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Abstract
It has long been observed that for practically any computational problem that has been
intensely studied, different instances are best solved using different algorithms. This is
particularly pronounced for computationally hard problems, where in most cases, no
single algorithm defines the state of the art; instead, there is a set of algorithms with
complementary strengths. This performance complementarity can be exploited in var-
ious ways, one of which is based on the idea of selecting, from a set of given algorithms,
for each problem instance to be solved the one expected to perform best. The task of
automatically selecting an algorithm from a given set is known as the per-instance al-
gorithm selection problem and has been intensely studied over the past 15 years, leading
to major improvements in the state of the art in solving a growing number of discrete
combinatorial problems, including propositional satisfiability and AI planning. Per-
instance algorithm selection also shows much promise for boosting performance in
solving continuous and mixed discrete/continuous optimisation problems.

This survey provides an overview of research in automated algorithm selection, rang-
ing from early and seminal works to recent and promising application areas. Differ-
ent from earlier work, it covers applications to discrete and continuous problems,
and discusses algorithm selection in context with conceptually related approaches,
such as algorithm configuration, scheduling or portfolio selection. Since informative
and cheaply computable problem instance features provide the basis for effective per-
instance algorithm selection systems, we also provide an overview of such features for
discrete and continuous problems. Finally, we provide perspectives on future work in
the area and discuss a number of open research challenges.

Keywords
Automated algorithm selection, automated algorithm configuration, combinatorial op-
timisation, continuous optimisation, machine learning, meta-learning, feature-based
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1 Introduction

It has long been observed that for well-studied computational problems for which sev-
eral high-performance algorithms are available, there is typically no single algorithm
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that dominates all others on all problem instances. Instead, different algorithms per-
form best on different types of problem instances – a phenomenon also known as perfor-
mance complementarity, which is often incorrectly attributed to an interesting theoretical
result known as the no-free-lunch (NFL) theorem (Wolpert and Macready, 1995, 1997). In
the context of search problems, the NFL theorem strictly only applies if arbitrary search
landscapes are considered, while the instances of basically any search problem of inter-
est have compact descriptions and therefore cannot give rise to arbitrary search land-
scapes (Culberson, 1998). Performance complementarity has been observed for prac-
tically all NP-hard decision and optimisation problems; these include propositional
satisfiability, constraint satisfaction, a wide range of planning and scheduling prob-
lems, mixed integer programming and the travelling salesperson problem, as well as a
broad range of continuous optimisation, machine learning and important polynomial-
time-solvable problems (e.g., sorting and shortest path finding). For these and many
other problems, theoretical results stating which algorithmic strategies work best are
restricted to very limited classes of problem instances, so that it is generally unknown
a priori which of several algorithms should be used to solve a given instance.

This gives rise to the increasingly prominent per-instance algorithm selection problem:
given a computational problem, a set of algorithms for solving this problem, and a
specific instance that needs to be solved, determine which of the algorithms can be
expected to perform best on that instance. This problem has already been considered
in the seminal work by Rice (1976), but it took several decades before practical per-
instance algorithm selection methods became available (see, e.g., Cook and Varnell,
1997; Leyton-Brown et al., 2003; Xu et al., 2008). Since then, the problem and algorithms
for solving it have steadily gained prominence, and by now have given rise to a large
body of literature. Indeed, per-instance algorithm selection techniques have produced
substantial improvements in the state of the art in solving a large range of prominent
computational problems, including propositional satisfiability (SAT) and the travelling
salesperson problems (TSP) (Xu et al., 2008, 2012; Kerschke et al., 2017).

It is important to note that there are several concepts that are quite closely related
to that of per-instance algorithm selection, notably, per-set algorithm selection, algo-
rithm configuration, algorithm schedules and parallel algorithm portfolios, which are
all discussed in further detail in Section 2. Unfortunately, there is some potential for
confusion, especially between per-instance algorithm selection and parallel algorithm
portfolios, since in the literature, the term portfolio is sometimes used to refer to algo-
rithm selectors. Furthermore, some of the most prominent and successful algorithm
selection approaches from the literature, such as SATZILLA (Xu et al., 2008) and AUTO-
FOLIO (Lindauer et al., 2015b), implement combinations of algorithm scheduling and
per-instance selection. While we will briefly discuss these more complex systems, along
with approaches that select more than one algorithm to be run on a given problem in-
stance, the focus of this survey is on pure per-instance algorithm selection, as outlined
above and defined formally in Section 2.

We note that per-instance algorithm selection can be applied to optimisation prob-
lems, where the goal is to find an optimal (or best possible) solution according to a given
objective function, as well as to decision problems, where one wants to determine, as
quickly as possible, whether a solution satisfying certain conditions exists. Further-
more, it is useful to distinguish between continuous problems, where the components
of a possible solution are real numbers (possibly constrained to a given interval), and
discrete problems, where candidate solutions are discrete objects, such as graphs, per-
mutations or vectors of integers.
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Several surveys on algorithm selection have been published over the last decade.
In the first extensive survey in this area, Smith-Miles (2009) summarised develop-
ments in the meta-learning, artificial intelligence and operations research communi-
ties. Adopting a cross-disciplinary perspective, she combined contributions from these
areas under the umbrella of a “(meta-)learning” framework, which permitted her to
identify parallel and closely related developments within these rather well-separated
communities. However, this survey was published a decade ago and therefore does not
cover recent developments and improvements to the state of the art in this fast-moving
research area.

A more recent overview on algorithm selection was published by Kotthoff (2014).
His survey presents an extensive, valuable guide to the automated algorithm selec-
tion literature up to 2014 and provides answers to several important questions, such
as (i) what are the differences between static and dynamic portfolios, (ii) what should
be selected (single solver, schedule, different candidate portfolios), (iii) what are the
differences between online and offline selection, (iv) how should the costs for using al-
gorithm portfolios be considered, (v) which prediction type (classification, regression,
etc.) is most promising when training an algorithm selector, and (vi) what are differ-
ences between static and dynamic, as well as low-level and high-level features. Un-
fortunately, Kotthoff’s survey is restricted to algorithm selection for discrete problems
and does not cover in any detail problem instance features, which provide the basis for
per-instance algorithm selection.

Those two limitations where – at least partially – addressed by Muñoz Acosta et al.
(2013). Although the title (“The Algorithm Selection Problem on the Continuous Op-
timization Domain”) appears to suggest otherwise, their survey mostly addresses the
paucity of work on algorithm selection for continuous optimisation problems and the
challenges arising in this context. Rather than providing an overview of algorithm
selection approaches in this area, Muñoz Acosta et al. (2013) summarise promising re-
sults on discrete problems and hint at the possibility of achieving similar results in
continuous optimisation. In their follow-up survey, Muñoz Acosta et al. (2015b) pro-
vide further insights into the existing ingredients for algorithm selection in the domain
of continuous optimisation: benchmarks, algorithms, performance metrics, and prob-
lem characteristics obtained by exploratory landscape analysis. Still, they do not cover
any work describing automated algorithm selection in this domain.

Our goal here is to not only update, but also to complement and extend these pre-
vious surveys. Firstly, we cover work on algorithm selection for discrete and continuous
problems; as a result, we can compare the difficulties, challenges and solutions found
in those domains. Secondly, one of the most important ingredients for successful al-
gorithm selection approaches are informative (problem-specific) features. We therefore
provide an overview of several promising feature sets and discuss characteristics that
have been demonstrated to provide a strong basis for algorithm selection. Thirdly, we
discuss several problems closely related to (and sometimes confused with) algorithm
selection, such as automated algorithm configuration, algorithm schedules and parallel
portfolios, pointing out differences, similarities and synergies. Of course, in light of the
considerable and fast-growing body of literature on and related to algorithm selection,
we cannot provide comprehensive coverage; instead, we selected contributions based
on their impact, promise and conceptual contributions to the area.

The remainder of this survey article is structured as follows. In Section 2, we for-
mally define the per-instance algorithm selection problem and situate it in the context
of related problems, such as automated algorithm configuration. Next, Section 3 pro-
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Figure 1: Schematic overview of interplay between problem instance features (top left),
algorithm performance data (bottom left), selector construction (center) and the assess-
ment of selector performance (bottom right).

vides an overview of instance features for discrete and continuous optimisation prob-
lems that provide the basis for automated algorithm selection. Successful applications
of algorithm selection in discrete and continuous optimisation are discussed in Sec-
tions 4 and 5, respectively. Finally, Section 6 provides additional perspectives on algo-
rithm configuration and outlines several open challenges.

2 Algorithm Selection and Related Problems

We consider the selection of algorithms for a given decision or optimisation problem P .
Specifically, the per-instance algorithm selection problem can be formulated as follows
(see also Rice, 1976): Given a set I of instances of a problem P , a set A = {A1, . . . An}
of algorithms for P and a metric m : A × I → R that measures the performance of
any algorithm Aj ∈ A on instance set I , construct a selector S that maps any problem
instance i ∈ I to an algorithm S(i) ∈ A such that the overall performance of S on I is
optimal according to metric m.

Of course, in general, we cannot hope to efficiently find perfect solutions to the
per-instance algorithm selection problem, and instead, we strive to find selectors whose
performance is as close as possible to that of a perfect selector on instance set I . This
is typically achieved by making use of informative and cheaply computable features
f(i) = (f1(i), . . . , fk(i)) of the given problem instance i. A general overview on the
interplay of instance features, algorithm performance data, and algorithm selection is
shown in Figure 1. The features are of key importance, and we will discuss them in
more detail in the following section of this article.

We note that the performance of a (hypothetical) perfect per-instance algorithm
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Figure 2: Connections between per-instance algorithm selection and related problems.

selector, often also referred to as an oracle selector or virtual best solver (VBS), provides
a lower bound on the performance of any realistically achievable algorithm selector
(where we assume, w.l.o.g., that the given performance measure is to be minimised),
and is often used in the context of assessing selector performance.

