This models the detection of community
structure in networks, which is a fundamental problem in computer

science. The G(𝑛, 𝑘, 𝑝) model we study in this work is a stochastic

block model with 𝑟 = 2 and probability matrix

𝑃 =

[︃
𝑝 𝑝

𝑝 0

]︃
.

In this paper, we are interested in the performance of simple

randomized search heuristics on planted vertex cover problems

in the context of parameterized complexity. We prove that, for

sufficiently “dense” graphs (i.e., large enough 𝑝), the (1+1) EA is

with high probability a fixed-parameter tractable heuristic for the

𝑘-vertex cover problem where 𝑘 is the size of the planted solution.

More precisely, if 𝑘 is at most logarithmic, we prove there is a

threshold on 𝑝 such that above this threshold the (1+1) EA is very
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likely to find a 𝑘-cover in almost linear time. For larger values of 𝑘 ,

we show that the (1+1) EA runs in𝑂 (𝑓 (𝑘, 𝑝)𝑛 log𝑛)) time where 𝑓

is a function of 𝑘 and 𝑝 (but not 𝑛).

The first parameterized result on vertex cover is due to Kratsch

and Neumann [16] who demonstrated that Global SEMO using

instance-specific mutation operators has expected optimization

time 𝑂 (𝑂𝑃𝑇 · 𝑛4 + 𝑛 · 2𝑂𝑃𝑇 2+𝑂𝑃𝑇 ) on any graph 𝐺 where 𝑂𝑃𝑇 is

the size of the optimal vertex cover of 𝐺 . This result can be tight-

ened to 𝑂 (𝑛2 log𝑛 +𝑂𝑃𝑇 · 𝑛2 + 4𝑂𝑃𝑇𝑛) by incorporating the cost

of an optimal fractional vertex cover provided by an LP solver into

the fitness function. A recent study by Baguley et al. [3] extended

these multi-objective approaches to the W-separator problem. Us-

ing a special focused jump-and-repair mechanism, Branson and

Sutton [5] showed that evolutionary algorithms can solve the vertex

cover problem in expected time 𝑂 (2𝑂𝑃𝑇𝑛2 log𝑛) by probabilisti-

cally simulating an iterative compression routine.

The above results hold for all graphs 𝐺 with vertex cover size

𝑂𝑃𝑇 . In this paper, we sacrifice the generality of the problem

slightly in order to investigate a more general algorithm, i.e., the

(1+1) EA. To our knowledge, we present here the first parameter-

ized complexity result on vertex cover problems for a standard

evolutionary algorithm that does not rely on any special mutation

operators.

Our results. For random planted graph models with 𝑛 vertices,

edge density 𝑝 and planted cover size 𝑘 , we show that if 𝑘 ≤ ln𝑛,

then if 𝑝 >

√︂
1−ln𝛿

2
for any constant 𝛿 ∈ (1/𝑒, 1), a restart frame-

work for the (1+1) EA finds a 𝑘-cover in 𝑛𝑐+1 log𝑛, where 𝑐 is a

constant. If 𝑘 > ln𝑛, then we show for any 0 < 𝑝 < 1, the expected

time of the (1+1) EA is 𝑂

(︃
𝑘
4𝑘

(︂
1+ 1

𝑝

)︂
𝑛 log𝑛

)︃
, i.e., the (1+1) EA runs

in FPT time parameterized by 𝑘 and 𝑝 .

We also provide the results of computational experiments that

investigate regimes that our theorem does not cover, for example

when both 𝑝 and𝑘 are small. These results elucidate the relationship

between 𝑘 and 𝑝 and the runtime of the (1+1) EA, and hint at new

interesting directions for future theoretical study.

2 PRELIMINARIES
Given a graph 𝐺 = (𝑉 , 𝐸) on 𝑛 vertices, we encode subsets of 𝑉 as

elements of {0, 1}𝑛 in the usual way. For 𝑥 ∈ {0, 1}𝑛 , denote as |𝑥 |
as the number of bits set to 1 in 𝑥 (i.e., the cardinality of the set

to which it corresponds). The fitness function typically employed

by evolutionary algorithms on the minimum vertex cover problem

first penalizes infeasible sets (sets that do not cover all edges in 𝐸),

then penalizes larger feasible covers:

𝑓 (𝑥) = |𝑥 | + 𝑛 ·
|︁|︁|︁{︂(𝑢, 𝑣) ∈ 𝐸 : 𝑥 [𝑢] = 𝑥 [𝑣] = 0

}︂|︁|︁|︁. (1)

This fitness function is quite natural for searching for a minimal

cover, and was originally designed by Khuri and Bäck [15]. It has

been studied extensively both empirically and theoretically [8, 15,

19].

