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Abstract. Motivated by the telecommunication network design, we study
the problem of finding diverse set of minimum spanning trees of a certain
complete graph based on the two features which are maximum degree
and diameter. In this study, we examine a simple multi-objective EA,
GSEMO, in solving the two problems where we maximise or minimise
the two features at the same time. With a rigorous runtime analysis,
we provide understanding of how GSEMO optimize the set of minimum
spanning trees in these two different feature spaces.

1 Introduction

Evolutionary algorithms (EAs) have wide application in solving complex prob-
lems in various areas such as combinatorial optimization, bioinformatics and
engineering. In EA research, the algorithm works with a set of solutions which
is called the population and is evolved during the optimization process to cover
a so-called Pareto front. Most evolutionary algorithms incorporate certain di-
versity mechanisms which ensure that the population consists of a diverse set
of individuals [3, 16]. By presenting a set of different solutions with acceptable
quality to the decision maker, EAs with diversity maximisation provide a better
exploration and understanding of the search space. In recent years, EAs with
diversity optimisation mechanism have been proposed and examined in both
theoretical and practical aspects [9, 8, 14].

There have been many EAs that are applied in solving multi-objective op-
timisation problems and have gained significant success. Evolutionary multi-
objective optimization (EMO) aims at achieving a set of solutions which is used
to approximate the so-called Pareto front. The solutions are evaluated based
on two or more conflicting objective functions and EAs are suitable in comput-
ing several trade-off during a single process. There have been many well-known
multi-objective evolutionary algorithms (MOEAs) which include MOEA/D [17],
IBEA [18] and NSGA-II/III [6, 5].

In this paper, we consider a simple MOEA which finds a diverse set of Mini-
mum spanning trees (MSTs) with different features for an undirected unweighted
complete graph and analyse the algorithm theoretically. Minimum spanning tree
problem is a fundamental problem with diverse applications including network
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design and approximation algorithms design of NP-hard problems [4, 12, 1]. A
spanning tree of a graph refers to a subgraph that contains all the vertices in
the graph and is a tree. A graph may have many spanning trees. When all edges
are assigned weights or lengths, the minimum spanning tree of a graph is the
one with the minimum sum of weights. For an unweighted complete graph, all
spanning trees are MSTs which have different structures. Although they have
the same total weights, they have various features which make them different
to the decision makers. There exist many different features other than the total
weight that researchers used to evaluate a MST, which include the maximum de-
gree, diameter and depth. The features examined in this paper are the maximum
degree and diameter, which evaluate different structural characteristics.

Finding MSTs with different maximum degree and diameter is important for
real-world applications such as telecommunication network design with certain
connection requirement. When designing a telecommunication network, there
are a lot of factors that affect the choice of the decision makers. The degree
of each node indicates the number of descendants which is proportional to the
workload of that certain node. It is essential to control the maximum degree of
all nodes in the tree, which ensure the amount of work that each node has to
do is under control [15]. In order to guarantee the communication speed, a MST
with low diameter is preferred [11]. The diameter is also important in forcing the
reliability constraints which should be taken into consideration of the designer.

Although finding a minimum spanning tree in a given graph is solvable in
polynomial time, achieving a MST with certain maximum degree requirement
is NP-hard [2]. There have been studies into the problem of approximating the
search space of diversifying MSTs based on feature values [13, 7].

In this research, we focus on optimizing these two features in MSTs which
are the maximum degree and diameter at the same time. Since maximising
or minimising maximum degree leads to a MST with minimum or maximum
diameter, it is suitable to consider the problem in a multi-objective space.

The paper is organized as follows. First, we introduce the background of the
problem in Section 2. Then in Sections 3 and 4, we examine the MOEA on two
multi-objective problems about MSTs. Finally, we finish the paper with some
conclusions in Section 5.

