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ABSTRACT
We consider the weighted minimum vertex cover problem and in-
vestigate how its dual formulation can be exploited to design evo-
lutionary algorithms that provably obtain a 2-approximation. In-
vestigating multi-valued representations, we show that variants of
randomized local search and the (1+1) EA achieve this goal in
expected pseudo-polynomial time. In order to speed up the pro-
cess, we consider the use of step size adaptation in both algorithms
and show that RLS obtains a 2-approximation in expected polyno-
mial time while the (1+1) EA still encounters a pseudo-polynomial
lower bound.

1. INTRODUCTION
The theoretical understanding of bio-inspired computing tech-

niques lags far behind their practical success. These algorithms
are very popular with practitioners from various domains such
as engineering and economics. Having a good understanding of
the working principles of evolutionary algorithms and other bio-
inspired algorithms helps to increase the trust in these methods
and leads to the design of new high performing algorithms. The
area of runtime analysis of bio-inspired computing algorithms has
contributed significantly to the theoretical understanding of these
methods [2, 22, 27].

One of the most prominent NP-hard combinatorial optimization
problems that has been studied in this context is the minimum
vertex cover problem. Node-based approaches have been studied
for this problem in the single-objective and multi-objective set-
ting [18, 25]. Friedrich et al. [18] have shown that in expected
polynomial time, the single-objective (1+1) EA cannot achieve a
better than trivial approximation ratio. Further investigations re-
garding the approximation behaviour of evolutionary algorithms
for the vertex cover problem have been carried out in [17, 30].
Furthermore, edge-based encodings have been investigated in [23],
where an evolutionary algorithm finds a maximal matching from
which a 2-approximation vertex cover can be induced.

Inspired by their approach, we investigate a different way of ap-
proximating the minimum vertex cover problem by evolutionary
algorithms. While Jansen et al. [23] considered the classical vertex

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FOGA ’17, January 12 - 15, 2017, Copenhagen, Denmark
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4651-1/17/01. . . $15.00

DOI: http://dx.doi.org/10.1145/3040718.3040726

cover problem, we analyse the weighted version of the problem.
We study an edge-based encoding together with a multi-valued rep-
resentation that works on the dual of the minimum vertex cover
formulation. Our investigations can be seen as a generalization of
the approach based on matchings investigated by Jansen et al. [23],
although no direct connection to the use of dual formulations was
made in that paper. We are only aware of four previous theoreti-
cal works with multi-valued representations. Doerr et al. [11, 13]
regard the optimization of multi-valued linear functions via a vari-
ant of the (1+1) EA. More recently, static and dynamically chang-
ing variants of multi-valued OneMax functions have been consid-
ered [9, 24].

We analyze edge-based approaches generalizing the edge-based
encoding in conjunction with a fitness function obtaining maximal
matchings investigated in [23]. Our edge-based approaches con-
sider the dual formulation of the weighted vertex cover problem.
Working with the dual formulation an encoding assigns a weight to
each edge. During the evolutionary process the weight of the edges
may be increased or decreased and vertices whose constraints be-
come tight are selected as vertices for the cover. We first study the
situation where each weight can only increase or decrease by 1 at
each step and present pseudo-polynomial upper bounds on the ex-
pected time until our approaches have obtained a 2-approximation
for the minimum vertex cover problem.

In order to deal with potentially large weights of the given graph,
we incorporate step size adaptation into our algorithms. Step size
adaptation is a popular mechanism to steer the progress of an evo-
lutionary algorithm to the right level. Step size adaptation is a form
of parameter control [15], where a parameter is changed during the
execution of the algorithm. Adaptive parameters are very essential
in continuous search spaces [4] and popularly used for covariance-
matrix adaptation [19]. There are only few theoretical studies on
adaptive parameters in discrete spaces. Known results are that
changing the mutation rate [5, 7] and the population size [8] can
reduce the asymptotic runtime. Moreover, dynamically choosing
the number of parallel instances in parallel evolutionary algorithms
is studied in [26], and self-adjusting of the number of bits to be
flipped instead of a standard bit mutation is shown to improve the
performance of the optimization process [10].

In this paper, defining c1 > 1 and c2 > 1 as two constants,
we show that the use of step size adaptation where the step size is
multiplied by c1 in the case of a success and multiplied by 1/c2
in case of failure, leads to a polynomial upper bound on the ex-
pected runtime of the RLS algorithm to achieve a 2-approximation.
Furthermore, we present a pseudo-polynomial lower bound for the
(1+1) EA using this step size adaptation. The proof uses the insight
that the considered (1+1) EA is not able to achieve a sufficiently
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Algorithm 1: RLS

1 Initialize s := 0m and σ := 1m;
2 while termination condition not satisfied do
3 s′ := s;
4 Choose i ∈ {1, · · · ,m} uniformly at random;
5 Choose b ∈ {0, 1} uniformly at random;
6 if b = 0 then
7 s′i := s′i + σi;
8 else
9 s′i := max(s′i − σi, 0);

10 if
∑m
i=1 si <

∑m
i=1 s

′
i and∑

j∈{1,··· ,m}|ej∩{v}6=∅ s
′
j ≤ w(v), ∀v ∈ V then

11 s := s′;

12 return C := {v ∈ V | w(v) =
∑
j∈{1,··· ,m} | ej∩{v}6=∅ sj};

large step size during the optimization process in order to reach a
2-approximation.