We point out that this is a so-called vertex-based representa-

tion for which there are currently no bounds on the approxima-

tion ratio for the (1+1) EA. It is possible to obtain a guaranteed

2-approximation with the (1+1) EA by using edge-based representa-

tions instead [11]. This is rather notable, as minimum vertex cover

is likely hard to approximate below a (2 − 𝜖) factor [14].

Algorithm 1: (1+1) EA

Input: A fitness function 𝑓 : {0, 1}𝑛 → R
1 Choose 𝑥 uniformly at random from {0, 1}𝑛 ;
2 while termination criteria not met do
3 Create 𝑦 by flipping each bit of 𝑥 with probability 1/𝑛;
4 if 𝑓 (𝑦) ≤ 𝑓 (𝑥) then 𝑥 ← 𝑦;

5 return 𝑥 ;

Many of our theoretical results make use of multiplicative drift

with tail bounds, which we state in the following theorem for refer-

ence.

Theorem 1 (Multiplicative Drift [6, 17]). Let (𝑋𝑡 )𝑡 ∈N be a
stochastic process over R, 𝑥min > 0 and let 𝑇 ≔ min{𝑡 : 𝑋𝑡 < 𝑥min}.
Suppose that 𝑋0 ≥ 𝑥min and, for all 𝑡 ≤ 𝑇 , it holds that 𝑋𝑡 ≥ 0,
and there exists some 𝛿 > 0 such that, for all 𝑡 < 𝑇 , E[𝑋𝑡 − 𝑋𝑡+1 |
𝑋0, . . . , 𝑋𝑡 ] ≥ 𝛿𝑋𝑡 , then,

(1) E[𝑇 | 𝑋0] ≤ ln(𝑋0/𝑥min )+1
𝛿

, and

(2) Pr

(︂
𝑇 ≥ ln(𝑋0/𝑥min )+𝑟

𝛿

)︂
≤ 𝑒−𝑟

The fitness function in Equation (1) ensures that Algorithm 1

quickly finds a feasible cover, which is captured in Theorem 2,

which was proved asymptotically in [8, Theorem 1]. We restate this

result here with a simple upper bound with leading constants using

drift.

Theorem 2. The expected time until the (1+1) EA finds a feasible
cover for any graph on 𝑛 vertices is at most 1

2
(𝑒𝑛 ln𝑛 + 𝑒𝑛).

Proof. Let (𝑋𝑡 )𝑡 ∈N be the stochastic process that counts the

number of edges uncovered by the candidate solution in iteration

𝑡 of the (1+1) EA. For any vertex 𝑢, denote as 𝑑𝑡 (𝑢) the count of
uncovered edges incident to 𝑢 in iteration 𝑡 . Since any vertex 𝑢

is flipped with probability (1 − 1/𝑛)𝑛−1 (1/𝑛) ≥ (𝑒𝑛)−1, and an

increase in uncovered edges is never accepted, we may bound the

drift of (𝑋𝑡 ) as

E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 ] ≥
∑︂
𝑢

𝑑𝑡 (𝑢)
𝑒𝑛

=
2𝑋𝑡

𝑒𝑛

since each of the 𝑋𝑡 uncovered edges is counted twice in the sum

over 𝑑𝑡 . The claim follows by Theorem 1. □

Definition 1. Let 𝑛, 𝑘 ∈ N and 𝑝 ∈ (0, 1). The G(𝑛, 𝑘, 𝑝) model
of random planted graphs is a distribution of random graphs on 𝑛

vertices defined by construction as follows.
Let 𝑉 be a set of 𝑛 (labeled) vertices. Choose a 𝑘-subset 𝐶 ⊂ 𝑉

uniformly at random, and for each 𝑢, 𝑣 ∈ 𝑉 , if {𝑢, 𝑣} ∩𝐶 ≠ ∅, add
edge 𝑢𝑣 to 𝐸 with probability 𝑝 .