Another useful concept is that of the single best solver (SBS), which is the algo-
rithm A′ with the best performance among all the Aj ∈ A. The SBS is the solution
to the closely related per-set algorithm selection problem, and its performance provides
a natural upper bound on the performance of any reasonable per-instance algorithm
selector. Furthermore, the difference or ratio between the performance of the SBS and
VBS, also known as the VBS-SBS gap, gives an indication of the performance gains that
can be realised, in the best case, by per-instance algorithm selection, and the fraction
of the VBS-SBS gap closed by any per-instance algorithm selector S provides a mea-
sure of its performance (see, e.g., Lindauer et al., 2017b). State-of-the-art per-instance
algorithm selectors for combinatorial problems have demonstrated to close between
25% and 96% of the VBS-SBS gap (see, e.g., Lindauer et al., 2015b). It is important to
note that the VBS-SBS gap is large when the given set A of algorithms shows high
performance complementarity on instance set I , i.e., when different Aj ∈ A perform
best on different i ∈ I , and those algorithms that are best on some instances perform
quite poorly on others. Generally, per-instance algorithm selection can be expected to
achieve large performance gains over the single best algorithm if there is high perfor-
mance complementarity within A and there is a set of sufficiently cheaply computable
and informative instance features that can be leveraged in learning a good mapping
from instances to algorithms.

It is very important to distinguish between per-set algorithm selection and per-
instance algorithm selection. The former does not require any instance features and
is typically done by exhaustive evaluation of all given algorithms on a set of problem
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instances deemed to be representative for those to be solved later. The connection be-
tween per-instance algorithm selection and related problems is shown in Figure 2. In
many ways, algorithm competitions, such as the international SAT and planning com-
petitions (see, e.g., Järvisalo et al., 2012; Vallati et al., 2015), can be seen as identifying
solutions to per-set algorithm selection problems for broad sets of interesting instances,
and competition winners are often seen as the single best algorithm for the respective
problem. Sometimes, to reduce the computational cost for per-set algorithm selection,
racing methods are used. These run candidate algorithms on an increasing number of
instances, eliminating those from consideration whose performance is significantly be-
low that of others, based on a statistical test (see, e.g., Maron and Moore, 1994; Birattari
et al., 2002).

Per-set algorithm configuration can be seen as a special case of algorithm configu-
ration, a practically very important problem that can be described as follows: Given
an algorithm A whose performance (but not semantics) is affected by the settings of
parameters p = (p1, . . . , pk), a set C of possible values for p (called configurations of A),
a set of problem instances I and a performance metric m, find a configuration c∗ ∈ C
of A that achieves optimal performance on I according to m. Note that the set C of
configurations can be seen as corresponding to a set of algorithms, of which we wish
to select the one that performs best. The key difference to algorithm selection is that
this set can be very large, since it arises from combinatorial combinations of values of
the individual parameters pl, which, in some cases, can take continuous values, lead-
ing to (potentially) uncountably infinite sets of algorithm configurations over which we
have to optimise. Realistic algorithm configuration scenarios typically involve tens to
hundreds of parameters (see, e.g., Hutter et al., 2009, 2011; López-Ibáñez et al., 2016;
Ansótegui et al., 2015; Thornton et al., 2013; Kotthoff et al., 2017). Therefore, per-set
algorithm selection techniques are typically not directly applicable to algorithm con-
figuration, although racing techniques can be extended to work well in this case (see,
e.g., López-Ibáñez et al., 2016; Pérez Cáceres et al., 2017). Per-set algorithm configura-
tion is closely related to hyperparameter optimisation in machine learning; the main
difference is that in algorithm configuration, performance is to be optimised on a pos-
sibly diverse set of problem instances, which often requires trading off performance on
some instance against that achieved on others. In a sense, the typical hyperparameter
optimisation problem encountered in machine learning is analogous to configuring a
parameterised algorithm for performance on a single problem instance.

Since typical procedures used for building per-instance algorithm selectors have
design choices that can be exposed as parameters, algorithm configuration techniques
can be applied to optimise their performance on specific (sets of) selection scenarios.
This has been done, with considerable success, in the recent AUTOFOLIO selection sys-
tem by Lindauer et al. (2015b), which we will discuss in further detail in Section 4.

The per-instance variant of the algorithm configuration problem, which can be
seen as a generalisation of per-instance algorithm selection, largely remains an open
challenge (see, e.g., Hutter et al., 2006; Belkhir et al., 2016, 2017), and we briefly discuss
it further in Section 6.

Performance complementarity within a set of algorithms can be leveraged in ways
that differ from per-instance algorithm configuration. One prominent approach is that
of a parallel algorithm portfolio, where each algorithm from a given set A is run in paral-
lel on a given problem instance i (see, e.g., Huberman et al., 1997; Gomes and Selman,
2001; Fukunaga, 2000). When applied to a decision problem, all runs are terminated
as soon as one of the component algorithms has solved the given instance i; for op-
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timisation problems, the best solution achieved by any of the component algorithms
at any given time is returned as the solution of the entire portfolio. Parallel algorithm
portfolios are conceptually similar to ensemble methods in machine learning (see, e.g.,
Dietterich, 2000; Rokach, 2010). The key difference is that ensemble methods aggregate
the results from the various component algorithms, e.g., by weighted or unweighted
averaging.

When run on parallel hardware, algorithm portfolios typically achieve perfor-
mance very close to that of the VBS in terms of wall-clock time, at the price of par-
allelism of degree equal to the number n of algorithms in A. Of course, parallel portfo-
lios can be run at lower actual degrees of parallelism, and even fully sequentially, using
task-switching, as provided, e.g., by the operating system; in that case, the wall-clock
time is typically close to that of n times the performance of the VBS in terms of the
time required to solve a given instance of a decision problem, or to achieve a certain
solution quality in case of an optimisation problem. Most of this overhead, which for
large sets of algorithms can be very substantial, can be avoided by using per-instance
algorithm selectors instead of parallel portfolios. Nevertheless, especially in the area of
evolutionary computation, the concept of parallel algorithm portfolios has given rise
to a growing body of research, in which the basic concept is often combined with ad-
ditional techniques to achieve improved performance (see, e.g., Tang et al., 2014; Yuen
and Zhang, 2015).

Although the term algorithm portfolio is sometimes used in the literature to refer to
per-instance algorithm selectors and other techniques that leverage performance com-
plementarity within a set of algorithms, we discourage this broad use as it easily leads
to confusion between conceptually very different approaches. This potential confusion
is easily avoided by restricting the term algorithm portfolio to parallel algorithm portfo-
lios, consistent with the seminal work by Huberman et al. (1997). Recently, the concepts
of per-instance algorithm selection and parallel portfolios have been combined, by se-
lecting, on a per-instance basis, several algorithms to be run in parallel (Lindauer et al.,
2015a). While this would not make sense in the context of a perfect algorithm selector,
it can limit the impact of the poor selection decisions sometimes made in practice.

Algorithm schedules provide another way of exploiting performance complemen-
tarity (see, e.g., Lindauer, 2014; Lindauer et al., 2016). The key idea is to run a sequence
of algorithms from a given set A, one after the other, each for a given (maximum) time.
Those cut-off times can differ between the stages of the schedule, and some algorithms
may not be run at all. Static algorithm schedules, i.e., schedules that have been deter-
mined in a per-set fashion and are applied uniformly to any given problem instance
i, can be quite effective and are typically much easier to implement than per-instance
algorithm selectors (see, e.g., Roussel, 2012). They are also used in state-of-the-art al-
gorithm selection systems during a so-called pre-solving phase, in order to solve easy
problem instances quickly and without the need for computing the instance features
required for per-instance selection (see, e.g., Xu et al., 2012; Lindauer et al., 2015b). Un-
less stated explicitly otherwise, we will in the following, when discussing per-instance
algorithm selectors, always refer to the pure per-instance algorithm selection problem,
as defined above, without pre-solving schedules and other extensions found in cutting-
edge algorithm selection systems.

Finally, the problem of predicting the performance of an algorithm A on a given
problem instance i is closely related to per-instance algorithm selection. If computa-
tionally cheap and accurate performance prediction were possible, evidently, we could
use performance predictors for our given algorithms A1, . . . , An and simply select the
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one predicted to perform best on i. In practice, sufficient accuracy can be achieved for
many problems using state-of-the-art regression techniques from machine learning, at
moderate computational cost (Hutter et al., 2014b), and performance predictors form
the basis for one of the main approaches to per-instance algorithm selection. At the
same time, other approaches, such as cost-based classification, exist and also find use
in state-of-the-art algorithm selection systems, as explained in the following sections.

3 Features for Discrete and Continuous Problems

Linking algorithm performance on an instance i to instance characteristics forms a cen-
tral part of automated algorithm selection and several related problems. For this pur-
pose, automatically computable features f(i) = (f1(i), . . . , fk(i)) are required, ideally
with the following properties: Firstly, features should be informative, in that they allow
for a sufficient distinction between different instances; they should also be interpretable,
so that feature values enable an expert to gain maximum insight into instance proper-
ties. Furthermore, features should be cheaply computable, so that the advantages gained
by selecting an algorithm based on them is not outweighed by the cost of feature com-
putation. Features should also be generally applicable, i.e., they should be effectively
and efficiently computable for a broad range of problem instances, rather than being
restricted, e.g., to small instance sizes. Finally, the features fj should be complemen-
tary, in that redundant sets of features are not only computationally wasteful, but can
also cause problems when used by certain machine learning algorithms as a basis for
algorithm selection and related problems.

In the following, we provide an overview of commonly used instance features for
several prominent discrete and continuous problems – not only to illustrate what kind
of features are useful in the context of per-instance algorithm selection, but also to draw
attention to an important and somewhat underrated research topic of significant impor-
tance to tasks beyond algorithm selection. In particular, informative instance features
can provide important insights into strengths and weaknesses of a given algorithm, and
hence play a crucial role in devising improvements. We generally distinguish between
problem-specific features that are closely based on particular aspects of the problem
to be solved, such as the number of clauses in instances of propositional satisfiability
problems, and generic features that are more broadly applicable, such as high-level
statistics over information gleaned from short ’probing’ runs of a solver for the given
problem.

3.1 Discrete problems

To give concrete examples, and in light of the importance of problem-specific features,
we will focus on three of the most prominent and well-studied discrete combinatorial
problems: propositional satisfiability (and related problems), AI planning and the trav-
elling salesperson problem (TSP).

Propositional satisfiability and related problems. The propositional satisfiability prob-
lem (SAT) is to determine whether for a given formula F in propositional logic, contain-
ing Boolean variables X1, . . . , XN ∈ {true, false}, there exists an assignment of logical
values to the variables such that F evaluates to true; such a variable assignment is said
to satisfy F . Typically, the problem is restricted to formulae F in conjunctive normal form
(CNF), i.e., F consists of conjunctions (∧) of so-called clauses, which are disjunctions (∨)
of Boolean variables Xj and their negations ¬Xj . A CNF-formula F evaluates to true,
if each of its clauses is satisfied simultaneously. SAT is one of the most prominent and
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intensely studied combinatorial decision problems and has important applications in
hard- and software verification (see, e.g., Biere et al., 2009). Given the ties to other com-
binatorial problems, improvements in SAT often also impact widely studied related
problems, such as maximum satisfiability (MaxSAT) problem, in which the objective is to
find a variable assignment that maximises the number of satisfied CNF clauses.

