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ABSTRACT
The Minimum Spanning Tree problem is a well-known combinato-

rial optimization problem, which has attracted much attention from

the researchers in the field of evolutionary computing. Within the

paper, a constrained version of the problem named Depth Restricted

(1-2)-Minimum Spanning Tree problem is considered in the context

of evolutionary algorithms, which had been shown to be NP-hard.

We separately investigate the expected time (i.e., the expected num-

ber of fitness evaluations) of the (1+1) EA, the Multi-Objective

Evolutionary Algorithm and its two variants adapted to the con-

strained version, to obtain an approximate solution with ratio 2

or
3

2
with respect to several different fitness functions. In addition,

we observe a close connection between the constrained version

and the Set Cover problem, and present a simple evolutionary al-

gorithm for the 3-Set Cover problem. Based on the approximate

solution returned by our evolutionary algorithm for the 3-Set Cover

problem, an approximate solution with ratio better than
3

2
for the

constrained version can be constructed.
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1 INTRODUCTION
Over the past decades, evolutionary algorithms have been exten-

sively studied to solve the combinatorial optimization problems ab-

stracted from real applications in various areas, including engineer-

ing and economics. Lots of progress has been achieved in the theo-

retical analysis of the behavior of evolutionary algorithms, in par-

ticular, for the well-known Traveling Salesperson problem [20, 35],

Vertex Cover problem [12, 18, 28, 29, 32], Knapsack problem [22, 31,

36], Makespan Scheduling problem [26, 34], and Minimum Span-

ning Tree problem [8, 24, 25], et al.

Within the paper, we study a constrained version of the Mini-

mum Spanning Tree problem (abbr. MSTP). Thus in the following,

we first introduce the background of the problem and related work

in the field of evolutionary computing. Given an edge-weighted

graphG , MSTP asks for a connected subgraph ofG that contains all

vertices inG , without any cycle and with the minimum cost, where

the cost is the sum of the weights on the edges in the subgraph. It

is well-known that the problem is polynomial solvable, using the

classic Prim’s algorithm [16] or Kruskal’s algorithm [19].

Neumann and Wegener [24] studied the performance of the Ran-

domized Local Search (abbr. RLS) and (1+1) EA for MSTP. Using

the fitness function that penalizes the disconnectivity of the corre-

sponding subgraph induced by the search point, the expected time

of the two algorithms to obtain an optimal solution were shown to

be bounded byO(m2(logn+ logwmax )), wherem and n denote the

numbers of edges and vertices in the considered graph, andwmax
denotes the maximum weight that the edges have. Later Neumann

and Wegener [23] studied the performances of algorithm SEMO

and GSEMO with respect to a two-objective fitness function, which

consists of the number of connected components in the correspond-

ing subgraph induced by the search point and the cost of the chosen

edges. They showed that the expected time of the two algorithms

can be bounded by O(mn(n + logwmax )).

Kratsch et al. [17] investigated the NP-hard problem Maximum

Leaf Spanning Tree by evolutionary algorithms in the context of

fixed parameter tractability [9, 11], where the maximum number

of leaves is considered as the parameter. Corus et al. [8] examined

the NP-hard Generalized MSTP and analyzed two approaches in

the context of fixed parameter tractability and bi-level optimiza-

tion. They showed that their specific (1+1) EA working with the

spanning nodes representation is not a fixed-parameter evolution-

ary algorithm, whereas the one working with the global structure

representation is. Neumann [21] considered the multi-objective

version of MSTP, where each edge e in the input graph has a weight

vectorw(e) = (w1(e), . . . ,wk (e)), andwi (e) is a positive integer for
all 1 ≤ i ≤ k . The problem asks for a Pareto set that contains a
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minimum spanning tree with respect to eachwi . They showed that

a simple evolutionary algorithm can obtain a population that is a

2-approximation of the Pareto front. Besides the work mentioned

above, there is an active research line on evolutionary algorithms

for the Bounded Diameter MSTP [13, 14, 30].

The constrained version of MSTP considered in this paper was

abstracted from the realistic scenarios of telecommunication net-

work construction. Consider the network construction for a lot of

cities for example. A city is always designated as the center of the

network (such as the capital of a nation or province), and the key

challenge is the selection of some cities to be intermediate trans-

mitters to connect the central city with all the other cities, so that

the cost of the connections is minimized. Alfandari and Paschos [1]

modeled the realistic problem as follows: given a complete graph

G = ({r } ∪V ,E,W ), where each vertex in {r } ∪V corresponds to a

city (the specific vertex r corresponds to the designated central city),
and the weight functionW is defined on the edge-set E; the aim is to

find a subset E ′ ⊂ E with the minimum cost such that the subgraph

G[E ′] obtained by removing all edges in E \E ′ fromG is connected,

and for any vertex v ∈ V , the shortest path connecting v and r in
G[E ′] contains at most two edges. Since the cost of the connections

should be minimized, the subgraphG[E ′] is actually a spanning tree.
Thus the problem is named Depth Restricted Minimum Spanning
Tree problem (abbr. DR-MSTP) in the paper. In addition, Alfandari

and Paschos [1] showed that the problem is NP-hard and cannot be

approximated with a ratio better than O(lnn) (n = |V |, i.e., there
are n + 1 vertices in the graph including the specific vertex r ).

The famous Traveling Salesperson problem and Steiner Tree

problem have been studied extensively under the assumption that

the weight on each edge in the considered graph is either 1 or

2 [2–5, 27] (one can consider that the weights on the edges are

not well-defined, just “large” and “small” ). Thus Alfandari and

Paschos [1] also investigated DR-MSTP under this assumption (the

NP-hardness also holds under the assumption), and gave an approx-

imation algorithm with ratio 1.25. In the remainder of the paper, we

consider the problem under the same assumption, which is called

DR-(1,2)-MSTP, in the context of evolutionary algorithms. More

specifically, we study the expected time (i.e., the expected number

of fitness evaluations) of the evolutionary algorithms considered in

the paper to obtain an approximate solution, and the corresponding

approximate ratios.

Firstly, we compare the performance of the (1+1) EA to get a

2-approximate solution for DR-(1,2)-MSTP, with respect to eight

different fitness functions. Due to the elitist selection mechanism of

the (1+1) EA, if the algorithm maintains a solution corresponding

to a spanning tree violating the depth restriction, then it needs to

“swap” two edges in the spanning tree (i.e., takes expected time

O(m2) if considering the edge-representation, wherem = |E |) to
improve the solution without introducing any cycle and causing the

disconnectivity, with respect to some fitness function settings. Thus

we also study the Multi-Objective Evolutionary Algorithm (abbr.

MOEA) adapted to DR-(1,2)-MSTP, aiming to avoid the “swap” op-

eration by maintaining a population. The population of the MOEA

keeps a solution with i edges for each i ∈ [0,n], i.e., the population
size is at most n + 1. Apparently, the large population of the MOEA

may slow down its optimization process, thus we consider two

variants of the MOEA, named MOEA-1 and MOEA-2, where each

Ratio 2
3

2

(1+1) EA

f1 O(m2
logn) O(m6n)

f2 O(m2
logn) O(m6n)

f3 O(m2
logn) O(m6n)

f ′
1

O(m2
logn) O(m6n)

f ′
2

f ′
3

f4 O(m logn) O(m6n)

f5 O(m logn) O(m6n)

MOEA O(mn logn) O(m6n2)

MOEA-1 O(mn) O(m6n)

MOEA-2 O(m logn) O(m4n)

Table 1: Overview of results, where m = Θ(n2). Upper
bounds on the expected time of the (1+1) EA, the Multi-
Objective Evolutionary Algorithm (MOEA) and its two vari-
ants (MOEA-1 and MOEA-2) to get a solution of DR-(1,2)-
MSTP with approximate ratio 2 or 3

2
. In particular, for the

(1+1) EA with fitness function f ′
2
or f ′

3
, we show that once

they accept a specific solution, then they need exponential
expected time to get an improved solution.

of them maintains a population with at most two solutions. We

show that the MOEA-1 and MOEA-2 can efficiently emulate the

“swap” operation and the local search operation flipping more than

two edges at the same time, respectively. Afterwards, using the

local search strategy, we analyze the expected time of the (1+1) EA,

the MOEA and its two variants to get an improved
3

2
-approximate

solution. A summary of the obtained results is given in Table 1.

Finally, we reformulate DR-(1,2)-MSTP in form of the classical

Set Cover problem following the work of Alfandari and Paschos [1],

and give evolutionary computing another opportunity to solve the

problem, leading to a better approximate ratio.

The rest of the paper is organized as follows. Section 2 intro-

duces related definitions, and Section 3 presents the four considered

algorithms (1+1) EA, the MOEA and its two variants. The detailed

analysis on the performance of the four algorithms to obtain an

approximate solution with ratio 2 and
3

2
is given in Section 4 and

Section 5, respectively. In Section 6 we reduce DR-(1,2)-MSTP to the

Set Cover problem, and give an improved analysis. We use Section

7 to conclude this work.

2 PRELIMINARIES
A graph is complete if there exists an edge between any two vertices

in the graph. Consider a complete edge-weighted graphG = ({r } ∪
V ,E,W ), where r is a specific vertex (we simply call it the root ofG
in the remaining context),V = {v1, . . . ,vn }, E = {e1, . . . , em }, and
W : E → N (note again that G has n + 1 vertices). For a vertex v in

G, denote by Ni (v) (i ∈ N) the set containing all the vertices v
′
in

G withW ([v,v ′]) = i . For an edge-subset E ′ ⊂ E, denote by G[E ′]
the graph obtained by removing all edges in E \ E ′ from G . That is,
G[E ′] and G have the same vertex-set {r } ∪V .



