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Abstract
Parameterized runtime analysis seeks to understand the influence of problem structure
on algorithmic runtime. In this paper, we contribute to the theoretical understanding
of evolutionary algorithms and carry out a parameterized analysis of evolutionary al-
gorithms for the Euclidean traveling salesperson problem (Euclidean TSP).
We investigate the structural properties in TSP instances that influence the optimiza-
tion process of evolutionary algorithms and use this information to bound their run-
time. We analyze the runtime in dependence of the number of inner points k.
In the first part of the paper, we study a (µ + λ) EA in a strictly black
box setting and show that it can solve the Euclidean TSP in expected time
O
(
n ·A(ε) ·max

{
(µ/λ) · n2, 1

}
+ (µ/λ) · n4k(2k − 1)!

)
where A is a function of the

minimum angle ε between any three points. Based on insights provided by the anal-
ysis, we improve this upper bound by introducing a mixed mutation strategy that
incorporates both 2-opt moves and permutation jumps. This strategy improves the
upper bound to O

(
n ·A(ε) ·max

{
(µ/λ) · n2, 1

}
+ (µ/λ) · n2k(k − 1)!

)
.

In the second part of the paper, we use the information gained in the analysis to
incorporate domain knowledge to design two fixed-parameter tractable (FPT) evo-
lutionary algorithms for the planar Euclidean TSP. We first develop a (µ + λ) EA
based on an analysis by Theile (2009) that solves the TSP with k inner points in
O(max{2kk2n2λ−1, n}) generations with probability 1 − e−Ω(n). We then design a
(µ+ λ) EA that incorporates a dynamic programming step into the fitness evaluation.
We prove that a variant of this evolutionary algorithm using 2-opt mutation solves the
problem after O(max{(k − 2)!k2k−2λ−1, 1}) steps in expectation with a cost of O(nk)
for each fitness evaluation.

Keywords
Evolutionary algorithms, runtime analysis, parameterized analysis, combinatorial op-
timization.

1 Introduction

In many real applications, the inputs of an NP-hard combinatorial optimization prob-
lem may be structured or restricted in such a way that it becomes tractable to solve
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in practice despite having a worst-case exponential time bound. Parameterized anal-
ysis seeks to address this by expressing algorithmic runtime in terms of an additional
hardness parameter that isolates the source of exponential complexity in the problem
structure. In this paper, we study the application of evolutionary algorithms (EAs) to
the Euclidean Traveling Salesperson Problem (TSP) and consider the runtime of such
algorithms as a function of both problem size and a further parameter that influences
how hard the problem is to solve by an EA.

1.1 The Euclidean Traveling Salesperson Problem

Iterative heuristic methods (such as local search and evolutionary algorithms) that rely
on the exchange of a few edges such as the well-known 2-opt (or 2-change) operator
are popular choices for solving large scale TSP instances in practice. This is partly due
to the fact that they have a simple implementation and typically perform well empir-
ically. However, for these algorithms, theoretical understanding still remains limited.
Worst-case analyses demonstrate the existence of instances on which the procedure can
be inefficient. Chandra, Karloff, and Tovey [6], building on unpublished results due to
Lueker, have shown that local search algorithms employing a k-change neighborhood
operator can take exponential time to find a locally optimal solution. Even in the Eu-
clidean case, Englert, Röglin, and Vöcking [15] have recently shown that a local search
algorithm employing inversions can take worst-case exponential time to find tours that
are locally optimal.

If the search operator is restricted to specialized 2-opt moves that remove only
edges that intersect in the plane, van Leeuwen and Schoone [36] proved that a tour that
has no such planar intersections can be reached in O(n3) moves, even if a move intro-
duces further intersecting edges. If the vertices are distributed uniformly at random
in the unit square, Chandra, Karloff, and Tovey [6] showed that the expected time to
find a locally optimal solution is bounded byO(n10 log n). More generally, for so-called
φ-perturbed Euclidean instances, Englert, Röglin, and Vöcking [15] proved that the ex-
pected time to find a locally optimum solution is bounded by O(n4+1/3 log(nφ)φ8/3).
These results also imply similar bounds for simple ant colony optimization algorithms
as shown in [20].

To allow for a deeper insight into the relationship between problem instance struc-
ture and algorithmic runtime, we appeal in this paper to the theory of parameterized
complexity [11, 16]. Rather than expressing the runtime solely as a function of problem
size, parameterized analysis decomposes the runtime into further parameters that are
related to the structure of instances. The idea is to find parameters that partition off the
combinatorial explosion that leads to exponential runtimes [12].

In the context of TSP, a number of parameterized results currently exist. Deı̆neko
et al. [8] showed that, if a Euclidean TSP instance with n vertices has k vertices inte-
rior to the convex hull, there is a dynamic programming algorithm that can solve the
instance in time bounded by g(k) · nO(1) where g is a function that depends only on
k. This means that this parameterization belongs to the complexity class FPT, the class
of parameterized problems that are considered fixed-parameter tractable. Of course,
membership in FPT depends strongly on the parameterization itself. For example, the
problem of searching the k-change neighborhood for metric TSP is hard for W[1] due
to Marx [23]. FPT ⊆W[1], but the containment is conjectured to be proper [16].
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1.2 Computational Complexity of Evolutionary Algorithms

Initial studies on the computational complexity of evolutionary algorithms consider
their runtime on classes of artificial pseudo-Boolean functions [14, 17, 18, 39]. The goal
of these studies is to consider the impact of the different modules of an evolutionary
algorithm and to develop new methods for their analysis. This early work was instru-
mental in establishing a rigorous understanding of the behavior of evolutionary algo-
rithms on simple functions, for identifying some classes of problems that simple EAs
can provably solve in expected polynomial time [14], and for disproving widely ac-
cepted conjectures (e.g., that evolutionary algorithms are always efficient on unimodal
functions [13]).

More recently, classical polynomial-time problems from combinatorial optimiza-
tion such as minimum spanning trees [26, 27] and shortest paths [31, 10, 4] have been
considered. In this case, one does not hope to beat the best problem-specific algorithms
for classical polynomial solvable problems. Instead, these studies provide interesting
insights into the search behavior of these algorithms and show that many classical
problems are solved by general-purpose algorithms such as evolutionary algorithms
in expected polynomial time.

Research on NP-hard combinatorial optimization problems such as makespan
scheduling, covering problems, and multi-objective minimum spanning trees [25, 38]
show that evolutionary algorithms can achieve good approximations for these prob-
lems in expected polynomial time. In the case of the TSP, Theile [35] has proved that a
(µ+1) EA based on dynamic programming can exactly solve the TSP in at mostO(n32n)
steps when µ is allowed to be exponential in n. For a comprehensive presentation of
the different results that have been achieved see, e.g., the recent text of Neumann and
Witt [28].

Algorithmic runtime on NP-hard problems can be studied in much sharper detail
from the perspective of parameterized analysis, and this has only recently been started
in theoretical work on evolutionary algorithms. Parameterized results have been ob-
tained for the vertex cover problem [22], the problem of computing a spanning tree
with a maximal number of leaves [21], variants of maximum 2-satisfiability [32], and
makespan scheduling [34].

1.3 Our Results

In this paper, we carry out a parameterized complexity analysis for evolutionary algo-
rithms on the planar Euclidean TSP. Specifically, using the parameterization of Deı̆neko
et al. [8], we prove upper bounds on the expected time for certain evolutionary algo-
rithms to solve planar TSP instances as a function of n, the number of points in the in-
stance, and of k, the number of inner points, i.e., the points that lie on the interior of the
convex hull of the planar TSP instance. Our motivation is to use this parameterization
from the classical algorithms community to understand the influence of the number of
inner points on the runtime of a black box evolutionary algorithm, and then to design
evolutionary algorithms that exploit this problem structure to obtain fixed-parameter
tractable runtimes.

In the first part of the paper, we investigate evolutionary algorithms applied to
the planar Euclidean TSP entirely from a black box perspective. We consider the pa-
rameterized runtime bounds on algorithms that do not have access to any concrete
problem information. Specifically, in the black box scenario, algorithms can only access
the fitness value of each candidate solution as measured by tour length. Our results
are for the (µ + λ) EA which operates on a population of µ permutations (candidate
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Hamiltonian cycles) and produces λ offspring in each generation using a mutation op-
erator based on 2-opt. This analysis provides further insights into the optimization
process that allows us to design a mixed mutation operator that uses both 2-opt moves
and permutation jumps and improves the upper bound on the expected runtime of
the (µ + λ) EA. This part of the paper is an extension of a paper presented at AAAI
2012 [33].

In the second part of the paper, we leave the black box setting and consider evo-
lutionary algorithms that have access to both fitness values and the ordering of the
points that lie on the convex hull. This ordering can be precomputed in polynomial
time. Using this approach, we design two fixed-parameter tractable (FPT) evolution-
ary algorithms for the parameterization of Deı̆neko et al. This first algorithm builds
on the previous study of Theile [35] and the general framework for evolutionary algo-
rithms for dynamic programming presented in [9]. It works with a large population
where each individual can be seen as an entry of the dynamic programming table of
the classical approach. The population size grows exponentially with the number of
inner points and we assume that this result is mainly of theoretical interest.

While the first FPT algorithm is interesting mostly from a theoretical perspective,
our second FPT algorithm is highly practical as a heuristic search algorithm. Instead
of searching for a permutation of the n given points, we apply evolutionary search
only to find a good permutation of the k inner points. The outer points (lying on the
convex hull) have to appear in cycling order γ according to the convex hull in any op-
timal solution. For a fixed permutation x on the inner points, the best possible tour
according to γ and x can be computed in time O(kn) using dynamic programming. We
make use of these ideas and propose to use evolutionary algorithms that work with
permutations of the inner points. Our theoretical investigations show that commonly
used mutation operators for permutations such as inversions, jumps, and exchanges
yield fixed-parameter evolutionary algorithms. Furthermore, our experimental inves-
tigations confirm that this approach leads to significantly better results if the number of
inner points is not too large. This part of the paper is an extension of a paper presented
at CEC 2013 [24]

This paper is organized as follows. In Section 2 we introduce the problem, state
some preparatory material, and discuss parameterized analysis. In Section 3 we study
the runtime of a (µ + λ) EA on Euclidean TSP instances in a black box setting. We
first consider the time it takes for such algorithms to solve instances whose points lie in
convex position, i.e., have no inner points. We then prove rigorous runtime bounds for
the algorithms as a function of the number of inner points in an instance. In Section 4
we design two evolutionary algorithms with access to some instance-specific informa-
tion and prove that they are fixed-parameter tractable EAs, i.e., they solve the planar
TSP with k inner points in expected time g(k) · nO(1) where g depends only on k. We
conclude the paper in Section 5.