2 Preliminaries

In our research, we focus on the multi-objective optimization problem of finding
a population containing MSTs with various feature values of a complete graph.
Let G = (V,E) be an undirected graph, where V and E denote the set of nodes
and set of edges respectively. Define |V | = n and |E| = m. A spanning tree of G
is defined as a connected subgraph containing all vertices in V without cycles.
In this study, we represent a spanning tree as a set of edges and use a bitstring
of size m where each bit shows the existence of a certain edge in the subgraph
to denote the spanning tree.
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We characterize MSTs by two feature values which are the maximum degree
and the diameter of an MST. The maximum degree d(s) of an MST s is defined
as the maximum value of the degrees of all nodes in V . The diameter l(s) of
an MST s is defined as the length of the longest path in s. We also define the
number of longest paths in an MST s as p(s).

Considering these two features as objectives, we examine the Global Simple
Evolutionary Multi-objective Optimiser(GSEMO) [10] which is presented in Al-
gorithm 1 in optimizing the problem. For the concept of dominance, we use the
following definition.

Definition 1 (Dominance). In multi-objective optimization, there exists a fit-
ness function that maps each solution in the search space X to a vector of real
values, i.e. f : X → Rk. Assume all k objectives should be minimised. For two
solution s, s′ ∈ X, s is said to weakly dominate s′ iff fi(s) 6 fi(s

′), where
1 6 i 6 k. S is said to (strictly) dominate s′ iff s weakly dominates s′ and
f(s) 6= f(s′).

The definition of dominance can be adapted to problems where one or more
objectives should be maximised.

Definition 2 (Pareto optimality). A solution s is Pareto optimal if it is not
dominated by any other solutions in the search space. The set of all Pareto-
optimal solution is called the Pareto set. All optimal objective vectors form the
Pareto front in the objective space.

Algorithm 1 GSEMO

1: Choose an initial MST x ∈ {0, 1}m uniformly at random for a certain complete
graph G with n vertices and m edges.

2: Let P := x
3: while stopping criteria not met do
4: Pick s from P uniformly at random.
5: Create an offspring s′ by flipping each bit in s with probability 1/m.
6: if s′ is not dominated by any individual in P then
7: Add s′ to P , and remove all individuals weakly dominated by s′ from P .
8: end if
9: end while

We focus our analysis on the simple multi-objective EA which is GSEMO
proposed by Giel [10] because of its simplicity and suitability for the theoreti-
cal analysis. The algorithm starts with an MST which is selected uniformly at
random for the complete graph G. Before the stopping criteria is reached, the
algorithm selects a solution s uniformly at random from population P and an
offspring s′ is generated by flipping each bit of s with probability 1/m. In the
case where s′ is not dominated by any solution in P , it is added to P . The new
population contains only non-dominated solutions.
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Fig. 1: The Pareto front for the multi-objective problem of maximising the diameter
and maximising the max degree of a MST.

The algorithm is examined in terms of the number of generations until it
has achieved a population that covers the whole Pareto front. The expected
optimisation time refers to the expected number of iterations to reach this goal.

3 The Max-Max problem

We look into two multi-objective problems considering these two features. In the
first problem we aim at maximising both the diameter and the maximum degree
at the same time, which is referred to as the Max-Max problem in this paper.
The dominance definition for the Max-Max problem is defined as follows.

Definition 3 (Domination for Max-Max Problem). For two MSTs s and
s′ of an unweighted complete graph G, in the Max-Max problem, s dominates
s′ iff d(s) ≥ d(s′) and l(s) ≥ l(s′).

Lemma 1. Let s be a Pareto optimal solution of the Max-Max problem, then
d(s) + l(s) = n+ 1, where n denotes the number of nodes in the graph.