Evolutionary Algorithms for DR-(1,2)-MSTP FOGA ’19, August 27–29, 2019, Potsdam, Germany

A spanning tree ofG is a subgraph ofG that connects all vertices

inG , and has no cycle. Aminimum spanning tree ofG is a spanning

tree with the minimum weight, where the weight of a spanning

tree is defined as the sum of weights on its edges. In other words,

theMinimum Spanning Tree problem (abbr. MSTP) onG looks for an

edge-subset E∗ of E such that all vertices of {r } ∪V are connected

in G[E∗], and
∑
e ∈E∗W (e) is minimized.

Thus the search space on which we study the behavior of evo-

lutionary algorithms for MSTP in the paper, consists of all bit-

strings with fixed lengthm. For any solution x = x1 . . . xm , edge

ei (1 ≤ i ≤ m) is chosen iff xi = 1. Denote by |x |1 the number of

1-bits in x , i.e., the Hamming weight of x . Observe that any solution
specifies a unique edge-subset of E, which is denoted by E(x) (the
cardinality of E(x) equals |x |1). Hence for simplicity of notation,

we let G(x) be the same graph as G[E(x)]. Denote by

Cost(x) =
m∑
i=1

W (ei ) · xi

the sum of weights on these chosen edges, by Cr (x) the connected
component in G(x) that contains the root r , by Ncc(x) the number

of connected components in G(x), and by N >1
cc
(x) the number of

connected components in G(x) that have more than one vertex,

except the one Cr (x).
Given a connected componentC inG(x) that does not contain r ,

if there exists a vertex v in C such that all the other vertices in C
are the neighbors of v , and there is no edge between the neighbors

ofv , then the connected component is a claw component; otherwise,
it is a non-claw component. That is, both the singleton component

(consists of a vertex) and singe-edge component (consists of an

edge with two vertices) are claw components. Note that if a claw

component has more than 2 vertices, then the vertex with degree

greater than 1 is the center of the claw component; if it has only

2 vertices v and v ′, then the vertex v withW ([v, r ]) ≤W ([v ′, r ])
is the center of the claw component; if it has only 1 vertex, then

itself is the center. Denote by N c

cc
(x) and N nc

cc
(x) the numbers of

claw components and non-claw components in G(x), respectively.
Given two verticesv1 andv2 inG(x), the distance between them,

denoted by dG(x )(v1,v2), is the number of edges in the shortest

path connecting v1 and v2 in G(x) if they are in the same con-

nected component of G(x); otherwise, +∞. Denote by Nd≥i (x)
(resp., Nd>i (x)) the number of vertices v ∈ V with dG(x )(v, r ) ≥ i
(resp., dG(x )(v, r ) > i), where i ∈ N. Thus Nd>n (x) denotes the
number of vertices that are not in the same connected component

Cr (x) with r in G(x) (as G contains n + 1 vertices). More specifi-

cally, we let Nn≥d>2(x) = Nd>2(x) − Nd>n (x) and N
2≥d>0(x) =

Nd>0(x) − Nd>2(x).
In the paper we consider a constrained variant of MSTP, named

Depth Restricted (1-2)-Minimum Spanning Tree problem (abbr. DR-(1-

2)-MSTP). The problem is considered on an edge-weighted complete

graph G = ({r } ∪ V ,E,W ) withW : E → {1, 2}, looking for a

minimum spanning tree T of G such that dT (v, r ) ≤ 2 for any

vertex v ∈ V . As the vertex r can be regarded as the root of T , thus
the depth of the tree T is upper bounded by 2.

A solution x of DR-(1-2)-MSTP on G is feasible if G(x) is a span-
ning tree, and dG(x )(v, r ) ≤ 2 for any v ∈ V ; otherwise, infeasible.

3 ALGORITHMS
We present four evolutionary algorithms in the paper, namely,

the (1+1) EA, the Multi-Objective Evolutionary Algorithm (abbr.

MOEA) and its two variants (MOEA-1 and MOEA-2), and study

their expected time (i.e., the expected number of fitness evaluations

they need) to achieve an approximate solution of DR-(1-2)-MSTP

on the complete edge-weighted graph G.

3.1 (1+1) EA

Algorithm 1: (1+1) EA

1 initialize solution x = 0
m
;

2 while stopping criterion not met do
3 y← flip each bit of x independently w/ probability 1/m;

4 if f (y) ≤ f (x) then
5 x ← y;

The (1+1) EA (given in Algorithm 1) starts with the solution 0
m
.

In each iteration, the algorithm generates an offspring using the

standardmutation operator on themaintained solution, then chooses

the one with better fitness from them to maintain. To obtain a feasi-

ble solution of DR-(1-2)-MSTP on G, the fitness function f (x) that
decides the fitness of solution x should penalize the factors that

may cause the infeasibility of x , namely, the disconnectivity of the

graph G(x) (the term Ncc(x) − 1), the presence of vertices whose
distances to r are greater than 2 (the term Nd>2(x)) and cycles (the
term Ncc(x)+ |x |1 −n − 1). However, the setting of the scales of the
penalties on these factors has a direct impact on the performance of

the algorithm. Thus we consider three fitness functions as follows,

with different settings.

f1(x) = Cost(x) + 4m2 · (Ncc(x) − 1) + 2m · Nd>2(x)

+ 4m2 · (Ncc(x) + |x |1 − n − 1)

f2(x) = Cost(x) + 2m · (Ncc(x) − 1) + 4m
2 · Nd>2(x)

+ 4m2 · (Ncc(x) + |x |1 − n − 1)

f3(x) = Cost(x) + 2m · [(Ncc(x) − 1) + Nd>2(x)]

+ 4m2 · (Ncc(x) + |x |1 − n − 1)

For the fitness function f1(x), the scale of penalty on the discon-

nectivity of G(x), is larger than that on the presence of vertices

whose distances to r are greater than 2. Conversely, for the fit-

ness function f2(x), the scale of penalty on the presence of vertices

whose distances to r are greater than 2, is larger than that on the

disconnectivity of G(x). The fitness function f3(x) considers the
case that the scale of penalty on the presence of vertices whose

distances to r are greater than 2 is the same as that on the discon-

nectivity ofG(x). Note that all the three functions f1, f2 and f3 have
the same scale of penalty on the presence of cycles, moreover, the

scale is always not less than that on the presence of vertices whose

distances to r are greater than 2. That is because destroying a cycle

by removing an edge may cause the presence of vertices whose

distances to r are greater than 2, and the resulting solution cannot

be accepted if the scale of penalty on the presence of cycles is less
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than that on the presence of vertices with distance to r greater

than 2.

For a vertex v ∈ V that is not in the same connected component

Cr (x) with r inG(x), since it may be connected with other vertices

in V \ {v} such that the number of connected components in G(x)
is decreased, it is unnecessary to penalize the vertex v again due to

the term Nd>2(x). Thus we replace the term Nd>2(x) in f1, f2, and
f3 with Nn≥d>2(x), and give the following three corresponding

fitness functions.

f ′
1
(x) = Cost(x) + 4m2 · (Ncc(x) − 1) + 2m · Nn≥d>2(x)

+ 4m2 · (Ncc(x) + |x |1 − n − 1)

f ′
2
(x) = Cost(x) + 2m · (Ncc(x) − 1) + 4m

2 · Nn≥d>2(x)

+ 4m2 · (Ncc(x) + |x |1 − n − 1)

f ′
3
(x) = Cost(x) + 2m · [(Ncc(x) − 1) + Nn≥d>2(x)]

+ 4m2 · (Ncc(x) + |x |1 − n − 1)

For the fitness function f ′
2
, the penalty on the term Ncc(x) +

|x |1 − n − 1 avoids the presence of cycles in G(x), and that on

the term Nn≥d>2(x) upper bounds the depth of the connected

componentCr (x) inG(x). However, the structures of the connected
components in G(x) except Cr (x) cannot be restricted. If there is
a connected component C in G(x) except Cr (x) that is a non-claw
component, then any approach that connects C and Cr (x) would
result in a new solution x ′ with Nn≥d>2(x

′) > Nn≥d>2(x). That
is, all connected components in G(x) expect Cr (x) should be claw

components. Thus we add the term N nc

cc
(x) into fitness function f ′

2
,

and give the following fitness function.

f4(x) = Cost(x) + 2m · (Ncc(x) − 1)

+ 4m2 · [Nn≥d>2(x) + N
nc

cc
(x) + (Ncc(x) + |x |1 − n − 1)]

Inspired by Kruskal’s algorithm [19], we add the term N >1
cc
(x)

into fitness function f ′
2
, and utilize the penalty on it to restrict the

locations of the new added edges. Recall that N >1
cc
(x) counts the

number of connected components with more than one vertex in

G(x), except the one Cr (x). Thus the new edges can only be added

into the connected component Cr (x). The corresponding fitness

function is given as follows.

f5(x) = Cost(x) + 2m · (Ncc(x) − 1)

+ 4m2 · [Nn≥d>2(x) + N
>1
cc
(x) + (Ncc(x) + |x |1 − n − 1)]

It is easy to see that once a feasible solution is found, then the

elitist selection of the (1+1) EA with one of the above eight fitness

functions bars it from adopting an infeasible solution ever again.

3.2 Multi-Objective Evolutionary Algorithms
The Multi-Objective Evolutionary Algorithm (abbr. MOEA, given

in Algorithm 2) uses a vector-valued fitness function

fM(x) = [|x |1, f
2

M
(x)],

where

f 2
M
(x) = Cost(x) + 2m · [(Ncc(x) − 1) + Nd>2(x)] .

As the first and second objectives of fM(x) consider the Hamming

weight of x and the number of connected components in G(x),
respectively, it is unnecessary to penalize the presence of cycles in

G(x) again. Thus the term Ncc(x)+ |x |1 −n − 1 disappears from the

second objective f 2
M
(x) of fM(x).