2 Preliminaries

Let V be a set of n points in the plane labeled as [n] = {1, . . . , n} such that no three
points are collinear. We consider the complete, weighted Euclidean graph G = (V,E)
where E is the set of all 2-sets from V . The weight of an edge {u, v} ∈ E is equal
to d(u, v): the Euclidean distance separating the points. The goal is to find a set of n
edges of minimum weight that form a Hamiltonian cycle in G. A candidate solution
of the TSP is a permutation x : V → V . We will sometimes associate a permutation
x with its linear form, which is simply the length-n sequence (x(1), x(2), . . . , x(n)). The
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Figure 1: Edges that intersect at a point p form the diagonals of a convex quadrilateral
in the plane. Interior edges define nondegenerate triangles with given angles.

Hamiltonian cycle in G induced by a permutation x is the set of n edges

C(x) = {{x(1), x(2)}, {x(2), x(3)}, . . . , {x(n− 1), x(n)}, {x(n), x(1)}} .

The optimization problem is to find a permutation x which minimizes the fitness func-
tion

f(x) =
∑

{u,v}∈C(x)

d(u, v). (1)

Geometrically, it will often be convenient to consider an edge {u, v} as the unique
planar line segment with end points u and v. We say a pair of edges {u, v} and {s, t}
intersect if they cross at a point in the Euclidean plane. An important observation, which
we state here without proof, is that any pair of intersecting edges form the diagonals of
a convex quadrilateral in the plane (see Figure 1).
Proposition 1. If {u, v} and {s, t} intersect at a point p, they form the diagonals of a convex
quadrilateral described by points u, s, v, and t. Hence edges {s, u}, {s, v}, {t, v} and {t, u}
form a set of edges that mutually do not intersect.

Definition 1. A tour C(x) is called intersection-free if it contains no pairs of edges that
intersect.

The convex hull of V is the smallest convex set containing V . A point v ∈ V
is called an inner point if v lies in the interior of the convex hull of V . We denote as
Inn(V ) ⊂ V the set of inner points of V . A point v ∈ V \ Inn(V ) is called an outer point.
The set of such points we denote by Out(V ). Hence Inn(V ) and Out(V ) partition V .

Note that every tour C(x) for all permutations x on V corresponds to a set of edges
that describe a closed polygon in the plane. The covertex class of a polygon is the class
of all polygons that have the same vertex set as the given polygon. The following two
theorems are due to Quintas and Supnick [29].
Theorem 1. A planar polygon that is shortest of its covertex class and whose vertices are
noncollinear cannot intersect itself.
Theorem 2. A planar polygon that is shortest of its covertex class and whose vertices are
noncollinear must contain the vertices on the boundary of its convex hull in their cyclic order.
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We call the unique cyclic order that arises from the points in Out(V ) hull-order.
We say a permutation x respects hull-order if any two points in the subsequence of x
induced by Out(V ) are consecutive in x only if they are adjacent along the boundary of
the convex hull of V . Thus, Theorem 2 states that, if x is a minimum of f , then x respects
hull-order. We will actually need a slightly stronger result than the one provided by the
claim of Theorem 2. This is captured by the following.

Lemma 1. If C(x) is intersection-free, then x respects hull-order.

Lemma 1 follows from arguments in the proof of Theorem 2 above. In particular,
Quintas and Supnick [29] show that if a polygon does not contain the vertices on the
boundary of the convex hull in their cyclic order, then the polygon must intersect itself
(and hence, by Theorem 1, cannot be optimal). The claim of the lemma follows then by
contraposition.

2.1 Parameterized Analysis

Parameterized complexity theory is an extension to traditional computational complex-
ity theory in which the analysis of hard algorithmic problems is decomposed into pa-
rameters of the problem input. This approach illuminates the relationship between
hardness and different aspects of problem structure because it often isolates the source
of exponential complexity in NP-hard problems.

A parameterization of a problem is a mapping of problem instances into the set
of natural numbers. We are interested in expressing algorithmic complexity in terms
of both problem size and the extra parameter. Formally, let L be a language over a
finite alphabet Σ. A parameterization of L is a mapping κ : Σ∗ → N. The corresponding
parameterized problem is the pair (L, κ).

For a string x ∈ Σ∗, let k = κ(x) and n = |x|. An algorithm deciding x ∈ L in time
bounded by g(k) · nO(1) is called a fixed-parameter tractable (or fpt-) algorithm for the
parameterization κ. Here g : N→ N is an arbitrary but computable function. Similarly,
an algorithm that decides a parameterized problem (L, κ) in time bounded by ng(k) is
called an XP-algorithm.

When working with the runtime of randomized algorithms such as evolutionary
algorithms, one is often interested in the random variable T which somehow measures
the number of generations the algorithm must take to decide a parameterized problem.
A randomized algorithm with expected optimization time E(T ) ≤ g(k) · nO(1) (respec-
tively, E(T ) ≤ ng(k)) is a randomized fpt-algorithm (respectively, XP-algorithm) for the
corresponding parameterization κ.

In the case of the Euclidean TSP on a set of points V , we want to express the run-
time complexity as a function of n and k where n = |V | and k is the number of inner
points: the vertices that lie in the interior of the convex hull of V . For the corresponding
optimization problem, we are interested in the runtime until the optimal solution is
located.

3 Black Box EAs

We begin by investigating the parameterized runtime behavior of simple randomized
search heuristics on the Euclidean TSP purely from a black box perspective. From this
perspective, we assume that the heuristics do not have any access to problem informa-
tion other than the fitness of an individual as measured by the tour length induced by
the corresponding permutation.

6 Evolutionary Computation Volume x, Number x
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Figure 2: The effect of the inversion σI
ij operation on a Hamiltonian cycle. Inverting

a subsequence in the permutation representation corresponds to a 2-opt (or 2-change)
move in which a pair of edges in the current Hamiltonian cycle are replaced by a pair
of edges not in the current cycle.

3.1 Permutation operators

Randomized search heuristics that are applied to solving TSP instances are usually de-
signed to iteratively search the space of permutations in order to minimize the fitness
function defined in Equation (1). Each permutation corresponds to a particular Hamil-
tonian cycle in the graph. To move through the space of candidate solutions, move or
mutation operators are often constructed based on some kind of elementary operations
on the set of permutations on V . For the black box algorithms, we will consider two
such operations: inversions and jumps which we define as follows.

Definition 2. The inversion operation σI
ij transforms permutations into one another by seg-

ment reversal in their linear forms.
A permutation x is transformed into a permutation σI

ij [x] by inverting the subsequence of
the linear form of x from position i to position j where 1 ≤ i < j ≤ n.

x = (x(1), . . . , x(i− 1), x(i), x(i+ 1), . . . , x(j − 1), x(j), x(j + 1), . . . , x(n)),

σI
ij [x] = (x(1), . . . , x(i− 1), x(j), x(j − 1), . . . , x(i+ 1), x(i), x(j + 1), . . . , x(n)).

In the space of Hamiltonian cycles, the permutation inversion operation is es-
sentially identical to the well-known 2-opt (or 2-change) operation for TSP. The
usual effect of the inversion operation is to delete the two edges {x(i − 1), x(i)} and
{x(j), x(j + 1)} from C(x) and reconnect the tour C(σI

ij [x]) using edges {x(i− 1), x(j)}
and {x(i), x(j + 1)} (see Figure 2). Here and subsequently, we consider arithmetic on
the indices to be modulo n, i.e., 1− 1 = n and n+ 1 = 1. Since the underlying graph G
is undirected, when (i, j) = (1, n), the operation has no effect because the current tour
is only reversed. There is also no effect when (i, j) ∈ {(2, n), (1, n − 1)}. In this case,
it is straightforward to check that the edges removed from C(x) are equal to the edges
replaced to create C(σI

ij [x]).

Definition 3. The jump operation σJ
ij transforms permutations into one another by position

shifts in their linear form. A permutation x is transformed into a permutation σJ
ij [x] by moving

the element in position i in the linear form of x into position j in the linear form of σJ
ij [x] while
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Figure 3: The effect of the jump operation σJ
ij on a Hamiltonian cycle.

the other elements between position i and position j are shifted in the appropriate direction.
Without loss of generality, suppose i < j. Then,

x = (x(1), . . . , x(i− 1), x(i), x(i+ 1), . . . , x(j − 1), x(j), x(j + 1), . . . , x(n)),

σJ
ij [x] = (x(1), . . . , x(i− 1), x(i+ 1), . . . , x(j − 1), x(j), x(i), x(j + 1), . . . , x(n)).

Since σJ
i(i+1) and σJ

(i+1)i have the same effect, there are n(n−1)− (n−1) = (n−1)2

unique jump operations. The jump operator σJ
ij was used by Scharnow, Tinnefeld and

Wegener [31] in the context of runtime analysis of evolutionary algorithms on permu-
tation sorting problems.

3.2 The (µ + λ) EA

We study the (µ+λ) EA, a population-based evolutionary algorithm that employs only
mutation and selection as search operators. The (µ + λ) EA, outlined in Algorithm 1,
employs uniform selection for reproduction (cf. line 5 of Algorithm 1), and truncation
selection for replacement (see Function 2).

Algorithm 1: The (µ+ λ) EA.

1 Choose a multiset P of µ random permutations on V ;
2 repeat forever
3 P ′ ← {};
4 repeat λ times
5 choose x uniformly at random from P ;
6 y ← mutate(x);
7 P ′ ← P ′ ] {y};
8 P ← select(P ] P ′) ;

When designing evolutionary algorithms, it is usually desirable to have a mutation
operator that is capable of making sufficiently large changes to candidate solutions.
Mutation strategies for combinatorial structures such as paths and permutations can in
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Function 2: select(P ] P ′)
1 Construct a list L of all permutations in P ] P ′ sorted by fitness (ties are broken

by first preferring offspring, then any remaining ties are broken uniformly at
random);

2 return the fittest µ individuals L;

some sense simulate the behavior of simple bitstring mutation by aggregating the mu-
tation operator and applying it a number of times governed by a Poisson process [31].
For the TSP, we introduce here the mutation operator called 2-opt-mutation (see
Function 3) that applies to an individual permutation a sequence of s + 1 random in-
version operations where s is drawn from a Poisson distribution with unit expectation.

Function 3: 2-opt-mutation(x)
1 y ← x;
2 draw s from a Poisson distribution with unit expectation;
3 perform s+ 1 random inversion operations on y;
4 return y;

If we restrict the mutation operation to a single inversion move and set µ = λ = 1,
the resulting algorithm is randomized local search (RLS), which is simply a randomized
hill-climber in the space of permutations using 2-opt moves. RLS, illustrated in Al-
gorithm 4, operates by iteratively applying random inversion operations to a permu-
tation in order to try and improve the fitness of the corresponding tours. Unlike the
(µ + λ) EA, RLS can only generate immediate inversion neighbors so it can become
indefinitely trapped in local optima (on the other hand, the (µ + λ) EA can eventually
escape the local optima, but possibly only after a very long time).