In the resulting graph 𝐺 = (𝑉 , 𝐸), we refer to 𝐶 as the core, and
each 𝑣 ∈ 𝐶 as a core vertex. We refer to vertices in 𝑉 \ 𝐶 as fringe
vertices.
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3 SMALL 𝑘

In this section we consider G(𝑛, 𝑘, 𝑝) where 𝑘 ≤ ln𝑛. Our results

rely heavily on the following property of planted vertex cover

graphs, which we call 𝛿-heaviness.

Definition 2. Let𝐺 = (𝑉 , 𝐸) be a graph drawn from theG(𝑛, 𝑘, 𝑝)
model. For a constant 0 < 𝛿 < 1, we say 𝐺 is 𝛿-heavy if for every
subset 𝑆 ⊂ 𝑉 \ 𝐶 where |𝑆 | = 𝛿 |𝑉 \ 𝐶 |, every core vertex in 𝐶 is
adjacent to at least ln𝑛 vertices in 𝑆 .

Lemma 1. Let 𝐺 = (𝑉 , 𝐸) be a graph drawn from the G(𝑛, 𝑘, 𝑝)
model. Let 𝛿, 𝑝 ∈ (0, 1) be constants. If 𝑝 >

√︂
1−ln𝛿

2
, then 𝐺 is 𝛿-

heavy with probability 1 − 𝑒−Ω (𝑛) .

Proof. Fix an arbitrary 𝑣 ∈ 𝐶 and an arbitrary 𝛿 (𝑛 − 𝑘)-sized
subset 𝑆 ⊂ 𝑉 \𝐶 . We first bound the probability that 𝑣 is adjacent

to no more than ln𝑛 vertices in 𝑆 . Let 𝑋 be the random variable

that counts the edges between 𝑣 and vertices in 𝑆 . Each edge from

𝑣 to a vertex in 𝑆 appears independently with probability 𝑝 , so 𝑋 is

the sum of |𝑆 | independent Bernoulli random variables, each with

success probability 𝑝 so E[𝑋 ] = 𝑝 |𝑆 |. By Hoeffding’s inequality [9],

for any 𝑡 > 0, Pr(𝑋 ≤ E[𝑋 ] − 𝑡) < 𝑒−2𝑡
2/|𝑆 |

, thus the probability

that 𝑣 is adjacent to at most ln𝑛 vertices in 𝑆 can be estimated by

Pr(𝑋 ≤ ln𝑛) = Pr(𝑋 ≤ E[𝑋 ] − (E[𝑋 ] − ln𝑛))

< 𝑒−2(𝑝 |𝑆 |−ln𝑛)
2/|𝑆 |

= exp

(︃
−2

(︃
𝑝2 |𝑆 | + ln

2 𝑛

|𝑆 | − 2𝑝 ln𝑛
)︃)︃

≤ exp

(︂
−2𝛿𝑝2 (𝑛 − 𝑘) + 4𝑝 ln𝑛

)︂
.

We have assumed 𝑘 ≤ ln𝑛, so this probability is at most

exp

(︂
−2𝛿𝑝2 (𝑛 − ln𝑛) + 4𝑝 ln𝑛

)︂
< exp

(︂
−2𝛿𝑝2𝑛 + 6𝑝 ln𝑛

)︂
.

Note that we have used here the fact that 𝛿 < 1 and 𝑝2 < 𝑝 . Taking

a union bound over all 𝑘 vertices 𝑣 ∈ 𝐶 , the probability that any

core vertex is adjacent to fewer than ln𝑛 vertices in 𝑆 is at most

exp

(︂
−2𝛿𝑝2𝑛 + 6𝑝 ln𝑛 + ln𝑘

)︂
.

A final union bound over all subsets 𝑆 of size 𝛿 |𝑉 \𝐶 | = 𝛿 (𝑛 − 𝑘)
shows the probability that 𝐺 is not 𝛿-heavy is at most(︃

𝑛

𝛿𝑛

)︃
exp

(︂
−2𝛿𝑝2𝑛 + 6𝑝 ln𝑛 + ln𝑘

)︂
≤ 𝑒𝛿𝑛𝑛𝛿𝑛

(𝛿𝑛)𝛿𝑛
exp

(︂
−2𝛿𝑝2𝑛 + 6𝑝 ln𝑛 + ln𝑘

)︂
= exp

(︂
−2𝛿𝑝2𝑛 + 6𝑝 ln𝑛 + ln𝑘 + 𝛿𝑛 ln(𝑒/𝛿)

)︂
≤ exp

(︂
−𝛿𝑛(2𝑝2 − ln(𝑒/𝛿)) + (6𝑝 + 1) ln𝑛

)︂
.