The first large collection of features for SAT (and thus also MaxSAT) instances was
provided by Nudelman et al. (2004b). Despite the rather simple structure of SAT in-
stances, the authors devised nine different feature sets and a total of 91 features, which
characterise a given CNF formula from a multitude of perspectives. Eleven problem
size features describe SAT instances based on summary statistics of their numbers of
clauses and variables. A set of variable-clause graph (VCG) features comprises ten node
degree statistics based on a bipartite graph over the variables and clauses of a given
instance. Interactions between the variables are captured by four variable graph (VG)
features; these are the minimum, maximum, mean and coefficient of variation of the
node degrees for a graph of variables, in which edges connect pairs of variables that
jointly occur in at least one clause. Similarly, the set of clause graph (CG) features con-
tains seven node degree statistics of a graph whose edges connect clauses that have at
least one variable in common, as well as three features based on weighted clustering
coefficients for the clause graph. Thirteen balance features capture the balance between
negated and unnegated variables per clause, their overall occurrences across all clauses,
as well as fractions of unary, binary and ternary clauses, whereas six further features
quantify the degree to which the given F resembles a Horn formula (a restricted type
of CNF formula, for which SAT can be decided efficiently). The solution of a linear pro-
gram representing the given SAT instance provides the basis for six LP-based features.
Finally, there are two sets of so-called probing features, which are based on performance
statistics over short runs of several well-known SAT algorithms (based on DPLL and
stochastic local search, two prominent approaches to solving SAT) and capture the de-
gree to which these make early progress on the given instance.

Some of the feature sets – specifically, the CG, VG and LP-based features, as well
as some of the VCG, balance and DPLL-probing features – are computationally quite
expensive (see, e.g., Xu et al., 2008; Hutter et al., 2014b) and consequently not always
useful in the context of practical algorithm selection approaches. Similarly, the algo-
rithm runs for probing features are limited to a very small part of the overall time
budget for solving a given instance, to make sure that sufficient time remains available
for running the selected SAT solver.

A decade later, Hutter et al. (2014b) – building on the work by Nudelman et al.
(2004b) – introduced a set of 138 SAT features. While they removed some features
from the earlier sets, much of the set remained the same. The most significant changes
were an extension of the CG and VG feature sets by five new features each, as well
as three new feature sets accounting for an additional 48 features. The VG feature set
was extended by so-called diameter features, which capture statistics based on the set
of longest shortest paths from one variable to any other one in the graph. Also, in-
stead of the weighted clustering coefficients based on the CG (as done by Nudelman
et al., 2004b), Hutter et al. (2014b) used a set of clustering coefficients that measure the
CG’s “local cliqueness”. Furthermore, they introduced 18 novel clause learning features,
which summarise information gathered during short runs of a prominent SAT solver,
ZCHAFF RAND, that learns conflict clauses during its search for a satisfying assignment
(Mahajan et al., 2004). Another 18 features are derived from estimates of variable bias
obtained from the SAT solver VARSAT (Hsu and McIlraith, 2009); these features es-

Evolutionary Computation Volume x, Number x 9



P. Kerschke, H. H. Hoos, F. Neumann, H. Trautmann

sentially capture statistics over estimates for the probability for variables to be true,
false or unconstrained in every satisfying assignment. Finally, Hutter et al. (2014b)
proposed to use the actual feature costs, in terms of the running time required for com-
puting each of the 11 feature sets; they noted that the diameter and survey propagation
features tend to be expensive to compute and may thus be of limited usefulness in the
context of per-instance algorithm selection.

A well-known generalisation of SAT is the problem of answer set programming (ASP;
see, e.g., Baral, 2003), which deals with determining so-called “answer sets”, i.e., stable
models for logic programs. Many combinatorial problems can be presented in ASP in
a rather straightforward way and solved, at least in principle, using general-purpose
ASP solvers. Because of the close relationship between ASP and SAT, many features for
ASP instances are closely related to the SAT features outlined above. One of the most
widely used collection of ASP features has been proposed by Maratea et al. (2012); it
is comprised of 52 features, which can be grouped into four sets. Three of these fea-
ture sets closely correspond to well-known SAT features (Nudelman et al., 2004b) and
contain eight problem size, three balance and two proximity to Horn features. In addition,
Maratea et al. (2012) proposed 39 ASP-specific features, such as the numbers of true and
disjunctive facts, the fraction of normal rules and constraints, and several combinations
of the latter.

AI planning. Automated planning (also known as AI planning) is one of the most
prominent challenges in artificial intelligence (see, e.g., Ghallab et al., 2004). While
there are many variants of AI planning problems, the basic setting (also known as clas-
sical planning) involves a set of actions with associated pre-conditions, deterministic
effects and sometimes costs, an initial state and one or more goal states. The objective
in satisficing planning is to find a valid plan, i.e., a sequence or partially ordered set of
actions that, when applied to the initial state, reach a goal state, or to determine that no
valid plan exists. In the optimisation variants of planning problems, the objective is to
find plans of minimal length or cost. Most variants of AI planning are at least NP-hard,
and satisficing classical planning is known to be PSPACE-complete. AI planning al-
gorithms have important applications, e.g., in robotics, gaming, logistics and software
test case generation; they are also used for the operation and management of traffic,
energy grids and fleets of shared vehicles.

In classical planning, there is an important distinction between a problem instance
and a so-called planning domain. This distinction arises from the fact that states and ac-
tions are specified in an abstract way, using so-called predicates and operators that can be
instantiated to yield specific properties of states and specific actions, respectively (see,
e.g., Ghallab et al., 2004). For example, in a planning problem that involves moving
goods using a fleet of trucks, there might be a predicate stating that a specific truck is
in a given location, and an operator that moves the truck from one location to another.
A planning domain is a class of a planning instances with the same set of specific pred-
icates and operators. Planning domains and instances can be concisely described in a
widely used, uniform language called PDDL (Planning Domain Definition Language;
see, e.g., Gerevini and Long, 2005).

Howe et al. (1999) were among the first to characterise AI planning instances by
simple features, namely, the number of actions, predicates, objects, goals, as well as
the number of predicates used to specify the initial state. A decade later, Roberts et al.
(2008) introduced a substantially extended set of 41 features, which includes summary
statistics of the domain and instance files (16 and three features, respectively), but also
captures 13 high-level features of the given planning instance in terms of its PDDL
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requirements. They also considered nine features based on the so-called causal graph
(CG) (i.e., a graph capturing causal dependencies between states), such as the number
of vertices in the CG and their average degree, as well as various metrics computed
from the edges of the CG.

Also based on the idea of using graph properties, Cenamor et al. (2013) proposed
a total of 47 features, which capture the information contained in causal and domain
transition graphs. The latter represent the permissible transitions between states. The
causal graph features of Cenamor et al. (2013) can be categorised into four different
sets: (i) four general graph properties, (ii) four features based on various ratios of graph
properties, (iii) 12 statistical aggregations over the entire graph, and (iv) six additional,
high-level statistics for states with defined values in the goal specifications. The re-
maining 21 domain transition graph features include (i) three general graph properties
(number of edges and states, sum of edge weights) and (ii) 18 statistical features similar
to those of the causal graph.

The most recent and extensive collection of AI planning instance features was pre-
pared by Fawcett et al. (2014). It contains 12 sets with 311 features in total, covering
most of the features from earlier work, as well as a broad range of new ones. The first
three sets extend the 16 domain, three problem and 13 language requirement features
from Roberts et al. (2008) by two, four and 11 new features, respectively. Four further
feature sets are based on a translation of the given PDDL instance into a finite domain
representation (FDR), by means of a well-known AI planning system, FAST DOWNWARD
(Helmert, 2006). This FDR representation, as well as information collected during the
translation and preprocessing, gives rise to sets of 19, 19 and eight features, respectively.
Building on the work of Cenamor et al. (2013), Fawcett et al. (2014) also provide a set
of 41 causal and domain transition graph features. Six features are computed from in-
formation gathered during the preprocessing phases of LPG-TD (Gerevini et al., 2003),
another well-known planning system, while 10 further features capture information
produced by the TORCHLIGHT local search analysis tool (Hoffmann, 2011); another 16
features are determined based on the trajectories of one-second probing runs of FAST
DOWNWARD. Furthermore, the 115 SAT features from Xu et al. (2012) are included,
based on a SAT representation of the given planning instance (in form of a CNF with a
planning horizon of 10). The final feature set introduced by Fawcett et al. (2014) con-
tains information on whether the previously outlined sets were computed successfully
and additionally captures the respective computation times.

Travelling salesperson problem. The travelling salesperson problem (TSP) is one of the
most intensely studied combinatorial optimisation problems. For decades, it has been
the subject of a large body of work and continues to be highly relevant for theoretical
analyses, design of algorithms and practical applications ranging from logistics to man-
ufacturing (see, e.g., Applegate et al., 2007). In the TSP, given an edge-weighted graph,
whose vertices are often called cities and whose edges represent the cost of travelling
from one city to another, the objective is to find a Hamiltonian cycle with minimum to-
tal weight, i.e., a minimum-cost trip that passes through every city exactly once. Most
work on the TSP focusses on the special case of the two-dimensional Euclidean TSP,
where cities are locations in the Euclidean plane, and costs correspond to the Euclidean
distances between cities.

The development of features for TSP instances has been initiated by Smith-Miles
and van Hemert (2011), who proposed the following features for characterising a given
TSP instance: (1) coordinates of the instance’s centroid, (2) average distance from all
cities to the centroid, (3 & 4) standard deviation of distances, as well as fraction of
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distinct distances within distance matrix, (5) size of the rectangle enclosing the in-
stance’s cities, (6 & 7) standard deviation, as well as coefficient of variation of the
normalised nearest neighbour distances, (8) ratio of number of clusters found by GDB-
SCAN (Sander et al., 1998) to the number of all cities, (9) variance of number of cities
per cluster, (10) ratio between number of outliers and all cities, and (11) the number
of cities. Furthermore, Kanda et al. (2011) and Kovárik and Málek (2012) proposed
features derived from the distance matrix of a given TSP instance.