Algorithm 4: Randomized Local Search (RLS).

1 Choose a random permutation x on V ;
2 repeat forever
3 choose a random distinct pair of elements (i, j) from [n];
4 y ← σI

ij [x];
5 if f(y) ≤ f(x) then x← y

Evolutionary algorithms are simply computational methods that rely on random
decisions so we consider them here as special cases of randomized algorithms. To an-
alyze the running time of such an algorithm, we examine the sequence of best-so-far
solutions it discovers during execution (x(1), x(2), . . . , x(t), . . .) as an infinite stochastic
process where x(t) denotes the best permutation (in terms of fitness) in the population
at iteration t. The goal of the runtime analysis is to study the random variable that
equals the first time t when x(t) is a candidate solution of interest (for example, an opti-
mal solution). The optimization time of a randomized algorithm is the random variable

T = inf{t ∈ N : f(x(t)) is optimal}. (2)

In the case of the (µ+ λ) EA, this corresponds to the number of generations (iterations

Evolutionary Computation Volume x, Number x 9
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of the mutation, evaluation, selection process) that occur before an optimal solution
has been introduced to the population. This is somewhat distinct from the traditional
measure of the number of explicit calls to the fitness function [2, 28]. However, in the
case of the (µ+λ) EA, this measurement can be obtained from T by Tf = µ+λT , since
we need µ fitness function calls to evaluate the initial population and each generation
requires evaluating an additional λ individuals. We discuss this further in section 3.
In this paper, we will estimate the expected optimization time of the (µ + λ) EA. This
quantity is calculated as E(T ), the expectation of T . However, we will also report the
bounds on E(Tf ), the expected number of fitness evaluations needed until a solution
is found.

Definition 4. Let α be an indicator function defined on permutations of V as

α(x) =

{
1 if C(x) contains intersections;
0 otherwise.

Definition 5. Let β be an indicator function defined on permutations of V as

β(x) =

{
1− α(x) if f(x) non-optimal
0 otherwise.

The random variable corresponding to optimization time can be expressed as the
infinite series

T =

∞∑
t=1

(
α(x(t)) + β(x(t))

)
. (3)

In order to characterize the behavior of evolutionary algorithms and express their
expected runtime in terms of the number of points n and the number of inner points
k, we analyze a Markov chain generated by the algorithm. We construct the Markov
chain as follows. Given a point set V , each permutation x on V that corresponds to a
tour C(x) that is non-optimal is a unique state in the Markov chain. Finally, every per-
mutation that corresponds to an optimal tour in V is associated with a single absorbing
state opt. We then bipartition the state space (minus opt) into two sets Sα and Sβ where

Sα = {x : C(x) contains intersecting edges},

and
Sβ = {x : C(x) is intersection-free } \ {opt}.

Note that opt /∈ Sα since the optimal tour cannot contain intersections. In terms of the
Markov chain, the optimization time T is the first hitting time of the state opt. We will
need the following two preparatory lemmas.

Lemma 2. If there are values 0 < p < 1 and c > 0 with p and c constant with respect to t (but
not necessarily n), such that for any x ∈ Sα, the transition probability from x to some x′ with
f(x′) < f(x)− c is bounded below by p, then

E

( ∞∑
t=1

α(x(t))

)
≤ p−1n(dmax − dmin)/c,

where dmax and dmin are the maximum and minimum distances between any two points in V ,
respectively.
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Sβ · · ·

opt

q

q q

Sα x · · ·

x′ f(x′) < f(x)− c
p

Figure 4: Partitioned Markov chain with transition probability bounds. Sα contains
all states corresponding to tours that have intersecting edges. Sβ contains all states
corresponding to suboptimal intersection-free tours. Note that x′ can be in either Sα or
Sβ .

Proof. Denote as fα = min{f(x) | x ∈ Sα} to be the minimum cost over all tours with
intersections. Furthermore, let f? = max{f(x) | x ∈ Sβ ∪ {opt} and f(x) < fα} be the
highest cost of all intersection-free tours that have a strictly lower cost than fα (this is
well-defined since at least the optimal tour as a strictly lower cost than fα). Note that
once the algorithm generates a state z with f(z) ≤ f?, it will never return to a state
in Sα (since such as state has strictly worse fitness). We define a nonnegative distance
function δ as

δ(x) =

{
f(x)− f? if x ∈ Sα;
0 otherwise.

For all x ∈ Sα, f(x) ≥ ndmin. Moreover, f? ≤ ndmax. Hence δ(x) ≤ n(dmax − dmin).
Let (y(1), y(2), . . .) be the stochastic process that is a restriction of (x(1), x(2), . . .)

constructed by taking only permutations y(t) ∈ Sα in the same order. We consider the
drift of the random sequence {δ(y(t)); t = 1, 2, . . .}.

From any solution y(t), the probability to improve the fitness by at least c is
bounded below by p. Therefore we have

E(δ(y(t))− δ(y(t+1))) ≥ cp.

By the Additive Drift Theorem [17], the random variable Tα = inf{t ∈ N : δ(y(t)) = 0}
is bounded above by p−1n(dmax−dmin)/c. Finally, the series on the LHS of the claimed
inequality is the total time the algorithm spends in Sα, or more precisely,

∞∑
t=1

α(x(t)) =

∞∑
t=1

α(y(t)) = Tα,
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and hence the claim follows.

Lemma 3. If there is a constant 0 < q < 1 such that for any x ∈ Sβ , the transition probability
from x to opt is bounded below by q, then

E

( ∞∑
t=1

β(x(t))

)
≤ q−1

Proof. Again, since q > 0 for any x ∈ Sβ there is a nonzero probability the algorithm
exits the state x and transits to the absorbing state opt. This event is characterized as
an independent Bernoulli trial with success probability at least q. It follows that the
series in the claim can be estimated by a geometrically distributed random variable
with parameter q, and therefore the expected time spent in states contained in the Sβ
partition is bounded above by q−1.

In Section 3.3 we will introduce a constraint on the angles between edges that give
rise to suitable values for c in the claim of Lemma 2. This, along with corresponding
values for p and q (that appear the claims of Lemma 2 and 3, respectively), will allow
us to bound the expected runtime in terms of n and k. Before doing so, it will be
convenient to state a number of lemmas that will be useful in the analysis. To preserve
the flow of the text, we defer their proofs to the appendix.

Lemma 4. Let x be a permutation such that C(x) is not intersection-free. Then there exists
an inversion that removes a pair of intersecting edges and replaces them with a pair of non-
intersecting edges.

Proof. (see Appendix).

Note that it is still possible that the introduced edges intersect with some of the
remaining edges in C(y).

Lemma 5. Suppose |Inn(V ) | = k. Then there are at most
(
n
k

)
k! distinct intersection-free tours.

Proof. (see Appendix).

Lemma 6. Suppose |Inn(V ) | = k and C(x) is an intersection-free tour on V . Then there
is a sequence of at most k jump operations that transforms x into an optimal permutation.
Similarly, there is a sequence of at most 2k inversion operations that transform x into an optimal
permutation.

Proof. (see Appendix).

3.3 Angle-bounding, quantization, and resulting structural properties

A challenge to the runtime analysis of algorithms that employ edge exchange opera-
tions such as 2-opt is that, when points are allowed in arbitrary positions, the minimum
change in fitness between neighboring solutions can be made arbitrarily small. Indeed,
proof techniques for worst-case analysis often leverage this fact [15]. To circumvent
this, we impose bounds on the angles between points, which allows us to express run-
time results as a function of trigonometric expressions involving these bounds. Mo-
mentarily, we will refine this further by introducing a class of TSP instances embedded
in an m ×m grid. In that case, we will see that the resulting trigonometric expression
is bounded by a polynomial in m.

We say V is angle-bounded by ε for some 0 < ε < π/2 if for any three points u, v, w ∈
V , 0 < ε < θ < π − ε where θ denotes the angle formed by the line from u to v and the
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Figure 5: Quantizing a set of n points in the plane onto an m×m grid. Coordinates are
rounded to the nearest value in a set of m equidistant values.

line from v to w. This allows us to express a bound in terms of ε on the change in fitness
from a move that removes an inversion.

Lemma 7. Suppose V is angle-bounded by ε. Let x be a permutation such that C(x) is not
intersection-free. Let y = σI

ij [x] be the permutation constructed from an inversion on x that
replaces two intersecting edges inC(x) with two non-intersecting edges.1 Then, if dmin denotes
the minimum distance between any two points in V , f(x)− f(y) > 2dmin

(
1−cos(ε)

cos(ε)

)
.

Proof. (see Appendix).

The lower bound on the angle between any three points in V provides a constraint
on how small the change in fitness between neighboring inversions can be. This lower
bound is useful in the case of a quantized point-set. That is, when the points can be
embedded on an m×m grid as illustrated in Figure 5.

Quantization, for example, occurs when the x and y coordinates of each point in
the set are rounded to the nearest value in a set of m equidistant values (e.g., integers).
We point out that it is still important that the quantization preserves the constraint on
collinearity since collinear points violate a nonzero angle bound. We have the following
lemma.

Lemma 8. Suppose V is a set of points that lie on an m×m unit grid, no three collinear. Then
V is angle-bounded by arctan

(
1/(2(m− 2)2)

)
.

Proof. (see Appendix).

Lemma 8 allows us to translate the somewhat awkward trigonometric expression
in the claim of Lemma 7 (and subsequent lemmas that depend on it) into a convenient
polynomial that can be expressed in terms of m.

Lemma 9. Let V be a set of n points that lie on an m×m unit grid, no three collinear. Then,
V is angle-bounded by ε where cos(ε)/(1− cos(ε)) = O(m4).

Proof. (see Appendix).

We are now ready to prove the following technical lemma for 2-opt mutation de-
fined in Function 3. This lemma will be instrumental in proving runtime bounds later
in the paper.

1Lemma 4 guarantees the existence of such an inversion.
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Lemma 10. Let V be a set of planar points in convex position angle-bounded by ε. We have the
following.

(1) For any x ∈ Sα, the probability that 2-opt mutation creates an offspring y with f(y) <
f(x)− 2dmin (1− cos(ε)) / (cos(ε)) is at least 2/(en(n− 1)).

(2) For any x ∈ Sβ , the probability that 2-opt mutation creates an optimal solution is at least
(en4k(2k − 1)!)−1

Proof. For (1), suppose x ∈ Sα. By Lemma 4, there is at least one pair of intersecting
edges in C(x) that can be removed with a single inversion operation σI

ij . Let y = σI
ij [x].

By Lemma 7, f(y) satisfies the fitness bound in the claim. It suffices to bound the
probability that y is produced by 2-opt-mutation(x).

