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ABSTRACT
The area of runtime analysis has made important contributions

to the theoretical understanding of evolutionary algoirthms for

stochastic problems in recent years. Important real-world applica-

tions involve chance constraints where the goal is to optimize a

function under the condition that constraints are only violated with

a small probability. We rigorously analyze the runtime of the (1+1)

EA for the chance-constrained knapsack problem. In this setting,

the weights are stochastic, and the objective is to maximize a linear

profit function while minimizing the probability of a constraint

violation in the total weight. We investigate a number of special

cases for this problem, paying attention to how the structure of the

chance constraint influences the runtime behavior of the (1+1) EA.

Our results reveal that small changes to the profit value can result

in hard-to-escape local optima.
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1 INTRODUCTION
The area of runtime analysis has significantly increased the theoreti-

cal understanding of evolutionary algorithms and other bio-inspired

approaches over the last 30 years [1, 9, 19]. This area of research

treats bio-inspired algorithms as a special class of randomized algo-

rithms [20] and analyzes them with respect to their runtime and/or

approximation behavior.
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In recent years, the analysis of evolutionary algorithms and

ant colony optimization for dynamic and stochastic problems has

gained significant attention in the literature [4, 14–16, 22]. The

survey of Roostapour et al. [23] provides on overview on the results

for dynamic and stochastic problems achieved in recent years. In

the case of stochastic problems, noise is added to a solution and

in most of the cases studied so far in the literature, bio-inspired

algorithms are analyzed until they have achieved a solution with a

good expected value. However, considering only the expectation

does not take the robustness of solutions into account, especially if

the variance of the value under consideration is high.

An important class of stochastic problems that have been been

almost neglected in the area of evolutionary computation are chance
constrained optimization problems [2, 3]. So far they have received

significant attention in the operations research community [6, 7],

but to a much lesser extent in the field of evolutionary computa-

tion [17]. Chance constrained optimization problems are of very

high significance in real-world applications and require that con-

straints involving stochastic components are only violated with

a small probability. Problems that can be modelled using chance

constraints therefore include problems with safety requirements

in engineering applications, in particular where a failure would

involve high costs. Such settings often arise in process optimiza-

tion [12] and process control [13].

We consider the setting where a deterministic objective function

is optimized subject to a stochastic constraint. In its classical form,

such a chance constraint requires that it is violated with probability

at most α , where α is a parameter that determines the reliability

of the solutions with respect to the considered stochastic setting.

Recently, single- and multi-objective evolutionary approaches have

been proposed for the chance-constrained knapsack problem [26].

These approaches makes use of popular deviation inequalities such

as the Chebyshev inequality and Chernoff bounds in order to esti-

mate the constraint violation probability of a given solution. These

tools are also frequently used in the area of runtime analysis of

evolutionary computation. Studying chance constrained problems

in the context of evolutionary algorithms constitutes an impor-

tant new research direction both from a theoretical and practical

perspective.

With this paper, we start the runtime analysis of evolutionary

algorithms for chance-constrained problems. Following the design

for the chance-constrained knapsack problem introduced in [26], we

analyze special cases of this problem. We are particularly interested

not just in feasible solutions (which might be active in the chance

constraint), but optimal solutions that minimize the probability

that the chance constraint is violated. We argue that such solutions

are more robust. In terms of theory of evolutionary computation,
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our investigations have the potential of opening up a new area of

highly significant research building upon previous classical pseudo-

Boolean functions as well as combinatorial optimization problems

with deterministic constraints.

In our analysis, we pay special attention to the case in which

all the profits are equal. This setting has been investigated in the

context of deterministic constrained optimization problems [5].

However, in our case the weights are chosen according to different

distributions and we investigate the impact that this has on the

search behavior of simple mutation-based evolutionary algorithms.

After having investigated the case where all profits are equal to

1, we consider cases where profits and weight distributions differ

between the items. We also demonstrate that a very small change

to the profit value can result in the presence of local optima that

cannot be escaped in expected polynomial time for the investigated

algorithm.

