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ABSTRACT
Linear functions have gained a lot of attention in the area
of run time analysis of evolutionary computation methods
and the corresponding analyses have provided many effective
tools for analyzing more complex problems. In this paper,
we consider the behavior of the classical (1+1) Evolutionary
Algorithm for linear functions under linear constraint. We
show tight bounds in the case where both the objective and
the constraint function is given by the OneMax function
and present upper bounds as well as lower bounds for the
general case. We also consider the LeadingOnes fitness
function.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

Keywords
Run time analysis, evolutionary algorithm, knapsack, con-
straints.

1. INTRODUCTION
Evolutionary algorithms have been used in a wide range of
application domains such as water distribution network [27,
30], renewable energy [21], supply chain management [20],
and software engineering [9, 18]. Their easy application and
adaptation to a wide range of engineering problems qualify
them for research even without a deep algorithmic back-
ground.

Although evolutionary computation is very popular in a
large variety of application domains, the theoretical under-
standing lacks behind its practical success. Over the last 20
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years a lot of progress in understanding evolutionary com-
puting techniques has been achieved by studying the run
time behavior of evolutionary algorithms which are simpler
than the ones used in practice, but still capture the main
aspects of the algorithms [1, 12, 23].

At the heart of these investigations have been studies of
the classical (1+1) EA for the class of linear functions [6].
Initial investigations considered OneMax [22] as the sim-
plest non-trivial pseudo-Boolean function. Later investiga-
tions have been generalized to the whole class of linear func-
tions for which it has been shown in [6] that the (1+1) EA
optimizes them in expected time Θ(n logn). Further stud-
ies investigated the (1+1) EA and linear functions, giving
simpler proofs and a more precise analysis by giving the con-
stants hidden in the Θ-notation [4, 29]. Furthermore, linear
functions, especially OneMax, have been investigated in dy-
namic [16] and stochastic settings [5, 8] as well as for other
evolutionary computing techniques such as particle swarm
optimization [28], ant colony optimization [17] and estima-
tion of distribution algorithms [3].

Maximizing a linear function under a linear constraint is
equivalent to the well-known NP-hard knapsack problem.
Beyond the worst case, the knapsack problem has been well-
studied from an average case and smooth complexity per-
spective and it has been found that this problem can be
solved in (expected) polynomial time for a wide range of
these settings [2, 26].

It has been shown in [31] that the expected optimization
time of the (1+1) EA on a specific deceptive knapsack in-
stance is exponential. We investigate several subclasses of
linear functions under linear constraints where the objective
function or the given constraint are of type OneMax. We
call a constraint given by OneMax a uniform constraint.
The goal of our investigations is to gain an understanding
on the working principles of the (1+1) EA for these sub-
classes. The reader should note that the subclasses under
investigation can be solved to optimality in polynomial time
by deterministic (greedy) algorithms.

Our findings are summarized in Table 1. We start our
investigations by considering OneMax together with a uni-
form constraint of B (that is, only bit strings with at most
B 1-bits are feasible) and show that the (1+1) EA is able to
find an optimal solution efficiently (in time O(n logn), but
depending on B potentially faster). Note that OneMax

45



Constraint Problem Expected Optimization Time

uniform

finding a feasible solution O(n log(n/B)) Lemma 3

OneMax

Θ(
√
n), if |B − n/2| <

√
n

Θ(|B − n/2|), if
√
n ≤ |B − n/2| < n/4

Θ(n log(n/Bmin)), if n/4 ≤ |B − n/2|

Theorem 4

(1 + ε)
∑B
i=1 xi +

∑n
i=B+1 xi O(n2) Theorem 7

linear functions
Ω(n2) Theorem 5

O(n2 log(Bwmax)) Theorem 6

LeadingOnes O(n2 logB) Theorem 8

linear OneMax exponential Theorem 9

Table 1: Overview of Results. The expected optimization times of the (1+1) EA on linear functions and LeadingOnes on bit
strings of length n under uniform or linear constraint B. In the extreme case of B = 0, O(n log(n/B)) is to be read as O(n logn).
Bmin = min{B,n − B}, 0 < ε < 1/n is a positive real number, wmax ≥ 1 is the largest weight of the linear function. The table shows
that the optimization time on OneMax under uniform constraint is never larger than in the unconstrained case and that there are ranges
of B in which it is significantly smaller. On the contrary, there is a general linear function and a uniform constraint B such that the
optimization time is in Ω(n2). There is a linear constraint such that the (1+1) EA needs exponential time even on OneMax.

with uniform constraints has many global optima: any bit
string with B 1-bits is optimal. We modify OneMax by
increasing the weight of the first B bit positions to 1+ε, for
a very small value of ε. This ensures that there is only one
global optimum. We show that this function requires O(n2)
fitness evaluations to optimize: after reaching the bound
of B bits, lighter bits have to be exchanged for more valu-
able bits; while still k valuable bits are missing, an improv-
ing exchange of bits has a probability of Θ(k2/n2). Thus,
the Variable Drift Theorem gives us the overall run time of
O(n2).

Investigating more general functions with a uniform con-
straint, we show that a general upper bound of O(n3) holds
for all linear objective functions. Furthermore, we show that
there is a linear function for which the (1+1) EA takes Ω(n2)
fitness evaluations. We conjecture a general upper bound of
O(n2) for all linear functions, but for now we content our-
selves with showing this bound for the (1 + ε)-test function
mentioned above.