Let E1 denote the event that Poisson mutation performs exactly one inversion (i.e.,
s = 0 in line 2 of Function 3). Let E2 denote the event that the pair (i, j) is specifically
chosen for the inversion.

We have Pr{E1} = e−1 from the Poisson density function and Pr{E2|E1} ≥ (n(n−
1)/2)−1. Thus the probability that 2-opt mutation creates y from x is

Pr{E1 ∩ E2} = Pr{E1} · Pr{E2|E1} ≥ 2/(en(n− 1)).

For (2), suppose x ∈ Sβ . Thus, C(x) is intersection-free, and it follows from
Lemma 6 that there are at most 2k inversion moves that transform x into an optimal
solution.

Let E′1 denote the event that Poisson mutation performs exactly 2k inversions (i.e.,
s = 2k− 1 in line 2 of Function 3). Let E′2 denote the event that all 2k inversions are the
correct moves that transform x into an optimal solution.

Again, from the Poisson density function, Pr{E′1} = (e(2k − 1)!)−1. Since
Pr{E′2|E′1} ≥ (n(n − 1)/2)−2k ≥ n−4k, the probability of transforming x into an op-
timal solution is at least

Pr{E′1 ∩ E′2} = Pr{E′1} · Pr{E′2|E′1} ≥ (en4k(2k − 1)!)−1.

Finally, since the time bounds in the remainder of this paper are expressed as a
function of the angle bound ε, and the bounds on point distance, it will be useful to
define the following function.

Definition 6. Let V be a set of points angle-bounded by ε. We define

A(ε) =

(
dmax
dmin

− 1

)(
cos(ε)

1− cos(ε)

)
where dmax and dmin respectively denote the maximum and minimum Euclidean distance be-
tween points in V .

3.4 Instances in Convex Position

A finite point set V is in convex position when every point in V is a vertex on its convex
hull. Deı̆neko et al. [8] observed that the Euclidean TSP is easy to solve when V is
in convex position. In this case, the optimal permutation is any linear ordering of the
points which respects the ordering of the points on the convex hull. Such an ordering
can be found in time O(n log n) [7].

In the context of evolutionary algorithms, the natural question arises, if V is in
convex position, how easy is it for simple randomized search heuristics? In this case,
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a tour is intersection-free if and only if it is globally optimal, hence finding an optimal
solution is exactly as hard as finding an intersection-free tour. Since an intersection can
be (at least temporarily) removed from a tour by an inversion operation (cf. Lemma 4),
we focus in this section on algorithms that use the inversion operation.

We begin our analysis of instances in convex position by considering RLS. RLS
operates on a single candidate solution by performing a single inversion in each it-
eration. Since each inversion which removes an intersection results in a permutation
whose fitness is improved by the amount bounded in Lemma 7, it is now straightfor-
ward to bound the time it takes for RLS to discover a permutation that corresponds to
an intersection-free tour.

Theorem 3. Let V be a set of planar points in convex position angle-bounded by ε. The expected
time for RLS to solve the TSP on V is O(n3A(ε)) where A is defined in Definition 6.

Proof. Consider the infinite stochastic process (x(1), x(2), . . .) generated by Algorithm 4.
It suffices to bound the expectation of the random variable T defined in Equation (2).
Since V is in convex position, any intersection-free tour is globally optimal. Thus, in
this case Sβ = ∅, and Equation (3) can be written as

T =

∞∑
t=1

α(x(t)).

Consider an arbitrary permutation x ∈ Sα. Since C(x) must contain intersections, by
Lemma 4, there is an inversion σI

ij which removes a pair of intersecting edges and
replaces them with a pair of non-intersecting edges. Moreover, by Lemma 7, such an
inversion results in an improvement of at least

2dmin (1− cos(ε)) / (cos(ε)) . (4)

If the state x is visited by RLS, the probability that this particular inversion is selected
uniformly at random is 2/(n(n − 1)). Thus we have the conditions of Lemma 2 with
p = 2/(n(n − 1)) and c equal to the expression in (4) and the claimed bound on the
expectation of T follows.

Corollary 1 (to Theorem 3). If V is in convex position and embedded in an m×m grid with
no three points collinear, then RLS solves the TSP on V in expected time O(n3m5).

Proof. The bound follows immediately from Theorem 3 since V is in convex posi-
tion and since, by Lemma 8, V is angle-bounded by arctan

(
1/(2(m− 2)2)

)
, dmax ≤

(m − 1)
√

2, and dmin ≥ 1. Appealing to Lemma 9 yields cos(ε)/(1 − cos(ε)) = O(m4).
Substituting these terms into bound of Theorem 3 completes the proof.

We now consider the optimization time of the (µ + λ) EA using 2-opt mutation
defined in Algorithm 1 applied to a set of points in convex position. Obviously, in this
case we will find µ and λ terms appearing in the runtime formulas. We will assume
that µ and λ are polynomials in both n and k. We will also find that setting λ = Θ(µn2)
ensures that a transition from any state x(t) ∈ Sα to a state which improves on the
fitness by at least a specified amount occurs with constant probability.

Such a setting has the effect of reducing the number of generations spent removing
intersections from the best-so-far tours. However, it is important to note that the num-
ber of calls to the fitness function must be accordingly increased by a factor of Θ(µn2)
in each generation. Nevertheless, the expected number of generations can be a useful
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measure when considering parallel evolutionary algorithms. As Jansen, De Jong and
Wegener [19] have pointed out, when the fitness evaluation of the offspring can be per-
formed on parallel processors, the number of generations corresponds to the parallel
optimization time. In such a case, we would observe a quadratic factor improvement
in the parallel runtime corresponding to the segment spent in tours with intersections.
Nevertheless, we also report the bound on the number of total fitness function evalua-
tions.

The following theorem bounds the number of expected generations the (µ+λ) EA
needs to solve the Euclidean TSP on a set of angle-bounded points in convex position.

Theorem 4. Let V be a set of planar points in convex position angle-bounded by ε. The expected
time for the (µ + λ) EA using 2-opt mutation to solve the TSP on V is bounded above by
O
(
n ·A(ε) ·max

{
(µ/λ) · n2, 1

})
where A is as defined in Definition 6.

Proof. The sequence of best-so-far permutations generated by Algorithm 1 is the infinite
stochastic process (x(1), x(2), . . .) and we seek the expectation of the random variable T
defined in Equation (2). Again, in the case of convex position, there are no non-optimal
intersection-free tours so that Sβ = ∅ and

T =

∞∑
t=1

α(x(t)).

As long as x(t) is non-optimal, C(x(t)) must contain at least one pair of intersecting
edges. Hence, in generation t, if x(t) is selected for mutation to create one of the λ
offspring, then by Lemma 10, 2-opt mutation must improve the best-so-far solution by
at least c = 2dmin (1− cos(ε)) / (cos(ε)) with probability at least (en(n − 1)/2)−1. The
probability that at least one of the λ offspring improves on x(t) by at least this amount
is

p ≥ 1−
(

1− 1

µen(n− 1)/2

)λ
.

We now make the following case distinction on λ.

Case 1: λ ≥ µen(n− 1)/2. For this setting of λ, we have p ≥ 1− e−1, so an intersection
is removed in each generation with constant probability. Invoking Lemma 2, the
expected time to find an intersection-free tour is at most O(nA(ε)).

Case 2: λ < µen(n− 1)/2. Here we have

1−
(

1− 1

µen(n− 1)/2

)λ
≥ 1− e−λ/(µen(n−1)/2) ≥ λ

µen(n− 1)
.

The final inequality comes from the fact that e−x ≤ 1− x/2 for 0 ≤ x ≤ 1. Thus, in
this case we have p ≥ λ/(µen2). Applying Lemma 2, the expected time to find an
intersection-free tour is at most O((µ/λ) · n3A(ε)).

Thus the expected time to solve the instance is bounded by O(max{(µ/λ) ·
n3A(ε), nA(ε)}) which yields the claimed bound.

We immediately get the following corollary.
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Corollary 2 (to Theorem 4). Let V be a set of planar points in convex position angle-bounded
by ε. The expected number of fitness evaluations needed by the (µ + λ) EA using 2-opt muta-
tion to solve the TSP on V is bounded above by O

(
n ·A(ε) ·max

{
µn2, λ

})
, and the expected

optimization time of the (1 + 1) EA is bounded above by O
(
n3A(ε)

)
where A is as defined in

Definition 6.

Moreover, analogous to the corollary to Theorem 3, we have the following.

Corollary 3 (to Theorem 4). If V is in convex position and embedded in an m × m grid
with no three points collinear, then the (µ + λ) EA solves the TSP on V in expected time
O
(
nm5 ·max

{
(µ/λ) · n2, 1

})
3.5 Instances with k inner points

We now turn our attention to TSP instances in which Out(V ) 6= V and express the
expected runtime in terms of n = |V |, the number of points, and k = |Inn(V ) |, the
number of inner points.

3.5.1 2-opt Mutation
We use the structural analysis in Section 3.3 to show that when there are few inner
points, intersection-free tours are somehow “close” to an optimal solution in the sense
that relatively small perturbations by the EA suffice to solve the problem. Again, recall
that we assume µ and λ are polynomials in both n and k.

Theorem 5. Let V be a set of points angle-bounded by ε such that |Inn(V ) | = k. The expected
time for the (µ + λ) EA using 2-opt mutation to solve the TSP on V is bounded above by
O
(
n ·A(ε) ·max

{
(µ/λ) · n2, 1

}
+ (µ/λ) · n4k(2k − 1)!

)
.

Proof. We argue by analyzing the Markov chain generated by the (µ + λ) EA using 2-
opt mutation. Let (x(1), x(2), . . .) denote the sequence of best-so-far states visited by the
(µ+ λ) EA.

In generation t, if x(t) ∈ Sα, then the probability of generating an offspring that
improves the fitness by at least c = 2dmin (1− cos(ε)) / (cos(ε)) is identical to that in the
proof of Theorem 4. Arguing in the same manner as in the proof of Theorem 4, we have

∞∑
t=1

α(x(t)) = O
(
n ·A(ε) ·max

{
(µ/λ) · n2, 1

})
On the other hand, if x(t) ∈ Sβ , if it is selected for mutation, then, by Lemma 10, 2-

opt mutation produces the optimal solution with probability at least (en4k(2k − 1)!)−1.
Hence, the overall probability of generating an optimal permutation when x(t) is the
(intersection-free) population-best permutation is at least

q ≥ 1−
(

1− 1

µen4k(2k − 1)!

)λ
≥ λ

2µen4k(2k − 1)!
.

Since this is the probability that the Markov chain transits from a state x(t) ∈ Sβ to the
optimal state, substituting the value for q into the claim of Lemma 3, we have

E

( ∞∑
t=1

β(x(t))

)
= O((µ/λ) · n4k(2k − 1)!).