The paper is structured as follows. In Section 2, we describe the

problem, and the approach for using the Chebyshev inequality to

determine constraint violations. Section 3, presents the algorithm

and the runtime results for different chance-constraint problems

using the Chebyshev inequality for evaluating constraint violations.

Finally, we finish with some conclusions

2 PRELIMINARIES
The classical (deterministic) knapsack problem is a constrained

combinatorial optimization problem that has been widely studied

in the context of evolutionary computation [8, 11, 18, 21, 27]. The

objective of the problem is to maximize a linear profit function

subject to a linear weight constraint.

In the chance-constrained knapsack problem the weights are

stochastic, and the goal is to maximize the profit subject to the

probability that the total weight exceeds the given bound is not too

high. Formally, the input is given by n items. The stochastic non-

negative weights of the items are modeled asn independent random

variables {w1, . . . ,wn }, each with expected values {a1, . . . ,an } and
variances {σ 2

1
, . . . ,σ 2

n }. Furthermore, we denote by amax = maxai
(respectively, amin = minai ) the largest (respectively, smallest)

expected weight of any item. The non-negative profits of items are

deterministic and are denoted by {p1, ...,pn }.
A solution is characterized as a vector of 0-1 decision variables

x = (x1, ...,xn ) ∈ {0, 1}
n
where xi = 1 selects the i-th item. The

weight of a solution is the random variable

W (x ) =
n∑
i=1

wixi

with expectation

E[W (x )] =
n∑
i=1

aixi

and variance

Var[W (x )] =
n∑
i=1

σ 2

i xi .

The chance-constrained knapsack problem can be formulated as

follows [10]:

maximize p (x ) =
n∑
i=1

pixi (1)

subject to Pr (W (x ) > B) ≤ α . (2)

The objective of this problem is to select a subset of items where

the profit is maximized subject to the chance constraint given in

Equation (2). The chance constraint requires that a solution violates

the constraint bound B with probability at most α .

Theorem 2.1 (One-sided Chebyshev ineqality). Let X be
a random variable with finite expectation E[X ] and finite nonzero
variance Var[X ] = σ 2. Then for any k ∈ R+,

Pr(X ≥ E[X ] + k ) ≤
σ 2

σ 2 + k2
.

Proof. Set Y = X − E[X ]. For any t such that t + k > 0,

Pr(X ≥ E[X ] + k ) = Pr

(Y + t
k + t

≥ 1

)
≤ Pr

((Y + t
k + t

)2
≥ 1

)
. (3)

By the Markov inequality, (3) is at most

E

[(Y + t
k + t

)2]
=

E[Y 2
] + 2t E[Y ] + t2

(k + t )2
=

σ 2 + t2

(k + t )2
,

since E[Y ] = 0 and E[Y 2
] = E[(X − E[X ])2] = E[X 2

] − E[X ] =
σ 2

. The RHS is minimized by choosing t = σ 2/k , completing the

proof. □

Given a set of stochastic weights with arbitrary distributions,

it will be intractable to calculate the exact probability that the

chance constraint is violated. Therefore, we will use the one-sided

Chebyshev inequality to construct a usable surrogate that translates
to a guarantee on the feasibility of the chance constraint imposed

by Equation (2).

Definition 2.2. For a chance-constrained knapsack instance, we

define the surrogate function β : {0, 1}n → R over decision vectors

as

β (x ) =
Var[W (x )]

Var[W (x )] + (B − E[W (x )])2
.

It is clear by Theorem 2.1 that Pr(W (x ) ≥ B) ≤ β (x ), and there-

fore every x such that β (x ) ≤ α is also feasible.

Definition 2.3. Given a solution x with total stochastic weight

W (x ), we call the difference B − E[W (x )] the gap of x .

It will sometimes be convenient to express feasibility in terms

of the gap of a solution. This is formalized as the following lemma,

which follows directly from Theorem 2.1.

Lemma 2.4. If x is a solution vector with gap k = B − E[W (x )],
then the chance constraint stated in Equation (2) is satisfied when

k ≥
√
Var[W (x )] 1−αα , for all α ∈ (0, 1).