Proof. Assume the minimum spanning tree with the maximum degree is s and
its diameter and maximum degree are represented as l(s) and d(s). In MST s,
the longest path has length l(s) which has l(s) + 1 nodes on it. Then there are
another n − (l(s) + 1) nodes which are not on the path. In order to maximise
d(s), these nodes should be connected to one of the nodes on the path except
the tailing ones. Hence,

d(s) = 2 + n− (l(s) + 1) = n− l(s) + 1.
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Fig. 2: A Pareto solution with degree 8 and diameter 5

The sum of the diameter and the maximum degree equals to l(s)+n− l(s)+1 =
n+ 1. ut

According to Lemma 1, the Pareto front of the Max-Max problem is as
shown in Figure 1. It is easy to see that each Pareto solution consists of a star
node with degree d and a longest path of length l as shown in Figure 2. Note that
for a specific degree and diameter, the Pareto solution is not unique. However,
a solution is Pareto optimal if and only if

1. It has at most one node with degree more than 2.
2. All the nodes with degree 2 and more lie on the longest path.

Moreover, for each diameter value, Algorithm 1 keeps only one solution be-
cause of the dominance definition. Hence, the size of the population produced
by the algorithm is at most n−2. The next theorem considers the expected time
to find the Pareto front using Algorithm 1.

Theorem 1. Algorithm 1 finds all the Pareto optimal solutions of the Max-
Max problem in expected time O(n2m2).

Proof. Let sP ∈ P denote a Pareto optimal solution in the population with
diameter l(sP ). We consider the proof in the following two phases. The first
phase is to maintain P such that it contains at least one Pareto optimal solution.
The second phase is to find other Pareto optmial solutions starting from sP . We
prove that each phase needs expected time O(n2m2) to be completed.

Now let s′ ∈ P be a solution with the highest diameter l(s′) < n − 1. The
mutation step on s′ that detaches a leaf from a node with degree more than
2 and attaches it to one side of the longest path increases l(s′) by one. Since
the probability of any single bit flip is 1

m , the probability of such a mutation
would be 1

em2 . On the other hand, the size of P is upper bounded by n and the
probability of selecting s′ for mutation is at least 1

n . Hence, after expected time
O(nm2), the diameter of s′ is increased by one. Furthermore, the diameter of
s′ is at least 2. Therefore, we need at most n − 2 such mutations to obtain the
Pareto optimal solution with maximum degree 2 and diameter n− 1. It implies
that Algorithm 1 needs expected time O(n2m2) to complete the first phase.
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Now we analyse the second phase and assume that there is at least one Pareto
optimal solution sP in the population. Assume that the Pareto optimal solution
with diameter l(sP )− 1 is not included in P yet. In this case, the mutation step
on sP that removes a leaf from one side of the longest path and connects it to the
node with the highest degree will produce a new Pareto optimal solution with
diameter l(sP )−1 and maximum degree d(sP )+1. Similar to the argument in the
first part of the proof, the algorithm needs expected time O(nm2) to complete
this mutation. Furthermore, from the first phase, it is known that the solution
sP with diameter n− 1 exists in P . Hence, the algorithm is able to produce all
the Pareto optimal solutions gradually, starting from sP . Since the size of the
Pareto set is n−2, Algorithm 1 finds all the Pareto optimal solution in expected
time O(n2m2). ut

4 The Min-Min problems

In this section, we investigate the second problem, in which both feature values
are minimised at the same time. The minimum diameter happens when the
MST has a star structure where the diameter is 2 and the node in the centre has
the maximum degree n− 1. The minimum maximum degree happens when the
graph is a single path. In this case, the maximum degree is 2 and the diameter
is n− 1. The general dominance definition is adapted for the Min-Min problem
as follows.

Definition 4 (Dominance for the Min-Min Problem). For two MSTs s
and s′ of an unweighted complete graph G, in the Min-Min problem, a solution
s is said to dominate solution s′ iff d(s) ≤ d(s′) and l(s) ≤ l(s′).

Based on the fact that the diameter is either even or odd, the Pareto optimal
MST with diameter l have different structures. Figure 3 shows the structure of
an optimal MST with odd diameter. The optimal MST with even diameter only
contains multiple subtrees with the same depth l/2.

the Pareto front for this problem is not as simple as the Pareto front for
the Max-Max problem. Having a solution s in the Pareto front, the adjacent
solution with a smaller diameter, named s′, can have d(s′) = d(s)+ i and l(s′) =
l(s)− j for some i ≥ 1 and j ≥ 1. Therefore, it is not always possible to find the
solution s′ by means of a 2-bit flip on s.