The bound on E(T ) then follows from Equation 3 and linearity of expectation.
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We also get the following corollary.

Corollary 4 (to Theorem 5). Let V be a set of points angle-bounded by ε such that |Inn(V ) | =
k. The expected number of fitness evaluations needed for the (µ+ λ) EA using 2-opt mutation
to solve the TSP on V is bounded above by O

(
n ·A(ε) ·max

{
µn2, λ

}
+ µn4k(2k − 1)!

)
and

the expected optimization time for the (1+1) EA is O
(
n3 ·A(ε) + n4k(2k − 1)!

)
.

Again, from Lemmas 8 and 9 we also have the following corollary.

Corollary 5 (to Theorem 5). Let V be a set of points quantized on an m ×m grid such that
|Inn(V ) | = k. The expected time for the (µ+ λ) EA using 2-opt mutation to solve the TSP on
V is O

(
nm5 ·max

{
(µ/λ) · n2, 1

}
+ (µ/λ) · n4k(2k − 1)!

)
.

3.5.2 Mixed Mutation Strategies
The Markov chain analysis relies on the inversion operator to construct an intersection-
free tour, but then relies on the inversion operator to simulate the jump operator in
order to transform an intersection-free tour into an optimal solution. We now introduce
a mutation technique called mixed-mutation (outlined in Function 5) that performs
both inversion and jump operations, each with constant probability. This allows for an
upper bound that is smaller by a factor of Ω(n2k(2k−1)!/(k−1)!). We remark here that
we only use mixed mutation as a tool to reduce the upper bound, and cannot claim that
it results in a faster algorithm due to the absence of a lower bound.

Similar to Lemma 10, we have the following result for mixed mutation.

Lemma 11. Let V be a set of planar points in convex position angle-bounded by ε. Then,

(1) For any x ∈ Sα, the probability that mixed mutation creates an offspring y with f(y) <
f(x)− 2dmin (1− cos(ε)) / (cos(ε)) is at least (en(n− 1))−1.

(2) For any x ∈ Sβ , the probability that mixed mutation creates an optimal solution is at least
(2en2k(k − 1)!)−1

Proof. For (1), the probability that mixed mutation selects inversions is 1/2 and the rest
of the claim follows from the argument of Lemma 10.

For (2), suppose x ∈ Sβ . Thus, C(x) is intersection-free, and it follows from
Lemma 6 that there are at most k jump operations that transform x into an optimal
solution. The remainder of the proof is identical to that of Lemma 10. The probability
that mixed mutation selects jump operations contributes the leading factor of 2−1.

Function 5: mixed-mutation(x)
1 y ← x;
2 draw r from a uniform distribution on the interval [0, 1];
3 draw s from a Poisson distribution with unit expectation;
4 if r < 1/2 then perform s+ 1 random inversion operations on y;
5 else perform s+ 1 random jump operations on y;
6 return y;

Theorem 6. Let V be a set of points angle-bounded by ε such that |Inn(V ) | = k. The expected
time for the (µ + λ) EA using mixed mutation to solve the TSP on V is bounded above by
O
(
n ·A(ε) ·max

{
(µ/λ) · n2, 1

}
+ (µ/λ) · n2k(k − 1)!

)
.
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Proof. The proof is identical to the proof of Theorem 5, except we substitute the proba-
bilities from Lemma 11 into Lemmas 2 and 3.

We immediately get the following corollary.

Corollary 6 (to Theorem 6). Let V be a set of points angle-bounded by ε such that |Inn(V ) | =
k. The expected number of fitness evaluations needed for the (µ+ λ) EA using mixed mutation
to solve the TSP on V is bounded above byO

(
n ·A(ε) ·max

{
µn2, λ

}
+ µn2k(k − 1)!

)
and the

expected optimization time for the (1+1) EA is bounded above by O
(
n3 ·A(ε) + n2k(k − 1)!

)
.

As before, from Lemmas 8 and 9 we have the following.

Corollary 7 (to Theorem 6). Let V be a set of points quantized on an m ×m grid such that
|Inn(V ) | = k. The expected time for the (µ+ λ) EA using mixed mutation to solve the TSP on
V is O

(
nm5 ·max

{
(µ/λ) · n2, 1

}
+ (µ/λ) · n2k(k − 1)!

)
.

4 Fixed-parameter evolutionary algorithms

Moving away from the black box perspective, we now consider designing evolutionary
algorithms that are given access to a small amount of problem information. Specifically,
we allow the algorithms access to the ordering of points that lie on the convex hull. Us-
ing this information, we design two fixed-parameter tractable evolutionary algorithms
for the inner point parameterization of Deı̆neko et al. [8].

Definition 7. Let V be a set of points in the plane. We define γ as a linear order on Out(V )

γ = (p1, p2, . . . , pn−k)

such that for all i ∈ {1, . . . , n−k}, pi and pi+1 are adjacent on the boundary of the convex hull
of V . We say a permutation x on V is γ-respecting if and only if

x−1(pi) < x−1(pj) =⇒ i < j.

Note that, by definition, every γ-respecting permutation respects hull-order (as
defined in Section 2). The linear order γ can be found in O(n log n) time using well-
known methods from computational geometry [7].

4.1 A population-based approach

In this section we describe a (µ + λ) EA that solves the TSP to optimality in fixed-
parameter tractable time. We build on the evolutionary dynamic programming frame-
work for TSP introduced by Theile [35]. We show that a slight modification to Theile’s
(µ + 1) EA that carefully maintains the invariant that the points in Out(V ) remain in
convex-hull order for each individual allows us to improve the time bound significantly
on instances for which the number of inner points is not too large.

Given a set of planar points V , with |V | = n and |Inn(V ) | = k, let γ =
(p1, p2, . . . , pn−k) denote the order on Out(V ) given by Definition 7. A permutation
x on a subset U of V is a bijection x : U → U . The (µ + λ) EA is described in Algo-
rithm 6. The (µ + λ) EA maintains a population P of µ permutations on subsets of V
that have a special structure that we now describe. Let S ⊆ Inn(V ), let i ∈ {1, . . . , n−k},
and let r ∈ S ∪ {pi}. An individual x = x(i,S,r) is a permutation on S ∪ {p1, p2, . . . , pi}
with the following properties.

1. x(1) = p1,

2. x(|S|+ i) = r,
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3. x is γ-respecting, that is, p1, p2, . . . , pi appear in order.

For a permutation x(i,S,r), we call the set S ∪ {p1, p2, . . . , pi} its ground set and we call r
its tail vertex.

The TSP tour defined by a permutation x(i,S,r) is a cycle
(p1, vx(2), . . . , vx(|S|+i−1), r, p1), i.e., it starts at p1, runs over all nodes in
(S ∪ {p2, . . . , pi}) \ r such that any nodes in Out(V ) are visited in the order they
appear in γ, and finally visits r before returning to p1. The full population of the
(µ + λ) EA consists of an individual x(i,S,r) for every i ∈ {1, . . . , n − k}, every
S ⊆ Inn(V ), and possible tail vertex r.

The fitness function f assigns a nonnegative real value to each individual x(i,S,r)

representing the cost of the tour through the vertices in the ground set of x = x(i,S,r).

f(x(i,S,r)) =

|S|+i∑
j=1

d(vx(j), vx(j+1)) (5)

where the summation indices are taken to be modulo |S|+ i.
In each generation, λ individuals are selected uniformly at random from the popu-

lation P and an offspring is created for each individual by applying a mutation opera-
tor. This mutation operator attempts to extend each individual by “growing” its ground
set. To mutate a single individual x = x(i,S,r), a vertex v is chosen uniformly at random
from the remaining vertices in (Inn(V ) \ S) ∪ {pi+1}. A new permutation x′ is created
by concatenating v to the linear order described by x, that is, for j ∈ {1, . . . , |S|+ i+ 1},

x′(j) =

{
v if j = |S|+ i+ 1;
x(j) otherwise.

Thus x′ is defined on a different (slightly larger) ground set than x using v as the new
tail vertex. Following our notation, we have

x′ =

{
x′(i,S∪{v},v) if v ∈ Inn(V );
x′(i+1,S,v) if v = pi+1.

Obviously, when i = n − k and S = Inn(V ), the mutation operator has no effect since
the ground set can not be extended for such an individual.

In order to introduce sufficiently large changes to the population in each gener-
ation, we utilize the Poisson mutation strategy in the same manner as both Theile’s
original algorithm and the black-box evolutionary algorithms introduced in Section 3.
Specifically, in each generation, for each of the selected λ individuals, we apply the mu-
tation operator defined above s+1 times, where s is drawn from a Poisson distribution
with unit expectation.

Finally, we again employ truncation selection in the sense that each mutated off-
spring may only replace the individual in the parent population with the same ground
set and tail vertex. This replacement occurs only if the fitness of the mutated offspring
is at least as good as the parent individual in question. Thus, at the end of a generation,
the parent population size µ is preserved.

We now bound the expected time until the (µ + λ) EA described in Algorithm 6
has solved a TSP instance on n points with k inner points to optimality. We first bound
the population size µ with the following lemma.
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Algorithm 6: (µ+ λ) EA

1 P ← ∅;
2 foreach i ∈ {1, . . . , n− k} do
3 foreach S ⊆ Inn(V ) do
4 foreach r ∈ S ∪ pi do
5 x← a permutation on the ground set S ∪ {p1, p2, . . . , pi} such that

x(|S|+ i) = r and x respects γ;
6 P ← P ∪ x;

7 repeat forever
8 P ′ ← {};
9 repeat λ times

10 Select an individual z ← x(i,S,r) ∈ P uniformly at random;
11 Draw s from a Poisson distribution with unit expectation;
12 Generate z′ ← x(i′,S′,r′) by applying the mutation operator s+ 1 times;
13 Let f(z′) be the cost of TSP tour generated by z′;
14 P ′ ← P ′ ∪ z′;

/* truncation selection based on the same ground set */
15 foreach offspring z′ in P ′ do
16 Let z′′ ← x(i′,S′r′) ∈ P be an individual defined on the same ground set

as z′ having the same end vertex if such an individual exists in the
population;

17 if f(z′) ≤ f(z′′) then P ← P ∪ z′ \ z′′

Lemma 12. The parent population size µ is bounded above by O(2kkn).

Proof. The population is initialized by constructing, for each possible distinct ground
set (S ⊆ Inn(V ))∪ ({p1, p2, . . . , pi} ⊆ Out(V )) and each legal tail vertex r a length |S|+ i
permutation x = x(i,S,r) such that x(1) = p1, x(|S| + i) = r, and the elements from
{p1, p2, . . . , pi} appear in the same order as they do in γ. Note that to maintain the
correct ordering, the tail vertex cannot be any point pj for j < i, or the ordering with
respect to γ is violated. Therefore, the tail vertex can be any member of S ∪ {pi}.