Proof. Setting the gap k = B − E[W (x )], the LHS of the in-

equality in the chance constraint (2) can be written as Pr(W (x ) ≥
E[W (x )] + k ). By Theorem 2.1, this is bounded above by

Var[W (x )]

Var[W (x )] + k2
≤

Var[W (x )]

Var[W (x )]
(
1 + 1−α

α

) = α ,
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Algorithm 1: (1+1) EA for optimizing f [Equation (4)]

1 Choose x to be a feasible decision vector;

2 while stopping criterion not met do
3 y ← x ;

4 foreach i ∈ {1, . . . ,n} do
5 With probability 1/n, yi ← (1 − yi );

6 if f (y) ⪰ f (x ) then
7 x ← y

where we have used the claimed lower bound on k . Thus the in-
equality in (2) is satisfied. □

This lemma provides a useful tool for determining how much

gap can ensure that we have a feasible solution and allows for the

determination of how much progress the (1+1) EA can make in

terms of the given deterministic objective function.

3 RUNTIME ANALYSIS OF THE (1+1) EA
We study the running time of the (1+1) EA defined inAlgorithm 1 for

optimizing the stochastic-weight knapsack problem under chance

constraints. The algorithm starts with an initial feasible solution

and produces an offspring y by flipping each bit of of the current

solution x with probability 1/n. The offspring y is accepted if it is

not inferior to the parent x .
We are particularly interested in the construction of robust opti-

mal solutions, meaning feasible solutions that maximize the profit,

but simultaneously minimize the probability that the chance con-

straint is violated. We define the optimization time of the (1+1) EA

as the number of fitness function evaluations necessary until such

a solution is constructed. As mentioned previously, we employ the

one-sided Chebyshev inequality to bound the probability of violat-

ing the chance constraint in order to maintain feasible solutions. In

particular, we will study the fitness function

f (x ) B (p′(x ), β (x )), (4)

where p′(x ) = −1 iff β (x ) > α and p′(x ) = p (x ) otherwise. We

optimize f in lexicographic order, where the goal is to maximize

p′(x ) and minimize β (x ), i.e. we have

f (y) ⪰ f (x ) ⇔ (p′(y) > p′(x ))∨ ((p′(y) = p′(x ))∧ (β (y) ≤ β (x )))

Note that throughout our investigationswe assume that the (1+1) EA

is always initialized with a solution that is feasible with respect to

the chance constraint. This implies that according to the survival

selection, the algorithm does not accept any infeasible solution

during the optimization process.

Analyzing the runtime of the (1+1) EA we are interested in the

expected number of fitness evaluations until an optimal solution

has been produced for the first time. We call this the expected time

to achieve an optimal solution and its commonly known as the

expected optimization time in the literature.

3.1 Uniform profit
We begin our study with two cases in which the deterministic

profits are uniform. In this case, their actual value does not matter,

so it is convenient to use unit profits.

3.1.1 Independent and identically distributed randomweights. When

the stochastic weights are independent and identically distributed,

it is easy to see that the behavior of the (1+1) EA is identical to the

case of OneMax. Moreover, if the chance constraint parameters

given by α and B restricts the value of the optimal solution to any

constant fraction of n, then the runtime of the (1+1) EA becomes

linear. Consider the following instance.

Instance 1 (Uniform profit, i.i.d weights). For 1 ≤ i ≤ n, let
pi = 1, ai = a, for some a ∈ R+, and σi = c2, c > 0 a constant.

Instance 1 resembles a classical OneMax setting where all items

have the same property and the goal is to maximize the number of

items that are included in the solution.

Theorem 3.1. If the optimal solution has profit n − o(n), then the
(1+1) EA finds an optimal solution to Instance 1 inO (n logn) time. In
the case that the optimal solution has profit at most n/(1 − ϵ ) for any
constant 0 < ϵ < 1, then the expected time until the (1+1) EA finds
the optimal solution to Instance 1 is O (n).

Proof. For any solution x ∈ {0, 1}n , we have the bounds

E[W (x )] ≤ a · n

and

σ B
√
Var[W (x )] ≤ c

√
n.