Nearly all features from these earlier studies were combined by Mersmann et al.
(2013) and further extended, leading to a collection of six TSP feature sets with a total
of 68 features, many of which are derived from the distance matrix and from the spatial
distribution of the cities in the Euclidean plane. More precisely, the distance matrix
is condensed into distance and mode features, and the distribution of cities is captured
by a set of cluster features, based on multiple runs of GDBSCAN, as well as convex hull
features, which quantify the spread of the cities in the Euclidean plane. The closeness of
neighbouring cities is measured by various nearest neighbour statistics, and a final set of
features is comprised of the depth and edge costs of the minimum spanning tree for the
given TSP instance.

Hutter et al. (2014b) developed a set of 64 TSP features that includes some of the
previously outlined instance characteristics as well as new probing features. The latter
are based on 20 short runs of a well-known local search solver (LK; Lin and Kernighan,
1973), as well as single short runs of the state-of-the-art exact TSP solver, Concorde (Ap-
plegate et al., 2007). Probing features were also used by Kotthoff et al. (2015).

The most comprehensive collection of TSP features was provided by Pihera and
Musliu (2014). Their set of 287 features builds on the earlier work by Hutter et al.
(2014b), but additionally includes instance characteristics derived from the distances
of the cities to the convex hull, the number of intersections of locally optimal tours,
and statistics of disjoint tour segments. The largest group of new features is based on
strongly and weakly connected components of so-called k-nearest neighbour graphs, for
many values of k.

Finally, we see significant potential for new features based on recent work on
funnel-structures in the search landscapes associated with TSP instances (Ochoa et al.,
2015; Ochoa and Veerapen, 2016). Considering that highly related aspects of global
search space structure have shown to play an important role in algorithm selection for
continuous optimisation problems (Bischl et al., 2012; Kerschke and Trautmann, 2018),
features of this nature may also prove to be useful for discrete optimisation problems,
such as the TSP.

Other combinatorial problems. There is a sizeable body of work on instance charac-
teristics for other combinatorial problems, including the epistasis measures by Davi-
dor (1991) and Fonlupt et al. (1998), indicators for the hardness of quadratic assign-
ment (QAP, Angel and Zissimopoulos, 2002) or constraint satisfaction problems (CSP,
Boukeas et al., 2004), features for so-called orienteering problems, which generalise the
TSP by distinguishing between static and dynamic locations (Bossek et al., 2018), and
variable interaction measures for combinatorial optimisation problems (Seo and Moon,
2007). A detailed discussion of these problems and the respective instance features
(some of which are quite generic and can be applied to a range of discrete combinato-
rial problems) is beyond the scope of this survey; however, we note that these features,
like the problem-specific features described earlier in this section, provide a good basis
for per-instance algorithm selection and related tasks.

12 Evolutionary Computation Volume x, Number x



Automated Algorithm Selection: Survey and Perspectives

3.2 Continuous problems

We now turn our attention to the optimisation of continuous fitness landscapes (Wright,
1932; Kauffman, 1993). In contrast to discrete optimisation problems, which differ very
substantially from each other (consider, for example, SAT vs. TSP) and require problem-
specific features for characterising instances, the general idea of continuous optimisa-
tion problems can be expressed uniformly, in a rather straightforward way: (w.l.o.g.)
find the global minimum of an objective or fitness function f : X → Y , which maps vec-
tors of variables, x = (x1, . . . , xd), from a d-dimensional decision space X ⊆ Rd (whose
values may be subject to additional constraints) to p-dimensional objective or fitness
values y = (y1, . . . , yp) := f(x) ∈ Y ⊆ Rp (Jones, 1995; Stadler, 2002). Unfortunately, in
most real-world scenarios, the exact mathematical representation of the fitness function
f is unknown. Thus, its optimisation often has to be handled as a black-box problem,
and consequently becomes difficult and expensive. In light of this, it is especially useful
to characterise a specific problem by means of (informative) features, based on which
it is possible to select a suitable optimisation algorithm.

As there only exist preliminary studies on the characterisation of multi-objective
(p ≥ 2) problems (see, e.g., Kerschke et al., 2016b) – which we will discuss later – we
will in the following mainly focus on the manifold of characterisation approaches for
single-objective (p = 1) continuous optimisation problems.

Single-objective continuous problems. Overviews on the early works related to this
problem class can be found in Pitzer and Affenzeller (2012), Malan and Engelbrecht
(2013), Sun et al. (2014) and Muñoz Acosta et al. (2015b). However, in contrast to re-
cent studies, the majority of the studies covered by those surveys proposed measures
for characterising white-box problems – i.e., problems, whose landscapes are entirely
known upfront – rather than cheap, informative and automatically computable land-
scape features as needed for black-box problems. Obviously, only the latter are benefi-
cial for automated algorithm selection (or related problems). Nevertheless, we briefly
discuss some noteworthy contributions to the characterisation of white-box problems,
as they form the basis for recent developments.

In the 1990s, landscapes were classified into easy and hard problems – from an op-
timisation algorithm’s point of view. While Jones and Forrest (1995) (and later Müller
and Sbalzarini, 2011) proposed fitness distance correlation as a key characteristic, Rosé
et al. (1996) suggested the density of states for solving the binary classification task. Fur-
thermore, so-called epistasis measures (Naudts et al., 1997; Rochet et al., 1997) quantify
the influence of single variables (or bits, in case of a bit-representation of x) on the
problem’s fitness, which in turn can be used to rank the landscapes according to their
difficulty. The information content measures from Vassilev et al. (2000) provide another
basis for quantifying hardness.

In the following decade, attention shifted from characterising problem difficulty
to ruggedness. Depending on fitness evolvability portraits (Smith et al., 2002), autocorrela-
tion coefficients, number and distribution of optima (Brooks and Durfee, 2003), or entropy
(Malan and Engelbrecht, 2009), landscapes were categorised into rugged, neutral and
smooth problems. During that time, researchers also focused on problem multimodal-
ity (Preuss, 2015), i.e., the analysis of the problems’ landscapes w.r.t. multiple local
and/or global optima. For instance, the barrier trees of Flamm et al. (2002) provided
means for identifying basins of attractions, local optima and saddle points within the
landscapes, and the dispersion metrics from Lunacek and Whitley (2006) enabled an
approximate estimation of the degree of multimodality of a given landscape.
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Figure 3: Overview of connections between “high-level” properties (grey rectangles)
and “low-level” features (white ellipses), taken from Mersmann et al. (2011).

Pitzer and Affenzeller (2012) combined these approaches under the term fitness
landscape analysis (FLA). However, as the majority of those characteristics was proposed
for white-box settings, they are not useful for automated algorithm selection. With the
introduction of Exploratory Landscape Analysis (ELA), Mersmann et al. (2011) were the
first to explicitly develop landscape features for use in black-box optimisation (BBO) –
and hence for algorithm selection in continuous optimisation. As shown in Figure 3,
they introduced six feature sets (curvature, convexity, levelset, local search, meta models
and y-distribution), combining a total of 50 features, and used these to predict eight
different problem characteristics, such as the global structure (none, weak, strong, de-
ceptive) and the degree of multimodality (none, low, mediocre, high). We note that
the attributes of the latter “high-level” properties can only be assigned by someone
with knowledge of the entire problem, whereas the former “low-level” features can be
automatically computed based on a small, but representative sample of points – the
so-called initial design.

Following the idea of automatically computable numerical features, some of the
earlier white-box landscape characteristics have been adapted to the black-box context.
For instance, Muñoz Acosta et al. (2012, 2015a) refined the information content features
and extended them by basin of attraction features. Similarly, Abell et al. (2013) proposed
hill climbing and random point features, whose general idea stems from the local search
and fitness distance correlation methods, respectively, and enhanced them by problem
definition measures.

In addition, several new feature sets have been introduced in recent years: Ker-
schke et al. (2014) discretised the continuous search space into a grid of cells and used
a Markov-chain-inspired cell-mapping approach to obtain features, which measure –
amongst others – the sizes of the basins of attraction. However, due to the curse of
dimensionality, those features are only practically applicable to low-dimensional prob-
lems. A much more scalable measure for the basins of attraction and the global struc-
ture of a landscape are the nearest better clustering features (Kerschke et al., 2015), which
provide the means to distinguish funnel-shaped from rather random global structures.
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The most recently published features based on aggregated information of neighbour-
ing points are the bag of local landscape features by Shirakawa and Nagao (2016). Fur-
thermore, the length scale features of Morgan and Gallagher (2015) measure the variable
scaling based on the ratio between the change in objective space and distance in deci-
sion space for pairs of distinct observations from the initial design.

We note that work in this area is not restricted to the development of features or
problem characteristics. For instance, Malan et al. (2015) and Bagheri et al. (2017) in-
vestigated constrained optimisation problems, whereas Kerschke et al. (2016a) showed
that landscape features already possess sufficient information if they are computed
based on rather small samples of 50 · d observations (where d is the dimensionality
of the given optimisation problem).

Until recently, the simultaneous use of feature sets from different research groups
has been cumbersome and hence rarely practiced. However, with the development
of flacco (Kerschke, 2017b,c), an R-package that provides source code for most of
the previously listed ELA features, this obstacle has been overcome. Since then, the
complementarity of the various features and their potential usefulness as a basis for
algorithm selection has been demonstrated in several studies. We provide a detailed
overview of this work later (see Section 5). Note that by using a platform-independent
web-application of the flacco package1 (Hanster and Kerschke, 2017), researchers
and practitioners, who are unfamiliar with R, can also benefit from this extensive col-
lection of more than 300 landscape features. Belkhir et al. (2016, 2017) were among
the first to leverage the ELA features provided by flacco for per-instance algorithm
configuration.

Multi-objective continuous problems. While the characterisation of single-objective
continuous optimisation problems has been studied for over two decades, only prelim-
inary studies have been conducted w.r.t. informative features of multi-objective prob-
lems. For instance, Kerschke and Trautmann (2016) used features that have been de-
veloped for single-objective problems and used them to cluster some well-known and
frequently used multi-objective benchmark problems. However, those features do not
capture characteristics that are especially important to multi-objective problems, such
as interaction effects between the objectives. Eventually, techniques that were origi-
nally aimed at measuring variable interactions (see, e.g., Reshef et al., 2011; Sun et al.,
2017) could help to overcome these limitations.