We count the number of distinct ground sets S ∪ {p1, p2, . . . , pi} along with the
number of ways to select a tail vertex legally from the ground set. There are

(
k
|S|
)

ways
to choose a distinct set S ⊆ Inn(V ). On the other hand, the order of the outer points
is fixed by γ, so there are only (n − k) ways to choose a distinct set of outer points
{p1, . . . , pi}. Finally, for such a ground set, there are |S| + 1 ways to choose the tail
vertex r ∈ S ∪ {pi}. In total, there are

(n− k)

k∑
s=0

(
k

s

)
(s+ 1) = O(2kkn)

distinct permutations in the initial population. Since (µ+ λ) truncation selection main-
tains a constant population size throughout the process, the claim holds.

After the population P is initialized, for each ground set (S ⊆ Inn(V )) ∪
({p1, p2, . . . , pi}) and each legal tail vertex r ∈ S ∪ {pi}, there exists some permutation
x = x(i,S,r) ∈ P that respects the order γ.
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We consider the function

F : {1, 2, . . . , n− k} × 2Inn(V ) × V → R+

where F (i, S, r) is the length of the shortest path starting at p1 and ending at r, vis-
iting each point in {p1, . . . , pi} ∪ S exactly once, and respecting the order γ. Because
each Hamiltonian path possesses the optimal substructure property (i.e., subpaths of
optimal paths are also optimal paths), F can be defined recursively using the Bellman
principle [5, 8],

F (i, S, r) =


min

q∈S∪{pi−1}
F (i− 1, S, q) + d(q, r) if r ∈ Out(V );

min
q∈(S\{r})∪{pi}

F (i, S \ {r}, q) + d(q, r) if r ∈ Inn(V ).

Thus, if there is a permutation with an optimal subpath in the population, there exists
some correct mutation that can construct a longer path that is also optimal. Further-
more, a permutation x(i,S,r) that represents a suboptimal path through the ground set
S ∪ {p1, p2, . . . , pi} can always be replaced by one that represents an optimal subpath
through that ground set, i.e., some x′(i,S,r) such that f(x′(i,S,r)) = F (i, S, r) < f(x(i,S,r))

by the selection operation. Hence, once an optimal subpath is found for a particular
ground set and tail vertex, the subpath optimality is never lost. To bound the optimiza-
tion time of the (µ + λ) EA, it suffices to bound the time until a particular length-n
permutation x(n−k,Inn(V ),r) has its optimal path in the population.

The proof of the runtime is a straightforward extension of Theile’s [35] argument
that the (µ+ 1) EA can simulate dynamic programming on a function similar to F in a
randomized fashion.
Theorem 7. Let V be a set of n points in the Euclidean plane with |Inn(V ) | = k. After
O(max{2kk2n2λ−1, n}) generations, the (µ+λ) EA has solved the TSP on V to optimality in
expectation and with probability 1− e−Ω(n).

Proof. Suppose there exists an individual x = x(i,S,r) such that f(x(i,S,r)) = F (i, S, r).
Since selection for reproduction occurs uniformly at random, with probability at least
1/µ, x is selected for reproduction to produce one of the λ offspring by mutation in each
subsequent generation. Furthermore, with probability e−1, only a single mutation step
is performed on x (i.e., s = 0 following line 11 of Algorithm 6). Finally, the probability
that x is extended in an optimal fashion is at least 1/(k+ 1), that is, the probability that
the correct vertex q is chosen out of (Inn(V ) \ S) ∪ {pi+1} to create an optimal subpath
on the ground set S ∪ {p1, p2, . . . , pi} ∪ q.

Assuming an optimal subpath of length m− 1 already exists in the parent popula-
tion, let π denote the probability that at least one of the λ offspring corresponds to an
optimal subpath of length m by applying the correct mutation to the parent individual
representing optimal subpath of length m− 1. We have

π ≥ 1−
(

1− 1

eµ(k + 1)

)λ
In the base case, the permutation x(p1,{},p1) corresponds to an optimal length-1 path and
is present after initialization in lines 1-2 of Algorithm 6. Since optimal paths through a
given ground set and tail vertex are never lost, it follows by induction that the expected
number generations until an optimal path of lengthm exists in the population is at most
mπ−1. Thus, the expected number of generations until an optimal solution enters the
population is bounded above by nπ−1. We make a case distinction on λ.
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Case 1: λ < eµ(k + 1). In this case, we have

π ≥ 1−
(

1− 1

eµ(k + 1)

)λ
≥ 1− e−λ/(eµ(k+1)) ≥ λ

eµ(k + 1)
,

again since e−x ≤ 1−x/2 for 0 ≤ x ≤ 1. The expected number of generations until
the optimal solution is found is at most

nπ−1 ≤ enµ(k + 1)λ−1 = O(2kk2n2λ−1).

In the last step, we have applied the result of Lemma 12.

Case 2: λ ≥ eµ(k + 1). For this setting of λ we have π ≥ 1 − e−1 and the number of
generations until the optimal solution is found is at most nπ−1 = O(n).

To prove the concentration result, for some constant c > 0 and any m ∈ {1, . . . , n−
1}, let t := αemµ(k + 1) be the number of generations needed to produce an optimal
subpath of length m where α = cn/m. We define a sequence of random indicator
variables Xi ∈ {0, 1} for all i ∈ {1, . . . , t} such that Xi = 1 if the correct mutation has
occurred to extend an optimal subpath in the i-th generation. Let X =

∑t
i=1Xi. The

expectation of X is E(X) =
∑t
i=1 Pr(Xi = 1) = tπ ≥ cn, by the above bounds on π.

IfX < m the (µ+λ) EA has not created an optimal subpath in t fitness evaluations,
and the probability of this event is at most e−cn/2+m by Chernoff bounds. Suppose
there are ` individuals in the population that are length m. Clearly ` ≤ m

(
n−1
m

)
. The

probability that at least one of the ` individuals in P has not been optimized within t
generations is, by the union bound, at most

∑̀
i=1

e−cn+m ≤ m
(
n− 1

m

)
e−c

′n ≤ exp (m ln(n− 1)−m lnm− c′n+ lnm) = e−Ω(n).

where c′ ≥ c/2−m/n is a constant. This completes the proof.

Corollary 8 (to Theorem 7). The expected number of fitness evaluations is E(Tf ) = µ +
λE(T ) = O(max{2kk2n2, λn}).

4.2 Searching for permutation of inner points

In this section, we propose an approach that makes use of insights in the context of
parameterized complexity. By Theorem 2, the outer points Out(V ) are always visited
in hull-order in every optimal solution. In the following, we assume that γ is the fixed
order on the outer points given in Definition 7. Let x be a permutation on the inner
points Inn(V ). Using the dynamic programming algorithm of Deı̆neko et al., one can
compute the shortest Hamiltonian cycle respecting γ and x in time O(kn).

These ideas suggest that using a heuristic to only search for an optimal permu-
tation x∗ on the inner points can significantly reduce the effective size of the search
space, and thus lead to quicker solution times for evolutionary algorithms. For each
permutation on the inner points x, the quality can be evaluated by running a dynamic
programming algorithm to compute the best possible tour using γ and x.

Let γ = (p1, p2, . . . , pn−k) be the fixed order of the outer points and x = (q1, . . . , qk)
be an arbitrary permutation of the inner points. We can compute the shortest tour
respecting γ and x using the dynamic programming approach of [8] which we state in
the following.
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The dynamic programming algorithm computes a three-dimensional table F with
entries F [i, j,m] where i ∈ {1, . . . , n − k}, j ∈ {0, 1, . . . , k}, and m ∈ {Inn,Out}. The
algorithm computes for each triple (i, j,m) the cost of the shortest path from p1 through
all nodes p1, . . . , pi and q1, . . . qj respecting the orders γ and x. The path ends at pi iff
m = Out determines that the last node is an outer point and ends at qj iff m = Inn
determines that the last node is an inner point.

The length of the shortest tour respecting γ and x is given by

Dyn(x) = min{F [n− k, k,Out] + d[pn−k, p1], F [n− k, k, Inn] + d[qk, p1]}

The computation of the dynamic program starts with F [1, 0, Out] = 0 and we get

F [i, j, Inn] = min{F [i, j − 1, Out] + d[pi, qj ], F [i, j − 1, Inn] + d[qj−1, qj ]}

for i ∈ {1, 2, . . . , n− k} and j ∈ {1, . . . , k}. Also,

F [i, j, Out] = min{F [i− 1, j, Out] + d[pi−1, pi], F [i− 1, j, Inn] + d[qj , pi]}

for i ∈ {2, 3, . . . , n − k} and j ∈ {0, . . . , k}. For impossible states, the entries are set to
∞, namely, F [1, j, Out] =∞ if j ∈ {1, . . . , k} and F [i, 0, Inn] =∞ if i ∈ {1, . . . , n− k}.

The time computing the F array is proportional to its size which is 2(n− k) · (k +
1). Therefore, the fitness Dyn(x) for a given permutation x of the inner points can be
computed in time O(kn).

Algorithm 7: (µ+ λ) EAk

1 Choose a multiset P of µ random permutations on V ;
2 repeat forever
3 P ′ ← {};
4 repeat λ times
5 Choose x uniformly at random from P ;
6 Draw s from a Poisson distribution with unit expectation;
7 Construct x′ from x by applying s+ 1 random basic operations;
8 Let f(x′) be Dyn(x′);
9 P ′ ← P ′ ∪ x′;

10 P ← select(P ] P ′) ;

For our theoretical investigations, we study (µ+λ) evolutionary algorithms work-
ing on permutations of the inner points. The (µ+ λ) EAk (see Algorithm 7) starts with
µ permutations on the set of inner points and creates in each iteration λ offspring by
mutation. The mutation operator applies s + 1 basic operations where s is chosen ac-
cording to the Poisson distribution with unit expectation. Then truncation selection is
applied to preserve the best µ individuals out of all individuals for the next generation.

For mutation, we employ the inversion (2-opt) and permutation jump mutation
operators introduced in Section 3.1. In the case of inversions, however, it is no longer
clear whether this is the correct choice for the new search space, which is restricted only
to orderings on the inner points. In addition to inversions and jumps (see Definitions 2
and 3), we also consider the exchange operator, which exchanges two elements (chosen
uniformly at random) in the ordering of a permutation. We formalize the exchange
operator in the following definition.
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Definition 8. The exchange operation σE
ij takes a permutation x and produces a permutation

σE
ij [x] such that

σE
ij [x](`) =


x(j) if ` = i

x(i) if ` = j

x(`) otherwise.

We denote by (µ+λ) EAk
i , (µ+λ) EAk

j , and (µ+λ) EAk
e , the variants of the (µ+λ) EAk

using inversions, jumps, and exchanges, respectively.
In the following, we investigate the number of operations needed in order to obtain

an optimal solution in dependence of the chosen mutation operator. This will lead to
different upper bounds on the runtime of the algorithm. For all the operators, we show
that they yield fixed-parameter tractable results.