Given two solutions y and z, y dominates z with respect to fM
if |y |1 = |z |1 and f 2

M
(y) ≤ f 2

M
(z), written y ≽MOEA z; y strongly

dominates z if y dominates z but y , z, written y ≻MOEA z. Thus
two solutions are comparable with respect to fM only if they have

the same Hamming weight.

The population S of the MOEA is initialized with {0m }. In each

iteration, the MOEA picks an individual x randomly from S , and
generates an offspring y based on x using the standard mutation

operator. If y has a Hamming weight between 0 and n, and is not

strongly dominated by another solution in S , then all the solutions

dominated byy in S are discarded, andy is included into S . Thus the
size of S is upper bounded by n + 1, in which any two individuals

are incomparable.

Algorithm 2:MOEA

1 S ← {0m };

2 while stopping criterion not met do
3 choose x ∈ S uniformly at random;

4 y← flip each bit of x independently w/ probability 1/m;

5 if (0≤ |y |1≤n) ∧ (∄w ∈ S : w ≻MOEA y) then
6 S ← S \ {z ∈ S | y ≽MOEA z};

7 S ← S ∪ {y};

As the optimization process of the MOEA may be slowed down

due to its large population, we consider its first variant, named

MOEA-1 (given in Algorithm 3), whose population size can be

bounded by a constant 2. The MOEA-1 uses the same fitness func-

tion fM as MOEA, but differs at the notion of dominance between

solutions, written ≽MOEA−1, whose definition is inspired by that

of the dominance ≽MOEA−S given in [33]. Given two solutions y
and z, where |y |1 and |z |1 are required to be in [0,n + 1], if at most
one of the values |y |1 and |z |1 is in [n,n + 1], then they are ordered

lexicographically,

y ≽MOEA−1 z ⇔ (|y |1 > |z |1) ∨
(
|y |1 = |z |1 ∧ f 2

M
(y) ≤ f 2

M
(z)

)
.

(1)

If both |y |1 and |z |1 are in [n,n + 1], then we set

y ≽MOEA−1 z ⇔ |y |1 = |z |1 ∧ f 2
M
(y) ≤ f 2

M
(z). (2)

Solution y strongly dominates z if y ≽MOEA−1 z and f 2
M
(y) < f 2

M
(z),

written y ≻MOEA−1 z.
Consequently, two bit strings y and z are incomparable if and

only if both |y |1 and |z |1 are in [n,n + 1] and |y |1 , |z |1, implying

that the size of the population maintained by the MOEA-1 can be

bounded by 2. The purpose to keep such a population that can main-

tain two solutions with Hamming weights n and n + 1 respectively
at the same time, is that the solution with Hamming weight n + 1
can be an intermediate to accelerate the optimization process of

the solution with Hamming weight n.
Given a solution x , denote by Ed (x) the subset of E(x) with the

minimum size such that replacing each edge [v,p] ∈ Ed (x) with
[v, r ] results in a solution x ′ with |x |1 = |x

′ |1 and Nn≥d>2(x
′) = 0,

where p is the neighbor of v that is in a shortest path connecting
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Algorithm 3:MOEA-1

1 S ← {0m };

2 while stopping criterion not met do
3 choose x ∈ S uniformly at random;

4 y← flip each bit of x independently w/ probability 1/m;

5 if (0≤ |y |1≤n + 1) ∧ (∄w ∈ S : w ≻MOEA-1 y) then
6 S ← S \ {z ∈ S | y ≽MOEA-1 z};

7 S ← S ∪ {y};

v and r in G(x). If |x |1 = n, Ncc(x) = 1, and |Ed (x)| = 1, then we

have the observation that a feasible solution based on x can be

easily obtained by swapping the unique edge [v,p] in Ed (x) with
the edge [v, r ]. Thus we can use such a solution as intermediate

to promote the optimization process of the maintained solutions

(similar to the idea of the MOEA-1), and give the second variant

of the MOEA, named MOEA-2 (given in Algorithm 4), using the

following vector-valued fitness function.

fM2(x) = [|Ed (x)|, f
2

M2
(x)],

where

f 2
M2
(x) = Cost(x) + 2m · (Ncc(x) − 1)

+ 4m2 · [N >1
cc
(x) + (Ncc(x) + |x |1 − n − 1)]

Since the first objective |Ed (x)| of fM2(x) only considers the edges in
the same connected component Cr (x) with r , the second objective

f 2
M2
(x) has a penalty on the term N >1

cc
(x) to let all edges inG(x) be

in the connected component Cr (x).
Similar to the MOEA, given two solutions y and z, where |Ed (y)|

and |Ed (z)| are required to be 0 or 1, y dominates z with respect to

fM2 if |Ed (y)| = |Ed (z)| and f 2
M2
(y) ≤ f 2

M2
(z), written y ≽MOEA-2 z.

Solution y strongly dominates z if y dominates z but y , z, written
y ≻MOEA-2 z. Thus y and z are incomparable with respect to fM2

only if |Ed (y)| + |Ed (z)| = 1.

Algorithm 4:MOEA-2

1 S ← {0m };

2 while stopping criterion not met do
3 choose x ∈ S uniformly at random;

4 y← flip each bit of x independently w/ probability 1/m;

5 if (0 ≤ |Ed (x)| ≤ 1) ∧ (∄w ∈ S : w ≻MOEA-2 y) then
6 S ← S \ {z ∈ S | y ≽MOEA-2 z};

7 S ← S ∪ {y};

4 ANALYSIS OF DR-(1,2)-MSTP
As G contains n + 1 vertices and each edge in G has weight 1 or 2,

the weight of a spanning tree in G ranges from n to 2n. We have

the observation given below.

Observation. Any feasible solution of DR-(1,2)-MSTP onG has an

approximate ratio 2.

Given a solution x with Ncc(x) + |x |1 > n + 1, the following

lemma indicates thatG(x) contains Ncc(x) + |x |1 −n − 1 edges that
can be removed safely.

Lemma 4.1. Given a solution x with Ncc(x) + |x |1 > n + 1, it
contains Ncc(x) + |x |1 − n − 1 1-bits, each of whose flip results
in a solution x ′ with Cost(x ′) < Cost(x), Ncc(x

′) = Ncc(x), and
Nd>2(x

′) = Nd>2(x).

Proof. Observe thatG(x) contains at least Ncc(x) + |x |1 − n − 1
different cycles. Let C be an arbitrary cycle in G(x) (note that C
contains at least three edges as the considered graph G is a simple

graph). If C is not in the same connected component Cr (x) with r ,
then for the solution x ′ obtained by a mutation that flips exactly

one of the 1-bits in x corresponding to the edges in C , it satisfies
the claimed conditions. Thus the lemma holds.

The following discussion for the situation that C is in the same

connected component Cr (x) with r is divided into two cases.

(1). All vertices in C have distance not greater than 1 to r . There
exists an edge e in C whose endpoints are not r . Moreover, for any

vertex v ∈ V , the shortest path connecting v and r in G(x) cannot
contain the edge e . Thus for the solution obtained by the mutation

that flips the 1-bit corresponding to the edge e in x and nothing

else, it satisfies the claimed conditions.

(2). There exists a vertex v in C whose distance to r is not less
than 2. Let P be a shortest path connecting v and r in G(x), and
v1 be the neighbor of v that is in C , but not in P . Denote by x ′ the
solution obtained by the mutation that flips the 1-bit corresponding

to [v,v1] in x and nothing else. Note that v1 cannot be the root r .
In the following discussion, we show that Nd>2(x) = Nd>2(x

′).

Firstly, asG(x ′) is a subgraph ofG(x), we have the observation that

Nd>2(x) ≤ Nd>2(x
′). (3)

Now we assume that there exists a vertex v ′ ∈ V \ {v} with
dG(x )(v

′, r ) ≤ 2, but dG(x ′)(v
′, r ) > 2. Then we have that any

shortest path connecting v ′ and r in G(x) always contains the

edge [v,v1], implying that dG(x )(v
′, r ) ≥ 3, a contradiction to the

assumption. Thus N
2≥d>0(x) ≤ N

2≥d>0(x
′), implying

Nd>2(x) ≥ Nd>2(x
′). (4)

By Inequalities (3) and (4), we have Nd>2(x) = Nd>2(x
′). Com-

bining the equality with the fact that Cost(x) > Cost(x ′) and
Ncc(x) = Ncc(x

′), solution x ′ satisfies the claimed conditions. □

4.1 (1+1) EA
In this subsection, we study the performance of the (1+1) EA with

respect to eight different fitness functions separately.

Theorem 4.2. The expected time of the (1+1) EA with fitness
function f1 to obtain a feasible solution of DR-(1,2)-MSTP on G is
O(m2

logn).

Proof. We first consider the case that the maintained solution

x has f1(x) ≥ m
2
, i.e., Ncc(x) > 1 or Ncc(x) + |x |1 > n + 1.

(1). Ncc(x) = c > 1. Then there are at least

(c
2

)
edges in E \ E(x),

each of whose inclusion results in a new solution x ′ with Ncc(x
′) =

c − 1 and Ncc(x
′) + |x ′ |1 = Ncc(x) + |x |1, which can be accepted by

the algorithm. The mutation flipping exactly one of the 0-bits in x
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corresponding to the

(c
2

)
edges and nothing else can be generated

with probability Ω( c
2

e ·m ).

(2).Ncc(x)+ |x |1 > n+1. Then there are at leastNcc(x)+ |x |1−n−1
edges in E(x), each of whose removal results in a new solution x ′

with Ncc(x
′) = Ncc(x) and |x

′ |1 < |x |1, which can be accepted by

the algorithm. The mutation that flips exactly one of the 1-bits in x
corresponding to the Ncc(x) + |x |1 − n − 1 edges and nothing else

can be generated with probability Ω(Ncc(x )+ |x |1−n−1
e ·m ).