This paper is structured as follows. In Section 2, we present our
edge-based approach based on a dual formulation for solving the
minimum vertex cover problem. We analyze RLS and (1+1) EA
with a step size of 1 in Section 3. Afterwards, we show a polyno-
mial upper bound for RLS with Step Size Adaptation in Section 4
and a pseudopolynomial lower bound for (1+1) EA with Step Size
Adaptation in Section 5. Finally, we finish with some concluding
remarks.

2. PRELIMINARIES
The weighted vertex cover problem is defined as follows. Given

a graph G = (V,E) with vertex set V = {v1, . . . , vn} and edge
set E = {e1, . . . , em}, and a positive weight function w : V →
N+ on the vertices, the goal is to find a subset of nodes, VC ⊆ V ,
that covers all edges and has minimum weight, i. e. ∀e ∈ E, e ∩
VC 6= ∅ and

∑
v∈VC

w(v) is minimized.
Consider the standard node-based representation, in which a so-

lution x = (x1, . . . , xn) is a bitstring of size n, where xi = 1 iff
the node vi is chosen. With this representation, the Integer Linear
Programming (ILP) formulation for this problem is:

min

n∑
i=1

w(vi) · xi

s.t. xi + xj ≥ 1 ∀(i, j) ∈ E
xi ∈ {0, 1} ∀i ∈ {1, · · · , n}

In the linear programming relaxation of the problem, the Frac-
tional Weighted Vertex Cover Problem, the constraint x ∈ {0, 1}
is relaxed to x ∈ [0, 1]. We denote the cost of the optimal solution
for the original problem and the relaxed version of the problem
by OPT and OPT ∗ respectively. Observe that OPT ∗ ≤ OPT .

Any LP problem (which we refer to as the primal problem) has
a dual form, which is also an LP problem. When the primal prob-
lem is a minimization problem, the dual problem helps with finding
lower bounds of the optimal solution of the primal problem (or up-
per bounds in case the primal form is a maximization problem).
Consider the following standard LP problem in which the goal is to

Algorithm 2: (1+1) EA

1 Initialize s := 0m and σ := 1m;
2 while termination condition not satisfied do
3 s′ := s;
4 for i := 1 to m do
5 with probability 1/m do
6 Choose b ∈ {0, 1} uniformly at random;
7 if b = 0 then
8 s′i := s′i + σi;
9 else

10 s′i := max(s′i − σi, 0);

11 if
∑m
i=1 si <

∑m
i=1 s

′
i and∑

j∈{1,··· ,m}|ej∩{v}6=∅ s
′
j ≤ w(v), ∀v ∈ V then

12 s := s′;

13 return C := {v ∈ V | w(v) =
∑
j∈{1,··· ,m} | ej∩{v}6=∅ sj};

minimize the objective function.

min

n∑
i=1

cixi

s.t.

n∑
i=1

ajixi ≥ bj j = 1, · · · ,m

xi ≥ 0, i = 1, · · · , n

where ci, aji and bj are given rational numbers. The dual form of
the above LP problem can be formulated as the following, where yi
is a variable for the ith inequality. For more explanations on primal
and dual forms of an LP problem, and how to derive the dual form
from the primal form refer to [31].

max

m∑
j=1

bjyj

s.t.

m∑
j=1

ajiyj ≤ ci i = 1, · · · , n

yj ≥ 0, j = 1, · · · ,m

Considering these formulations, the Weak Duality Theorem de-
scribed below, helps in finding lower bounds of any feasible solu-
tion of the primal problem. The reader can find the proof of this
theorem in [31].

Theorem 1 (The Weak Duality Theorem). If x = (x1, · · · , xn)
and y = (y1, · · · , ym) are feasible solutions for the primal and
dual problem respectively, then

n∑
i=1

cixi ≥
m∑
j=1

bjyj .

Using the concept of duality and the Weak Duality Theorem, 2-
approximations of the vertex cover problem can be obtained. The
dual of the relaxed covering problem is a packing problem formu-
lated as the following, where sj ∈ N+ denotes a weight on the
edge ej :

max

m∑
j=1

sj

s.t.
∑

j∈{1,··· ,m}|ej∩{v}6=∅

sj ≤ w(v) ∀v ∈ V

38



Algorithm 3: RLS with Step Size Adaptation

1 Initialize s := 0m and σ := 1m;
2 while termination condition not satisfied do
3 s′ := s;
4 I := ∅;
5 Choose i ∈ {1, · · · ,m} uniformly at random;
6 Choose b ∈ {0, 1} uniformly at random;
7 if b = 0 then
8 s′i := s′i + σi;
9 else

10 s′i := max(s′i − σi, 0);

11 I := I ∪ {i};
12 if

∑m
i=1 si <

∑m
i=1 s

′
i and∑

j∈{1,··· ,m}|ej∩{v}6=∅ s
′
j ≤ w(v), ∀v ∈ V then

13 s := s′;
14 σi := c1 · σi, ∀i ∈ I;
15 else
16 σi := max

(
σi
c2
, 1
)
, ∀i ∈ I;

17 return C := {v ∈ V | w(v) =
∑
j∈{1,··· ,m} | ej∩{v}6=∅ sj};

In other words, the dual problem is to maximize the sum of
weights on all edges, provided that for each vertex, the sum of
weights of edges incident to that vertex is at most equal to the
weight of that vertex.