In order to overcome this problem we use a different definition of dominance
in analysing the Min-Min problem, which still leads to a population of linear
size. The new definition of dominance is presented in Definition 5, where p(s) is
the number of longest paths. Furthermore, it should be noted that we consider
Algorithm 1 with the new definition of dominance (instead of weak dominance
in lines 6 and 7).

Definition 5 (Extended dominance for the Min-Min Problem ). In the
Min-Min problem, for two MSTs s and s′ of a complete graph, s dominates s′

iff l(s′) = l(s) ∧ d(s′) = d(s) ∧ p(s′) ≤ p(s) or l(s′) < l(s) ∧ d(s′) < d(s).
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Fig. 3: The MST with odd diameter and maximum degree minimised, where l denotes
the diameter and k denotes the maximum degree in the MST. The nodes coloured in
orange are from a single subtree of the root.

We define an Extended Pareto optimal solution and the Extended Pareto front
to be a Pareto optimal solution and the Pareto front with the new definition of
dominance in Definition 5. Then in Lemma 2 we prove that the Extended Pareto
front set is a superset of the original Pareto front, which is defined by the original
definition of dominance.

Lemma 2. The Extended Pareto front is a super set of the Pareto front for the
Min-Min problem.

Proof. According to Definition 4, a Pareto optimal solution s of the Min-Min
problem should fulfil the requirement that @s′ dominates s where s′ is any other
MST of the same graph. This indicates that @s′, where d(s′) ≤ d(s) and l(s′) ≤
l(s).

Assume there exists a MST s′′ that dominates s according to Definition 5.
Then either l(s) = l(s′′)∧d(s) = d(s′′)∧p(s) ≤ (s′′) or l(s) < l(s′′)∧d(s) < d(s′′)
is true. For maximum degree and diameter, it should fulfil that l(s) ≤ l(s′′) ∧
d(s) ≤ d(s′′), which is contradict to the fact that @s′ in the search space, where
d(s′) ≤ d(s) and l(s′) ≤ l(s).

Therefore, the MST s is not dominated by any other solutions in the extended
Pareto front which means it should be included in the Pareto set of the extended
problem.

ut

In the following, we analyse the performance of the algorithm in finding the
the whole Extended Pareto front. Since this set is a super set for the original
Pareto front, we are also analysing the performance of the algorithm in finding
the original Pareto front. Lemma 3 proves an upper bound on the size of the
population during the optimisation process.



8 Wanru Gao, Mojgan Pourhassan, Vahid Roostapour, Frank Neumann

Lemma 3. The population size is upper bounded by 2n.

Proof. Here we prove that the maximum size of the population is 2n− 5 < 2n.
According to Definition 5, solution s does not dominate solution s′ if d(s) = d(s′)
and l(s) ≤ l(s′). Similarly, s′ is not dominated by s when d(s) ≤ d(s′) and
l(s) = l(s′). Moreover, for each specific combination of diameter and maximum
degree, the algorithm keeps only one solution.

Let P be the population of an arbitrary iteration during the process. We
partition P to at most n−2 subsets P i = {si1, · · · , siki

} ,2 ≤ i ≤ n−1, such that

for any s ∈ P i, d(s) = i. Moreover, for any j1 < j2 ≤ ki we have l(sij1) > l(sij2).

For each subset, we have |P i| = ki ≤ l(si1)− l(siki
)+1. Without loss of generality,

let all the subsets have at least one solution. Since P is the set of non-dominated
solutions, for any 2 ≤ i ≤ n − 2 we have l(siki

) ≥ l(si+1
1 ) . Otherwise, siki

dominates si+1
1 . Hence, for any subsets P i and P i+1, we have

|P i ∪ P i+1| ≤ l(si1)− l(siki
) + 1 + l(si+1

1 )− l(si+1
ki+1

) + 1 ≤ l(si1)− l(si+1
ki+1

) + 2.