Theorem 8. Let V be a set of n points in the Euclidean plane with |Inn(V ) | = k. The ex-
pected number of generations needed to solve the TSP on V for both the (µ + λ) EAkj , and the
(µ + λ) EAke is bounded by O(max{(k − 1)!k2kλ−1, 1}). For the (µ + λ) EAki , the bound is
O(max{(k − 2)!k2k−2λ−1, 1}).

Proof. Let π be a lower bound on the probability to transform an arbitrary non-optimal
solution into an optimal solution. Suppose there are no optimal solutions in the popu-
lation. The probability that at least one of the λ offspring is optimal is bounded below
by 1− (1− π)λ = min{λπ, 1− e−1}.

The probability that a mutation operation consisting of a specific sequence of `
basic operations occurs is at least

1

e(`− 1)!k2`
.

Thus, if ` is the maximum number of operations needed to transform an arbitrary so-
lution into the optimal, the expected waiting time (in terms of generations) until such
an event is at most O(max{(` − 1)!k2`λ−1, 1}). The number of inversions needed to
transform an arbitrary permutation on k elements into any other permutation on the
same elements is at most k − 1 (this is due to a conjecture by Gollan that was later
proved by Bafna and Pevzner [3]). For the jump and exchange operators, the number
of these operations required is obviously at most k. The claimed bounds on the ex-
pected number of generations for each variant follow from these arguments, and the
proof is complete.

As usual, the expected number of fitness evaluations E(Tf ) can be derived by
Tf = µ+ λE(T ) where E(T ) is bounded by Theorem 8.

The previous theorem shows that simple evolutionary algorithms are fixed-
parameter tractable evolutionary algorithms for the considered problem when working
with permutations on the inner points and applying dynamic programming as part of
the fitness evaluation. Note that dynamic programming takes time O(kn). This is more
expensive than computing the cost of a given tour on n cities, which can be done in
O(n) time. However, it is still feasible to use the dynamic programming approach as
part of each fitness evaluation. In the next section, we show that this also leads to a sig-
nificantly better optimization process than working with the standard approach that
searches through the set of permutations on all n cities.

Evolutionary Computation Volume x, Number x 25



A. M. Sutton, F. Neumann, and S. Nallaperuma

4.3 Experiments

In this section, we carry out experimental investigations for the approach proposed
in the previous section. We consider a simple (1+1) EA, a specific case of the above
studied (µ + λ) EA where the population consists of one individual and one offspring
is generated at each iteration. We study the three variants of the (1+1) EAk working on
permutations of the set of inner points and compare them to the standard (1+1) EAn

(see Algorithm 8) approach working on permutations of the whole set of the given n
points. We denote by (1+1) EAn

i , (1+1) EAn
j , and (1+1) EAn

e , the variants of (1+1) EAn

using inversions, jumps, and exchanges, respectively.

Algorithm 8: (1 + 1) EAn

1 Choose a random permutation x on V ;
2 repeat forever
3 Draw s from a Poisson distribution with unit expectation;
4 Construct x′ from x by applying s+ 1 random basic operations;
5 if f(x′) ≤ f(x) then x← x′;

We consider several planar Euclidean TSP instances of various sizes (25, 50 and
100) and, within each size class, control the percentages of inner points. The instance
generation process is described in detail in the next section. We calculate the solution
quality reached within a given time limit on each instance. On these instances, we run
the evolutionary algorithms using each mutation strategy for both the (1+1) EAn and
the (1+1) EAk. As a baseline, we also compute the value of the optimal solution on each
instance using the exact TSP solver CONCORDE [1].

For each run, we set time limits based on the instance size. Hence, we run each
EA for 1 second on instances with 25 points, 3 seconds for instances with 50 points,
and finally 15 seconds for instances with 100 points. We measure the iteration count
which is the number of fitness function calls for each EA. The (1+1) EAn runs roughly
200,000 iterations within the given time limits for all instance sizes. On the other hand,
the (1+1) EAk performs in the range of 1000 – 5000 iterations. The number of iterations
performed by the (1+1) EAk decreases as a function of the ratio of outer points to inner
points in the instance. The experiments are conducted on a PC with 2.4GHz Intel Core
i5 CPU and 4GB 1333MHz DDR3 RAM.

4.3.1 Parameterized Instances
Since we need to study the impact of the number of inner points on algorithm perfor-
mance, we cannot use standard benchmark instances, since it is not clear how to cleanly
control the number of inner points in such problem sets. Instead, we generate random
instances controlling for the percentage of points that lie in the interior of the convex
hull. For each size category {25, 50, 100}, we generate a set of 30 instances each with
inner point percentages 5%, 10%, 20%, 30% and 40%. For example, the set 50/10% con-
tains 30 TSP instances on n = 50 planar points such that exactly k = 5 lie in the interior
of the convex hull. To construct such instances, we generate first the outer points on a
convex hull, and then add the required number of inner points. We create a circle with
a given radius and randomly generate outer points on the circumference by producing
a random angle and then deriving x and y coordinates from the angle with respect to
the y axis. This process continues until we have constructed the required values for
n − k. We then identify the convex hull and generate random points inside the hull
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instance exchanges inversions jumps

n / % inner (1+1) EAn
e (1+1) EAk

e (1+1) EAn
i (1+1) EAk

i (1+1) EAn
j (1+1) EAk

j CONCORDE

25 / 5% 81937 53141 53665 53141 59173 53141 53141
25 / 10% 82592 57904 59190 57896 66070 57483 57482
25 / 20% 86646 63005 64222 63132 70232 61787 61324
25 / 30% 83869 67864 67570 67325 72586 65761 64165
25 / 40% 84941 70912 68486 69363 72649 67229 65370

50 / 5% 128640 61090 63258 61098 73293 60936 60936
50 / 10% 131391 67155 69625 67012 79230 66389 65831
50 / 20% 131027 79682 81414 78429 87586 77019 74809
50 / 30% 133533 89645 86474 86662 95599 83730 79785
50 / 40% 131902 97231 89271 92597 98999 90102 82469

100 / 5% 210234 69996 74392 69895 81839 69466 68990
100 / 10% 211502 83840 86301 82720 95024 81613 79529
100 / 20% 208611 104295 100239 98373 113363 98855 90840
100 / 30% 215322 121505 109335 112168 125907 110406 98853
100 / 40% 212083 138134 117594 124852 135720 128331 105432

Table 1: Average minimum tour length values (rounded) obtained by the six algorithms
( (1+1) EAn

e , (1+1) EAk
e , (1+1) EAn

i , (1+1) EAk
i , (1+1) EAn

j , (1+1) EAk
j )and exact value

by CONCORDE (from left to right) for the set of 30 instances in each category having
sizes 25, 50 and 100 and inner points percentages 5,10,20,30 and 40

within a distance of zero to the radius. Here, we accept a randomly generated inner
point only if it falls inside the convex hull.

4.3.2 Results

We measured the solution quality obtained within the allocated time for the six
(1+1) EA variants described in this paper. We also compared each with the optimal
solution computed by CONCORDE. The data set consists of 30 instances from each
group representing each instance size and each inner node percentage.

The results suggest that the (1+1) EAk approach consistently leads to more effective
optimization when there are not too many inner points. In Table 1, we see that the
average values of solution quality obtained for the instances in each instance size and
inner point percentage. For some cases, variants of (1+1) EAk (for example the set of
n = 25 with 5% inner points) reaches the optimal values computed by the exact solver
CONCORDE, while in most instances, optimizes the instances more effectively than the
corresponding variants that search through permutations on all n points ((1+1) EAn).
In a few cases, where the inner point percentage is high, the new approach tends to
perform poorly. This is expected, since the construction procedures are leveraging the
constraints on the convex hull. Therefore, we expect the performance to degrade as the
number of inner points becomes large.

To further investigate the effect of mutation strategy, we examine the three variants
of the (1+1) EAk for the problem set n = 100 and 40% inner points. The solution quality
reached in the allocated time (15 seconds) is plotted as a function of instance for each
variant in Figure 6.

To determine whether the (1+1) EAk outperforms the (1+1) EAn with statistical
significance, we perform a one-tailed Wilcoxon signed rank test [37] on the solution
quality measurements obtained after the allocated runtime. The resulting positive rank
sum (W ) and confidence (p-values) are recorded. We perform the test for each mutation
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Figure 6: Comparison of solution quality (minimum tour length values) of (1+1) EAk
e ,

(1+1) EAk
i and (1+1) EAk

j obtained within 15 seconds on 30 instances of size 100 and
inner point percentage 40

strategy on each instance, and observe the effect of inner point percentage and size. To
perform these analyses, we use the R statistical package [30]. The results are summa-
rized in Table 2 where the control variables (instance size and inner point percentage)
are indicated in the first column.

In the first result column of Table 2, we see that the (1+1) EAk
e consistently outper-

forms the (1+1) EAn
e with statistical significance on every TSP instance (p < 0.001).

In such cases, with at least 99.9% confidence we reject the null hypothesis that the
(1+1) EAk

e does not perform better than the (1+1) EAn
e in favor of the alternative hy-

pothesis that (1+1) EAk
e performs better than (1+1) EAn

e . The W -values indicate posi-
tive rank sums of the difference of two pairs ((1+1) EAk

eand (1+1) EAn
e ). Greater values

mean higher differences in algorithm performance.
For the inversion operator, the rank sum values in Table 2 are increasing as a func-

tion of instance size. This is a result of the widening gap between solution quality in
these experiments and shows the scalability of our approaches compared to the classi-
cal (1+1) EA. Furthermore, we observe that when the inner point percentage increases
to 40%, the performance of the (1+1) EAk begins to degrade. This is reflected in the
large p-values for these instances where we can no longer conclude that the (1+1) EAk

variant is outperforming the classical (1+1) EA. We expect such behavior as the inner
point density increases. Interestingly, the (1+1) EAk using the exchange operator and
jump operator is still performing surprisingly well compared to the classical EA for this
level of inner point percentage.