Let s = (s1, · · · , sm), be a maximal feasible solution for the
dual problem with a cost of CostD . Since s is a maximal solution,
none of the edges can be assigned a greater weight without violat-
ing a constraint. Therefore, for at least one vertex of each edge, v,
we have

w(v) =
∑

j∈{1,··· ,m}|ej∩{v}6=∅

sj

As a result, the set of nodes for which the above equality holds,
C = {v ∈ V | w(v) =

∑
j∈{1,··· ,m} | ej∩{v}6=∅ sj}, is a vertex

cover. The cost of this vertex cover, CostP , is at most twice the
weight of all edges in the dual solution. Therefore, CostP ≤ 2 ·
CostD.Moreover, since s is a feasible solution, according to Weak
Duality Theorem (Theorem 1), CostD ≤ OPT , which results in
CostP ≤ 2·OPT , i. e. setC is a 2-approximation for the weighted
vertex cover problem.

Constructing maximal solutions for the dual problem has been
used in a number of algorithms for finding 2-approximations of the
weighted vertex cover problem, e.g. Bar-Yehuda and Evan’s greedy
algorithm [3] and Clarkson’s greedy algorithm [6]. A formal proof
of the approximation ratio of the solution obtained by this approach
can be found in Theorem 8.4 in [14] (represented in Theorem 2 be-
low). There, the output of a specific algorithm is studied as the
maximal dual solution, but the presented proof is valid for Theo-
rem 2 with any given maximal solution s.

Theorem 2. Consider s, a maximal feasible solution for the dual
problem of the relaxed weighted vertex cover problem. The vertex
set

C = {v ∈ V | w(v) =
∑

j∈{1,··· ,m} | ej∩{v}6=∅

sj}

is a 2-approximation for the original weighted vertex cover prob-
lem.

In this paper, we analyse the behaviour of four evolutionary algo-
rithms which find a 2-approximation for the weighted vertex cover

Algorithm 4: (1+1) EA with Step Size Adaptation

1 Initialize s := 0m and σ := 1m;
2 while termination condition not satisfied do
3 s′ := s;
4 I := ∅;
5 for i := 1 to m do
6 with probability 1/m do
7 Choose b ∈ {0, 1} uniformly at random;
8 if b = 0 then
9 s′i := s′i + σi;

10 else
11 s′i := max(s′i − σi, 0);

12 I := I ∪ {i};
13 if

∑m
i=1 si <

∑m
i=1 s

′
i and∑

j∈{1,··· ,m}|ej∩{v}6=∅ s
′
j ≤ w(v), ∀v ∈ V then

14 s := s′;
15 σi := c1 · σi, ∀i ∈ I;
16 else
17 σi := max

(
σi
c2
, 1
)
, ∀i ∈ I;

18 return C := {v ∈ V | w(v) =
∑
j∈{1,··· ,m} | ej∩{v}6=∅ sj};

problem by means of finding a maximal solution for the dual form
of the problem. A simple Randomized Local Search (RLS) is pre-
sented in Algorithm 1, where a solution s = (s1, · · · , sm), is rep-
resented by a string of m integers, denoting the weights of the m
edges of the input graph. This algorithm starts with the initial so-
lution s = 0m, and selects one edge at each step to increase or de-
crease the weight corresponding to that by one. The new solution
replaces the old one, if the sum of weights of edges is increased,
and the weight constraint of the packing problem is not violated
for any of the vertices. At the end, the algorithm returns the set of
nodes for which the constraint has become tight.

One other algorithm that we analyse in this paper is the
(1+1) EA, presented in Algorithm 2, which is quite similar to the
RLS of Algorithm 1 except for selecting the edges for mutation.
In (1+1) EA, at each step a mutation happens on the weight of all
edges with probability 1/m for each of them, while in RLS one
edge is selected and the mutation takes place on the weight of that
edge. Note that in (1+1) EA more than one mutation may happen
on the current solution.

In both RLS and (1+1) EA (Algorithms 1 and 2) the increment
size of one on the weights of the edges might be too small and make
the algorithm slow. Motivated by step size adaptation in evolution
strategies [4] in RLS with Step Size Adaptation and (1+1) EA with
Step Size Adaptation (Algorithms 3 and 4), a step size for each
edge is kept in an auxiliary vector σ = (σ1, · · · , σm). The initial
step size for all edges is set to 1. The algorithms work with two
constant parameters c1 > 1 and c2 > 1. If a mutation with that size
is accepted, the step size is increased by a factor of c1; otherwise,
it is decreased by a factor of c2 with a minimum accepted size of
one.