Finally, we show that LeadingOnes can be optimized
in time O(n2 logB) and that OneMax with a specific linear
constraint implies an exponential run time for the (1+1) EA.

We proceed in Section 2 by introducing the algorithm and
the class of constrained optimization problems that is sub-
ject to our investigations. We consider uniform constraints
in Section 3 and linear constraints in Section 4. Finally, we
conclude in Section 5.

2. PRELIMINARIES
We consider as search space the collection {0, 1}n of bit
strings x = x1x2 . . . xn of fixed length n and examine the
class of linear functions

f(x) =

n∑
i=1

wixi.

We assume all weights wi to be positive real numbers that
are w.l.o.g at least 1 and denote by wmax = maxi wi the
maximal weight.

We investigate the optimization of f under a linear con-
straint given by

b(x) =

n∑
i=1

bixi ≤ B

where the weights bi are positive reals and B is a positive
upper bound. We call a function f to be under uniform
constraint if all bi are equal to 1; otherwise, we say that
it is under linear constraint. In order to optimize f under
the constraint b(x) ≤ B we employ the (1+1) Evolutionary
Algorithm ((1+1) EA) as given in Algorithm 1.

Algorithm 1: (1+1) EA

1 Choose x ∈ {0, 1}n uniformly at random;
2 while stopping criterion not met do
3 y ← flip each bit of x ind. with prob. 1/n;
4 if z(y) ≥ z(x) then x← y;

Here, x denotes the best search point found so far. We also
use the symbol x′ for the (possibly mutated) offspring after

selection; x(0) denotes the initial bit string drawn in Step 1.
During the optimization we use a penalty approach for

dealing with infeasible solutions by

z(x) = f(x)− (nwmax + 1) ·max{0, b(x)−B}.

In this manner we ensure that infeasible solutions have neg-
ative fitness value, which guides the search towards the fea-
sible region of the search space. In particular, Algorithm 1
will never adopt an infeasible solution in Step 4 after sam-
pling the first feasible bit string.
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We study the number of iterations the (1+1) EA needs
until it samples an optimal solution for the first time. This
is called the optimization time of the algorithm; we usually
denote this random variable as T . The expected value of
this variable E[T ] is called the expected optimization time.

In order to study the expected optimization time of the
(1+1) EA we apply drift analysis as introduced by He and
Yao [11]. An auxiliary function called the potential maps
a bit string to the real axis allowing us to evaluate the ex-
pected progress between consecutive rounds. Usually the
potential is chosen such that its minimization corresponds to
maximizing the fitness. In particular, the potential reaches
its minimal value just in case the bit string is optimal. De-
pending on the type of expected potential decrease we apply
one of several drift theorems [4, 11, 13, 15, 25, 29] with the
following being the most general.

Theorem 1 (Variable Drift Theorem [13]). Let (X(t))t≥0

be a sequence of random variables over a finite state space
{0} ( S ( R+

0 . Define smin = min{x ∈ S | x > 0} and
smax = max{x ∈ S}. Furthermore, let T be the random
variable denoting the first point in time t ∈ N for which
X(t) = 0. Suppose that there exist a monotonically increas-
ing function h : R+ → R+ such that 1/h is integrable on
[smin, smax] and, for all t < T and 0 6= s ∈ S,

E
[
X(t) −X(t+1)

∣∣∣ X(t) = s
]
≥ h(s).

Then, for all 0 6= s0 ∈ S,

E
[
T
∣∣∣ X(0) = s0

]
≤ smin

h(smin)
+

∫ s0

smin

1

h(s)
ds.

As the potential usually is based on properties of the cur-
rent best solution x, we define some notation regarding bit
strings. Let 1 ≤ i ≤ j ≤ n be two indices. We let xi de-
note the negation of the bit xi, x[i,j] = xixi+1 . . . xj is the
substring of all bits from position i to j (including). The
number of 1-bits in x is denoted |x|1 =

∑n
i=1 xi; conversely,

|x|0 = n − |x|1 is the number of 0-bits. We sometimes also
use the term Hamming weight for the number of 1s.

During the analysis in the sections below we frequently
bound an expected value by some conditional expectation.
This technique is justified by the following observation from
the law of total expectation.

Lemma 2. Suppose X is a discrete random variable taking
values in R+

0 and E an arbitrary event with 0 < P [E ] < 1.
Then, E[X] ≥ E[X | E ]P [E ]. If additionally X > 0 implies
E, equality holds.

Proof. The conditional expectation E[X | ¬E ] exists and can-
not be negative due to X being non-negative. Hence,

E[X] = E[X | E ]P [E ] + E[X | ¬E ]P [¬E ]

≥ E[X | E ]P [E ].

If the second condition is met, then E[X | ¬E ] = 0.

3. UNIFORM CONSTRAINT
We start with investigating uniform constraints, i.e., bi = 1
for all 1 ≤ i ≤ n. This only restricts the total number of
1-bits in a feasible solution. Hence, we assume the weight
bound B to be an integer between 0 and n.

In the following lemma we derive a general bound on the
time the (1+1) EA on any pseudo-Boolean function under

uniform constraint needs to sample a feasible solution. This
will ease the later analysis. We reduce the problem at hand
to the well-known case of the (1+1) EA on the OneMax
function defined as

OneMax(x) =

n∑
i=1

xi.

We would like to point out that throughout this paper run
time estimates of the form O(n log(n/B)) should be read as
O(n logn) in the extreme case of B = 0.