Kerschke et al. (2016b, 2018b) investigated locally efficient sets and the correspond-
ing locally optimal fronts (i.e., the multi-objective equivalents of local optima) and pro-
posed measures – on the basis of those sets and fronts – which enable the distinction
of multi-objective problems according to their degree of multimodality. Interestingly,
those studies revealed that even in the case of rather simple multi-objective problems,
strong interaction effects between the objectives exist. Thus, in order to improve the
understanding of multi-objective problems, Kerschke and Grimme (2017) introduced
new techniques for visualising them. Their approach, dubbed gradient field heatmaps
(see, e.g., Figure 4), is based on visualising the decision space, but nevertheless clearly
reveals interactions between the objectives – in the form of rugged landscapes with
several basins of attractions. Unexpected findings of this kind (see, e.g., Grimme et al.,
2018) indicate that research in this area is still at an early stage, leaving many open
challenges for future work (see Section 6 for further details).

1https://flacco.shinyapps.io/flacco/
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Figure 4: Exemplary visualisations of the gradient field heatmaps proposed by Kerschke
and Grimme (2017). The images show the decision spaces of continuous optimisation
problems with two (left) and three objectives (right), respectively. As a result of the
interactions between the local optima of the different objectives (indicated by circles,
squares and triangles), the landscapes show multiple basins of attraction.

4 Algorithm Selection for Discrete Problems

Over the years, algorithm selection techniques have achieved remarkable results in
several research areas – especially for discrete combinatorial problems (see, e.g., Smith-
Miles, 2009; Kotthoff, 2014). However, due to the significant differences between vari-
ous problems, not only the respective instance features, but also solvers and algorithm
selectors vary considerably. Therefore, it is impossible to cover all work in this area;
instead, in the following, we focus on a small number of particularly well-known prob-
lems: propositional satisfiability (SAT) and related problems, AI planning and the travelling
salesperson problem (TSP).

Propositional satisfiability and related problems. Historically, some of the first and
most widely known successes of per-instance algorithm selection have been achieved
in the context of solving the propositional satisfiability problem (SAT). We note that several
approaches described in the following can be applied to closely related problems (such
as MaxSAT) in a rather straightforward way.

SATzilla2003 and SATzilla2007. Within the highly contested area of SAT, the first AS
system to outperform stand-alone SAT solvers was SATZILLA. While its first version,
denoted SATZILLA2003 (Nudelman et al., 2004a), still showed (minor) weaknesses – it
“only” ranked second (twice) and third in the 2003 SAT Competitions – its (enhanced)
successor, SATZILLA2007 (Xu et al., 2008), won multiple prizes (3x first, 2x second
and 2x third) in the 2007 SAT Competition. Despite the differences w.r.t. their success,
the general working principles underlying both systems are quite similar. During the
actual construction phase, pre- and backup solvers are identified, based on the perfor-
mances of the given solvers on training data. All instances that have not been solved
by the respective pre-solvers are then used for training separate regression models per
solver, which in turn are used for selecting a promising subset of “main solvers”.
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The main difference between SATZILLA2003 and SATZILLA2007 lies in the re-
gression models used for the main algorithm selection phase: While the former used
empirical hardness models (Leyton-Brown et al., 2002) based on ridge regression (see, e.g.,
Bishop, 2006), the latter employed hierarchical hardness models (Xu et al., 2007), more pre-
cisely sparse multinomial logistic regression (SMLR, see, e.g., Krishnapuram et al., 2005).
The latter version of SATZILLA sequentially runs up to two manually selected pre-
solvers; if these fail to solve the given instance within a user-specified running time
budget, instance features are computed and used to predict (and sequentially run) the
best solver(s) from the given set A. The system either terminates once the given SAT
instance has been solved, or when a user-specified cutoff time is reached.

Xu et al. (2008) compared different versions of SATZILLA2007 on 2 300 random
(RAND), 1 490 crafted/handmade (HAND) and 1 021 application/industrial (INDU)
instances, using the same setup as the 2007 SAT Competition. For this purpose, they
used a total of 48 features and identified between one and two pre-solvers, one backup
solver, as well as three to five main solvers from a given set A (which differed be-
tween RAND, HAND and INDU). Notably, their pre-solvers solved between 32 and
62% of the instances – despite running for only seven CPU seconds at most. Ultimately,
SATZILLA2007 ranked first (inter alia) in the SAT & UNSAT (RAND and HAND) cat-
egories of the competition, as well as in UNSAT (HAND).

3S. Kadioglu et al. (2011) proposed a hybrid approach, denoted semi-static solver sched-
ules (3S), which combines algorithm selection with solver scheduling. Since it can be
very expensive to determine schedules over all solvers from a given set, Kadioglu et al.
(2011) devised a different approach, in which they partitioned the (normalised) instance
feature space for a given training set by means of g-means (Hamerly and Elkan, 2003).
Then, the best value of k to be used by the k-nearest neighbour algorithm (Hastie et al.,
2009) was identified for each cluster and directly used for training semi-static solver
schedules. 3S was demonstrated to perform very well; e.g., it reduced the gap between
the (back then) state-of-the-art selector on RAND instances, SATZILLA2009 RAND,
and the VBS by 57%. Additionally, this general-purpose selector performed very well at
the 2011 SAT Competition, winning seven medals (including two gold) without train-
ing separate selectors for different competition tracks (as had been done for previous
versions of SATZILLA).

SATzilla2012. Building on the success of earlier versions of SATZILLA, Xu et al. (2012)
developed SATZILLA2012, which showed outstanding performance in multiple SAT
competitions. SATZILLA2012 uses cost-sensitive pairwise classification as the basis for
per-instance algorithm selection; these penalise incorrect predictions according to the
loss in performance caused by them. More precisely, one cost-sensitive decision tree
(Ting, 2002) is used for every pair of solvers in the given set A to predict which of
the two solvers will perform better on the given instance. Simple voting over these
pairwise predictions is used to determine the solver to be run. Like earlier versions
of SATZILLA, SATZILLA2012 uses pre- and backup-solvers in addition to the main
algorithm selection stage. Additionally, a decision forest (Hastie et al., 2009) based
on the number of clauses and variables in the given SAT instance is used to predict
whether the computation of further instance features is sufficiently cheap to proceed
to the main selection stage (otherwise, a statically chosen backup solver is run). In the
2012 SAT Competition, SATZILLA2012 used a total of 31 SAT solvers and 138 features
and ended up winning multiple prizes.
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CSHC. Building on the static scheduling approach underlying 3S, Malitsky et al.
(2013) introduced an algorithm selection system based on the core concept of cost-
sensitive hierarchical clustering (CSHC). During its training phase, CSHC iteratively
partitions the instance feature space by means of hyperplanes, and occasionally un-
does splits if that leads to improvements in overall performance. When given a new
instance, CSHC first runs the 3S static algorithm schedule for 10% of the overall run-
ning time allotted for solving a given SAT instance F and – in case F remains unsolved
– runs the SAT solver that performed best on the partition to which F belongs. The
resulting CSCH algorithm selection system has been reported to achieve even better
performances than SATZILLA2012 on a slightly modified version of the 2011 SAT com-
petition (for details, see Malitsky et al., 2013).

SNNAP. An approach dubbed solver-based nearest neigbour for algorithm portfolios
(SNNAP; Collautti et al., 2013) successfully combines clustering with per-instance al-
gorithm selection. It uses random forests (Hastie et al., 2009) to predict the running
times of individual solvers. However, instead of directly selecting a solver based on
these predictions, SNNAP uses them to identify SAT instances from the given train-
ing set that are similar to the instance to be solved. Specifically, instance similarity is
quantified by means of the Jaccard distance – whose distance between two sets A and
B is defined as d(A,B) = 1 − |A ∩ B|/|A ∪ B| – applied to binary vectors indicating a
(small) fixed number of best solvers per instance. SNNAP then selects the solver that
performed best on the k nearest neighbours of the given instance, where k is a user-
defined constant. According to results reported by Collautti et al. (2013), despite the
simplicity of the approach, SNNAP closes around 50% of the VBS-SBS gap on a broad
set of well-known SAT instances.

AutoFolio. In light of the many design choices encountered in the development of
state-of-the-art algorithm selection systems, Lindauer et al. (2015b, 2017a) proposed
a powerful combination of per-instance algorithm selection and automated algorithm
configuration: AUTOFOLIO. In a nutshell, AUTOFOLIO applies the automated algo-
rithm configurator SMAC (Hutter et al., 2011) to the highly parametric algorithm se-
lection framework CLASPFOLIO2 (Hoos et al., 2014). The space is structured in lay-
ers, starting with parameters for pre-solving schedules (including their allocated bud-
gets), pre-processing procedures (transformations, filtering, etc.) and the algorithm
selection systems (resembling a broad range of approaches, including SATZILLA2007,
SATZILLA2012, 3S and SNNAP). Subsequent layers specify additional design deci-
sions and (hyper-)parameters. As demonstrated for multiple algorithm selection sce-
narios from the ASLib, AUTOFOLIO indeed achieves results that are highly competitive
with those of the best-performing selection systems for a broad range of algorithm se-
lection scenarios, without the need for manual choice of the selection mechanism or
selector parameters (Lindauer et al., 2015b, 2017a).

AI planning. The notion of algorithm selection can be applied to domains as well
as to instances of AI planning problems. In the first case, a planner is selected for a
specific domain and then applied for solving arbitrary instances in that domain. This
is conceptually closely related to per-set algorithm selection, as discussed in Section 2.
In the second case, a planner is selected for a specific instance of a planning problem,
such that even within the same domain, different planners may be chosen, depending
on the characteristics of the specific problem instance. Unlike per-domain selection of
planners, this is an instance of per-instance algorithm selection and hence will be our
focus in the following.
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Per-domain selection approaches. Because per-domain selection of AI planners has
been prominently studied in the literature, we briefly discuss some well-known ap-
proaches. The PBP planning system and its successor, PBP2, are based on the idea of
statistically analysing the performance of several domain-independent planning algo-
rithms on a set of training instances from a given planning domain in order to select a
set of planners and associated running times (Gerevini et al., 2009, 2011). When solving
new instances from the same domain, these planners are run one after the other, us-
ing round-robin scheduling with the pre-determined running times for each planner.
PBP and PBP2 also make use of macro-actions, sequences of actions whose judicious
use can considerably improve planner performance. PBP was the overall winner of the
learning track of the 6th International Planning Competition, and PBP2 brought further
improvement through the integration of automated algorithm configuration to better
exploit the performance potential of parameterised planners.