With the same argument we have

|P | = |
n−1⋃
j=2

P j | ≤ l(s21)− l(sn−1kn−1
) + (n− 2)

≤ (n− 1)− 2 + (n− 2)

≤ 2n− 5

ut

In any tree with n nodes, there is only one path between any two nodes.
Hence the total number of paths in a tree, which is an upper bound for the
number of paths with length d, is (

n

2

)
≤ n2.

Therefore, in a solution with diameter d, the number of paths with length d is
upper bounded by n2.

In Lemma 4 and Lemma 5 we give some properties about Extended Pareto
optimal solutions and show how they are produced in O(n3m2) for each diameter
size. In order to simplify the presentation, we first define Important-Objective-
Positions (Definition 6), which refers to the positions with diameter l and max-
imum degree d, at which an extended Pareto optimal solution can be formed.

Definition 6 (Important-Objective-Positions (IOP)). We define a point
(l, d) in the diameter-degree space to be an Important-Objective-Position (IOP)
if the extended Pareto set includes a solution with diameter l and degree d.

Lemma 4. If a point (l, d) in the diamater-degree space is an IOP and the point
(l, d+ 1) is not an IOP, then the point (l(s)− 1, d) is an IOP.
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Proof. Since the point (l, d) is an IOP, by definition, an extended Pareto optimal
solution s exists such that l(s) = l and d(s) = d. A solution with diameter
l(s)−1 and maximum degree d(s) exists because reducing the number of longest
paths in solution s either results in a solution with a larger maximum degree
(which we have assumed that does not belong to the extended Pareto set), or
a solution with smaller diameter. Moreover, a solution with diameter l(s) − 1
and maximum degree d(s) can only be dominated by a solution with the same
maximum degree and diameter, or a solution s′ with maximum degree d(s′) <
d(s) and diameter l(s′) < l(s)−1 (Definition 5). If solution s′ exists, then it would
have dominated solution s as well, which contradicts with the assumption that
s is an extended Pareto optimal solution. Therefore, a solution with diameter
l(s)−1 and maximum degree d(s) can only be dominated with a solution with the
same maximum degree and diameter, which implies that the point (l(s) − 1, d)
is an IOP. ut

Lemma 5. Assume that points (l, d + i), for 0 ≤ i < k and k > 1, are IOPs
and, a solution s with l(s) = l and d(s) = d, is in the population. In expected
time O(n3m2), all Pareto optimal solutions with diameter l and also a solution
s′ with l(s′) = l − 1 and d(s′) = d+ k − 1 are added to the population.

Proof. Since the position (l(s), d(s)) is an IOP, the solution s can only be re-
moved from the population if a solution with the same diameter and maximum
degree and a smaller number of longest paths is found (Definition 5).

In a solution s, there always exists at least one pair of 2-bit flips that reduces
the number of longest paths, p(s). This can be done by disconnecting a leaf of one
of these paths and connecting it to an inner node. At each step, with probability
1
|P | the assumed solution is selected for mutation, where |P | is the size of the

population. Moreover, while there exist inner nodes with degree less than d(s),
with probability 1

e·m2 a proper 2-bit flip happens, which reduces p(s) without
increasing the maximum degree of the solution. Due to Definition 5, solution s
is dominated and replaced by the new solution. The same process with reducing
p(s) continues until the algorithm reaches a solution s0 that belongs to the
extended Pareto front and stays in the population. Denoting the total reduction
on the number of longest paths by ∆s0 = p(s)− p(s0), we can observe that the
expected time until reaching the solution s0 is O(|P |m2∆s0).