Therefore, in the case the weight bound is

B ≥ a · n + c
√
n(1 − α )/α ,

then the gap of an arbitrary solution x is

B − E[W (x )] ≥ (a · n − E[W (x )]) + c
√
n *
,

√
1 − α

α
+
-

≥ σ

√
1 − α

α

and thus feasible by Lemma 2.4. In such a case, every search point

x ∈ {0, 1}n is feasible, and the expected optimization time isO (n logn).
Otherwise, we argue that every solution x ∈ {0, 1}n such that

B − a |x |1 ≥ c
√
|x |1

√
1 − α

α
(5)

is feasible and the others are not feasible via the Chebyshev bound.

This follows by Lemma 2.4 and the fact that Var[W (x )] B σ 2 =

c2 |x |1.
Rearranging terms in Equation (5), the constraint boundary for

Chebyshev-feasible solutions is defined by the set of all x ∈ {0, 1}n

such that

|x |1 ≤ max




√
4a

(
1−α
α

)
c2B +

(
1−α
α

)
2

c4 + 2aB +
(
1−α
α

)
c2

2a2
,n



.

Set r = max{|x |1 : β (x ) ≤ α } according to the previous expression,

and partition {0, 1}n by L0,L1, . . . ,Lr such that

Li = {x ∈ {0, 1}
n
: |x |1 = i and β (x ) ≤ α }.

For all i < r , it is possible for the (1+1) EA to generate a feasible

solution in Li+1 by mutating exactly one of the n − i zero bits to

one. This event occurs with probability (1 − 1/n)n−1 (n − i )/n ≥
e−1 (n − i )/n. The proof is completed by applying the method of
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fitness-based partitions to bound the expected optimization time

from above as

r−1∑
i=0

en

n − i
= O

(
n log

( n

n − r

))
,

and the claim follows. □

3.1.2 Two variance classes. Assume now that the stochastic weights

are no longer identically distributed. The weights in the following

instance all have the same expectation, but there are now two vari-

ance classes. Half of the weights share a single low variance value,

and the remaining weights share a single high variance value.

Instance 2 (Uniform profits, two variance classes). For
1 ≤ i ≤ n, let pi = 1 and ai = a for a ∈ R+. Let σ 2

ℓ
and σ 2

h be two
positive real numbers with σ 2

ℓ
< σ 2

h . For 1 ≤ i ≤ n/2, let σ 2

i = σ 2

ℓ
,

and for n/2 + 1 ≤ i ≤ n, let σ 2

i = σ 2

h .

For Instance 2, the goal is to collect as many items of low variance

σ 2

ℓ
and add additional items of high variance σ 2

h if they still fit into

the knapsack.

Theorem 3.2. The optimization time of the (1+1) EA on Instance 2
is bounded by O (n3).

Proof. Let x be an arbitrary feasible decision vector. If

Var[W (x )] + σ 2

ℓ

Var[W (x )] + σ 2

ℓ
+ (B − (a + 1) |x |1)2

≤ α , (6)

then it is possible to increase the profit by adding a low-variance

item. This occurs with probability Ω(1/n) until either Equation (6)

does not hold or all of the low-variance items have been added.

On the other hand, if Equation (6) does not hold, we argue that it

is usually possible to reduce the β (x ) value at a given |x |1 level. Set

ℓ B

n/2∑
i=1

xi , and h B
n∑

i=n/2+1

xi .

Then it must be the case that

β (x ) =
ℓσ 2

ℓ
+ hσ 2

h

ℓσ 2

ℓ
+ hσ 2

h + (B − a |x |1)2
.

Thus, so long as ℓ < n/2 and h > 0, it is possible to reduce β (x )
without changing p (x ) (or the gap B − a |x |1) by swapping a high-

variance item for a low-variance item. Such a swap occurs in the

(1+1) EA with probability Ω(n−2), and since β (x ) is reduced, the
resulting solution remains feasible.