The ASAP planning system is based on similar ideas (Vallati et al., 2013, 2014). In
addition to macro-actions, ASAP also exploits so-called entanglements, which reflect
causal relationships that are characteristic for a given domain of planning problems.
Different from PBP and PBP2, ASAP selects only a single representation (set of macro-
actions and entanglements) and planner for a given domain. On standard benchmarks,
ASAP has been demonstrated to outperform PBP2 (as well as all the component plan-
ners it uses) in terms of the quality or cost of the plans found (Vallati et al., 2014).

IBaCoP2. To the best of our knowledge, the first successful application of per-instance
algorithm selection to AI planning was demonstrated by IBACOP2 (Cenamor et al.,
2014). IBACOP2 uses 12 component planners, which were selected based on their per-
formance on a large and diverse set of problem instances from past international plan-
ning competitions, applying Pareto efficiency analysis to the solution quality of the
best plan found by a given planner, and the time required to find the first valid plan.
A random forest model (see, e.g., Hastie et al., 2009), learned from performance data
of the component planners on a set of training instances using WEKA (Witten et al.,
2016), forms the core of the algorithm selection strategy. This model is used to pre-
dict whether a component planner will solve a given problem instance within a fixed
time limit, based on a set of 35 cheaply computable, domain-specific features, some
of which are derived from heuristics used in state-of-the-art planning algorithms. To
hedge against the consequences of poor predictions, IBACOP2 selects the five compo-
nent planners with the highest estimated probability p for solving the given instance i
and runs these, in the order of decreasing values of p, one after the other, each for one
fifth of the overall time given to the selector for solving i. We note that, because of this
latter strategy, IBACOP2 is not a pure per-instance algorithm selector, but rather com-
bines per-instance algorithm selection with a simple algorithm scheduling approach (cf.
Section 2). IBACOP and IBACOP2 showed strong performance in the 8th International
Planning Competition, with IBACOP2 winning the sequential satisficing track (?).

Planzilla. A second per-instance algorithm selection approach for AI planning has
been considered by Rizzini et al. (2015, 2017). Their PLANZILLA system can be seen
as an application of the previously outlined ∗ZILLA approach (Cameron et al., 2017) to
AI planning. Based on the default configuration of ∗ZILLA, PLANZILLA is comprised
of four sequential stages: (1) a static pre-solving schedule, (2) feature computation, (3)
per-instance algorithm selection and (4) a backup solver. The pre-solving schedule is
obtained by greedy selection from the given set of component planners and allocated
1/90 of the overall time budget for solving the given instance i. Training instances

Evolutionary Computation Volume x, Number x 19



P. Kerschke, H. H. Hoos, F. Neumann, H. Trautmann

solved during the pre-solving stage are not considered for constructing the per-instance
selector, nor for selecting the backup solver. Per-instance algorithm selection makes
use of a comprehensive set of 311 features that includes a broad range of properties of
instance i, as well as features derived from encoding i into propositional satisfiability.
Based on this set of features, PLANZILLA uses cost-sensitive classification forests for
each pair of component planners in combination with a voting procedure to determine
the planner to be run for the remainder of the given time budget. Before computing the
complete feature set, which can be somewhat costly, PLANZILLA uses a simple model
to predict whether feature computation can be completed within the remaining time,
t′; if not, feature computation and per-instance algorithm selection are skipped, and a
backup solver is run instead. This backup solver is also run if the component planner
selected in stage 3 terminates early without producing a valid plan; it is determined as
the solver with the best performance for running time t′ on the set of problem instances
used to train PLANZILLA (excluding any instances solved during pre-solving).

Using all planners that participated in the optimal track of the 2014 International
Planning Competition (IPC-14), PLANZILLA was found to substantially outperform
these individual planners and achieve performance close to that of the VBS (Rizzini
et al., 2015, 2017). However, when evaluated on a set of testing instances dissimi-
lar from those used for training, it was found that dynamic algorithm scheduling ap-
proaches performed better than PLANZILLA; these approaches dynamically construct
an algorithm schedule by performing multiple stages of per-instance algorithm selec-
tion, using not only features of the planning instance i to be solved, but also taking
into account which component planners have already been run on i, without success,
in earlier stages of the schedule.

Travelling salesperson problem. The potential for per-instance algorithm selection
for the TSP differs markedly between exact TSP solvers, which are guaranteed to find
provably optimal solutions for given TSP instances, and inexact solvers, which may find
optimal solutions, but cannot produce a proof of optimality. In exact TSP solving, there
is a single algorithm, CONCORDE (Applegate et al., 2007), that has defined state-of-the-
art performance for more than a decade. In contrast, for inexact TSP solving, there
is no single algorithm that clearly dominates all others (across all types of instances).
In fact, several studies (Pihera and Musliu, 2014; Kotthoff et al., 2015; Kerschke et al.,
2017) have shown that at least three TSP solvers, EAX (Nagata and Kobayashi, 1997,
2013), LKH (Helsgaun, 2000, 2009) and MAOS (Xie and Liu, 2009), define state-of-the-
art performance on different kinds of TSP instances. In addition, two enhanced ver-
sions of EAX and LKH (denoted EAX+RESTART and LKH+RESTART), which employ
additional restart mechanisms to overcome stagnation in the underlying search pro-
cess, often (but not always) outperform EAX and LKH, respectively (Dubois-Lacoste
et al., 2015). Further modifications of these algorithms – e.g., based on the alternative
crossover operator proposed by Sanches et al. (2017a,b), which recently was integrated
into LKH (Tinós et al., 2018) – might achieve even better performance; however, to
this date, we are not aware of conclusive evidence to this effect. Instead, using auto-
mated algorithm selection techniques, the performance complementarity between ex-
isting solvers has been leveraged, leading to very substantial performance improve-
ments over the single best solver (Kotthoff et al., 2015; Kerschke et al., 2017).

Kotthoff et al. (2015) compared EAX, LKH and their respective restart variants
across four well-known sets of TSP instances: random uniform Euclidean (RUE) in-
stances, problems from the TSP library (TSPLIB), as well as national and VLSI in-
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stances2. They used the feature sets proposed by Mersmann et al. (2013) and Hutter
et al. (2014b) (see Section 3.1) for constructing multiple algorithm selectors. Their best
selector, based on multivariate adaptive regression splines (MARS; see, e.g., Friedman,
1991), was trained on a pre-defined subset of features by Hutter et al. (2014b) and closed
the gap between the single best solver from their set (EAX+RESTART) to the VBS by
10%.

In an extended version of this earlier study, Kerschke et al. (2017) considered ad-
ditional types of TSP instances, feature sets and solvers, and furthermore employed
more sophisticated machine learning techniques, including various feature selection
strategies, for constructing algorithm selectors. Specifically, the set of TSP instances
was extended by clustered and morphed instances (Gent et al., 1999; Mersmann et al.,
2012; Meisel et al., 2015), i.e., linear combinations of clustered and RUE instances3. Fur-
thermore, the basis for algorithm selection was expanded with the feature set of Pihera
and Musliu (2014) and the MAOS solver by Xie and Liu (2009). The best algorithm
selector under this extended setup was found to be a support vector machine (Karat-
zoglou et al., 2004), which was constructed on a cheap, yet informative, subset of 16
nearest-neighbour features (Pihera and Musliu, 2014). This particular selector achieved
– despite its non-negligible feature computation costs – a PAR10 score of 16.75s and
thereby closed the gap between the single best solver (EAX+RESTART; 36.30s) and the
virtual best solver (10.73s) by more than 75%.

Further discrete combinatorial problems. Throughout the previous paragraphs, we
gave an overview of algorithm selection approaches for some of the most prominent
and widely studied discrete combinatorial problems. Of course, per-instance algorithm
selection has shown to be effective on several other discrete problems – such as the
travelling thief problem (TTP), where Wagner et al. (2017) recently presented the first
study of algorithm selection, along with a comprehensive collection of performance
and feature data.

In some cases, successful applications of algorithm selection techniques have been
described using different terminology. For instance, Smith-Miles (2008) presented her
algorithm selector for the quadratic assignment problem (QAP) under the umbrella of a
“meta-learning inspired framework”. Similarly, Pulina and Tacchella (2009) demon-
strated the successful application of algorithm selection to the problem of solving quan-
tified Boolean formulae (QBF), an important generalisation of SAT; yet, they describe their
selector as a self-adaptive multi-engine solver, which “selects among its reasoning en-
gines the one which is more likely to yield optimal results”.

Considering the size of the literature on per-instance algorithm selection for dis-
crete combinatorial problems, a comprehensive overview would be far beyond the
scope of this survey and produce little additional insight. Instead, we will now shift
our attention to continuous problems, which present different challenges and opportu-
nities for algorithm selection.

5 Algorithm Selection for Continuous Problems

As previously mentioned, the efficacy of algorithm selection methods strongly depends
on the performance data used for training them: The more representative the training
set is regarding the entire range of possible problem instances, the better performance
we can expect on previously unseen instances. For continuous optimisation problems,

2http://www.math.uwaterloo.ca/tsp/index.html
3generated using the R-package NETGEN (Bossek, 2015)
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representativeness of benchmark sets has been a matter of long-standing debate, rang-
ing from early works of De Jong (1975) up to more recent sets, e.g., from the CEC
competitions (Li et al., 2013) or the black-box optimisation benchmark (BBOB, Hansen
et al., 2009) collection. There are several specific function generators, such as a frame-
work for generating test functions with different degrees of multimodality (Wessing,
2015). Some of the most frequently used, and arguably most relevant test functions
are included in the Python-package optproblems (Wessing, 2016) and the R-package
smoof (Bossek, 2017). While all these benchmark sets (and generators) have advan-
tages and drawbacks, a detailed discussion is beyond the scope of this article. How-
ever, we note that the construction of representative training sets remains, at least to
some degree, an open challenge in the context of algorithm selection for continuous
optimisation problems.