To assess the effect of the mutation strategies on the performance of the (1+1) EAk,
we conduct another one-tailed Wilcoxon signed rank test for the pairwise comparison
of the three variants of the (1+1) EAk. We present these results in Table 3. We cannot
conclude from this test that the inversion operator performs better than the jump op-
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instance exchanges inversions jumps

n / % inner W p W p W p

25 / 5% 465 * 91 * 253 *
25 / 10% 465 * 336 * 465 *
25 / 20% 465 * 366 0.003 465 *
25 / 30% 465 * 293 0.11 465 *
25 / 40% 465 * 172 0.894 465 *
50 / 5% 465 * 335 * 435 *
50 / 10% 465 * 435 * 465 *
50 / 20% 465 * 431 * 465 *
50 / 30% 465 * 217 0.627 465 *
50 / 40% 465 * 33 1 465 *
100 / 5% 465 * 460 * 465 *
100 / 10% 465 * 462 * 465 *
100 / 20% 465 * 399 * 465 *
100 / 30% 465 * 147.5 0.960 461 *
100 / 40% 465 * 56 1 394 *

Table 2: Results of Wilcoxon signed rank tests for minimum tour length values within
time limits (2, 3 and 15 seconds for 25, 50 and 100 sizes accordingly) for (1+1) EAn

e >
(1+1) EAk

e (exchanges), (1+1) EAn
i > (1+1) EAk

i (inversions) and (1+1) EAn
j > (1+1) EAk

j

(jumps), positive rank sums (W ) and confidence (p) values are displayed accordingly.
A * denotes p < 0.001.

eration. However, the p-values in the final column suggest that, in most cases, jump
mutation is performing better than exchange mutation with statistical significance.

5 Conclusion

In this paper, we have studied the runtime complexity of evolutionary algorithms on
the Euclidean TSP. We have carried out a parameterized analysis that studies the de-
pendence of the hardness of a problem instance on the number of inner points in the
instance. Moreover, we have shown that under reasonable geometric constraints (low
angle bounds), simple evolutionary algorithms solve planar TSP instances that are in
convex position in polynomial time.

We have bounded the expected number of generations for a black-box (µ+ λ) EA
to solve a TSP instance with k inner points as O(n · A(ε) ·max{(µ/λ) · n2, 1} + (µ/λ) ·
n4k(2k − 1)!). Using the analysis, we have also introduced a mixed mutation strategy
based on both permutation jumps and 2-opt moves which attains an improved bound
on the expectation of O(n ·A(ε) ·max{(µ/λ) · n2, 1}+ (µ/λ) · n2k(k − 1)!). Hence, with
this paper, we have shown that the (µ + λ) EA in a black-box setting is a randomized
XP-algorithm for the inner point parameterization of Deı̆neko et al. [8].

Moving out of the black-box setting, we have shown that the addition of a small
amount of domain knowledge (namely, the hull-respecting order of the outer points)
allow us to design two fixed-parameter evolutionary algorithms for the TSP. The first
approach is based on a recently proposed dynamic programming framework for evo-
lutionary computing. It works with a very large population and is mainly of theoretical
interest. Our second approach searches for a permutation of the inner points and uses
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instance test 1 test 2

n / % inner W p W p

25 / 5% 0 1 0 1
25 / 10% 1 0.9688 14 0.0625
25 / 20% 64 0.999 315 *
25 / 30% 96 0.9981 454 *
25 / 40% 70 0.9998 463 *
50 / 5% 0 1 28 0.007812
50 / 10% 108 0.9713 304 0.0001238
50 / 20% 90 0.9988 464 *
50 / 30% 64 0.9999 465 *
50 / 40% 49 1 465 *
100 / 5% 109 0.9382 221 0.05741
100 / 10% 77 0.9996 460 *
100 / 20% 278 0.1799 456 *
100 / 30% 194 0.786 456 *
100 / 40% 310 0.02423 446 *

Table 3: Results of Wilcoxon signed rank tests for minimum tour length values within
time limits (2, 3 and 15 seconds for 25, 50 and 100 sizes accordingly) for (1+1) EAk

i

< (1+1) EAk
j (test 1), (1+1) EAk

j < (1+1) EAk
e (test 2) , positive rank sums (W ) and

confidence (p) values are displayed accordingly. A * denotes p < 0.001.

a dynamic programming algorithm that runs in time O(kn) as part of the fitness eval-
uation. Although the theoretical bound for the second fixed-parameter algorithm is
worse than the one for the large population fixed-parameter EA, we consider it more
applicable in practice. Our experimental investigations for the (1+1) evolutionary al-
gorithms analyzed in this paper suggest that working with a permutation on the inner
points can lead to significantly better results.
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Appendix

Proof of Lemma 4. Suppose {x(i − 1), x(i)} and {x(j), x(j + 1)} intersect in C(x). Let
y = σI

ij [x]. Then

C(x) \ C(y) = {{x(i− 1), x(i)}, {x(j), x(j + 1)}} , and
C(y) \ C(x) = {{x(i− 1), x(j)}, {x(i), x(j + 1)}} .

By Proposition 1, since {x(i− 1), x(i)} and {x(j), x(j+ 1)} intersect, the two new edges
introduced to C(y) by σI

ij do not intersect.

Proof of Lemma 5. We first claim that the number of permutations on n points in which
some subset of p < n points all remain in the same fixed order is

(
n
n−p
)
(n − p)!. To

construct such a permutation, each of the n− p “free” points can be placed before all p
points, or after any of the p points. Thus, for each of the n−p free points, there are p+ 1
positions relative to the non-free points from which we can choose (with replacement)
yielding

(
(p+1)+(n−p)−1

n−p
)

=
(
n
n−p
)

choices for relative placement. For each such choice,
there are (n− p)! distinct ways to order the free points.

Fix some point v ∈ Out(V ). Suppose C(x) is intersection-free. There is a transfor-
mation (specifically, either the identity, or a permutation with exactly one cycle and no
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fixed points) that maps x to a sequence z in which v appears to the left of any other ele-
ment in Out(V ), yet C(x) = C(z). Hence the number of distinct intersection-free tours
is bounded by the number of sequences of points in V where the elements of Out(V )
appear in hull-order, and v appears to the left of any other element of Out(V ). By the
above claim, there are exactly

(
n
k

)
k! such permutations and the lemma is proved.

Proof of Lemma 6. We begin by proving that there are at most k jump operations to trans-
form x into an optimal permutation. By Lemma 1, since C(x) is intersection-free, x
respects hull-order. Let x? be an optimal permutation such that the elements in Out(V )
have the same linear order in x? as they do in x. Then x can be transformed into x? by
moving each of the k inner points into their correct position.

The claim that at most 2k inversions suffice to transform x into an optimal permu-
tation immediately follows from the fact that any jump operation can be simulated by
at most two consecutive inversion operations. In particular,

σJ
ij [x] =


σI
ij [x] if |i− j| = 1;
σI
i(j−1)[σ

I
ij [x]] if i− j < 1;

σI
(j+1)i[σ

I
ji[x]] if i− j > 1.

Since a sequence of at most k jump operations can be simulated by a sequence of at
most 2k inversion operations, the claim is proved.

Proof of Lemma 7. The inversion σI
ij removes intersecting edges {u, v} and {s, t} from

C(x) and replaces them with the pair {s, u} and {t, v} to form C(y). We label the point
at which the original edges intersect as p.

Denote as θu the angle between the line segments that join u to p and u to s. Sim-
ilarly, denote as θs the angle between the line segments that join s to p and s to u (see
Figure 1). Since all angles are strictly positive, the points u, s, and p form a nondegen-
erate triangle with angles θs, θu, and (π − (θs + θu)). By the law of sines we have

d(s, u)

sin (π − (θs + θu))
=

d(s, u)

sin (θs + θu)
=
d(u, p)

sin(θs)
=

d(s, p)

sin(θu)
.

Hence,

d(u, p) + d(s, p) = d(s, u)

(
sin(θs) + sin(θu)

sin (θs + θu)

)
. (6)

Since u, s, and p form a triangle, 0 < (θs + θu) < π and we have

0 < sin(θs) < 1 since 0 < θs < π,

0 < sin(θu) < 1 since 0 < θu < π,

0 < sin (θs + θu) < 1 since 0 < θs + θu < π.

Furthermore, since V is angle-bounded by 0 < ε < π − ε, by (6),

d(u, p) + d(s, p) > d(s, u)

(
sin(ε) + sin(ε)

sin(ε+ ε)

)
= d(s, u) sec(ε) > d(s, u). (7)

The rightmost inequality holds since ε > 0 and ε + ε < π and the function sec(x) is
strictly positive in this regime. Since there is also a nondegenerate triangle formed by
the points t, v, and p, a symmetric argument holds and thus

d(t, p) + d(v, p) > d(t, v) sec(ε) > d(t, v). (8)
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θ

v

u

w

Figure 7: If the slope of the lines from v to u and v to w are of opposite sign, they form
the hypotenuses of two right triangles and θ ≥ 2 arctan((m− 1)−1).

Combining Equations (7) and (8) we have

f(x)− f(y) = [d(u, v) + d(s, t)]− [d(t, v) + d(s, u)]

= d(u, p) + d(v, p) + d(t, p) + d(s, p)− (d(t, v) + d(s, u))

> (d(t, v) + d(s, u)) sec(ε)− (d(t, v) + d(s, u)) > 0

The constraint that the difference is strictly positive follows directly from Equations (7)
and (8) (this constraint prevents a trivial lower bound, which would become problem-
atic in later proofs). Hence,

f(x)− f(y) > [d(t, v) + d(s, u)] (sec(ε)− 1)

≥ 2dmin (sec(ε)− 1) = 2dmin

(
1− cos(ε)

cos(ε)

)
.

Proof of Lemma 8. The grid imposes a coordinate system on V in which the concept of
line slope is well-defined. Let u, v, w ∈ V be arbitrary points. We consider the angle θ
at point v formed by the lines from v to u and v to w. Let s1 and s2 denote the slope of
these lines, respectively. If the slopes are of opposite sign, then θ ≥ 2 arctan((m− 1)−1)
since the lines form hypotenuses of two right triangles with adjacent sides of length at
most m− 1 and opposite sides with length at least 1 (see Figure 7).

We now consider the case where the slopes are nonnegative. The nonpositive case
is handled identically (or by simply changing the sign of the slopes by the appropriate
transformation). Without loss of generality, assume s1 > s2 ≥ 0. Equality is impossible
since u, v, and w cannot be collinear. Since the points lie on an m ×m grid, s1 and s2

must be ratios of whole numbers at most m − 1, say s1 = a/b and s2 = c/d. The angle
at point v is θ = arctan(a/b) − arctan(c/d) = arctan

(
ad−cb
bd+ac

)
. The minimum positive

value for the expression (ad− cb)/(bd+ac) over the integers from 0 to m− 1 is 1
2(m−2)2 .

Since the inverse of the tangent is monotone, the minimum nonzero angle must be
θ ≥ arctan

(
1/(2(m− 2)2)

)
.

Proof of Lemma 9. It follows from Lemma 8 that the angle bound on V is ε =
arctan

(
1/(2(m− 2)2)

)
. Since cos(arctan(x)) = 1/

√
1 + x2 we have

cos(ε)

1− cos(ε)
=

2(m− 2)2√
1 + 4(m− 2)4 − 2(m− 2)2

.

and since z/(
√

1 + z2 − z) = O(z2) , setting z = 2(m− 2)2 completes the proof.
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