Lemma 3. Consider the (1+1) EA optimizing an arbitrary
non-negative pseudo-Boolean function under uniform con-
straint B. Then, the expected number of iterations until the
algorithm samples a feasible solution for the first time is in
O(n log(n/B)).

Proof. In the infeasible range the (1+1) EA strictly prefers
bit strings with fewer 1-bits due to the large penalty term
of (nwmax +1). Hence, the optimization process equals that
on an unconstrained OneMax function considered as a min-
imization problem, a mutation is accepted if and only if it
does not increase the total number of 1-bits |x|1. A standard
argument gives an expected drift of at least

E[|x|1 − |x′|1 | |x|1 > B] ≥ |x|1
n

(
1− 1

n

)n−1

≥ |x|1
en

.

by flipping any of the |x|1 1-bits and nothing else. The Mul-
tiplicative Drift Theorem [4] now yields an expected waiting
time of

E
[
T ] ≤ en

(
ln
( n
B

)
+ 1
)

until |x|1 is reduced from at most n below the cardinality
constraint B.

As we will see in the next section the bound established
above is not always tight. The importance of this result lies
elsewhere. By employing Lemma 3, we will often be able
to assume the optimization starts with a feasible solution
without affecting the asymptotic run time.

3.1 OneMax
In the infeasible region of the search space any pseudo-
Boolean function behaves like a OneMax problem. To com-
plement this, we now examine the optimization process of
the (1+1) EA on OneMax as the objective function. The
run time turns out to be heavily dependent on the size of
the cardinality bound B relative to the length n of the bit
string. The following theorem shows that the time needed
is never worse than in the unconstrained case. Furthermore,
OneMax can be maximized even in sub-linear time if B is
close to n/2.

The analysis of the optimization benefits extensively from
symmetries inherent to the underlying random process. For
OneMax The fitness function is invariant under permuta-
tions and the mutation operator of the (1+1) EA is indif-
ferent towards the position and the value of the bits. Ad-
ditionally, the number of 1-bits and the number of 0-bits
in the initial solution are identically distributed, where this
distribution is symmetric around its mean value n/2.
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Theorem 4. Let Bmin denote min{B,n−B}. The expected
optimization time of the (1+1) EA on OneMax under uni-
form constraint B is in

Θ(
√
n), if

∣∣∣B − n

2

∣∣∣ < √n;

Θ
(∣∣∣B − n

2

∣∣∣), if
√
n ≤

∣∣∣B − n

2

∣∣∣ < n

4
;

Θ

(
n log

(
n

Bmin

))
, otherwise.

Proof. In this proof we identify the three main quantities
that affect the expected run time of the (1+1) EA on con-
strained OneMax: the expected drift, the distance between
the initial number of 1-bits and the cardinality bound B, and
how far B is away from the central value n/2. Intuitively,
the distance of the initial solution to B marks the ground
we have to cover until we reach an optimal solution and the
drift is the speed we travel with. The difference |B − n/2|
partitions the range of all possible values of B into regions
corresponding to different asymptotic run times.

The first part of this proof is presented as a series of claims
giving bounds on these quantities. While the drift can be
inferred from standard arguments (Claim 1 below), the anal-
ysis of the influence of the two distance measures is more
involved. The initial bit string has Hamming weight n/2 in
expectation. Counter-intuitively, we show that the initial
solution has an expected lack/surplus of roughly

√
n 1-bits

compared to any optimal solution even if B is arbitrarily
close to n/2(Claims 2 & 4). This discrepancy grows linearly
when B moves further away from the center n/2 (Claim 3).

The second part of the proof consists of deriving bounds
on the expected optimization time from these claims.

First, we observe that the problem is equal to uncon-
strained OneMax (considered as a minimization problem
or a maximization problem, respectively), if the cardinality
bound is set to the extreme values B = 0 or B = n. Hence,
the well-known Θ(n logn) bound [6] carries over to this set-
ting. We assume B /∈ {0, n} in the following. The upper
bound also holds for the uniformly constrained case. We
find a feasible solution in time O(n logn) (Lemma 3) and
from there improve it until B < n bits are set to 1. This
can be done in an additional phase of O(n logn) rounds by a
Coupon Collector’s argument. We proceed in showing that
for values of B which are closer to n/2 the optimization
succeeds much faster.

For the drift analysis it is convenient to use either |x|1 =
OneMax(x) itself or |x|0 = n−|x|1 as the potential function,
depending on whether the current search string is feasible or
not. Our first claim bounds the expected drift with respect
to this potential. The results are well-known, we only state
them here for completeness. A detailed discussion can be
found in [4] and [29].

Claim 1. While the current solution x is feasible, the ex-
pected drift is bounded by

|x|0
en
≤ E

[
|x|0 − |x′|0

∣∣ |x|1 < B
]
≤ |x|0

n
.

Similarly, if x is infeasible, E[|x|1 − |x′|1] = Θ(|x|1/n).

Next, we give estimates on the second of the above quan-
tities: the distance between the initial number of 1-bits
|x(0)|1 and the constraint B. To ease notation, we employ

dB(x(0)) = |B − |x(0)|1| to denote this distance and note
that this is a random variable. Furthermore, we denote by
Bcen = |B−n/2| the absolute difference between B and the
central value n/2, the third quantity.

Claim 2. The expected distance is bounded below by

E
[
dB(x(0))

]
= Ω(

√
n).