Since 𝑝 >

√︂
1−ln𝛿

2
, and 𝑝 and 𝛿 are taken to be positive constants,

we have 2𝑝2 − ln(𝑒/𝛿) = Ω(1), and the probability that 𝐺 is not

𝛿-heavy is 𝑒−Ω (𝑛) , which completes the proof. □

Theorem 3. Consider the G(𝑛, 𝑘, 𝑝) model with 𝑘 ≤ ln𝑛 and

𝑝 >

√︂
1−ln𝛿

2
for some constant 𝛿 ∈ (1/𝑒, 1). Then for all but an

exponentially-fast vanishing fraction of all graphs 𝐺 sampled from

G(𝑛, 𝑘, 𝑝), if 𝑇 is the runtime for the (1+1) EA to find a 𝑘-cover on 𝐺 ,
we have

Pr (𝑇 ≤ 2𝑒𝑛 ln𝑛 + ⌊𝑒𝑛(1 − 𝛿)⌋) = Ω(𝑛−(𝑒 (1−𝛿 ) ln(2𝑒 )+ln 2) ).

Proof. Since 𝑝 is sufficiently large, by Lemma 1, all but an

𝑒−Ω (𝑛) -fraction of graphs drawn from G(𝑛, 𝑘, 𝑝) are 𝛿-heavy. Thus,
we assume for the remainder of the proof that 𝐺 is 𝛿-heavy.

Let E be the event that after exactly ⌊𝑒𝑛(1− 𝛿)⌋ iterations of the
(1+1) EA, the following conditions hold:

(1) The core vertices 𝐶 belong to the current solution of the

(1+1) EA,

(2) There are at least 𝛿𝑛 fringe vertices that are not part of the

current solution of the (1+1) EA.

This is a rather fortunate event for the (1+1) EA, because such a

candidate solution is already a feasible vertex cover (as all vertices

in 𝐶 are present), so after this point no infeasible covers would

be accepted. Moreover, since 𝐺 is 𝛿-heavy, every core vertex is

adjacent to at least ln𝑛 uncovered edges (by condition (2) above).

Thus in order to remove a core vertex 𝑣 from the cover, a single

mutation operation would need to change at least ln𝑛 neighbors

of 𝑣 to remain feasible. In contrast, it is always possible to remove

any fringe vertex from the current cover. Thus if there are 𝑖 fringe

vertices in the current solution, the probability to improve the

fitness is at least 𝑖/(𝑒𝑛). Furthermore, the probability of flipping at

least ln𝑛 vertices in a single mutation is 𝑛−𝜔 (1) .
Let {𝑋𝑡 }𝑡 ∈N denote the stochastic process that tracks the number

of fringe vertices in the cover at time 𝑡 . The drift of {𝑋𝑡 } conditioned
on E and starting at iteration ⌊𝑒𝑛(1−𝛿)⌋ is at least𝑋𝑡/𝑒𝑛−𝑛−𝜔 (1) =
Ω(𝑋𝑡/𝑛). By Theorem 1,

Pr (𝑇 < 2𝑒𝑛 ln𝑛 + ⌊𝑒𝑛(1 − 𝛿)⌋ | E) = 1 − 𝑜 (1)

It remains to bound the probability of E. Let E1 be the event that
the initial solution to the (1+1) EA contains every vertex in𝐶 and let

E2 be the event that the core vertices in 𝐶 are not mutated during

the first ⌊𝑒𝑛(1 − 𝛿)⌋ iterations of the (1+1) EA. Conditioning on

E1 ∩ E2, the (1+1) EA already starts with a feasible solution and

does not remove any core vertices during the first ⌊𝑒𝑛(1−𝛿)⌋ steps.
Let 𝑇1 be the random variable that measures the number of

iterations until the first time the number of fringe vertices in the

cover drops below a 𝛿-fraction. Again applying tail bounds on

multiplicative drift, and noting that 1+ln
(︂

1

1−𝛿

)︂
≥ 1−𝛿 for constant

0 < 𝛿 < 1, under the condition E1 ∩ E2, the (1+1) EA has reduced

the number of fringe vertices in the cover from at most 𝑛 − 𝑘 to at

most 𝛿 (𝑛 − 𝑘) with probability at least 1− 1/𝑒 . Applying the law of

total probability we have

Pr(E) ≥ Pr(E | E1 ∩ E2) Pr(E1 ∩ E2)
= Pr(E | E1 ∩ E2) Pr(E2 | E1) Pr(E1)