In the case that ℓ = n/2, then either (1) a high-variance item can

be added (probability Ω(1/n)), or (2) no high-variance items can

be added, in which case x is already optimal. The total expected

waiting time until an optimal solution is generated is thus bounded

by O (n3), as there are at most n different values for ℓ and h for a

given level of |x |1. □

3.2 Dual profit and weight classes
We now turn our attention to the more complicated case where

there are two types of items in terms of both profit and weight. The

first type of item has a low profit, but the weights are also drawn

uniformly from a relatively low interval. The second type of item

has a larger profit, but the weights a drawn uniformly from a higher

interval.

Instance 3 (pi ∈ {1, 2}, two weight intervals). Let pi = 1

if 1 ≤ i ≤ n/2, otherwise let pi = 2. The stochastic weights are
chosen uniformly at random from the real interval wi ∈ [1/2, 3/2]

for 1 ≤ i ≤ n/2, andwi ∈ [3/2, 5/2] for n/2 + 1 ≤ i ≤ n.

Note that for Instance 3 we have σ 2

i = 1/12 for 1 ≤ i ≤ n and

ai = pi for 1 ≤ i ≤ n. The goal is to obtain the highest possible

profit by selecting the smallest number of possible items as this

leads to a small variance. Hence, items of profit 2 are preferred over

items of profit 1.

Theorem 3.3. The expected optimization time of the (1+1) EA on
Instance 3 is O (n4).

Proof. Let x be a solution that is non-optimal but feasible and

let r be the number of items chosen by x with profit 1 and s be
the number of items chosen by x of profit 2. Since ai = pi for all
1 ≤ i ≤ n, it follows that

E[W (x )] = r + 2s

and

Var[W (x )] = (r + s )/12.

The probability of violating the chance constraint is bounded by

β (x ) =
(r + s )/12

(r + s )/12 + (B − (r + 2s ))2

If r < n/2 and

(r + s + 1)/12

(r + s + 1)/12 + (B − (r + 2s + 1))2
≤ α , (7)

then the profit can be increased by 1 via a 1-bit flip which happens

with probability (n/2 − r )/(en).
If s < n/2 and

(r + s + 1)/12

(r + s + 1)/12 + (B − (r + 2(s + 1)))2
≤ α , (8)

then the profit can be increased by 2 through a 1-bit flip which

happens with probability (n/2 − s )/(en).
If neither condition applies, we argue that it is always possible

to decrease r while maintaining the same profit value, and this

results in a strictly lower β-value. Consider a fixed profit value p̂.
All solutions z ∈ {z | p (z) = p̂} have the property that

E[W (z)] = p (z)

and so the variance only depends on the number of items in solution

z. If r = 1 or s = n/2 and including an additional item of profit 1

would violate the constraint, then x is already optimal. If r ≥ 2 and

s < n/2, then removing two profit 1 items and including a profit 2

item, leads to a solution y with p (y) = p (x ) and β (y) < β (x ). This
solution would be accepted, and contains one fewer low-profit item,

reducing the new solution’s r -value.
On the other hand, the value of s cannot decrease when accepting

solutions of the same profit. If s decreases by any amount, in order

to maintain the same profit level, r must increase by twice this

amount. This would increase the variance and therefore lead to a

solution y with β (y) > β (x ), which would be rejected.

It follows that at any non-optimal point, it is possible to either

(1) increase the profit value with probability Ω(1/n), or (2) decrease
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the r -value at a profit value level with probability Ω(n−3), resulting
in a strictly better β-value.

The β-value can only increase in the case of a strict profit increase.
However, we argue that the number of bits necessary to return the

β-value to its previous level is proportional to the increase in profit.

In particular, define the sequence of nonnegative random variables

{δt : t ≥ 1} to be the profit increase in iteration t .
Suppose x is the current solution in iteration t , and x ′ is the

new solution accepted at the end of iteration t (after line 7 of Algo-
rithm 1). Then the number of surplus 1-bits in x ′ compared with x
is at most δt /2. In particular,

β (x ′) ≤
Var[W (x )] + δt /24

Var[W (x )] + δt /24 + (B − (E[W (x )] + δt ))
2
,

where equality holds if there is no change in profit 1 items. The

waiting time conditioned on δt to reduce the β-value to its previous
level by decreasing the r value is at most cδtn

3
for some positive

constant c .
Denote as T the random variable capturing the optimization

time of the (1+1) EA on Instance 3. The total time spent repairing

the β-value after profit increases during the run of the (1+1) EA is

stochastically dominated by the random sum

ST :=

T∑
t=1

cδtn
3.