Suppose B ≤ n/2, then |x(0)|1 ≥ (n+
√
n)/2 is sufficient for

dB(x(0)) ≥
√
n/2. The random variable |x(0)|1 is the sum

of n i.i.d. Bernoulli trials and thus has expected value n/2
and standard deviation

√
n/2. An application of Lemma 6

in [24] now gives

P

[
|x(0)|1 ≥

n

2
+

√
n

2

]
= Ω(1).

If B > n/2, we apply the same argument to the random

variable |x(0)|0 (having the same distribution) and the event

|x(0)|0 ≥ (n+
√
n)/2. By Lemma 2 we obtain in both cases

E
[
dB(x(0))

]
≥ Ω(1) ·

√
n

2
= Ω(

√
n).

Claim 3. The expected distance is bounded below by

E
[
dB(x(0))

]
≥ Bcen

2
.

The median of the random variable |x(0)|1 is n/2. Hence,

if B ≤ n/2, with probability P [|x(0)|1 ≥ n/2] ≥ 1/2 the
distance is at least Bcen. The same holds if B > n/2 as also

P [|x(0)|1 ≤ n/2] ≥ 1/2. The lower bound again is due to
Lemma 2.

Claim 4. The expected distance is bounded above by

E
[
dB(x(0))

]
≤ Bcen +

e

4π

√
n.

The Triangle Inequality yields dB(x(0)) ≤ Bcen + ||x(0)|1 −
n/2|. By the monotonicity and linearity of expectations we
deduce

E
[
dB(x(0))

]
≤ E

[
Bcen +

∣∣∣|x(0)|1 −
n

2

∣∣∣]
= Bcen + E

[∣∣∣|x(0)|1 −
n

2

∣∣∣].
The latter expected value is known as the mean deviation
of a binomially distributed random variable. For the special
case of success probability 1/2 the mean deviation equals(

n
dn/2e

)
dn/2e2−n, cf. e.g. [7]. Applying Stirling’s approxi-

mations of the factorial, we obtain

E
[∣∣∣|x(0)|1 −

n

2

∣∣∣] =
n

2n+1

(
n
n
2

)
=

n

2n+1
· n!(

n
2

!
)2

≤ n

2n+1
·

e
√
n
(
n
e

)n(√
2π
√

n
2

(
n
2e

)n
2
)2 =

e

2π

√
n.

Claims 2, 3 and 4 together show that if Bcen <
√
n, the ini-

tial solution has distance E[dB(x(0))] = Θ(
√
n); otherwise,

it is in Θ(Bcen).
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The last claim states a useful technical property of the first
feasible solution found during the optimization, as described
in Lemma 3.

Claim 5. If the initial solution was infeasible, with prob-
ability superpolynomially close to 1 the first feasible solu-
tion sampled by the (1+1) EA has Hamming weight at least
B − lnn.

Consider the iteration in which the optimization process en-
ters the feasible region. In order to jump from more than B
bits set to 1 to less than B− lnn, at least lnn bits must flip
at once. We get the following bound on the probability,

P
[
|x′|1 < B − lnn

∣∣ |x|1 > B
]
≤

n∑
i=lnn

(
n

i

)
1

ni

≤ n

(
n

lnn

)
1

nlnn
≤ n

( e

lnn

)lnn

=
1

nln lnn−2
.

In the remainder of this proof we infer bounds on the ex-
pected optimization time from the claims above. We com-
mence with proving an universal lower bound. Claim 1
states that the drift during the whole optimization is at most
1, regardless of feasibility. We recall that T is the random
variable denoting the number of rounds the (1+1) EA needs
to sample an optimal solution for the first time. Its ex-
pected value E[T | dB(x(0))] conditional on the distance of
the initial solution to the bound B is again a random vari-
able. Suppose this distance dB(x(0)) is equal to some natural
number 0 ≤ d ≤ n. The Additive Drift Theorem for lower
bounds [11] asserts, for all such d,

E
[
T
∣∣∣ dB(x(0)) = d

]
≥ d.

Utilizing Claim 2, we bound the expectation of the derived
variable and, in turn, the expected optimization time,

E[T ] = E
[
E
[
T
∣∣∣ dB(x(0))

]]
≥ E

[
dB(x(0))

]
= Ω(

√
n).

Note that this bound holds for any uniform constraint B.
According to Chernoff bounds, the initial solution has at

least n/3 and at most 2n/3 bits set to 1 with probability

1 − 2−Ω(n). We recall that the upper bound of O(n logn)
rounds holds for all values of B. Hence, conditioning on
x(0) to contain a linear number of both 1s and 0s affects
the expected run time only by a sub-constant number of
iterations. We omit this condition in the notation below.

Suppose Bcen <
√
n. While the currently best search

point is infeasible, the number of 1-bits cannot increase.
However, undershooting the target cardinality bound B by
more than lnn is also unlikely (Claim 5). Conversely, the
number of 1-bits cannot decrease while the search point is
feasible. In summary, we can assume that the maintained
solution x observes n/3 ≤ |x|1 ≤ 2n/3 during the whole
optimization. By Claim 1, the expected drift is at least
1/3e. The Additive Drift Theorem for upper bounds [11]
now yields

E
[
T
∣∣∣ dB(x(0))

]
≤ 3e · dB(x(0)).

Applying Claim 4 and the same technique as above, we ob-
tain

E[T ] = E
[
E
[
T
∣∣∣ dB(x(0))

]]
≤ 3e · E

[
dB(x(0))

]
≤ 3e

(
Bcen +

e

2π

√
n
)

= O(
√
n).