The above analysis gives that the algorithm takes expected time

O(m) to obtain a solution x ′ with

2Ncc(x
′) + |x ′ |1 − n − 2 < 2Ncc(x) + |x |1 − n − 2,

which can be accepted. As 2Ncc(0
m )+ |0m |1 −n − 2 = n, 2Ncc(x)+

|x |1 − n − 2 ≤ n, implying that the algorithm takes expected time

O(mn) to obtain a solution x1 with |x1 |1 = n and Ncc(x1) = 1.

However, Nd>2(x1)may be greater than 0, i.e., Ed (x1) , ∅. Thus
in the following discussion, we assume that there exists an edge

[v,p] ∈ Ed (x1), where p is the neighbor of v that is in the shortest

path connecting v and r in G(x1). Note that no solution x ′ with
Ncc(x

′) > 1 or |x ′ |1 , n can be accepted ever again as f1(x
′) >

f1(x1). If the edge [v,p] in G(x1) is replaced with the edge [v, r ],
then a new solution x ′ with Nd>2(x

′) < Nd>2(x1) is constructed,
which can be accepted by the algorithm. The mutation that swaps

the two bits corresponding to the two edges [v,p] and [v, r ] in x
can be generated with probability Ω( 1

e ·m2
). Considering all edges

in Ed (x1), the algorithm takes expected timeO(m2/|Ed (x1)|) to get
such an improved solution. Observe that Nd>2(x1) can be upper

bounded by n − 2, i.e., |Ed (x1)| ≤ n − 2. Thus the expected time of

the algorithm to get a solution x2 with Nd>2(x2) = 0, Ncc(x2) = 1,

and |x2 |1 = n, starting with the solution x1 can be bounded by

O

(n−2∑
i=1

m2

i

)
= O(m2

logn).

Summarizing the above analysis, the (1+1) EA with f1 takes

expected time O(m2
logn) to obtain a feasible solution of G. □

The proof given in Theorem 4.2 for the (1+1) EA with fitness

function f1 applies to the (1+1) EA with fitness function f ′
1
, where

f1 considers the termNd>2(x), but f
′
1
considers the termNn≥d>2(x).

Thus we have the following theorem.

Theorem 4.3. The expected time of the (1+1) EA with fitness
function f ′

1
to obtain a feasible solution of DR-(1,2)-MSTP on G is

O(m2
logn).

Now we consider another setting of the scales of penalties, more

specifically, the scale of the penalty on the presence of vertices

whose distances to r is greater than 2 is larger than that on the

disconnectivity of the graph G(x).

Theorem 4.4. The expected time of the (1+1) EA with fitness
function f2 to obtain a feasible solution of DR-(1,2)-MSTP on G is
O(m2

logn).

Proof. The reasoning runs in a similar way to that of Theo-

rem 4.2. We first consider the case that the maintained solution x
has f2(x) ≥ m

2
, i.e., Nd>2(x) > 0 or Ncc(x) + |x |1 > n + 1.

(1). Nd>2(x) > 0. Let v be an arbitrary vertex with dG(x )(v, r ) >
2. If v is not in the same connected component with r inG(x), then

the mutation flipping the 0-bit corresponding to the edge [v, r ] in
x and nothing else results in a new solution x ′ with Nd>2(x

′) <

Nd>2(x) and Ncc(x
′) < Ncc(x), which can be accepted by the al-

gorithm. If v is in the same connected component with r in G(x),
then let p be the neighbor of v that is in a shortest path connecting

r and v in G(x). The mutation that swaps the two bits correspond-

ing to the edges [v,p] and [v, r ] in x constructs a new solution

x ′ with Nd>2(x
′) < Nd>2(x) and Ncc(x

′) + |x ′ |1 = Ncc(x) + |x |1,
which can be accepted by the algorithm. Thus under the case that

Nd>2(x) > 0, the algorithm takes expected time O(m2/Nd>2(x))
to get an accepted solution x ′ with Nd>2(x

′) < Nd>2(x).
(2). Ncc(x)+ |x |1 > n+ 1. For a cycleC inG(x), the removal of an

edge in C results in a new solution x ′ with Ncc(x
′) = Ncc(x) and

|x ′ |1 < |x |1. However,Nd>2(x
′)may be greater thanNd>2(x). Thus

we have to remove the extra edges inG(x) carefully. By Lemma 4.1,

there are Ncc(x) + |x |1 −n − 1 1-bits in x , each of whose flip results

in a solution x ′ withCost(x ′) < Cost(x), |x ′ |1 = |x |1 − 1, Ncc(x
′) =

Ncc(x), and Nd>2(x
′) = Nd>2(x), which can be accepted by the

algorithm. Thus the algorithm takes expected time O(m/(Ncc(x) +
|x |1 − n − 1)) to get such an accepted solution.

Summarizing the above analysis, if Nd>2(x) + (Ncc(x) + |x |1 −
n − 1) > 0, then the algorithm takes expected time

O

(
m2

max{Nd>2(x),Ncc(x) + |x |1 − n − 1}

)
= O

(
m2

Nd>2(x) + Ncc(x) + |x |1 − n − 1

)
to get a solution x ′ with

Nd>2(x
′) + Ncc(x

′) + |x ′ |1 < Nd>2(x) + Ncc(x) + |x |1.

Observe that Nd>2(x)+Ncc(x)+ |x |1 −n− 1 can be upper bounded

by n (as f2(0
m ) = 4m2n). Thus considering all possible values of

Nd>2(x)+Ncc(x)+ |x |1 −n− 1 and the corresponding waiting time,

the algorithm takes expected time

O

( n∑
i=1

m2

i

)
= O(m2

logn)

to get a solution x1 with Nd>2(x1) = 0 and Ncc(x1) + |x |1 = n + 1,
implying that x1 is a feasible solution. □

According to the reasoning given in Theorems 4.2 and 4.4, it is

not hard to get the following theorem for fitness function f3, which
consider the setting: the scale of the penalty on the presence of

vertices whose distances to r are greater than 2 is the same as that

on the disconnectivity of the graph G(x).

Theorem 4.5. The expected time of the (1+1) EA with fitness
function f3 to obtain a feasible solution of DR-(1,2)-MSTP on G is
O(m2

logn).

For the (1+1) EA with fitness function f ′
2
, we first construct

a special weight functionWs for G and a solution xs that the al-

gorithm may maintain (illustrated in Figure 1a). Then we show

that once the algorithm maintains the solution xs , then it needs

exponential expected time to get an improved solution to G with

weight functionWs .
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r

(a) the graph G(xs ) corresponding to the special solution xs .

r

(b) the optimal approach for the bad case.

Figure 1: A bad situation for the (1+1) EA with fitness func-
tion f ′

2
. All edges given in Figure 1a have weight 1, and the

other edges (recall that G is complete) have weight 2, with
respect to the weight functionWs .

Theorem 4.6. The (1+1) EAwith fitness function f ′
2
takes expected

time Ω(m2 ⌈ n
3
⌉−1) to obtain a feasible solution of DR-(1,2)-MSTP on

G with weight functionWs , once it maintains the solution xs .

Proof. As f ′
2
(0m ) = 2mn, Nn≥d>2(x) = 0 and Ncc(x) + |x |1 =

n + 1 hold for any solution x accepted by the (1+1) EA with fitness

function f ′
2
. Assume that the algorithm maintains the solution

xs (illustrated in Figure 1a), where G(xs ) contains two connected

components: one is the isolated vertex r , the other one C is a path

connecting all vertices in V with n − 1 edges. Observe that the

solution xs is the best solution with Hamming weight n − 1 for G
with weight functionWs , with respect to the fitness function f ′

2
.

The unique way to get an improved solution compared to xs is

to decrease the number of connected components in the solution.

However, because of the path structure of C , no matter which edge

in E \E(xs ) is added intoG(xs ) to connect r withC , it always causes
a vertex v with dG(x ′)(v, r ) > 2, i.e., Nn≥d>2(x

′) > 0, where x ′ is
the resulting offspring. Thus the solution x ′ would be rejected.

The optimal approach that flips the minimum number of bits in

xs to get an improved solution is illustrated as Figure 1b. Observe

that it still needs flipping 2⌈n
3
⌉ −1 edges at the same time, implying

that the algorithm needs expected time Ω(m2 ⌈ n
3
⌉−1). □

The (1+1) EAwith fitness function f ′
3
may get struck in the same

situation as that given in Figure 1a, thus we have the following

theorem for it.

Theorem 4.7. The (1+1) EAwith fitness function f ′
3
takes expected

time Ω(m2 ⌈ n
3
⌉−1) to obtain a feasible solution of DR-(1,2)-MSTP on

G with weight functionWs , once it maintains the solution xs .

The discussion for Theorems 4.3, 4.6, and 4.7 shows that if we

only consider the vertices that are in the same connected component

with r and their distances to r , then we may lose the control of

the connected components that do not contain r , and get stuck in

a local solution from which the algorithm may need exponential

expected time to get an improved solution. Meanwhile, it shows

the importance of the setting of penalties on the considered factors

to the performance of the algorithm.

The following theorem considers the performance of the (1+1)

EA with fitness function f4 that has a penalty on the term N nc

cc
(x),

where N nc

cc
(x) counts the number of non-claw connected compo-

nents in G(x), except the one Cr (x) containing r .

Theorem 4.8. The expected time of the (1+1) EA with fitness
function f4 to obtain a feasible solution of DR-(1,2)-MSTP on G is
O(m logn).