Analysing the runtime of our algorithms, we find the number
of iterations of the while loop, until a maximal packing solution
is found, which induces a complete vertex cover. We call this the
expected time of obtaining the desired goal by the considered algo-
rithm. It should be noted that the edge-based approach for the un-
weighted minimum vertex cover investigated by Jansen et al. [23]
can be seen as a special case of our formulation as the use of maxi-
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Figure 1: G, a hard instance for RLS and (1+1) EA

mal matchings is equivalent to the dual problem if all edges have a
weight of 1.

3. RLS AND (1+1) EA
In this section, we present the analysis on finding 2-

approximations for the weighted vertex cover problem by RLS and
(1+1) EA.

Theorem 3. The expected time of RLS and (1+1) EA (Algorithms 1
and 2) to find a 2-approximation is O(m ·OPT ).

Proof. In order to prove this theorem, we show that the algorithms
find a maximal solution for the dual problem in expected time
O(m · OPT ). Having achieved that maximal solution, the algo-
rithms return the set

C := {v ∈ V | w(v) =
∑

j∈{1,··· ,m} | ej∩{v}6=∅

sj}

as the solution for the weighted vertex cover problem which, ac-
cording to Theorem 2, is a 2-approximation of the optimal solution.

If a solution s is not a maximal solution for the dual problem,
then there exists at least one edge for which the assigned weight
can be increased. The probability of selecting only that edge for
mutation and choosing b = 0 is at least 1

2·m for RLS and 1
2·e·m for

(1+1) EA at each step, and according to the Weak Duality Theorem
(Theorem 1), the cost of any maximal solution is upper bounded
by OPT . Therefore, using the method of Fitness Based Parti-
tions [32], we find the expected time O(m · OPT ) for finding a
maximal solution for the dual problem by both algorithms.

Note that the presented upper bound in Theorem 3 is a pseudo
polynomial time, because OPT can be exponentially large with
respect to the input size. In the remainder of this section, we in-
troduce an instance of the problem for which a pseudo polynomial
time is required for finding a 2-approximation. This instance is also
used in Section 5, as a hard instance for the (1+1) EA with Step Size
Adaptation.

The hard instance of the problem,G, illustrated in Figure 1, con-
tains m edges, e1, · · · , em, none of which share a node with an-
other. One of the edges, e1, is adjacent to two nodes of weight
Wmax while all other edges are adjacent to vertices of weight 1.
The dual problem of this instance has only one maximal solution:
s1 = Wmax and si = 1, 2 ≤ i ≤ m. In this instance, we assume
that Wmax > 2m.

Theorem 4. With probability 1 − e−Ω(2m), the required time
for RLS and the (1+1) EA (Algorithm 1 and 2) to find a 2-
approximation of G is lower bounded by Ω(m ·Wmax).

Proof. Consider a phase of m·Wmax
4

steps. Let X be the number
of times that e1 is selected for mutation by RLS or (1+1) EA in
this phase. Since the probability of selecting e1 is 1

m
for both al-

gorithms, the expected value of X is Wmax
4

. As these probabilities

are independent of each other at each step, by Chernoff bounds we
get

Pr(X >
Wmax

2
) ≤ e−

Wmax
12 = e−Ω(2m)

At each step that e1 is selected for mutation, s1 can be increased by
at most 1. Therefore, with probability 1 − e−Ω(2m), in a phase of
m·Wmax

4
= Ω(m ·Wmax) steps, we have s1 ≤ Wmax

2
, i. e. s1 does

not reach its maximal value of Wmax. Therefore, with probability
1− e−Ω(2m), the RLS and the (1+1) EA find a 2-approximation of
G in time Ω(m ·Wmax).

4. RLS with Step Size Adaptation
In this section, we analyse the behaviour of RLS with Step Size

Adaptation for finding 2-approximations of the weighted vertex
cover problem. We prove that the RLS with Step Size Adaptation
finds a 2-approximation for the weighted vertex cover problem in
expected polynomial time with respect to the input size, provided
that c1 = c2. This also holds for c1 ≥ c2, which is stated in Corol-
lary 8. The two lemmata below are used in the proof of the main
result stated later.

Lemma 5. If c1 = c2, the step size σi for each edge ei in RLS with
Step Size Adaptation, can only take a value from

{c1k | 0 ≤ k ≤ dlogc1 Wmaxe},

where Wmax is the largest weight assigned to any vertex.

Proof. The algorithm starts with initial value of σi = 1 for all
edges. This value is increased by a factor of c1 each time a mutation
is accepted for edge ei, and is divided by the same factor with a
minimum accepted value of one if the mutation is rejected (lines
14 and 16 of Algorithm 3). Therefore σi is always a power of c1.
Moreover, in order to fulfil the constraints on the vertices, none of
the edges can be assigned a weight larger than Wmax. Therefore,
any mutation that increases the current weight of an edge by at
least Wmax, is rejected. Therefore, σi can be increased to at most
ck1 where k = dlogc1 Wmaxe.