≥
(︃
1 − 1

𝑒

)︃
·
[︄(︃
1 − 1

𝑛

)︃𝑘 ]︄ ⌊𝑒𝑛 (1−𝛿 ) ⌋
(1/2)𝑘

≥ (1 − 1/𝑒) · (2𝑒)−𝑒𝑘 (1−𝛿 ) · 2−𝑘

≥ (1 − 1/𝑒) · 𝑛−(𝑒 (1−𝛿 ) ln(2𝑒 )+ln 2) ,

where we have used 𝑘 ≤ ln𝑛 in the final inequality. □
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Algorithm 2: (1+1) EA with cold restarts

Input: A fitness function 𝑓 : {0, 1}𝑛 → R and a run length ℓ

1 𝑡 ← 0;

2 while termination criteria not met do
3 if 𝑡 = 0 then
4 Choose 𝑥 uniformly at random from {0, 1}𝑛 ;
5 Create 𝑦 by flipping each bit of 𝑥 with probability 1/𝑛;
6 if 𝑓 (𝑦) ≤ 𝑓 (𝑥) then 𝑥 ← 𝑦;

7 𝑡 ← (𝑡 + 1) mod ℓ ;

8 return 𝑥 ;

Theorem 3 provides a lower bound on the probability that a

run of length at least 2𝑒𝑛 ln𝑛 + ⌊𝑒𝑛(1 − 𝛿)⌋ finds a 𝑘-cover of a
random graph with sufficient density. This bound vanishes with 𝑛,

but slowly enough that a simple cold-restart strategy (periodically

starting over from a randomly generated cover) is guaranteed to be

efficient. This is captured by the following corollary.

Corollary 1 (to Theorem 3). Consider the G(𝑛, 𝑘, 𝑝) model
with 𝑘 ≤ ln𝑛 and 0.71 ≤ 𝑝 ≤ 1. Running the (1+1) EA with cold
restarts (Algorithm 2) with ℓ = 3𝑒𝑛 ln𝑛 finds a 𝑘-cover on all but
an exponentially-fast vanishing fraction of graphs in 𝑂 (𝑛𝑐+1 log𝑛)
fitness evaluations where 0.73 < 𝑐 ≤ 𝑒 (1 + ln 2) − 1 < 3.61 is a
constant depending on 𝑝 .

Proof. Let 𝛿 = 𝑒1−2𝑝
2

. Since 𝑝 > 0.71, we have 𝛿 ∈ (1/𝑒, 1).
Thus the conditions for Theorem 3 are satisfied, and the success

probability for an independent run of length 3𝑒𝑛 ln𝑛 of the (1+1) EA

is Ω(𝑛−(𝑒 (1−𝛿 ) ln(2𝑒 )+ln 2) . Under this condition, the number of

independent runs until a success is geometrically distributed with

expectation 𝑛𝑒 (1−𝛿 ) ln(2𝑒 )+ln 2 = 𝑛𝑒 (1−𝑒
1−2𝑝2 ) (1+ln 2)+ln 2

, and 𝑐 can

be chosen appropriately. □

4 LARGE 𝑘

We now consider G(𝑛, 𝑘, 𝑝) in which 𝑘 > ln𝑛. We will make use of

the following probabilistic bound on the size of independent sets

in the core.

Lemma 2. Suppose 𝐺 is drawn from the G(𝑛, 𝑘, 𝑝) model with
𝑘 = 𝜔 (1). Then with probability 1 − 𝑜 (1), the largest independent set
in 𝐶 has size at most (1 + 2/𝑝) ln𝑘 + 1.

Proof. Set ℓ ≔ ⌈(1 + 2/𝑝) ln𝑘 + 1⌉. There are
(︁𝑘
ℓ

)︁
size-ℓ vertex

sets in 𝐶 . We label these sets from 1 to

(︁𝑘
ℓ

)︁
and consider a sequence

𝑋1, . . . , 𝑋(𝑘ℓ ) of indicator random variables over G(𝑛, 𝑘, 𝑝) where

𝑋𝑖 =

{︄
1 if the 𝑖-th size-ℓ subset of 𝐶 is an independent set in 𝐺 ,

0 otherwise.