Proof. Let x be the solution maintained by the (1+1) EA with

fitness function f4. Since f4(0
m ) = 2mn, all connected components

in G(x) are claw components except the one Cr (x) containing the
vertex r . Moreover, Nn≥d>2(x) = 0. The thing remaining to be

done is connecting all these connected components together, in a

feasible way. Let C be a claw component in G(x) except Cr (x).
IfC is a singleton component, then the feasible way is to connect

the vertex inC to r , or a child of r (if it has), or the center of another
connected component. If C is not a singleton component, then the

unique feasible way is to connect its center to r . That is because if a
leaf or the center ofC is connected to a vertex (except r ) inCr , then
there exists a vertex in C whose distance to r would be between 3

and n, implying the obtained solution cannot be accepted. If C is

connected to another componentC ′ that has more than one vertex,

then the resulting connected component is not a claw component,

implying the obtained solution cannot be accepted as well.

Summarizing the above analysis, connecting the center ofC to r
is always feasible. Thus for the Ncc(x) = c connected components

inG(x), there are at least c−1 edges, each of whose inclusion results
in a solution with improved fitness. The mutation flipping exactly

one of the 0-bits corresponding to these edges in x and nothing else

takes expected timeO( mc−1 ). Summing over the waiting time for all

values 2 ≤ c ≤ n + 1, we have that the algorithm takes expected

time O(m logn) to obtain a feasible solution. □

The following theorem considers the performance of the (1+1)

EA with fitness function f5 that has a penalty on the term N >1
cc
(x),

where N >1
cc
(x) counts the number of connected components with

more than one vertex in G(x), except the one Cr (x).

Theorem 4.9. The expected time of the (1+1) EA with fitness
function f5 to obtain a feasible solution of DR-(1,2)-MSTP on G is
O(m logn).

Proof. Let x be the solution maintained by the algorithm. Since

f5(0
m ) = 2mn, we have that N >1

cc
(x) = 0, i.e., except the connected

component Cr (x) containing r , all the other connected compo-

nents in G(x) are singleton components. Moreover, we have that

Nn≥d>2(x) = 0 and Ncc(x) + |x |1 = n + 1.
The feasible way to decrease the number of connected compo-

nents in G(x) is connecting a singleton component to Cr (x), more

specifically, to either the vertex r or a child of r (if it has) in Cr (x).
Thus for the Ncc(x) = c connected components in G(x), there are
at least c − 1 edges, each of whose inclusion results in a solution x ′

with Ncc(x
′) = Ncc(x) − 1 that can be accepted by the algorithm.

The mutation flipping exactly one of the 0-bits corresponding to

these edges in x and nothing else can be generated with probability

Ω( c−1m ), i.e., the algorithm takes expected time O( mc−1 ) to get such

an improved solution. Summing over the waiting time for all values
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2 ≤ c ≤ n + 1, the algorithm takes expected time O(m logn) to
obtain a feasible solution. □

4.2 MOEA and Its Variants
In this subsection, we study the performance of the MOEA and its

two variants for DR-(1,2)-MSTP separately.

Theorem 4.10. The expected time of the MOEA to obtain a feasible
solution of DR-(1,2)-MSTP on G is O(mn logn).

Proof. Given a solution x of DR-(1,2)-MSTP on G, if Ncc(x) +
|x |1 = n + 1 and Nd>2(x) + 1 = Ncc(x), then it is a candidate.
That is, all the vertices that are in the same connected component

Cr (x) with r have distance at most 2 to r , and all the other vertices

that are not in Cr (x) are singleton components. By fMOEA and the

definition of dominance with respect to fMOEA, we have that a

candidate x in the population S maintained by the algorithm can

only be replaced by another candidate x ′ such that |x ′ |1 = |x |1 and
Cost(x ′) ≤ Cost(x).

Let x1 be the candidate in S with the maximumHamming weight,

where |x1 |1 is assumed to be less than n. Letv be an arbitrary vertex

in V that is a singleton component in G(x1). Including the edge

[v, r ] into x constructs a new candidate x2 with Hamming weight

|x1 |1 + 1. Note that the candidate x2 would be accepted by the

algorithm; otherwise, the population contains another candidate x ′
2

such that |x ′
2
|1 = |x2 |1 and Cost(x

′
2
) < Cost(x2), a contradiction to

that x1 is the candidate in S with the maximum Hamming weight.

Since the size of the population S is bounded by n + 1, the

mutation choosing the candidate x1 and flipping one of the 0-

bits corresponding to the Ncc(x1) − 1 edges between r and the

Ncc(x1) − 1 singleton components inG(x1) is generated with proba-

bility Ω( 1

n+1 ·
Ncc(x1)−1

e ·m ). Hence the algorithm takes expected time

O( mn
Ncc(x1)−1

) = O( mn
n−|x |1

) to get the candidate x2, improving the

maximum value of the Hamming weights of the candidates in S by 1.
Combining the above conclusion and the fact that 0

m
is a candidate

with Hamming weight 0, summing over the waiting time for all

values 0 ≤ |x1 |1 ≤ n − 1 gives that the algorithm takes expected

time O(mn logn) to get a feasible solution. □

Theorem 4.11. The expected time of the MOEA-1 to obtain a
feasible solution of DR-(1,2)-MSTP on G is O(mn).

Proof. We first consider the expected time of the MOEA-1 to

find a solution with Hamming weight n. Let x be a solution in the

maintained population S with 0 ≤ |x |1 < n. Flipping exactly one 0-

bit in x and nothing else results in a new solution x ′ that dominates

x with respect to ≽MOEA-1, thus the algorithm takes expected time

O(m/(m − |x |1)) to obtain a solution that has Hamming weight

|x |1 + 1 (recall that the population maintained by the MOEA-1 has

size at most 2, hence the solution is chosen with probability Ω(1)).
Consider the potential of the populationmaintained by theMOEA-1,

which is defined as themaximumnumber of 0-bits that the solutions

in the population have. The Multiplicative Drift Theorem [10] gives

that the algorithm takes expected time O(m ln
m

m−n ) to obtain a

population with potentialm − n, which contains a solution with

Hamming weight n.
Now we assume that the population S contains a solution xn

with |xn |1 = n, and consider the expected time of the algorithm to

find a feasible solution starting with xn . If Nd>2(xn ) = 0, then xn
is feasible, and the proof is done. Thus in the following discussion,

we assume that xn is infeasible.

If Ncc(xn ) > 1, then let v be a vertex that is not in the connected

component Cr (xn ); otherwise, let v be one of the vertices that

have distance larger than 2 to r in G(xn ). Let x
′
n+1 be the solution

obtained by including the edge [v, r ] into xn . Observe that

Ncc(x
′
n+1) + Nd>2(x

′
n+1) < Ncc(xn ) + Nd>2(xn ),

and the weight on [v, r ] is at most 2, thus

f 2
M
(x ′n+1) < f 2

M
(xn ) − (2m − 2).

The algorithm generates the mutation that flips the 0-bit corre-

sponding to the edge [v, r ] in xn and nothing else with probability

Ω(1/m), i.e., taking expected time O(m) to get x ′n+1.
If the population S has no solution with Hamming weight n +

1, or f 2
M
(x ′n+1) ≤ f 2

M
(xn+1) for the solution xn+1 maintained in

the population with Hamming weight n + 1, then the solution

x ′n+1 would be accepted; otherwise, rejected. Thus in the following

discussion, we assume that the population contains a solution x ′′n+1
with Hamming weight n + 1 such that f 2

M
(x ′′n+1) ≤ f 2

M
(x ′n+1).

By Lemma 4.1, we can get a mutation on x ′′n+1 that results in a

solution x ′n with Hamming weight n such that f 2
M
(x ′n ) < f 2

M
(x ′′n+1),

where the generation of the mutation takes expected timeO(m). As

f 2
M
(x ′n ) < f 2

M
(x ′′n+1) ≤ f 2

M
(x ′n+1) < f 2

M
(xn ) − (2m − 2),

Thus the solution x ′n would be accepted, replacing xn .
Considering the mutation generating x ′n+1 and the one generat-

ing x ′n , the algorithm takes expected timeO(m) to get the improved

solution x ′n with Hamming weight n such that

f 2
M
(x ′n ) ≤ f 2

M
(xn ) − 2m.

Since the value of f 2
M
(xn ) can be upper bounded by 4mn+2n, the

Additive Drift Theorem [15] gives that the algorithm takes expected

timeO(mn) to get a solution x∗ with |x∗ |1 = n and f 2
M
(x∗) < 2m (i.e.,

x∗ is a feasible solution) starting with the solution xn . Combining

the time with the expected time to get xn starting with 0
m
, we have

the claimed expected time for the MOEA-1. □

Theorem 4.12. The expected time of the MOEA-2 to obtain a
feasible solution of DR-(1,2)-MSTP on G is O(m logn).

Proof. Let x the solution in the population maintained by the

algorithm with |Ed (x)| = 0 (note that the population always has

such a solution as |Ed (0
m )| = 0). Since f 2

M2
(0m ) = 2mn, the solution

x has Ncc(x) + |x |1 = n + 1, and N >1
cc
(x) = 0. If f 2

M2
(x) ≥ 2m, then

Ncc(x) > 1. As N >1
cc
(x) = 0, all connected components in G(x)

exceptCr (x) are singleton components. Letv be an arbitrary vertex

that is a singleton component inG(x). The mutation flipping exactly

the 0-bit corresponding the edge [v, r ] in x and nothing else results

in a solution that dominates x with respect to fM2, which can be

generated with probability Ω(1/m). Considering the population size
of the algorithm and all singleton components inG(x), the expected
time to get a solution x ′ with |Ed (x

′)| = 0 and Ncc(x
′) < Ncc(x) is

O(m/(Ncc(x) − 1)).
Observe that Ncc(x) is at most n + 1. Thus the expected time of

the algorithm to get a solution x∗ with |Ed (x
∗)| = 0 andNcc(x

∗) = 1
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can be bounded by

O

( n∑
i=1

m

i

)
= O(m logn).