Lemma 6. For an edge ei, letD(si) = MAXi−si where s is the
solution obtained so far by the algorithm and MAXi is the maxi-
mum acceptable value for si in the current solution s. In expected
time O(m log2

c1
Wmax) a solution s′ with D(s′i) ≤ c1·D(si)

c1+1
is

found by RLS with Step Size Adaptation when c1 = c2.

Proof. Note that since at any step only one mutation happens, for
any solution s′ obtained after s, we have D(s′i) ≤ D(si), other-
wise the algorithm would have rejected s′. We divide the analysis
into two phases. The first phase, consists of all steps until the al-
gorithm reaches a situation in which si is selected for an increas-
ing mutation and σi ≤ D(si). In this phase σi decreases. The
second phase begins when σi starts increasing. We show that by
the end of the second phase, we have reached a solution s′ with
D(s′i) ≤ c1 ·D(si)/(c1 + 1).

In the first phase, whenever si is selected for an increase, we
have σi > D(si); therefore, σi is decreased. If σi ≤ D(si) at
a step in which si is selected for an increase, then we are already
in the second phase and σi is added to si, resulting in decreasing
D(si). Note that it is not only increasing si that decreases D(si).
Instead, increasing the weight of other edges that are adjacent to ei
can also decreaseD(si). If we reach a solution s′ whereD(s′i) = 0

in Phase 1, then we already have D(s′i) ≤ c1·D(si)
c1+1

(stated in the
lemma) without going to Phase 2.
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Here we show that Phase 1 is over in expected time O(m ·
logc1 Wmax). At each step, with probability 1

m
, si is mutated.

Since σi > D(si), increasing mutations on si are rejected as well
as decreasing mutations, and σi is divided by c1 with each rejec-
tion. This needs to be done at most logc1 Wmax times until we
reach σi ≤ D(si), which in expectation takesO(m · logc1 Wmax).

The second phase starts when we reach a step with an increasing
mutation on si in which 1 ≤ σi ≤ D(si). This move is accepted
and σi is increased by a factor of c1. Note that D(si) might be far
larger than σi. Since σi is always a power of c1, we define a ∈ N+

as a = logc1 σi to make the proof easier. Due to Lemma 5, we have
0 ≤ a ≤ dlogc1 Wmaxe. Here, an increase on si is accepted by the
algorithm and a is increased to a + 1, while a decrease is rejected
and a is decreased to a−1. The increase and decrease happen with
equal probability; therefore, a fair random walk happens for a on
integer values in [0, dlogc1 Wmaxe], with initial value of at least 0.

It is proved that the expected number of required steps for a fair
random walk to visit all vertices in a graph with v vertices and e
edges is bounded by 2e(v − 1) [1]. In the fair random walk that
happens on a, there are dlogc1 Wmaxe + 1 vertices to visit with
dlogc1 Wmaxe edges between them. This gives us the expected
number of steps k = 2dlogc1 Wmaxe2 = O(log2

c1
Wmax) for our

random walk, to reach any possible value of a. As a result, as
long as σi ≤ D(si) holds, in k mutations on si, a reaches its
maximal possible value which is upper bounded by dlogc1 Wmaxe
after which the inequality does not hold. This implies that k is
an upper bound on the number of mutations that can happen on
si before this phase ends, which is in expectation done in time
O(m·log2

c1
Wmax). At the end of this phase, σi > D(s′i), whereas

the last accepted mutation has increased s′i by at least 1
c1
σi. This

implies that

D(s′i) ≤ D(si)−
1

c1
σi ≤

c1
c1 + 1

D(si),

which completes the proof.

Theorem 7. The RLS with Step Size Adaptation with c1 = c2 and
the initial solution s = 0m, finds a vertex cover that is at least a
2-approximation in expected time O(m · log3

c1
Wmax).

Proof. Similar to the proof of Theorem 3, we show that the algo-
rithm finds a maximal solution for the dual problem in expected
time O(m · log3

c1
Wmax).

For each edge ei, the distance of si to its maximal value, Di,
is decreased by at least Di

c1+1
by RLS with Step Size Adaptation,

in expected time O(m log2
c1
Wmax) according to Lemma 6. Since

the initial value of Di is upper bounded by Wmax, according to
Multiplicative Drift Theorem [12], si reaches its maximal value in
expected time O(m log3

c1
Wmax).

In the proof of Lemma 6, setting c1 > c2, is in favour of increas-
ing the value of σi; therefore, the lemma holds in that situation as
well, resulting in the following corollary.

Corollary 8. The RLS with Step Size Adaptation with c1 ≥ c2
and the initial solution s = 0m, finds a vertex cover that is a 2-
approximation in expected time O(m · log3

c1
Wmax).

5. (1+1) EA with Step Size Adaptation
In this section we prove a pseudo polynomial lower bound on

the time that (1+1) EA with Step Size Adaptation requires for find-
ing a 2-approximation of the weighted vertex cover problem, when
c1 ≤ c2. To prove this lower bound, we investigate the behaviour

of (1+1) EA with Step Size Adaptation on G (Figure 1), the hard
instance of the problem presented in Section 3, with the assump-
tion that Wmax ≥ c1

m. We show that with high probability, the
(1+1) EA with Step Size Adaptation needs exponential time with
respect to the input size for finding a maximal dual solution for G.