Consider the sum 𝑋 = 𝑋1 + · · · + 𝑋(𝑘ℓ ) and note that 𝑋 = 0 if and

only if there are no independent sets of size ℓ or larger in 𝐺 . By

Markov’s inequality,

Pr(𝑋 ≥ 1) ≤ E[𝑋 ] =
(︃
𝑘

ℓ

)︃
(1 − 𝑝) (

ℓ
2
) ≤ 𝑘ℓ

(︂
(1 − 𝑝) (ℓ−1)/2

)︂ℓ
≤ (exp (ln𝑘 − 𝑝 (ℓ − 1)/2))ℓ , since 1 − 𝑝 ≤ 𝑒−𝑝 ,

= exp

(︂
−
[︂(︂
1 + 𝑝

2

)︂
ln𝑘 + 𝑝

2

]︂
ln𝑘

)︂
≤ 𝑒− ln

2 𝑘 ,

since 𝑝 ≥ 0. □

Theorem 4. Consider a graph𝐺 drawn from the G(𝑛, 𝑘, 𝑝) model
with 𝑘 > ln𝑛. Then with probability 1 − 𝑜 (1) (taken over the model),
the expected runtime of the (1+1) EA to find a cover of size at most 𝑘

on 𝐺 is 𝑂
(︃
𝑘
4𝑘

(︂
1+ 1

𝑝

)︂
𝑛 log𝑛

)︃
.

Proof. By Theorem 2, the (1+1) EA takes at most
1

2
(𝑒𝑛 ln𝑛+𝑒𝑛)

steps in expectation to find a feasible solution, after which the

(1+1) EA never accepts an infeasible solution.

Consider the potential function 𝜙 (𝑥) = max{0, 𝑓 (𝑥) − 𝑘} and
note that when 𝜙 (𝑥) = 0, 𝑥 is a feasible cover of size at most 𝑘 .

Moreover, 𝜙 cannot increase during the run of the (1+1) EA.

By Lemma 2, the largest independent set in the core of𝐺 contains

at most (1 + 2

𝑝 ) ln𝑘 + 1 vertices with probability 1 − 𝑜 (1), and we

condition on this event for the remainder of the proof. Consider

the stochastic process (𝑋𝑡 )𝑡 ∈N, which corresponds to the potential

in the 𝑡-th iteration.

We seek to bound the drift of (𝑋𝑡 ) after finding a feasible solution.
Assume that the (1+1) EA has already found a feasible solution, and

let 𝐶 be the core vertices of 𝐺 . Let 𝑥 be the current solution. We

make the following case distinction on 𝑥 .

Case 1: 𝐶 ∩ {𝑖 : 𝑥 [𝑖] = 0} = ∅. In this case, all of the vertices

in 𝐶 are in the cover described by 𝑥 . Thus, any fringe vertex

can be removed from the current cover and the resulting set

is still a cover. A particular vertex is removed from the cover

with probability (1/𝑛) (1 − 1/𝑛)𝑛−1 and there are 𝑓 (𝑥) − 𝑘
fringe vertices, so the drift in this case is

E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 ] ≥
𝑓 (𝑥) − 𝑘

𝑛

(︃
1 − 1

𝑛

)︃𝑛−1
≥ 𝑋𝑡

𝑒𝑛
.

Case 2: 𝐶 ∩ {𝑖 : 𝑥 [𝑖] = 0} ≠ ∅. In this case, some of the

core vertices are not in the cover described by 𝑥 . Let 𝑍 ≔
𝐶 ∩ {𝑥 [𝑖] = 0} be the set of core vertices that are not in

the current cover. Note that since 𝑥 is feasible 𝑍 must be an

independent set in𝐶 (otherwise there would be an uncovered

edge in 𝐶).

Let 𝑍 ′ be an arbitrary set of exactly |𝑍 | fringe vertices that
belong to the current solution 𝑥 , i.e., 𝑍 ′ ⊆ {𝑖 : 𝑥 [𝑖] = 1} ∩
(𝑉 \𝐶) with |𝑍 ′ | = |𝑍 |. Such a 𝑍 ′ must exist, otherwise we

would have 𝑓 (𝑥) < 𝑘 . Let E denote the event that mutation

changes all of the zero-bits corresponding to 𝑍 into one-

bits, and all of the of one-bits corresponding to 𝑍 ′ to zero.