Remark that the solution x∗ also satisfies Ncc(x
∗) + |x∗ |1 = n + 1,

thus x∗ is a feasible solution. □

The above proof for Theorem 4.12 is based on the solution x
with |Ed (x)| = 0 in the population. For the other possible solution

x ′ with |Ed (x
′)| = 1 in the population, we will show its power in

the next section.

5 IMPROVED ANALYSIS OF DR-(1,2)-MSTP
The section studies the improved performance of the four algo-

rithms based on several local search operations.

Theorem 5.1. The expected time of the (1+1) EA with one of the
fitness functions f1 − f5 and f ′

1
, to obtain a 3

2
-approximate solution

of DR-(1,2)-MSTP on G is O(m6n).

Proof. Assume that the algorithm has obtained a feasible so-

lution x1. By Theorems 4.2, 4.3, 4.4, 4.5, 4.8, and 4.9, the expected

time of the algorithm to obtain x1 can be bounded by O(m2
logn).

In the following, we give several operations to optimize x1.
We first give some related notions below. AsG(x1) is a spanning

tree of G, and the specific vertex r is treated as the root of the tree,

there is a well-defined ancestor-descendant relationship in G(x1).
More specifically, given an edge [v,v ′] with two endpoints v and

v ′ inG(x1), if v is in the unique path connecting v ′ and r , then v is

the parent of v ′, and v ′ is a child of v . Similarly, if the vertex v ′′ is
a child of v ′, then v ′′ is a grandchild of v in G(x1).

Operation 1. If there is a grandchild v1 of r in G(x1) such that

the edge between v1 and its parent p1 in G(x1) has weight 2, but
W ([v1, r ]) = 1, then swap the edge [v1,p1] with the edge [v1, r ].
The illustrations of Operation 1 and the following four operations

are given in Figure 2.

Operation 2. If there is a child v1 and a grandchild v2 of r in
G(x1) such that the edge between v2 and its parent p2 (not v1) has
weight 2, butW ([v1,v2]) = 1, then swap [v2,p2] with [v1,v2].

Operation 3. If there are two children v1 and v2 of r in G(x1)
such that v1 has no child, andW ([v1, r ]) = 2 andW ([v1,v2]) = 1,

then swap the edge [v1, r ] with the edge [v1,v2].
Obviously, each application of Operation 1, Operation 2, and

Operation 3 on x1 gets an improved solution x ′
1
that can be accepted.

The mutation corresponding to the application can be generated

with probability Ω(1/m2), i.e., the algorithm takes expected time

O(m2) to get the improved solution x ′
1
.

Operation 4. If there is a grandchild v1 of r , and a vertex v2
that is either a grandchild or a child with no child of r in G(x1),
such that the edge between v1 and its parent p1 in G(x1) and the

edge [v1, r ] have the same weight, but the edge between v2 and
its parent p2 (may be r ) inG(x1) has a larger weight than the edge

[v1,v2], then swap [v1,p1] and [v2,p2] with [v1, r ] and [v1,v2].
Each application of Operation 4 on x1 gets an improved solution

x ′
1
, which can be accepted. The mutation corresponding to the

application can be generated with probability Ω(1/m4), i.e., the

algorithm takes expected time O(m4) to get x ′
1
. Now we consider

a grandchild v1 of r , and two vertices v2 and v3, each of which is

either a grandchild of r or a child of r with no child in G(x1). Let
p1, p2, and p3 be the parents of v1, v2, and v3, respectively (p2 and
p3 may be r if v2 and v3 are the children of r in G(x1)).

Operation 5. IfW ([v1,p1]) = 1 = W ([v1,v2]) = W ([v1,v3]),
but W ([v1, r ]) = 2 = W ([v2,p2]) = W ([v3,p3]), then swap the

edges [v1,p1], [v2,p2], [v3,p3] with [v1, r ], [v1,v2], and [v1,v3].
Each application of Operation 5 gets an improved solution x ′

1

that can be accepted. Themutation corresponding to the application

can be generated with probability Ω(1/m6), i.e., the algorithm takes

expected time O(m6) to get x ′
1
.

Since Cost(x1) ≤ 2n, and Cost(x∗) ≥ n, where x∗ is an optimal

solution for DR-(1,2)-MSTP on G, Operation 1-5 can be applied at

most n times. That is, starting with x1, the algorithm takes expected

time O(m6n) to get a feasible solution x2 on which Operation 1-5

are not applicable.

Now we analyze the cost of the solution x2, Cost(x2). First of all,
we partition the vertices of V into the following subsets according

to the structure of G(x2).

1) V11(x2), contains all the vertices v ∈ V , where v is the child of r
in G(x2), andW ([v, r ]) = 1;

2) V12(x2), contains all the vertices v ∈ V , where v is the child of r
in G(x2), andW ([v, r ]) = 2;

3) V21(x2), contains all the verticesv ∈ V , wherev is the grandchild

of r in G(x2), andW ([v,p]) = 1 (p is the parent of v in G(x2));
4) V22(x2), contains all the verticesv ∈ V , wherev is the grandchild

of r in G(x2), andW ([v,p]) = 2 (p is the parent of v in G(x2)).

Moreover, the vertices in V12(x2) are partitioned into the following

two subsets.

1) V 0

12
(x2), contains all the vertices v ∈ V12(x2), where v has no

children in G(x2);
2) V 1

12
(x2), contains all the vertices v ∈ V12(x2), where v has at

least one child in G(x2).

Consider a vertexv ∈ V22(x2)∪V
0

12
(x2). Firstly,W ([v,v

′]) = 2 for

any vertex v ′ ∈ {r } ∪V11(x2) ∪V12(x2) \ {v}; otherwise, Operation
1 or 2 or 3 is applicable on x2. Then,W ([v,v

′]) = 2 for any vertex

v ′ ∈ V22(x2) \ {v}; otherwise, Operation 4 is applicable on x2. Thus,
W ([v,v ′]) = 2 for any vertexv ′ ∈ {r }∪V11(x2)∪V12(x2)∪V22(x2)\
{v}. If there exists a vertex v ′ ∈ V21(x2) such thatW ([v,v ′]) = 1,

thenW ([v ′,p]) = 1 andW ([v ′, r ]) = 2, where p is the parent of v ′

in G(x2); otherwise, Operation 4 is applicable on x2.
Let v1 be a vertex in V22(x2) ∪ V

0

12
(x2) with N1(v1) , ∅ (recall

that N1 denotes the set containing all the vertices v ′ in G with

W ([v1,v
′]) = 1; the above analysis gives that N1(v1) ⊂ V21(x2)). If

the parent p1 of v1 in G(x∗) is a vertex of {r } ∪V \ N1(v1) (recall
that x∗ is an optimal solution of DR-(1,2)-MSTP on G), then the

edge between v1 and p1 in G(x∗) has weight 2; otherwise, by the

above analysis, the edge between p1 and its parent r in G(x∗) has
weight 2.

Assume that the parent p1 of v1 in G(x∗) is a vertex of N1(v1),
where N1(v1) ⊂ V21(x2). We have that if there is a vertex v2 in

V22(x2) ∪V
0

12
(x2) \ {v1} that is also the child of p1 in G(x∗), then

W ([p1,v2]) = 2; otherwise, Operation 5 is applicable on G(x2),
with respect to v1, v2, and p1. That is, if there is a subset V ′ ⊂
(V22(x2) ∪V

0

12
(x2)) in which the vertices have the same common

parent p in G(x∗), then one of the following three cases holds.
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Figure 2: Illustrations of Operation 1-5 considered in Theorem 5.1. In particular, the illustration of Operation 4 given above
only considers the case that v2 is a grandchild of r in G(x1), and that of Operation 5 given above only considers the case that
v2 is a child of r with no children, and v3 is a grandchild of r in G(x1).

1) p is the vertex r , thus all the edges between p and the vertices

in V ′ have weight 2;
2) p is a child of r , and there is a vertexv ∈ V ′ with p ∈ N1(v), then

all edges between p and the vertices in V ′ \ {v} have weight 2,
the edge [v,p] has weight 1, and the edge [p, r ] has weight 2;

3) p is a child of r , and there is no vertex v ∈ V ′ with p ∈ N1(v),
then all edges between p and the vertices in V ′ have weight 2.

Summarizing the above analysis, we have

Cost(x∗) ≥ n + |V22(x2)| + |V
0

12
(x2)|.

The following inequality can be easily derived, where the last in-

equality relation holds because each vertex in V 1

12
(x2) has at least

one child in G(x2), i.e., |V
1

12
(x2)| ≤ n/2.

Cost(x2) = |V11(x2)| + 2|V12(x2)| + |V21(x2)| + 2|V22(x2)|

= n + |V12(x2)| + |V22(x2)|

= n + |V 0

12
(x2)| + |V

1

12
(x2)| + |V22(x2)|

≤
3n

2

+ |V 0

12
(x2)| + |V22(x2)|.

Therefore, the approximate ratio of x2 is

Cost(x2)

Cost(x∗)
≤

3n
2
+ |V 0

12
(x2)| + |V22(x2)|

n + |V 0

12
(x2)| + |V22(x2)|

≤
3

2

.

The above conclusion gives that the algorithm takes expected

time O(m6n) to obtain a solution with ratio
3

2
. □

By almost the same reasoning given in the proof for Theorem 5.1,

and the sizes of the populations maintained by the MOEA and

MOEA-1, we can get the following theorem.

Theorem 5.2. The expected time of the MOEA and MOEA-1 to
obtain a 3

2
-approximate solution of DR-(1,2)-MSTP on G is O(m6n2)

and O(m6n), respectively.