We define solutions si, i < k, to be extended Pareto optimal solutions of
diameter l(s) and degree d(s) + i. We also define ∆si = p(si−1)− p(si), 1 ≤ i <
k − 1 as the total difference on the number of longest paths between solutions
si−1 and si. With similar analysis we can show that after reaching the solution
si, i < k−1, at each step with probability 1

|P |m2 a solution with degree d(si)+1,

diameter l(si) and number of longest paths p(si)− 1 is produced, which is, due
to Definition 5, either accepted by the algorithm, or dominated by a solution
with the same degree and diameter, but a smaller number of longest paths. This
process continues until reaching a solution with minimum number of longest
paths, which implies that a solution si+1 is reached by the algorithm in expected
time O(|P |m2∆s1). This means that all extended Pareto optimal solutions with
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diameter l(s) can be found in expected time

k−1∑
i=0

O(|P |m2∆si).

Moreover, since the solution sk−1 is the extended Pareto optimal solution
with diameter l(s) that maximises d(s), it only contains one longest path. There-
fore, moving an edge from it results in obtaining the solution s′ with l(s′) = l(s)−
1 and d(s′) = d(sk−1). This would also happen in expected timeO(|P |m2p(sk−1)).
Together with the expected time of finding extended Pareto optimal solutions
with diameter l(s), the total expected time of finding all k extended Pareto op-
timal solutions with diameter l(s) and also a solution s′ with diameter l(s′) =
l(s)− 1 and maximum degree d(s) + k − 1 would be

k−1∑
i=0

O(|P |m2∆si) +O(|P |m2p(sk−1)) = O(|P |m2p(s)).

The equality holds because the total number of longest paths that have been
reduced in the process is

∑k−1
i=0 ∆si +p(sk−1) = p(s). Since the number of longest

paths in solution s is upper bounded by n2 and the population size is upper
bounded by 2n (Lemma 3), the obtained expected time is upper bounded by
O(n3m2). ut

Now we present the main theorem of this section, in which, starting from a
solution with maximum degree of 2 (a path), the expected time until finding all
Pareto front set is analysed.

Theorem 2. Starting with a population that contains a solution s with d(s) =
2, Algorithm 1 finds the Pareto set of the Min-Min problem in expected time
O(n4m2).

Proof. Firstly, we prove that Algorithm 1 finds the extended Pareto set in ex-
pected time O(n4m2).

Since the maximum degree of a minimum spanning tree on a graph of at least
three nodes cannot be less than 2, solution s belongs to the extended Pareto
front. This solution is a path of length n − 1, which implies that l(s) = n − 1
and the corresponding IOP is (n− 1, 2).

Having a solution s at IOP position (l(s), d(s)), from Lemma 5, we know
that in expected time O(n3m2), all k extended Pareto optimal solutions with
diameter l(s) are added to the population in addition to a solution s′ with
diameter l(s)− 1 and degree d(s) + k − 1. The largest maximum degree among
solutions with diameter l(s) would be d(s)+k−1, which implies that a diameter-
degree position (l(s), d(s) + k) is not an IOP. Therefore, by lemma 4 we know
that the position (l(s)− 1, d(s) + k− 1) is an IOP. Since solution s′ is placed at
this position, it can be used for Lemma 5 and diameter size l(s)− 1. We can use
similar argument for smaller diameter sizes. Since we start with a diameter size
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of n − 1, all extended Pareto optimal solutions for all diameter sizes are found
in expected time O(n4m2).

Since the extended Pareto front is a superset of the Pareto front, the domi-
nanted solutions according to Definition 4 should be eliminated before the Pareto
set of the Min-Min problem is achieved. As the population size is upper bounded
by 2n, getting rid of all dominated solutions takes expected O(n2) time. Hence,
the statement of the theorem is proved.

ut

5 Conclusions

The MOEAs used to optimise several objective functions always involve a set of
solutions which approximates the so-called Pareto front. These algorithms are
suitable in dealing with conflicting objective functions. In this paper, we exam-
ine a simple multi-objective optimisor on two bi-objective optimisation prob-
lems about MSTs of a complete graph. Inspired by the real-world application in
telecommunication, we focus on the Max-Max and Min-Min problems which
provide insights in dealing with the trade-off between optimising the features of
maximum degree and diameter. With a rigorous runtime analysis, we provide a
better understanding of the search space and the computational complexity of
such problems.
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