In the following, A(s) = {si | si = 1, 2 ≤ i ≤ m}. Moreover,
Phase 1 indicates the steps starting from the initial step until finding
a solution s, with |A(s)| ≥ 3m

4
, and Phase 2 consists of c1m

ε/2

steps, where 0 < ε ≤ 1
3

, starting by the end of Phase 1. We also
define Property 9 below, which is used in Lemmata 12 and 14, and
Theorem 16.

Property 9. For current solution s, we have |A(s)| ≥ m
2

.

In order to prove the main theorem of this section, we make use
of Lemmata 10, 12, 13 and 14, which follow.

Lemma 10. For sufficiently largem, with probability 1−e−Ω(mε),
Phase 1 needs at most m1+ε steps, where ε > 0 is a constant.

Proof. Let Z(s) = {si | si = 0, 2 ≤ i ≤ m}. Note that
|Z(s)| + |A(s)| = m − 1. At each step, if one of the edges of set
Z(s) is selected for a mutation of increase, and no other mutations
happen, the new solution is accepted by the algorithm. Therefore,
the probability of producing a solution s′ with |A(s′)| = |A(s)|+1
is at least

|Z(s)|
2 · e ·m =

m− 1− |A(s)|
2 · e ·m .

This implies that, the positive drift on |A(s)|, denoted by ∆+, is at
least m−1−|A(s)|

2·e·m at each step.
Moreover, to obtain a solution s′ with |A(s′)| = |A(s)|−k from

s, k mutations should happen on edges of A, and in order to make
these changes acceptable, a mutation of increase should happen on
s1. The probability of increasing s1 at each step is 1

2m
, and the

probability of k other mutations to happen at the same step is upper
bounded by(

m− 1

k

)
·
(

1

m

)k (
1− 1

m

)m−1−k

≤ 1.06

k!e
,

for sufficiently large m. Here, it suffices if we assume m ≥ 20.
Overall, the probability of finding a solution s′ with |A(s′)| =
|A(s)| − k is at most 1.06

k!e·2m . As a result, for the negative drift
on |A(s)|, denoted by ∆−, we have

∆− ≤
|A(s)|∑
k=1

k · 1.06

k!e · 2m

=
1.06

e · 2m

|A(s)|∑
k=1

1

(k − 1)!

≤ 1.06

e · 2m · 3 =
3.18

e · 2m.

Summing up, the total drift on |A(s)| is

∆ = ∆+ −∆− ≥
m− 4.18− |A(s)|

2 · e ·m .

We now analyse the time to find a solution with |A(s)| ≥ 3m
4

.

For any solution s with |A(s)| < 3m
4

, we have ∆ ≥
m
4
−4

2·e·m ≥
0.0075, since we have assumed m > 20. By additive drift argu-
ment [21], we can see that a solution with |A(s)| ≥ 3m

4
is found in

expected time 1
0.0075

· 3m
4

= 100m. By Markov’s inequality, with
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probability at least 1
2

, the time until finding that solution is at most
200m. Therefore, in a phase of m1+ε steps, the probability of not
finding that solution is ( 1

2
)
mε

200 = e−Ω(mε).

In the proof of the next lemma, we use the Simplified Drift The-
orem (Theorem 11) presented in [28, 29]. In this theorem, Ft de-
notes a filtration on states. In the proof of Lemma 12, we analyse
the changes on the size of A(s), and no filtration is applied on the
steps.

Theorem 11. (Simplified Drift Theorem [29]) Let Xt , t ≥ 0,
be real-valued random variables describing a stochastic process
over some state space. Suppose there exist an interval [a, b] ⊆ R,
two constants δ, ε > 0 and, possibly depending on l := b − a , a
function r(l) satisfying 1 ≤ r(l) = o(l/ log(l)) such that for all
t ≥ 0 the following two conditions hold:

1. E[Xt+1 −Xt | Ft ∧ a < Xt < b] ≥ ε,
2. Pr(|Xt+1 −Xt| ≥ j | Ft ∧ a < Xt) ≤ r(l)

(1+δ)j
for j ∈ N.

Then there is a constant c∗ > 0 such that for T ∗ := min{t ≥
0 : Xt ≤ a|Ft ∧ X0 ≥ b} it holds Pr(T ∗ ≤ 2c

∗l/r(l)) =

2−Ω(l/r(l)).

Lemma 12. For sufficiently largem, with probability 1−e−Ω(m),
Property 9 holds during Phase 2.

Proof. Phase 2 starts with the solution s with |A(s)| ≥ 3m
4

,
found by the end of Phase 1. Using Simplified Drift Theorem
(Theorem 11) with parameters δ = 1, r(l) = 1 and interval
[a, b] = [m

2
, 3m

4
], we show that with high probability, a solution

s′ with |A(s′)| ≤ m
2

is not found by the algorithm until end of
Phase 2.