Now we consider the improved performance of the MOEA-2

based on the first four local search operations given in the proof

for Theorem 5.1, and a new designed local search operation.

Theorem 5.3. The expected time of the MOEA-2 to obtain a 3

2
-

approximate solution of DR-(1,2)-MSTP on G is O(m4n).

Proof. Assume that the algorithm has obtained a population

that contains a feasible solution x0, i.e., |Ed (x0)| = 0. By Theo-

rem 4.12, the algorithm takes expected time O(m logn) to get such

a population. In the following, we give several operations to opti-

mize x0. Firstly, we adopt the Operations 1-4 given in the proof of

Theorem 5.1, then present a new operation as follows.

Consider a grandchild v1 of r , and two vertices v2 and v3, each
of which is either a grandchild of r or a child of r with no child in

G(x0). Let p2 and p3 be the parents of v2 and v3, respectively (p2
and p3 may be r if v2 and v3 are the children of r in G(x0)).

Operation 6. IfW ([v1,v2]) =W ([v1,v3]) = 1, butW ([v2,p2]) =
W ([v3,p3]) = 2, then swap the edges [v2,p2], [v3,p3] with [v1,v2],
and [v1,v3].

Denote by x ′ the solution obtained by Operation 6 on x0. Ob-
serve that |Ed (x

′)| = 1 and f 2
M2
(x ′) = f 2

M2
(x0) − 2. If x

′
cannot be

accepted by the algorithm, then its population contains a solution

x1 with |Ed (x1)| = 1 satisfying f 2
M2
(x1) < f 2

M2
(x ′). Thus in the

following, we assume that the population contains a solution x1
with |Ed (x1)| = 1 satisfying f 2

M2
(x1) ≤ f 2

M2
(x ′). Denote by [v,p]

the unique edge in Ed (x1), wherep is the parent ofv inG(x1). Swap-
ping the edge [v,p] with the edge [v, r ], we can get a solution x ′′

with |Ed (x
′′)| = 0. As the edges [v,p] and [v, r ] may have weight 1

and 2, respectively, f 2
M2
(x ′′) ≤ f 2

M2
(x1) + 1. Therefore,

f 2
M2
(x ′′) ≤ f 2

M2
(x1) + 1 ≤ f 2

M2
(x ′) + 1 ≤ f 2

M2
(x0) − 1.

Summarizing the above analysis, Operation 6 and the subsequent

operation can improve the feasible solution in the population by

at least one with respect to f 2
M2

. The mutations corresponding to

the two operations can be generated with probability Ω(1/m4) and

Ω(1/m2), respectively, i.e., they take expected time O(m4).

Since Cost(x0) ≤ 2n, and Cost(x∗) ≥ n, where x∗ is an optimal

solution for DR-(1,2)-MSTP on G, Operation 1-4 and 6 can be ap-

plied at most n times. That is, starting with x1, the algorithm takes

expected time O(m4n) to get a feasible solution x2 on which Oper-

ation 1-4 and 6 are not applicable. By the reasoning given in the

proof for Theorem 5.1, the approximate ratio of x2 is
3

2
. □

6 REDUCTION FROM DR-(1,2)-MSTP TO SET
COVER PROBLEM

Given a feasible solution x of DR-(1,2)-MSTP on G, the graph G(x)
corresponds to a collection of claw components, denoted by L(x),
and the edges connecting them to the root r . Conversely, a collection
L of claw components that covers all vertices inV corresponds to a

feasible solution of DR-(1,2)-MSTP onG, where the corresponding
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depth restricted spanning tree can be constructed by connecting

the center of each claw component C ∈ L to r with a new edge.

Thus we study the problem DR-(1,2)-MSTP from the perspective

of claw components in the following discussion. Firstly, we partition

the vertices in V into the three subsets given below:

1) V1, contains all the vertices v ∈ V withW ([v, r ]) = 1;

2) V2, contains all the vertices v ∈ V withW ([v,v ′]) = 2 for any

vertex v ′ ∈ {r } ∪V \ {v};
3) V21, contains all vertices inV \ (V1 ∪V2). That is, for each vertex

v ∈ V21,W ([v, r ]) = 2, but there is a vertex v ′ withW ([v,v ′]) =
1, where v ′ can be a vertex of V1 ∪V21.

The vertices in V21 can be further partitioned into the following

two subsets:

1) V 1

21
, contains all the vertices v ∈ V21 such that there exists a

vertex v1 ∈ V1 withW ([v,v1]) = 1;

2) V 2

21
, contains all vertices inV21 \V

1

21
, i.e., for each vertexv ∈ V 2

21
,

there does not exist a vertex v1 ∈ V1 withW ([v,v1]) = 1.

Lemma 6.1. There exists an optimal solution x∗ for DR-(1,2)-MSTP
on G that satisfies the following three properties:

1) all vertices in V1 ∪V2 are the children of r in G(x∗);
2) all the edges with weight 2 are incident to r in G(x∗);
3) for each vertex v ∈ V 1

21
, it is either the child of a vertex of V1 in

G(x∗), or the center of a claw component in L(x∗).

Proof. Let x be an arbitrary optimal solution for DR-(1,2)-MSTP

onG . We first consider a vertexv1 ∈ V1. It is easy to see that the edge
e1 between v1 and its parent in G(x∗) has weight 1; otherwise, x is

not optimal. Thus ifv1 is not a child of r inG(x
∗), then by swapping

the edge e1 with the edge between v1 and r whose weight is also 1,

we can get another optimal solution x ′ such that v1 is a child of r
in G(x ′). Similar analysis applies to the vertices in V2.

For an edge [v1,v2]with weight 2 inG(x), wherev1 is the parent
ofv2, andv1 is not r , we have thatW ([v2, r ]) = 2. Thus by swapping

the edge [v1,v2] with the edge [v2, r ], we can get another optimal

solution x ′ such that the edge with weight 2 is incident to r .
Thus by iteratively applying the operations mentioned above on

the optimal solution x , we can get an optimal solution x2 satisfying
the claimed Property (1) and (2). Now we consider Property (3) on

the solution x2 in the following discussion.

For a vertex v ∈ V 1

21
, it cannot be a child of r with no child in

G(x2); otherwise, it is not optimal. Thus if it is a child of r inG(x2),
then it has at least one child and is the center of the corresponding

claw component in L(x2). If v is a grandchild of r inG(x2), then the

edge incident to it inG(x2) has weight 1; otherwise, it is not optimal.

Recall that there exists a vertex v ′ ∈ V1 withW ([v,v
′]) = 1 by the

definition ofV 1

21
. Thus by swapping the edge incident to it with the

edge [v,v ′], we can get another optimal solution x ′ such that it is

the child of a vertex of V1. Therefore, by iteratively applying the

operation mentioned above on the solution x2, we can obtain an

optimal solution satisfying the three claimed properties. □

Given a claw component C , if it has no edge, or all edges in C
have weight 1, then it is a unit claw component. Let x∗ be an optimal

solution satisfying all properties given in Lemma 6.1. Then we have

that all claw components in L(x∗) are unit claw components (by

the second property given in Lemma 6.1). However, a collection

of unit claw components that covers all vertices in V may not

correspond to an optimal solution of DR-(1,2)-MSTP on G, since
there are two types of unit claw components, which are defined as

follows. Consider a unit claw component C , if the edge between
its center and r has weight 1, then it is a 1-unit claw component;
otherwise, it is a 2-unit claw component.

It is easy to see that L(x∗) has the minimum number of 2-unit

claw components. Thus an approach to obtain an optimal solution

of DR-(1,2)-MSTP onG is looking for a collection of unit claw com-

ponents to cover all vertices in V such that the collection contains

the minimum number of 2-unit claw components.

The critical issue remaining to be resolved is the construction

of the universal set U , which contains all considered unit claw

components, and the selection of the unit claw components from

U to cover all vertices in V . For the construction ofU , although it

is feasible to include all possible unit claw components inG intoU ,

we find that it is unnecessary to consider all unit claw components

in G. In the following discussion, we give a feasible and efficient

way for the construction ofU .

Firstly, by Lemma 6.1 the vertices in V1 ∪ V2 can be ignored

(because they can be directly connected to the root r ). For a vertex
v ∈ V 1

21
, it may be the child of a vertex inV1 inG(x

∗) (recall that x∗

is an optimal solution satisfying the properties given in Lemma 6.1),

or be the center of a claw component of L(x∗) with some vertices

in V 2

21
. For a vertex v ∈ V 2

21
, it may be a child of r inG(x∗), or be in

a claw component whose center is a vertex of V21.
Thus we only need to consider the unit claw components whose

centers are the vertices ofV21, and the aim is to find a collection L of
unit claw components to cover all vertices in V 2

21
. The requirement

of L to cover only the vertices in V 2

21
is because if there are some

vertices in V 1

21
that are not covered by L, then they can be attached

to the vertices in V1 by the edges with weight 1.

Thus an instance Isc = (S,V
2

21
) of the Set Cover problem [7] can

be constructed as follows: let S contain the sets Sv for all v ∈ V21,
where Sv is the set containing all vertices in N1(v) ∩V

2

21
. Note that

the sizes of S and V 2

21
can be bounded by |V | = n. For the instance

Isc = (S,V
2

21
), the above discussion gives the lemma below.

Lemma 6.2. Given a solution Ssc to the instance Isc = (S,V 2

21
)

of the Set Cover problem, then the corresponding depth restricted
spanning tree has weight n + |V2 | + |Ssc |.

Alfandari and Paschos [1] studied an approximate algorithm for

DR-(1,2)-MSTP on G, from the perspective of claw components.

They first preprocessed the instance Isc = (S,V
2

21
) as follows.