Since each bit is mutated independently, we may invoke

the principle of deferred decisions [18] and assume that the

choices are first made for the bits in 𝑍 and 𝑍 ′ to produce a

partially mutated offspring. Hence, we assume that E has

occurred, and consider the random choices on the remaining
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bits corresponding to 𝑉 \ (𝑍 ∩ 𝑍 ′). There are 𝑓 (𝑥) − (𝑘 −
|𝑍 |) = 𝑓 (𝑥) −𝑘 + |𝑍 | fringe vertices in 𝑥 , and after removing

|𝑍 ′ | = |𝑍 | fringe vertices, there are still 𝑓 (𝑥) −𝑘 = 𝑋𝑡 fringe

vertices that have not yet been considered for mutation, so

we may assume that we are in Case 1, now with exactly

𝑓 (𝑥) − 𝑘 = 𝑋𝑡 fringe vertices remaining in the cover. Since

𝑋𝑡 −𝑋𝑡+1 ≥ 0, by the law of total expectation, we can bound

the drift from below as follows.

E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 ] ≥ E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 ∩ E] Pr(E)

≥ 𝑛−2 |𝑍 |
𝑋𝑡

𝑒𝑛
,

since Pr(E) = 𝑛−( |𝑍 |+|𝑍
′ | ) = 𝑛−2 |𝑍 | .

In either case, the drift is at least𝑛−2 |𝑍 | 𝑋𝑡

𝑒𝑛 , but we have assumed via

Lemma 2 that |𝑍 | ≤ (1+ 2

𝑝 ) ln𝑘 +1 < 2(1+1/𝑝) ln𝑘 for sufficiently

large 𝑛 (and hence 𝑘 , as 𝑘 ≥ ln𝑛). Therefore, by the multiplicative

drift theorem, the expected time until a 𝑘-cover is found is at most

𝑂 (𝑛4(1+1/𝑝 ) ln𝑘𝑛 log𝑛) = 𝑂 (𝑘4(1+1/𝑝 ) ln𝑛𝑛 log𝑛)

= 𝑂

(︃
𝑘
4𝑘

(︂
1+ 1

𝑝

)︂
𝑛 log𝑛

)︃
,

since ln𝑛 < 𝑘 . □

5 COMPUTATIONAL EXPERIMENTS
To fill in the gaps left open by the previous sections, we report here

on a number of experiments that investigate the relationship be-

tween the parameters of the planted vertex cover problem. For each

experiment, we sample from the G(𝑛, 𝑘, 𝑝) model by constructing a

random graph on 𝑛 vertices choosing each edge with probability 𝑝

as long as at least one incident vertex is in the set {1, . . . , 𝑘}. After
this, we run the standard (1+1) EA (Algorithm 1) until 𝑓 (𝑥) ≤ 𝑘 .

For each setting of 𝑛, 𝑘 , 𝑝 , we run the algorithm for 100 trials (but

sample a new graph from G(𝑛, 𝑘, 𝑝) each time.

To better understand how the runtime depends on 𝑛 on dense

graphs in which 𝑘 is a small function of 𝑛, we plot the average

runtime, varying 𝑛 = 100, . . . , 1000 and fixing 𝑝 = 0.5. This is

plotted in Figure 1, where we observe a stable runtime varying

almost linearly with 𝑛. In Figure 2, we show the same data for runs

where 𝑝 is also varied with 𝑛, i.e., 𝑝 = 1/𝑛. This corresponds to
much sparser graphs, and we see that the runtime has much higher

variability, especially for slower growing 𝑘 .

This scaling behavior is not so surprising, as we expect that

random planted graphs are particularly easy for the (1+1) EA. Sim-

ilar to the case of random planted satisfiability [7], the relatively

uniform structure of the problem is likely to provide a good fitness

signal for hill-climbing type algorithms.

Random distributions of problems often undergo a so-called

phase transition as various system parameters are varied. Very

often, problems sampled near a critical density tend to be (empiri-

cally) harder to solve by different algorithms. For example, empirical

evidence suggests critically-constrained planted propositional sat-

isfiability formulas are difficult for the (1+1) EA when they are

sampled near a critical density [7]. To study the performance of the

(1+1) EA on G(𝑛, 𝑘, 𝑝) as a function of graph density, we plot the

dependence of the average runtime on 𝑝 in Figures 3 and 4, holding
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Figure 1: Runtime dependence on 𝑛 dense regime (𝑝 = 0.5)
for 𝑘 = ln𝑛 and 𝑘 =

√
𝑛. Error bars denote standard deviation.
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Figure 2: Runtime dependence on 𝑛 sparse regime (𝑝 = 1/𝑛)
for 𝑘 = ln𝑛 and 𝑘 =

√
𝑛. Error bars denote standard deviation.