In the case of Bcen to be between
√
n and n/4, the ex-

pected optimization time is in Θ(Bcen). The argument is
analogue to above involving Claim 3 (instead of Claim 2) as
well as Claim 4. The main observation is that the drift can
still assumed to be a constant in this range of B. Note that
now O(Bcen +

√
n) = O(Bcen).

Finally, we turn the investigation to the case wherethe
distance Bcen is larger than n/4. The main difference is
that the expected drift can now become sub-constant during
the optimization. We use a multiplicative drift argument to
handle this issue.

First, we treat the case B ≥ 3n/4. This implies Bmin =
min{B,n − B} = n − B. Furthermore, by the Chernoff
argument shown above, the initial solution is feasible (with
probability exponentially close to 1). We employ the number
of 0-bits as the potential, which can be at most n. In order
to optimize OneMax, the (1+1) EA has to generate an
offspring with potential Bmin. By Claim 1 the expected
drift is at least |x|0/en. The Multiplicative Drift Theorem
for upper bounds [4] now yields

E[T ] ≤ en
(

ln

(
n

Bmin

)
+ 1

)
= O

(
n log

(
n

Bmin

))
.

Regarding the lower bound, we can assume that the initial
solution is not only feasible but has at least Bmin + n/12
bits set to 0. This implies that the number of 0-bits cannot
increase in the optimization. We only measure the time
until this number is lower than Bmin + lnn. Suppose the
current potential is |x|0 = k. Then, the expected drift is
at most k/n =: δk (Claim 1). Additionally, large jumps
are unlikely. More formally, in order to have a progress
of at least k/2 =: βk, between k/2 and k bits must flip
simultaneously. The probability for such a mutation is at
most

k∑
i=k/2

(
n

i

)
1

ni
≤

k∑
i=k/2

(e
i

)i
≤ k

2

(
2e

k

) k
2

.

Since k ≥ Bmin + lnn > lnn, we obtain

P

[
|x|0 − |x′|0 ≥

k

2

∣∣∣∣ |x|0 = k

]
<

lnn

2

(
2e

lnn

) lnn
2

≤ 1

2n ln k
=

βδ

ln k

for n sufficiently large. Hence, the conditions for the Multi-
plicative Drift Theorem for lower bounds [29] with parame-
ters δ = 1/n and β = 1/2 are satisfied and we obtain

E[T ] ≥ 1

δ
ln

(
Bmin + n/12

Bmin + lnn

)
1− β
1 + β

≥ n

3
ln

(
n/12

Bmin + lnn

)
≥ n

6
ln

(
n

12Bmin

)
= Ω

(
n log

(
n

Bmin

))
.

The proofs of the run time bounds in case of B ≤ n/4 are
similar, but somehow simpler. Note that now Bmin = B.
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For the analysis we invert the roles of 0- and 1-bits. With
probability exponentially close to 1 the initial solution is
infeasible and has a linear surplus of 1-bits. A reduction
below Bmin +lnn is necessary to optimize the bit string. By
the same arguments as above this needs an expected number
of Ω(n log(n/B)) iterations. To derive an upper bound, we
argue that the search for a feasible solution, which takes
time O(n log(n/B)) in expectation (Lemma 3), dominates
the run time. Once the (1+1) EA enters the feasible region,
by Claim 5 we only need to collect lnn additional 1-bits with
probability superpolynomially close to 1. Since B ≤ n/4,
the currently best solution x yields |x|0 ≥ 3n/4. Thus, we
again observe a constant drift. Summarizing the two phases
yields

E[T ] = O
(
n log

(n
B

))
+ O(logn) = O

(
n log

(
n

Bmin

))
.

3.2 Linear Functions
We move to the general case of linear objective functions un-
der uniform constraint. The weights wi ≥ 1 are now chosen
arbitrarily, whereas every bi still is equal to 1. Contrary to
our results on OneMax, the introduction of constraints in-
creases the optimization time of linear functions in general.
The reason is that during the optimization the increase of 1-
bits stalls at the cardinality bound B. From there, progress
is only possible by swapping a 1-bit to a position with larger
weight, currently set to 0. This requires a simultaneous flip
of both bits.

Theorem 5. There is a linear function f and a bound B
such that the optimization time of the (1+1) EA on f under
uniform constraint B is in Ω(n2), not only in expectation
but even with high probability.1

Proof. Let ε > 0 be an arbitrary positive quantity, possibly
even dependent on n. We set the bound B = 3n/4 and
define function f as

f(x) =

B∑
i=1

(1 + ε)xi +

n∑
j=B+1

xj .

The slight weight increase in the first B bits results in f to
having its unique global optimum at x∗ = 13n/40n/4, con-
trary to the

(
n
B

)
optima in the case of OneMax. The main

idea of this proof is to show that during the optimization of
f under constraint B the (1+1) EA w.h.p. samples a point
with constant Hamming distance dH from the optimum and
with exactly B 1-bits. Then, the only way to reach the op-
timum is to exchange a 0 in the first 3n/4 bit positions, the
first block, with a 1 in the last n/4 bits, the second block.
This event has a waiting time in Ω(n2).

First, we prove that the (1+1) EA (again w.h.p.), before
finding x∗, either samples a search point with Hamming dis-
tance between 4 and 8 from the optimum or runs for Ω(n2)
iteration regardless. We then show that, given such a feasi-
ble solution with constant Hamming distance, the algorithm
finds another bit string with exactly B 1-bits prior to the
optimal one. Finally, a union bound over the polynomially
small error probabilities for these events implies the theo-
rem.

1We use the term with high probability (w.h.p.) for a success
probability of at least 1− n−c for some constant c > 0.