Unconstrained single-objective optimisation problems. In single-objective contin-
uous optimisation, only few studies directly and successfully address the algorithm
selection problem in an automated way. An initial approach of combining exploratory
landscape analysis (ELA) and algorithm selection was presented by Bischl et al. (2012),
focusing on the BBOB test suite. The latter consists of 24 functions which are grouped
into four classes, mainly based on their multimodality, separability and global struc-
ture. Each function is represented by different instances resulting from slightly varied
function parametrisations. Within the BBOB competition, 15 algorithm runs had to
be conducted per function, equally distributed among five (BBOB 2009) or 15 (BBOB
2010) instances for decision space dimensions 2, 3, 5, 10, 20 and, optionally, 40. Al-
gorithm performance was then evaluated using expected running time (ERT, Hansen
et al., 2009), which reflects the expected number of function evaluations required to
reach the global optimum up to a threshold of ε > 0. Subsequently, the ERT was
divided by the ERT of the best algorithm for this function within the respective compe-
tition to obtain a relative ERT indicator. Within the BBOB setup, accuracies in the range
of {10−3, 10−4, . . . , 10−8} are considered.

A representative set of four optimisation algorithms was constructed from the
complete list of candidate solvers. Based on the low-level features introduced by Mers-
mann et al. (2011), Bischl et al. (2012) aimed for an accurate prediction of the best of the
four algorithms for each function within the benchmark set. For this purpose, a sophis-
ticated cost-sensitive learning approach, based on one-sided support vector regression
with a radial basis function kernel, was used (Tu and Lin, 2010). This complex approach
enabled the minimisation of loss (measured by relative ERT) due to incorrect predic-
tions. The median relative ERT of all 600 entries (five runs times five instances for each
of the 24 BBOB functions) served as the overall performance measure of the resulting
classifier. Two different cross-validation strategies were investigated: cross-validation
over the instances of each given function or over the complete set of functions. The lat-
ter task can certainly be considered more challenging, due the structure of the BBOB test
set, which was designed to comprise 24 functions with maximally diverse characteris-
tics, covering a broad range of continous optimisation problems. While, as expected,
better performance was observed in the first setting, performance was remarkably high
in both cases.

Recently, substantial progress has been made in terms of systematically construct-
ing an automated algorithm selector for a joint dataset of all available BBOB test
suites (Kerschke, 2017a; Kerschke and Trautmann, 2018), making use of the R-packages
flacco (Kerschke, 2017b,c), smoof (Bossek, 2017) and mlr (Bischl et al., 2016b). A to-
tal of 480 BBOB instances (instance IDs 1–5 of all 24 BBOB functions, across dimensions
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2, 3, 5 and 10) were considered, combined with respective results of all 129 solvers sub-
mitted to the COCO platform (Hansen et al., 2016) so far. In order to keep the size of
the set of solvers manageable and to focus on the most relevant and high performing
solvers, the construction of the algorithm selector was based on a carefully selected sub-
set of 12 solvers: two deterministic methods (variants of the BRENT-STEP algorithm,
BSRR and BSQI, see Baudiš and Pošı́k, 2015), five multi-level approaches – MLSL (Pál,
2013; Rinnooy Kan and Timmer, 1987), FMINCON, FMINUNC, HMLSL (Pál, 2013) and
MCS (Huyer and Neumaier, 2009) – as well as four CMA-ES variants: CMA-CSA
(Atamna, 2015), IPOP-400D (Auger et al., 2013), HCMA (Loshchilov et al., 2013) and
SMAC-BBOB (Hutter et al., 2013). The commercial solver OPTQUEST/NLP (Pál, 2013;
Ugray et al., 2007) was also included.

Performance was measured by relative ERT as in Bischl et al. (2012) by normal-
ising the ERT for each solver per problem and dimension based on the best ERT for
the respective problem (among the algorithms in the given set). A hybrid version of
CMA-ES (HCMA, Loshchilov et al., 2013) turned out to be the single best solver (SBS),
with a mean relative ERT score of 30.4 across all considered instances – and thus being
the only solver to approximate the optimal objective value of all 96 problems up to the
precision level of 10−2 used for this study. Various combinations of supervised learning
(notably, classification, regression, pairwise regression) methods and feature selection
strategies (greedy forward-backward and backward-forward, two genetic algorithm
variants) were utilised in combination with leave-one-function-out cross-validation.
The best algorithm selector obtained in this manner, a classification-based support vec-
tor machine (Vapnik, 1995) combined with a sequence of a greedy forward-backward
and a genetic-algorithm-based feature selection approach, managed to reduce the mean
relative ERT of the SBS roughly by half, to a value of 14.2, only requiring nine out of
more than 300 exploratory landscape features. Specifically, meta-model and nearest-
better clustering features (see Section 3.2) were used in this context. Feature compu-
tation costs were taken into account and accounted for merely 50 × d samples of the
objective function (Kerschke et al., 2016a) – where d denotes the dimensionality of the
given decision space – which matches common intitial population sizes of evolutionary
optimisation algorithms. Hence, when using such an evolutionary optimisation algo-
rithm, making use of its initial population – which needs to be evaluated in any case –
renders feature computation cost negligible.

Constrained single-objective optimisation problems. In the area of constrained con-
tinuous optimisation, the performance of popular evolutionary computation tech-
niques – such as differential evolution, evolution strategies and particle swarm optimi-
sation – has been investigated for problems with linear and quadratic constraints (Pour-
soltan and Neumann, 2015b,a). Features capturing the correlation of these constraints
have been investigated w.r.t. their impact on solver performance. Malan et al. (2015)
and Malan and Moser (2018) numerically characterised constraint violations using
landscape features. Based on results on the CEC 2010 benchmark problems, it was
demonstrated that this approach produces detailed insights into constraint violation
behaviour of continuous optimisation algorithms, indicating its potential usefulness in
the context of algorithm selection and related approaches.

Furthermore, constraints have been evolved in different ways to construct in-
stances that can be used for algorithm selection. This includes approaches maximising
the performance difference of two given solvers, as well as a multi-objective approach
for creating instances that reflect the tradeoffs between two given algorithms observed
when varying the constraints. Neumann and Poursoltan (2016) demonstrated that the
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multi-objective approach leads to an instance set that provides a better basis for algo-
rithm selection than sets obtained by maximising performance differences.

Multi-objective optimisation problems. So far, there are no systematic studies of au-
tomated algorithm selection for multi-objective continuous optimisation problems, as
feature design is already extremely challenging and the suitability of existing bench-
mark sets is questionable. However, initial approaches regarding multi-objective fea-
tures, landscape analysis and multimodality exist and offer promising perspectives for
future research (see Section 6).

6 Perspectives and Open Problems

In the previous sections, we have given an overview of the state-of-the-art in algorithm
selection for discrete and continuous problems. We have summarised the general ap-
proach of per-instance algorithm selection and discussed a number of related problems,
including per-set algorithm selection, automated algorithm configuration, algorithm
schedules and parallel algorithm portfolios. An important aspect for any per-instance
algorithm selection approach is the design of informative and cheaply computable fea-
tures that are able to characterise and differentiate problem instances w.r.t. a given set
of algorithms. We have given an overview of feature sets for several prominent discrete
problems, as well as features used in continuous black-box optimisation. Based on this,
we have summarised prominent algorithm selection approaches for discrete and con-
tinuous problems. In the following, we will discuss perspectives and challenges for
future research in the area of automated algorithm selection.

Performance measures. A crucial part of any empirical performance evaluation –
which provides the basis for constructing algorithm selectors – is the underlying per-
formance measure. While penalised average running time (notably, PAR10, Bischl et al.,
2016a) and expected running time (ERT, Hansen et al., 2009) are commonly used in this
context, some of its parameters can substantially affect performance measurements.
For example, in the case of PAR10, the penalty factor is set to 10 and an arithmetic
mean is used to aggregate over multiple runs or problem instances. Both choices can,
in principle, be varied (e.g., by replacing the arithmetic mean by different quantiles),
with significant effects on the robustness of solvers selected based on them.

Recently, Kerschke et al. (2018a) presented a structured approach on how to assess
the sensitivity of an empirical performance evaluation w.r.t. altered requirements re-
garding solver robustness across runs, focusing on PAR10 and ERT. As demonstrated
within this study, by adjusting the parameters of the performance measures, users are
able to adapt the ranking of a given set of algorithms, and the performance character-
istics of the algorithm selectors constructed based on that set, according to their pref-
erences – trading off, for example, running time vs. robustness. In an alternative ap-
proach, van Rijn et al. (2017) utilise the advantages of two popular performance mea-
sures – ERT and fixed cost error (FCE, see, e.g. Bäck et al., 2013) – by combining and
standardising them within a joint performance measure. Moreover, a multi-objective
perspective on performance measurement shows promise, e.g., by enabling direct in-
vestigations of the trade-off between the number of failed runs and the average running
time of successful runs of a given solver (Bossek and Trautmann, 2018). Concepts such
as Pareto-optimality and related multi-objective quality indicators (Coello Coello et al.,
2007) could then be used in the context of constructing and assessing the performance
of algorithm selectors and related meta-algorithmic techniques.

24 Evolutionary Computation Volume x, Number x



Automated Algorithm Selection: Survey and Perspectives

Evolving / generating problem instances. Naturally, an algorithm selector only gen-
eralises to problems which are similar enough to the instances contained in the bench-
mark set that was used to construct it. Usually, common benchmark sets are considered,
which are deemed to be representative of a specific use context. However, one could
argue that benchmark sets should be designed specifically w.r.t. the given set of candi-
date solvers, such that they exhibit maximum diversity regarding the challenges posed
by the instances for the specific solvers. The idea of evolving instances utilising an
evolutionary algorithm dates back to van Hemert (2006) and Smith-Miles et al. (2010),
who constructed instances that are extremely hard or easy for specific TSP solvers; these
works were followed by more sophisticated approaches of Mersmann et al. (2012, 2013)
and Nallaperuma et al. (2013). Bossek and Trautmann (2016a,b) further explored this
idea by evolving TSP instances that maximise the performance difference between two
given solvers, i.e., instances that are extremely hard to solve for one solver, but very
easy for the other. This can, in principle, provide insights into links between perfor-
mance differences and instance characteristics – a topic that is highly relevant for auto-
mated algorithm selection.

Recent studies build upon these concepts by explicitly focusing on the diversity of
evolved instances (Gao et al., 2015; Neumann et al., 2018), paving the way for a sys-
tematic approach to construct most informative and relevant benchmarks specifically
tailored to a given set of solvers. The next promising step in this direction will be the
complementation of state-of-the-art benchmarks with those specifically designed in-
stances in order to provide most informative benchmark sets tailored to given sets of
solvers. Such sets are likely to provide a basis for constructing per-instance algorithm
selectors whose performance generalises better to problem instances that differ from
those used during their construction. Improvements, configuration and enhancements
of the underlying evolutionary algorithm offer extremely promising research perspec-
tives. Interestingly, the overall approach also provides a way for systematically detect-
ing advantages and shortcomings of specific solvers, and thus produce benefits for the
analysis and design of algorithms beyond algorithm selection and related approaches.