Let Xt = |A(s)|, where s is the solution obtained at time t. The
total drift on the value ofXt is ∆ of the proof of Lemma 10, which
is at least 0.0075 when Xt ≤ 3m

4
. Therefore, the two conditions

of the Simplified Drift Theorem hold:

1. E(Xt+1 − Xt | a ≤ Xt ≤ b) = E(Xt+1 − Xt | m2 ≤
Xt ≤ 3m

4
) ≥ 0.0075, and

2. Pr(|Xt+1 −Xt| ≥ j | a ≤ Xt) ≤ 1
j!e
≤ 1

2j = r(l)

(1+δ)j

The inequality regarding the second condition holds, because the
probability of mutating j edges at one step follows the Poisson
distribution and is 1

j!e
. Having these two conditions satisfied, the

Simplified Drift Theorem says that the probability of finding a so-
lution with |A(s)| ≤ m

2
in time 2

c∗m
4 , c∗ > 0 a constant, is at

most 2−Ω( m
4

). This implies that with probability 1−e−Ω(m), such
a solution is not found by the end of Phase 2 which consists of
c1
mε/2

= 2log2 c1·m
ε/2

steps.

Lemma 13. Let ε ≤ 1/3 be a positive constant. In Phase 1, with
probability 1 − e−Ω(mε), the (1+1) EA with Step Size Adaptation
does not reach a solution where s1 > 2 ·mε · c12·mε

. Moreover,
the step size of s1 does not exceed c12·mε

, i. e. σ1 ≤ c12·mε

.

Proof. From Lemma 10, we know that this phase is at most m1+ε

steps. Let X be the number of times that the first edge is selected
for mutation during Phase 1. Since the probability of selecting each
edge at each step is 1

m
, the expected value of X is at most mε.

Moreover, since probability of selecting edges are independent of
each other, by Chernoff bounds we have:

Pr(X ≥ 2 ·mε) ≤ e−m
ε/3.

Therefore, with probability 1 − e−Ω(mε) the first edge is not
selected for mutation more than 2 · mε times, which means that
the step size for that edge is at most c12·mε

after that phase. This
implies that 2 ·mε · c12·mε

is an upper bound for the value of s1

by the end of Phase 1. Note that s1 and σ1 have not reached their
maximal values, since ε ≤ 1/3.

In the following lemma, we show that when |A(S)| ≥ m/2, the
probability of decreasing the step size σ1 is larger than the proba-
bility of increasing it. This lemma is used in Theorem 16 to show
that we do not reach large values of σ1 in polynomial time.

Lemma 14. Assuming that Property 9 holds, and also assuming
that σ1 > m and s1 ≤ Wmax, at any step where σ1 is changed by
(1+1) EA with Step Size Adaptation, it is increased with probability
Pinc < 0.4 and decreased with probability Pdec > 0.6.

Proof. The value of σ1 changes at the steps where e1 is selected
for mutation. All other steps make no change on σ1. Here we only
consider the steps at which e1 is selected for a mutation.

The value of σ1 increases when a mutation on e1 is accepted.
Since σ1 > m and s1 ≤ Wmax, any mutation that decreases the
value of e1 is rejected. Since we have assumed that Property 9
holds, there are at least m

2
edges other than e1, with a weight of

one. A mutation of increase on these edges is rejected. Therefore,
an increase on e1 is also rejected if one of those edges is selected
for an increase in addition to ei at the same step. The probability
that an increase is selected to be done on e1, while none of those
edges are selected for increase, is:

1

2
·
(

1− 1

2m

)m−m
2

≤ 1

2
·
(

1

e

) 1
4

< 0.4

This probability is an upper bound for the probability that an
acceptable increase on e1 happens, which is denoted by Pinc. In
other words:

Pinc < 0.4

Since Pinc + Pdec = 1 at steps where a mutation happens on e1,
we have Pdec > 0.6.

In order to prove the main theorem of this section, we use the
Gambler’s Ruin Theorem, introduced by Feller [16]. We use the
parameter settings of a variant of this theorem (Theorem 15) pre-
sented in [20].

Theorem 15 (Gambler’s Ruin Theorem). [20]
Let p be the probability of winning one dollar and q = 1−p be the
probability of loosing one dollar in a single bet and let δ = q/p.
Starting with x dollars, the probability of reaching z > x dollars
before attaining zero dollars is

Px =
δx − 1

δz − 1

Theorem 16. For sufficiently large m and a positive constant ε ≤
1
3

, with probability 1− e−Ω(mε/2), the required time for (1+1) EA
with Step Size Adaptation (Algorithm 4) to find a 2-approximation
on G with Wmax = c1

m is lower bounded by 2m
ε/2

, when c1 =
c2.

Proof. According to Lemma 13, during Phase 1, with probability
1 − e−Ω(mε), we have σ1 ≤ c1

2·mε

. Using Lemma 14 and the
Gambler’s Ruin Theorem, we prove that with high probability, in
Phase 2, we always have σ1 ≤ c1m

2ε

.