By Chernoff bounds the initial solution has no more than
2n/3 bits set to 1 with probability exponentially close to 1.
Thus, we observe a linear Hamming distance from x∗. In
order to maximize function f the (1+1) EA must decrease
this distance below any positive constant. We argue that
the algorithm does not jump directly from an individual
with distance greater than 8 to one with distance less than
4. To this end, let d > 8 be the number of wrongly set bits of
the current search point x. We pessimistically assume that
every mutation decreasing the distance is accepted. For this
mutation at most 3 of these d bits are allowed to not flip at
once. The probability for this event is

P
[
dH(x′, x∗) < 4

∣∣ dH(x, x∗) = d
]
≤

3∑
i=0

(
d

d− i

)
1

nd−i

≤ 4

(
d

3

)
1

nd−3
≤ d3

nd−3
= O

(
1

n6

)
.

The last estimate is due to the observation that the upper
bound is maximal when d = 9. Therefore, for a suitable
constant c > 0 this jump does not occur in the first cn2

steps of the optimization with probability at least 1− 1/n4.
We now assume that we are given a feasible solution x

with 4 ≤ dH(x, x∗) ≤ 8 and continue the analysis from this
point on. If x has exactly B 1-bits, the theorem follows
immediately. The reason is as follows. Due to the Hamming
distance x can have at most 8 0-bits in the first block and at
most 8 1-bits in the second one. Every mutation must flip at
least one of these misplaced 0s and 1s in B simultaneously
to improve on the fitness value. The probability for this to
happen is at most 82/n2.

What is left is the case where x has Hamming distance
between 4 and 8, and strictly less than B 1-bits. However,
again due to the distance, |x|1 ≥ B− 8 must hold. Consider
a run of the (1+1) EA for t∗ = lnn steps. Employing drift
analysis, we show that during this phase the current best
search point collects B 1s in total but still does not reach
x∗ w.h.p. A standard argument provides a lower bound of
E[|x′|1 − |x|1 | |x|1 < B] ≥ 1/4e =: δ on the expected drift
since x has more than B = n/4 bits set to 0 and flipping
any of them is accepted as a fitness increase. Furthermore,
observe that no mutation incrementing the number of 1s
by more than 8 =: s is accepted as this would violate the
constraint. A tail bound for the Additive Drift Theorem
[15] with parameters δ = 1/4e and s = 8 yields that the
probability of the (1+1) EA to remove the surplus of 0s
within t∗ rounds is at least

1− exp

(
− t
∗δ2

8s2

)
= 1− exp(−Ω(logn)) = 1− 1

nΩ(1)
.

We are allowed to assume that the Hamming distance to
the optimum does not increase beyond 8 during these t∗

steps as otherwise the argument presented above still gives
a quadratic lower bound on the run time. On the other
hand, in order to reach x∗ in this phase all d ≥ 4 wrongly
set bits would have to flip at least once. It is left to prove
that this does not happen with high probability: A specific
bit position does not flip during t∗ rounds with probability
(1 − 1/n)t

∗
. Hence, all d bits flip during this phase with

probability (1 − (1 − 1/n)t
∗
)d. Therefore, the (1+1) EA

does not sample the optimum during the t∗ rounds with
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probability at least

1−

(
1−

(
1− 1

n

)t∗)d
≥ 1−

(
t∗

n

)d
≥ 1−

(
lnn

n

)4

≥ 1− 1

n2
.

The estimate is due to Bernoulli’s Inequality and the obser-
vation that lnn ≤

√
n for n large enough.

Theorem 6. For arbitrary values of B, the expected opti-
mization time of the (1+1) EA on any linear function under
uniform constraint B is in O(n2 log(Bwmax)).

Proof. We start the analysis with a feasible solution due
to Lemma 3. This implies that the (1+1) EA will never
sample an infeasible solution from this point on. W.l.o.g.
the weights of function f are in descending order starting
with the left-most bit, i.e. wmax = w1 ≥ w2 ≥ · · · ≥ wn. f
under uniform constraint B has a maximum objective value
of fmax =

∑B
i=1 wi. For a search point x we assign the

potential function g(x) = fmax − f(x). This potential is
non-negative and attains its minimum value 0 just in case
f(x) is optimal.

We again refer to the first B bits as the first block and the
remaining n−B bits as the second block and recall that xi
denote the negation of the bit at position i. We define two
auxiliary functions

loss(x) =

B∑
i=1

wixi; surplus(x) =

n∑
j=B+1

wj xj .

Thus, loss(x) measures the total weights of the missing posi-
tions in the first block, while surplus(x) is the sum of weights
of the superfluous ones in the second block. We can refor-
mulate the potential as

g(x) = loss(x)− surplus(x).

Suppose the current best solution x is non-optimal, let
k ≥ 1 denote the number of 0-bits in the first block of x.
We pessimistically assume that |x|1 reached the cardinality
bound B. In this case the expected drift with respect to
the above potential is minimal, since for |x|1 < B already a
mutation flipping a single 0-bit could improve on the fitness
value. Hence, there are exactly k corresponding 1-bits in the
second block. Let A1,2 denote the event that one 0 in the
first block, one 1 in the second and no other position flips in
this round. By the law of total expectation, we bound the
expected drift of g(x) with the conditional drift under A1,2.
Any of the k 0s in the first block are equally likely to flip
and together they make up for the whole value of loss(x).
Thus, the average weight increase by flipping one of them
is loss(x)/k. An analogue argument regarding surplus(x)
applies to the weight decrease by flipping one of the k 1s
in the second block. We sum these by Lemma 2 on the
expected drift of g and the event A1,2:

E[g(x)− g(x′)] ≥ E[g(x)− g(x′)
∣∣ A1,2]P [A1,2]

≥
(

loss(x)

k
− surplus(x)

k

)
k2

en2
= g(x)

k

en2
≥ g(x)

en2
.