By Wald’s equation [24, 25],

E[ST ] = cn
3
E



T∑
t=1

E[δt ]

= O (n4),

since the profit level never decreases during the run, and thus the

total expected increase in profit by the end of the run is bounded by

O (n). Since an improvement to either objective can bemade in every

step with probability Ω(n−3) until there are no such improvements

possible, the total expected running time is bounded by O (n4). □

We now change the setting of Instance 3 in a few ways to un-

derstand the influence of the instance structure on the runtime

behavior of the (1+1) EA. In particular, we see that by adding a

small term to the low profit value and explicitly setting the bound

and tolerance, it is possible to obtain local optima in the space

from which the (1+1) EA does not escape in polynomial time with

probability approaching one superpolynomially fast.

Instance 4 (pi ∈ {1 + ϵ, 2}, two weight intervals). Let pi =
1 + ϵ , 0 < ϵ < 1 if 1 ≤ i ≤ n/2, otherwise let pi = 2. The stochastic
weights are chosen uniformly at random from the real intervalwi ∈

[1/2, 3/2] for 1 ≤ i ≤ n/2, andwi ∈ [3/2, 5/2] for n/2 + 1 ≤ i ≤ n.

Theorem 3.4. The search space of Instance 4 with weight bound
B = n/2 +

√
n and confidence level α = 1/25 contains local optima

from which the (1+1) EA requires superpolynomial time to escape in
expectation and with high probability.

Proof. We prove that the solution x = (1n/20n/2) is locally
optimum and difficult to escape. The profit of x is

p (x ) =
n

2

+
ϵn

2

,

with expectation E[W (x )] = n/2 and variance Var[W (x )] = n/24.
Furthermore, the chance constraint is active for x in the following

sense.

β (x ) =
n/24

n/24 + n
=

1

25

= α .

We argue that in order to construct a distinct feasible solution

with profit at least p (x ), a large number of decision variables are

required to change. Let y be produced from x by removing ℓ <

4

√
n − 4 low-profit items and adding h <

√
n/2 high profit items,

i.e.,

ℓ =

n/2∑
i=1

(xi − yi ) < 4

√
n − 4 and h =

n∑
i=n/2+1

(yi − xi ) <

√
n

2

.

In order forp (y)−p (x ) ≥ 0, it must be the case that 2h ≥ ℓ(1+ϵ ) > ℓ.
It will be convenient to define a sequence of analytic functions

дℓ : R→ R for ℓ ∈ {0, 1, . . . , 4
√
n − 3} by fixing n.

дℓ (t ) =
(n − ℓ)/2 + t + 1

(n − ℓ)/2 + t + 1 + 12
(√

n − 2(t + 1)
)
2
. (9)

Since

dдℓ
dt
=

48

(√
n − 2(t + 1)

) (
(n − ℓ)/2 +

√
n + 2(t + 1)

)
(
96

√
n(t + 1) − 25n + ℓ − 2(t + 1) (48t + 49)

)
2
,

it follows that дℓ is strictly increasing in the interval t ∈
[
0,
√
n−2
2

)
.

Moreover, since 0 ≤ ℓ ≤ 4

√
n − 3,

дℓ (0) =
n − ℓ + 2

25n − 96
√
n + 98 − ℓ

≥
5 − 4

√
n + n

25n − 100
√
n + 101

=
1

25

(
1 +

24

25(n − 4
√
n) + 101

)
>

1

25

.

Hence, for any ℓ ∈ {0, 1, . . . , 4
√
n − 3}, дℓ (t ) > 1/25 in the interval

t ∈
[
0,
√
n−2
2

)
.

If y is a solution not identical to x with p (y) ≥ p (x ) and ℓ and h
defined as above, then Var[W (y)] = (n/2−ℓ+h)/12 and E[W (y)] =
n/2 − ℓ + 2h. Thus,

β (y) =
(n/2 − ℓ + h)

(n/2 − ℓ + h) + 12
(
n/2 +

√
n − (n/2 − ℓ + 2h)

)
2

= дℓ (h − ℓ/2 − 1) >
1

25

.