𝑛 fixed and averaging over all values of 𝑘 . We also see in this case

a dependence on graph density in which the (1+1) EA performs

worse in a band of not-too-sparse but not-too-dense graphs.
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Figure 3: Runtime dependence on 𝑝 for fixed 𝑛 = 1000 varying
𝑘 = 10, . . . , 100. Error bars denote standard deviation.
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Figure 4: Runtime dependence on 𝑝 for fixed 𝑛 = 200 varying
𝑘 = 10, . . . , 100. Error bars denote standard deviation.

The dependence of runtime on 𝑘 , however, is more uniform as

we can see in Figure 5. Here we have aggregated over all 𝑝 values,

which likely explains the large variance, especially in the larger

𝑛 = 1000 problems.
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Figure 5: Runtime dependence on 𝑘 (𝑝 aggregated). Error bars
denote standard deviation.

A more detailed picture is provided by Figures 6 and 7, where

we display two-dimensional color plots showing the runtime de-

pendence on both 𝑘 and 𝑝 simultaneously. On these plots one can

see how the density and the cover size influences the efficiency of

the (1+1) EA. We conjecture that there is a critical value (or range)

of 𝑝 at which the (1+1) EA struggles to find a 𝑘-cover.

The (1+1) EA completes execution as soon as it finds a 𝑘-cover.

However, this is not necessarily guaranteed to be the 𝑘-cover that

was planted in the graph. Indeed, for smaller densities, we would

expect many other 𝑘-covers in the graph. To investigate this, in

Figure 8 we plot the proportion of runs in which the planted 𝑘-core

was recovered (as opposed to some different 𝑘-cover) as a function

of 𝑝 . The dependence of this characteristic as a function of 𝑘 is

plotted in Figure 9, and Figures 10 and 11 display this in a color

plot for both 𝑘 and 𝑝 simultaneously.

When the graph is relatively sparse, we would also expect the

(1+1) EA to “overshoot” 𝑘 by finding an even smaller cover before

finding a 𝑘-cover. To understand better how this depends on 𝑘 and

𝑝 , we plot the average difference between 𝑘 and the best fitness

found as a function of 𝑝 on sparse (𝑝 = 1/𝑛) instances where 𝑛 is

varied in Figure 12, and on fixed-𝑛 instances in Figures 13 and 14.

6 CONCLUSION
In this paperwe have presented a parameterized analysis the (1+1) EA

on problems drawn from theG(𝑛, 𝑝, 𝑘) random planted vertex cover

model. We showed that for dense graphs (𝑝 > 0.71) and small 𝑘 ,

there is sufficient signal in enough of the space so that the (1+1) EA

has a relatively good chance of finding a 𝑘-cover in a polynomial-

length run. When 𝑘 is large, we showed that a feasible cover cannot

leave too much of the planted core uncovered, and therefore the
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Figure 6: Runtime dependence on both 𝑘 and 𝑝 for 𝑛 = 200.
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Figure 7: Runtime dependence on both 𝑘 and 𝑝 for 𝑛 = 1000.

(1+1) EA does not require a large effort to make progress. In the

end, this translates to a fixed-parameter tractable runtime for the

(1+1) EA with high probability over G(𝑛, 𝑝, 𝑘).
To fill in the picture, we also reported a number of computa-

tional experiments that measure the runtime on graphs drawn from

G(𝑛, 𝑝, 𝑘). These experiments point to a critical value for 𝑝 at which

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09  0.1

co
re

 r
e
co

v
e
re

d

p

n=200
n=1000

Figure 8: Proportion of runs in which the 𝑘-core was recov-
ered as a function of 𝑝.
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Figure 9: Proportion of runs in which the 𝑘-core was recov-
ered as a function of 𝑘 .

the (1+1) EA requires more time to find any 𝑘-cover, which suggest

an interesting direction for future theoretical work to understand

this phenomenon better.
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Figure 10: Proportion of runs in which the 𝑘-core was recov-
ered as a function of both 𝑘 and 𝑝 for 𝑛 = 200.
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