We recall that g(x) on feasible solutions is never larger than

fmax =
∑B
i=1 wi. The Multiplicative Drift Theorem [4] im-

plies

E[T ] ≤ en2 (ln(fmax) + 1) ≤ en2 (ln(Bwmax) + 1).

Consider the BinVal-function defined by BinVal(x) =∑n
i=1 2n−ixi. It serves as one extreme example of a linear

function where any weight is strictly larger than the sum
of all smaller weights. Hence, we can assume wmax ≤ 2n

and Theorem 6 implies a worst-case expected optimization
time in O(n3) for all linear functions and arbitrary uniform
constraint B. However, we suspect the log-factor appearing
in the above bound to be an artifact of the analysis and
consequently conjecture that every linear function can be
optimized in time O(n2). As an example we return to the
class of functions used in the proof of Theorem 5.

Theorem 7. Let 0 < ε < 1/n be a positive real. Then, the
expected optimization time of the (1+1) EA on the function

f(x) =
∑B
i=1(1+ε)xi+

∑n
j=B+1 xj under uniform constraint

B is in O(n2).

Proof. Due to Lemma 3 the assumption of a feasible search
point x as start for our investigation does not affect the
asymptotic run time. The key observation of this proof is
that any mutation of a feasible solution that reduces the
number of 1-bits is rejected, implying a process similar to
OneMax. In order for the offspring to be accepted, the
fitness cannot be worse than the parents. Hence, any 1-bit
deleted from the last n−B bits (the second block) must be
balanced by the gain of an additional 1-bit in the first B
bits (the first block). Note that due to ε < 1/n no fewer
number of 1-bits suffice. Conversely, if a mutation reduces
the number of 1-bits in the first block, one even needs a
strict increase of 1-bits in the second block to compensate
for that due to ε > 0.

The first statement of Theorem 4 asserts that in expecta-
tion within some O(n logn) iterations we sample a string x
with |x|1 = B. We also stay at the cardinality bound until
the optimization is finished. We define the potential of a
partial solution as the number of missing bits in the first
block or, more formally, g(x) =

∑B
i=1 xi. Suppose the cur-

rent potential is g(x) = k. Since we have reached the bound,
the second block contains exactly k bits set to 1. Focusing
on mutations which flip a single 0-bit in the first block and
a single 1-bit in the second block, we bound the expected
drift by

E[g(x)−g(x′) | g(x) = k] ≥ k2

n2

(
1− 1

n

)n−2

≥ k2

en2
=: h(k).

Let T1 be the random variable denoting the number of itera-
tions until the (1+1) EA reaches the optimum x∗ = 1B0n−B

starting from a solution with B 1-bits. The Variable Drift
Theorem (Theorem 1, [13, 25]) applied to function h with
k0 ≤ B and kmin = 1 yields a bound on the expected value

E[T1] ≤ kmin

h(kmin)
+

∫ k0

kmin

1

h(k)
dk

= en2

(
1 +

∫ B

1

1

k2
dk

)
≤ 2en2.

Together with the bound on finding a solution with exactly
B 1-bits, this implies the theorem.
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3.3 LeadingOnes
Another well-studied but non-linear pseudo-Boolean func-
tion, admits a similar run time bound as in Theorem 6.
LeadingOnes is defined as

LeadingOnes(x) =

n∑
i=1

i∏
j=1

xj

and counts the number of consecutive 1-bits starting from
the left-most bit. Under uniform constraint B, the unique
optimum is the string 1B0n−B .

Theorem 8. For arbitrary values of B, the expected op-
timization time of the (1+1) EA on LeadingOnes under
uniform constraint B is in O(n2 logB).

Proof. Again we can assume the optimization to start with
a feasible solution without affecting the asymptotic run time
due to Lemma 3. For a given search point x we assign the
potential function g(x) by

g(x) = B − LeadingOnes(x).

It suffices to bound the expected drift of g(x) in the worst
case, where the current solution x is non-optimal and has
exactly B bits set to 1. Suppose x has potential g(x) = k,
then the structure of x is as follows. Starting with the left-
most bit there is a consecutive substring of B − k 1-bits
followed by a single 0, the remaining n − B + k − 1 bits
form a substring in which exactly k positions are set to 1.
In order to reduce the current potential, it suffices that the
prominent first 0 as well as exactly one 1 among the later
bits flip. This results in an expected drift of at least

E[g(x)− g(x′) | g(x) = k] ≥ 1

n

k

n

(
1− 1

n

)n−2

≥ k

en2
.

Due to the Multiplicative Drift Theorem [4] we derive the
bound for the expected time to reduce the potential of any
feasible solution to 0

E[T ] ≤ en2 (ln(max g(x)) + 1) = en2 (lnB + 1).