The final inequality holds by the fact that the upper bound on h <
√
n/2 guarantees the argument to дℓ is strictly less than (

√
n − 2)/2.

We conclude that any solution y constructed from x in which

fewer than 4

√
n − 4 low-profit items are removed and fewer than

√
n/2 high-profit items are removed cannot be feasible. On the other

hand, there does exist a solution z constructed from x by removing

ℓ = 2

√
n low-profit items and h = 2

√
n >
√
n/2 high-profit items.

This solution has constraint value β (z) = д
2

√
n (
√
n − 1) = 1/25 = α .

Moreover, the profit of z is

p (z) =
n

2

+
ϵn

2

+ 2(1 − ϵ )
√
n > p (x ).

Therefore, the (1+1) EA can only escape x by simultaneously chang-

ing at least Ω(
√
n) bits, and the waiting time for an event of this type
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is geometrically distributed with expectation nΩ(
√
n)
. The probabil-

ity that such an escape occurs in at most nc steps for an arbitrary

constant c is 1 −
(
1 − n−Ω(

√
n)

)nc
≤ n−Ω(

√
n)+c

by Bernoulli’s in-

equality. □

Finally, we consider an instance where a small term is added to

the high profit value.

Instance 5 (pi ∈ {1, 2+ϵ }, twoweight intervals). Letpi = 1 if
1 ≤ i ≤ n/2, otherwise letpi = 2+ϵ , 0 < ϵ < 1. The stochastic weights
are chosen uniformly at random from the real intervalwi ∈ [1/2, 3/2]

for 1 ≤ i ≤ n/2, andwi ∈ [3/2, 5/2] for n/2 + 1 ≤ i ≤ n.

Theorem 3.5. The expected optimization time of the (1+1) EA on
Instance 5 is O (n4).

Proof. Let x be the current feasible solution of the (1+1) EA. If

it is possible to add an item without violating the chance constraint,

then this can occur with probability at least Ω(1/n). On the other

hand, if no item can be added, we argue that it is always possible

to increase the profit by changing two low-profit items for a high-

profit item.

Let r be the count of low-profit items in x , and s be the count of
high-profit items. Since

β (x ) =
(r + s )/12

(r + s )/12 + (B − r + 2s )2
≤ α ,

if r > 1 and s < n/2, it is possible to construct a solution y from

x by removing two low-profit items and replacing them with a

single high-profit item without changing the expected weight, but

reducing the variance. This would result in

β (y) =
(r + s − 1)/12

(r + s − 1)/12 + (B − r + 2s )2
≤ α

Hence the profit can always be increased in this way until all n/2
high-profit items are included, or until no low-profit items remain.

In either case, the solution cannot be improved further, and must

be optimal.

A swap of two low-profit items with a single high profit item

occurs with probability Ω(n−3). As there areO (n) high-profit items

to collect, the proof is complete. □

4 CONCLUSIONS
Chance-constrained optimization problems play a key role in situa-

tions where critical stochastic components are involved. Evolution-

ary algorithms can be used to deal with these problems by using

surrogate functions such as the Chebyshev inequality or Chernoff

bounds. The main aim of this paper is to introduce the runtime

analysis of evolutionary algorithms for chance-constrained prob-

lems. This context targets the robustness of solutions to stochastic

problems, where we are interested in minimizing the chance that

our solution will violate the constraint. We carried out analyses of

a number of settings for the chance-constrained knapsack problem,

both with uniform profits and instances with varying combina-

tions of dual profit and weight classes. Our proofs are meant to

offer insight into the structure of these problems, and to expose

where the new challenges lie for deriving runtime bounds in the

chance-constrained setting.

Our hope is that the presented work advances a new and chal-

lenging area of significant research in the field of runtime analysis

for randomized search and optimization heuristics by extending re-

search in combinatorial optimization with deterministic constraints

into the direction of stochastic problems.
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