Initialize two sets S′ = S and C = ∅ (C is to contain the covered

vertices). If there exists a Sv ∈ S
′
with |Sv | ≥ 4, then letC = C∪Sv ,

S′ = S′ \ {Sv }, and S = S \C for all S ∈ S′. Iteratively apply the

above operation until |S | ≤ 3 for any S ∈ S′. Then a new instance

I3sc = (S
′,V 2

21
\C) of the 3-Set Cover problem [7] is constructed.

Note that the sizes of S′ and V 2

21
\ C are upper bounded by n as

well. Afterwards, they called an approximate algorithm for the

instance I3sc = (S
′,V 2

21
\ C) of the 3-Set Cover problem, where

the returned approximate solution is denoted by Sa . It is easy to

see that Sa ∪ (S \ S
′) is a solution to Isc = (S,V

2

21
), and a depth

restricted spanning tree ofG can be obtained based on the solution

and the construction way mentioned before. For the approximate
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ratio of the obtained spanning tree, it can be summarized in the

following theorem.

Theorem 6.3. [1] If there is an approximate algorithm for 3-Set
Cover problem with ratio r ′ > 1, then there exists an approximate
algorithm for DR-(1,2)-MSTP on G with ratio r , where r is given as
follows.

r =

{
3r/4 if r ′ > 5/3

5/4 otherwise

6.1 Analysis of 3-Set Cover Problem
In the subsection, we focus on the 3-Set Cover problem and present

a simple multi-objective evolutionary algorithm (named MOEA3sc,

given in Figure 5). The algorithm adopts the greedy strategy.

Assume that all sets inS′ are numbered, i.e.,S′ = {S1, S2, . . . , Sn′},
where n′ = |S′ | ≤ n. The considered search space consists of all

bit-strings with length n′. For a search point x = x1 . . . xn′ , the set
Si (1 ≤ i ≤ n′) is chosen iff xi = 1. Denote by S(x) the collection
of sets that are chosen by x , by Vc (x) the set of vertices that are
covered by the sets in S(x).

Consider amulti-objective fitness function f3sc = (f
1

3sc
, . . . , f n

′

3sc
) :

S → Nn
′

defined on the solution set. We first set f3sc(0
n′) =

(0, . . . , 0). For a solution y obtained by flipping exactly one 0-bit in

x that is chosen uniformly at random and nothing else, if x = 0
n′
,

then we set

f3sc(y) = (|Vc (y)|, 0, . . . , 0);

otherwise,

f3sc(y) = (f
1

3sc
(x), . . . , f

|x |1
3sc
(x), |Vc (y) \Vc (x)|, 0, . . . , 0).

Note that f i
3sc
(y) = 0 for all |y |1 + 1 ≤ i ≤ n′.

Given two solutions x and y, x strongly dominates y with respect

to f3sc if |x |1 = |y |1, and there exists an index 1 ≤ j ≤ n′ such that

f
j
3sc
(x) > f

j
3sc
(y), and f i

3sc
(x) = f i

3sc
(y) for all 1 ≤ i ≤ j − 1, written

x ≻3sc y. Solution x dominates y with respect to f3sc if x ≻3sc y,
or |x |1 = |y |1 and f3sc(x) = f3sc(y), written x ≽3sc y. Thus two
solutions are comparable with respect to f3sc only if they have the

same Hamming weight.

The MOEA3sc starts with the population that is initialized with

the solution 0
n′
. In each iteration, the algorithm chooses an individ-

ual x from the population, and generates an offspring by flipping

exactly one 0-bit in x that is chosen uniformly at random and noth-

ing else. If the offspring is not strongly dominated by any solution

in the maintained population, then the offspring is included into

the population, and all the other solutions that are dominated by

the offspring (excluding itself) are discarded.

Theorem 6.4. The expected time of the MOEA3sc to obtain an
approximate solution with ratio 11

6
to the instance I3sc = (S′,V 2

21
\C)

of the 3-Set Cover problem is O(n3).

Proof. We start with several related notions. Given a solution

x , if x = 0
n′
, or there is no solution that strongly dominates x with

respect to f3sc, then it is potential. Thus a potential solution can only
be dominated by another potential solutionwith the sameHamming

weight, with respect to f3sc. Given a solution x , if
∑ |x |1
i=1 f i

3sc
(x) =

|V 2

21
\C |, i.e., all vertices inV 2

21
\C are covered, then it is a complete

solution to the instance I3sc of the 3-Set Cover problem. Given a

Algorithm 5:MOEA3sc

1 S ← {0n
′

};

2 while stopping criterion not met do
3 Choose x ∈ S uniformly at random;

4 y← flip 0-bit xi with i ∈ [1,n
′] chosen uniformly at

random;

5 if (0≤ |y |1≤n′) ∧ (∄w ∈ S : w ≻3sc y) then
6 S ← S \ {z ∈ S | y ≽3sc z};

7 S ← S ∪ {y};

complete solution x , if f i
3sc
(x) , 0 for all 1 ≤ i ≤ |x |1, i.e., each set

chosen by x makes a contribution to cover the vertices in V 2

21
\C ,

then it is a minimal and complete solution to I3sc.
As the population maintained by the algorithm is initialized with

{0n
′

}, the population contains at least one potential solution. Now

let x be the potential solution in the population with the maximum

Hamming weight. In the following, we analyze the expected time

of the algorithm to get a potential solution with Hamming weight

exactly one larger than |x |1.
Let Si be the set of S

′ \ S(x) such that |Si \Vc (x)| is maximized,

i.e.,

Si = arg max

S ∈S′\S (x )
|S \Vc (x)|.

If the mutation chooses the potential solution x , and flips the 0-bit

xi corresponding to Si and nothing else, then a potential solution

x ′ with |x ′ |1 = |x |1 + 1 is obtained, which can be accepted by

the algorithm as we assumed that x is the potential solution in

the population with the maximum Hamming weight. The size of

the population can be bounded by n′ + 1, where n′ ≤ n, thus
the mutation can be generated with probability Ω(1/n2), i.e., the
algorithm takes expected timeO(n2) to get a potential solution with
Hamming weight exactly one larger than |x |1.

Summing over thewaiting time for all possible Hammingweights

of x , the MOEA3sc takes expected time O(n3) to get the potential
solution x∗ that is a minimal and complete solution to I3sc.

By the definitions of potential solutions and minimal and com-

plete solutions, we have that the solution x∗ can be obtained by an

execution of the greedy algorithm given in [6] for the 3-Set Cover

problem. Thus the approximate ratio of x∗ is 11

6
. □

Combining Theorems 6.3 and 6.4, we have the following theorem.

Theorem 6.5. Using the MOEA3sc for the 3-Set Cover problem that
can obtain an approximate solution with ratio 11

6
to I3sc = (S′,V 2

21
\C)

in expected time O(n3), an approximate solution with ratio 11

8
for

DR-(1,2)-MSTP on G can be constructed.

Yu et al. [37] presented an evolutionary algorithm for the k-Set
Cover problem that can obtain an approximate solution with ratio

Hk −
k−1
8k9

in expected time O(|C |k+1 |U |2), where U denotes the

universal set of instance I = (C,U ) ,C denotes the collection of the

subsets ofU , and Hk =
∑k
i=1

1

i is the k-th harmonic number. That

is, if k = 3, then the algorithm takes expected time O(|C |4 |U |2) to
get a solution with approximate ratio

11

6
− 1

4·39
. As the sizes of S′
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and V 2

21
\C in I3sc = (S

′,V 2

21
\C) can be upper bounded by n, we

have the following theorem.

Theorem 6.6. Using the evolutionary algorithm for the 3-Set Cover
problem given in [37] that can obtain an approximate solution with
ratio 11

6
− 1

4·39
to I3sc = (S

′,V 2

21
\ C) in expected time O(n6), an

approximate solution with ratio 11

8
− 1

16·38
for DR-(1,2)-MSTP on G

can be constructed.

7 CONCLUSION
In the paper, we investigated a constrained version of the Minimum

Spanning Tree problem, named Depth Restricted (1,2)-Minimum

Spanning Tree problem (abbr. DR-(1,2)-MSTP), on a complete edge-

weighted graph, in which each edge has weight 1 or 2. For the (1+1)

EA, we compared its performance with respect to eight different

fitness functions. With respect to the fitness functions f ′
2
and f ′

3
,

we showed that the (1+1) EA needs exponential expected time to

get an improved solution if it starts with a given specific solution,

but we did not consider the probability of the algorithm to get the

specific solution starting with 0
m
. Thus it is an interesting job to

supplement the related results. With respect to the other six fitness

functions, the (1+1) EA was shown to obtain an approximate solu-

tion with 2 or
3

2
of DR-(1,2)-MSTP efficiently. Meanwhile, we gave a

Multi-Objective Evolutionary Algorithm (abbr. MOEA) and showed

that the MOEA can get a 2-approximate solution in polynomial

expected time. As the large population size of the MOEA slows its

optimization process, we considered it two variants, where any of

them maintains a population with size at most two. The analysis

for the performance of the two variants showed that the interplay

between the two solutions in the population (a feasible one and an

infeasible one) can promote the accelerate the optimization process.

Additionally, by introducing several local search operations, we

studied the performance of the four algorithms mentioned above

to get an improved approximate solution with ratio
3

2
. Finally, we

reformulated DR-(1,2)-MSTP in form of the Set Cover problem

following Alfandari and Paschos [1], and investigated it from the

perspective of the Set Cover problem, leading to an approximate

ratio better than
3

2
.

It is not hard to see that the reasoning given in the paper can

be adapted to DR-(1,α )-MSTP on a complete edge-weighted graph,

in which each edge has weight 1 or α (α is an integer not less

than 2). Future work on evolutionary algorithms for the generalized
DR-MSTP would be very interesting, where the depth restriction is

relaxed to an integer β > 2, or the weight of each edge in the input

graph has more than two options.
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