4. LINEAR CONSTRAINT
We now investigate linear functions under linear constraint,
i.e. arbitrary bi > 0 for the constraint function. The result-
ing optimization problem for bit strings is capable of encod-
ing the NP-complete KnapSack problem, cf. [14]. Thus, it
is not surprising that the (1+1) EA needs exponential run
time already on the restricted case of OneMax as the ob-
jective function. Furthermore, it is well known that there
are trap-like problem instances fitting the general knapsack
formulation that can not be solved efficiently by simple evo-
lutionary algorithms [10] working with the problem formu-
lation considered in this paper. The reason for this is that
they get trapped in a local optimum which has a large Ham-
ming distance to the globally optimal solution. The class
instances investigated in [10] consists of n− 1 items having
a weight and profit of 1 and one item having a large weight
and profit. We show that even OneMax under a particu-
lar linear constraint can not be optimized efficiently by the
(1+1) EA.

Theorem 9. There is a linear function b(x) and a bound B
such that the optimization time of the (1+1) EA on One-

Max under linear constraint b(x) ≤ B is in 2Ω(n), not only
in expectation but even with overwhelming probability.2

Proof. We define the constraint function b(x) as

b(x) =

2n/3∑
i=1

nxi +

n∑
i=2n/3 +1

(n+ 1)xi

together with the bound B = 2n2/3. Therefore, we ensure
that every bit string x with |x|1 < 2n/3 is feasible while
the ones with |x|1 ≥ 2n/3 are infeasible. The sole exception

is the optimal solution x∗ = 12n/30n/3. In other words,
the collection of strings with exactly 2n/3 − 1 bits set to 1
form a large plateau of equal but non-optimal fitness. We
condition the following analysis on the initial solution being
feasible, which happens with overwhelming probability due
to Chernoff bounds. After that, the (1+1) EA never adopts
an infeasible search point as the current best.

We prove an unbiasedness property [19] of the underlying
random process. Informally, as long as the optimum has not
been found, the probability of a bit string to be sampled in
round t depends only on the number of the bits set to 1, not
on their position. In order to state this more formally, we
first need some additional notation highlighting the effect of
selection in the optimization. Let (X(t))t≥0 be the series of
random variables denoting the search points adopted after
the selection in round t. For t > 0 Y (t) denotes the offspring
(of individual X(t−1)) created in round t before any selection

takes place, whereas Y (0) = X(0) is the initial solution. For
a permutation π : {1, . . . n} → {1, . . . n} and bit string x ∈
{0, 1}n let π(x) = xπ(1)xπ(2) . . . xπ(n) be the string obtained
from x by deranging its positions according to π.

While x∗ has not yet been found the search behaves like
the (1+1) EA on unconstrained OneMax with a rejection
of solutions with Hamming weight at least 2n/3. We claim
that for any t > 0, permutation π and bit string y ∈ {0, 1}n

P [Y (t) = y | X(t−1) 6= x∗] = P [Y (t) = π(y) | X(t−1) 6= x∗].

We prove this by induction over t. Lehre and Witt have
characterized the mutation operator of the (1+1) EA as an
unary, unbiased variation operator [19]; in particular, it is
invariant under permutation, that is

P [Y (t) = y | X(t−1) = x] = P [Y (t) = π(y) | X(t−1) = π(x)].

For the initial X(0) every bit string is equally likely to be
chosen satisfying the claim.

The search point X(t−1) is equal to the offspring Y (t∗) of
the round t∗ < t in which it was selected. By the induction
hypothesis the claim holds for t∗. The selection itself is
also unbiased as the objective function OneMax (with the
additional rejection rule) is invariant under bit permutation.
This implies that we can apply the law of total probability
to express P [Y (t) = y | X(t−1) 6= x∗] as a sum over all
conditional probabilities that the current best (feasible, non-
optimal) solution is x and its offspring is y. We conclude

2We use the term with overwhelming probability for a success
probability of at least 1− 2−cn for some constant c > 0.
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P [Y (t) = y | X(t−1) 6= x∗]

=
∑

|x|1< 2
3
n

P [Y (t) = y | X(t−1) = x]P [X(t−1) = x]

=
∑

|x|1< 2
3
n

P [Y (t) = π(y) | X(t−1) = π(x)]P [X(t−1) = π(x)]

= P [Y (t) = π(y) | X(t−1) 6= x∗].

There are
(
n
n/3

)
bit strings with weight 2n/3, but only one

of them is optimal. The unbiasedness regarding permutation
implies that for any t the probability of finding x∗ in round
t is at most

P [Y (t) = x∗ | X(t−1) 6= x∗] ≤

(
n

n/3

)−1

≤ 3−
n
3 ,

which yields an exponential waiting time. Moreover, a union
bound shows that for a suitably small constant c > 0 the
probability of finding the optimum within the first 2cn iter-
ations is exponentially small.

5. CONCLUSION
Studying the run time behavior of linear functions has pro-
vided many new tools for analyzing evolutionary computing
techniques and set the basis for run time studies for more
complex problems. With this paper we have contributed
to the area of run time analysis of evolutionary computing
by studying classes of linear functions under a given linear
constraint. This is equivalent to special classes of the well-
known knapsack problem. Central to the area of run time
analysis for linear functions is the function OneMax. In our
study we have focused on problem classes where the objec-
tive function or the constraint function is given by OneMax.

Our theoretical investigations show that the (1+1) EA can
handle uniform constraints efficiently, but fails for more gen-
eral constraints even on OneMax. The constraint handling
we employed directs the search within the infeasible region
towards the feasible region by adding a penalty dependent on
the distance to the constraint. However, the search within
the feasible region is not guided by any knowledge about the
constraint. Therefore, it is interesting to investigate whether
additional information can help direct the search such that
OneMax with non-uniform constraint can be handled effi-
ciently.
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