42



Due to Lemma 12, with probability 1−e−Ω(m), Property 9 holds
during Phase 2 which is a requirement of Lemma 14. However,
Lemma 14 can only be used for the steps where σ1 > m, while
Phase 2 may start with σ1 ≤ m. Nevertheless, in order to reach
large values of c1m

2ε

or greater, at some point of Phase 2, we need
to deal with a situation where m < σ1 ≤ c1m, since σ1 increases
at each step at most by a factor of c1. According to Lemma 14,
at the steps in which e1 is selected for mutation, the probability
of increasing σ1 is p ≤ 0.4 and the probability of decreasing it is
q ≥ 0.6.

Let σ0
1 be the value of σ1 at the first point in Phase 2 where m <

σ1 ≤ c1m. If σ1 ≤ c1m holds, then for sufficiently large m we
also have σ1 ≤ c1

2·mε

. Starting from that point where m < σ1 ≤
c1

2·mε

, we investigate whether the algorithm reaches a situation
where σ1 ≤ m earlier than a situation where σ1 ≥ c1m

2ε

.
Every time σ1 is increased, it is increased by a factor of c1 and

every time that it is decreased, it is decreased by a factor of c2.
Since we have assumed that c1 = c2, one increasing step and one
decreasing step cancel each other and the problem can be mapped
to the problem of Gambler’s Ruin Theorem (Theorem 15) with pa-
rameters p and q described above and δ = q

p
≥ 0.6

0.4
> 1. The num-

ber of times that σ1 = σ0
1 needs to be decreased to reach σ1 ≤ m

is at most

dlogc2(σ0
1/m)e ≤ logc2

(
c1

2·mε

m

)
+ 1 ≤ 2 ·mε + 1

Also, the number of times that σ1 ≤ m needs to be increased to
reach σ1 ≥ c1m

2ε

is at least

dlogc1(c1
m2ε

/m)e ≥ m2ε − blogc1 mc

Therefore, other parameters of the Gambler’s Ruin Theorem would
be x ≤ 2 ·mε + 1 and z ≥ m2ε−blogc1 mc. Using that theorem,

we get Px, the probability of reaching a state where σ1 ≥ c1
m2ε

before reaching a state where σ1 ≤ m as:

Px =
(δ)x − 1

(δ)z − 1
≤ (δ)2·mε+1 − 1

(δ)m
2ε−blogc1

mc − 1
= e−Ω(mε).

Consider a phase of 2m
ε/2

steps. We here show that with proba-
bility e−Ω(mε/2), σ1 ≥ c1m

2ε

during this phase.
We saw that with probability 1−e−Ω(mε) we reach a state where

σ1 ≤ m before a state where σ1 ≥ c1
m2ε

. If σ1 never increases
to cm

ε

1 after that, then we never reach a state where σ1 ≥ c1
m2ε

.
Otherwise, it spends at least

dlogc1(c1
mε

/m)e = mε − blogc1 mc

steps to reach cm
ε

1 . In a phase of 2m
ε/2

steps, there are at most

k =
2m

ε/2

mε − blogc1 mc

times that σ1 increases to cm
ε

1 , and probability of reaching c1m
2ε

from there is only e−Ω(mε). Therefore, the probability of σ1 to
reach c1m

2ε

at least once in a phase of 2m
ε/2

steps, is at most

k · e−Ω(mε) = e−Ω(mε/2).

So far we have proved that with probability 1−e−Ω(mε/2), σ1 ≤
c1
m2ε

during Phase 2 which consists of c1m
ε/2

steps. Moreover,
according to Lemma 13, with probability 1 − e−Ω(mε), we have

s1 ≤ 2 ·mε · c12mε

by the end of Phase 1. Therefore, the value of
s1 during both phases is always upper bounded by

2 ·mε · c12mε

+ c1
mε/2

· c1m
2ε

which is less than Wmax, since ε ≤ 1/3. Therefore, with probabil-
ity 1 − e−Ω(mε/2), the (1+1) EA with Step Size Adaptation does
not find a 2-approximation in time 2m

ε/2

.

Note that for c1 < c2, the probability of reaching a situation
where σ1 ≥ c1

m2ε

before reaching σ1 < m is even smaller, since
the number of increasing steps that are required to cancel one de-
creasing step is greater than one. Therefore, this situation is in
favour of reaching σ1 ≤ m, resulting in the following corollary.

Corollary 17. For sufficiently largem and a positive constant ε ≤
1
3

, with probability 1− e−Ω(mε/2), the required time for (1+1) EA
with Step Size Adaptation (Algorithm 4) to find a 2-approximation
of G is lower bounded by 2m

ε/2

, when c1 ≤ c2.

6. CONCLUSION
In this paper, we have considered how to solve the minimum

vertex cover problem by its dual formulation based on a multi-
valued edge-based encoding. We have proven pseudo-polynomial
upper bounds for RLS and the (1+1) EA until they have achieved
a 2-approximation. Furthermore, we have investigated the use of
step-size adaptation in both algorithms and shown that RLS with
step size adaptation obtains a 2-approximation in expected polyno-
mial time; whereas the corresponding (1+1) EA still encounters a
pseudo-polynomial lower bound.
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