Online algorithm selection. The work covered in this survey is mainly related to
(static) offline algorithm selection, where algorithm selectors are constructed based on
using a set of training instances prior to applying them to new problem instances. Yet,
according to Armstrong et al. (2006), Gagliolo and Schmidhuber (2010) and Degroote
et al. (2016), in principle, it might be possible to obtain even better results using (dy-
namic) online algorithm selection methods, which adapt an algorithm selector while it
is being used to solve a series of problem instances. Although this involves a certain
overhead, it can enable better performance and increased robustness, as the selector
can react better to changes in the stream of problem instances it is tasked to solve.
In order to more easily amortise the overhead involved in online algorithm selection,
building on earlier work on probing features (Hutter et al., 2014b; Kotthoff et al., 2015),
the development of cheap and informative monitoring features – i.e., features that ex-
tract sufficient instance-specific information without significantly reducing solver or
selector performance – is likely to be of key importance.

Another approach for online algorithm selection and the selection of an appro-
priate algorithm for a given problem instance is provided by so-called hyper-heuristics;
these are algorithms for selecting or generating solvers for a given problem from a set
of given heuristic components (Burke et al., 2013). In many cases, they employ heuris-
tic, rule-based mechanisms and make use of rather simple components, such as greedy
construction algorithms for the given problem.
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Life-long learning hyper-heuristics are applied in a setting where a series of prob-
lem instances is solved. Based on the performance of previously chosen component
solvers, a solver for a new problem instance is chosen that is deemed most likely to
perform best. Life-long learning hyper-heuristics have achieved good results for well-
known decision problems, such as constraint satisfaction (Ortiz-Bayliss et al., 2015) and
bin packing (Sim et al., 2015).

Features for mixed (discrete + continuous) problems. Developing good features for
a given problem is a challenging task that provides a crucial basis for effective algo-
rithm selection techniques. As discussed previously, rich sets of features have been
introduced for well-studied discrete and continuous problems, but many combinato-
rial problems of practical importance involve discrete and continuous decision vari-
ables. Perhaps the best example for this is mixed integer programming (MIP), a problem
of great importance in the context of a broad range of challenging real-world optimisa-
tion tasks. Hutter et al. (2014b) introduced 95 features for MIP, including problem type
and size, variable-constraint graph, linear constraint matrix, objective function and LP-
based features. For the travelling thief problem (TTP), which can be seen as a combination
of the TSP and knapsack problem (KP), algorithm selection has been studied by Wagner
et al. (2017). They used 48 TSP and four KP features, plus three parameters of the TTP
that connect the TSP and KP parts of the problem. Features for the KP that characterise
the correlation of weights and profits have so far not been taken into account, although
they seem to provide a further improvement in the characterisation of TTP instances.

Algorithm selection for multi-objective optimisation problems. While we have cov-
ered numerous studies on algorithm selection in this survey, none of them has dealt
with multi-objective optimisation problems. From a practitioner’s point of view, this
is a significant limitation, as multiple competing objectives arise in many, perhaps
most, real-world problems4. However, for convenience, these problems are often han-
dled as single-objective problems – e.g., by focusing on the most important objective
or by applying scalarisation functions. Many prominent benchmarks for continuous
multi-objective optimisation algorithms, such as bi-objective BBOB (Tušar et al., 2016),
DTLZ (Deb et al., 2005), ED (Emmerich and Deutz, 2007), MOP (van Veldhuizen, 1999),
UF (Zhang et al., 2008), WFG (Huband et al., 2006) and ZDT (Zitzler et al., 2000), are
entirely artificial, and it is unclear to which degree they resemble real-world problems.

In addition, there is a dearth of research on the characterisation of those optimi-
sation problems – in particular by means of automatically computable features. Of
course, one could compute variants of existing features for each of the objectives sepa-
rately (see, e.g., Kerschke and Trautmann, 2016), but this completely ignores interaction
effects between the objectives, which in turn have a strong impact on the landscapes
(even for rather simple problems, see, e.g., Kerschke and Grimme, 2017). Hence, there
is a significant need and opportunity for research on visualising multi-objective land-
scapes (see, e.g., da Fonseca, 1995; Tušar, 2014; Tušar and Filipič, 2015; Kerschke and
Grimme, 2017), as well as characterising them (numerically) – along the lines of Ulrich
et al. (2010), Kerschke et al. (2016b, 2018b) or Grimme et al. (2018) – as this will (a) im-
prove the understanding of multi-objective problems and their specific properties, and
(b) provide a basis for automated feature computation. We expect the latter to be of key
importance for the development of new algorithms and effective per-instance selectors
in the area of multi-objective optimisation.

4Consider, for example, the trade-off between the performance improvement and the accompanying costs
for finding such an improved solution.
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In order to construct a powerful and complementary portfolio of multi-objective
optimisers (a priori), as well as for analysing the strengths and weaknesses of the result-
ing algorithm selector (a posteriori), visual approaches such as the empirical attainment
function (EAF) plots (da Fonseca et al., 2005; da Fonseca and da Fonseca, 2010; López-
Ibáñez et al., 2010) provide valuable feedback on location, spread and inter-point de-
pendence structure of the considered optimisers’ Pareto set approximations.

Algorithm selection on streaming data. The importance of automated algorithm se-
lection and related approaches in the context of learning on streaming data should not
be neglected. Streaming data (Bifet et al., 2018) pose considerable challenges for the
respective algorithms, as (a) data points arrive as a constant stream, (b) the size of the
stream is large and potentially unbounded, (c) the order of data points cannot be in-
fluenced, (d) data points can typically only be evaluated once and are discarded after-
wards, and (e) the underlying distribution of the data points in the stream can change
over time (non-stationarity or concept drift).

Few concepts for automated algorithm selection on streaming data exist so far,
both for supervised (see, e.g., van Rijn et al., 2014, 2018) and unsupervised learning
algorithms. In unsupervised learning, stream clustering is a very active research field.
Although several stream clustering approaches exist (see surveys of Amini et al., 2014;
Carnein and Trautmann, 2018; Mansalis et al., 2018), these have many parameters that
affect their performance, yet clear guidelines on how to set and adjust them over time
are lacking. Moreover, different kinds of algorithms are required in the so-called online
phase (maintaining an informative aggregated data stream representation, in terms of
microclusters) and offline phase (standard clustering algorithm, such as k-means ap-
plied to the microclusters), which leads to a huge space of parameter and algorithm
combinations. An initial approach on configuring and benchmarking stream clustering
approaches based on irace (López-Ibáñez et al., 2016) has been presented by Carnein
et al. (2017). Building on this work, especially in light of remark (e) above, we expect
that algorithm selection will play an important role for robust learning on streaming
data – especially when keeping the efficiency regarding real-time capability in mind.
This will require informative feature sets, ensemble techniques, as well as a much wider
range of suitable benchmarks. Of course, ideally a combination of algorithm selection
and (online) configuration is desired and a very promising line of research.

Per-instance algorithm configuration. As previously explained, automatic algorithm
configuration involves the determination of parameter settings of a given target algo-
rithm to optimise its performance on a given set of problem instances. Per-instance
algorithm configuration (PIAC) is a variant of this problem in which parameter settings
are determined for a given problem instance to be solved. It can be seen as a generali-
sation of per-instance algorithm selection, in which the set of algorithms that form the
basis for selection comprises all (valid) configurations of a single, parameterised algo-
rithm. Analogous to per-instance algorithm selection, PIAC involves two phases: an
offline phase, during which a per-instance configurator is trained, and an online phase,
in which this configurator is run on given problem instances. During the latter, a con-
figuration is determined based on features of the problem instance to be solved. Stan-
dard, per-set algorithm configuration, in contrast, is an offline process that results in a
single configuration that is subsequently used to solve problem instances presumed to
resemble those used during training. PIAC is challenging, because the spaces of (valid)
configurations to select from is typically very large (see, e.g., Hutter et al., 2014a), and
compared to the size of these configuration spaces, any training data used during the
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offline construction of the per-instance configurator is necessarily sparse. In particular,
for typical configuration scenarios, the training data would necessarily cover only a
very small number of configurations, which makes it challenging to learn a mapping
from instance features to configurations.

We consider PIAC to be a largely open problem, with significant potential for fu-
ture work. There is some evidence in the literature that it may have significant benefits
compared to the more established per-set configuration techniques. Notably, Kadioglu
et al. (2010) proposed a PIAC approach based on a combination of clustering and a
standard, per-set algorithm configurator and reported promising results on several set
covering, mixed integer programming and propositional satisfiability algorithms.

Further challenges. Due to the steady stream of work in algorithm selection and
related areas, it is important to keep track of promising developments. Of course,
domain-related research networks such as COSEAL5 might relieve this challenging task
to some degree, yet they will not be able to keep up with all developments within this
fast-growing and productive community. Instead, comparisons against state-of-the-art
methods, which are of special significance in this context, are facilitated by benchmark-
ing platforms and libraries, such as ASLIB (Bischl et al., 2016a), ACLIB (Hutter et al.,
2014a) and HPOLIB (Eggensperger et al., 2013) for algorithm selection, configuration
and hyperparameter optimisation, respectively. At the same time, it is important (a) to
promote and establish as best practice the use of these libraries, especially in the context
of newly proposed methods for algorithm selection and related problems, and (b) to
maintain and expand these libraries, in order to ensure their continued relevance, e.g.,
by integrating scenarios for multi-objective and additional real-world problems.

The latter not only applies to the previously mentioned libraries, but also to
broader benchmark collections for the underlying specific problems. For example, re-
cent studies have analysed the ‘footprints’ of different continuous optimisation algo-
rithms on common benchmarks; while Muñoz Acosta and Smith-Miles (2017) focused
on BBOB (arguably the most prominent benchmark in continuous black-box optimisa-
tion), Muñoz Acosta et al. (2018) applied a similar analysis to machine learning prob-
lems from the UCI repository (Dheeru and Karra Taniskidou, 2017) and OpenML (van
Rijn et al., 2013). Their visual analyses indicate that (a) different “comfort zones” for
the various algorithms in question exist across the respective instance spaces, in line
with what might be expected based on a liberal interpretation of the NFL theorems by
Wolpert and Macready (1997), and (b) the instances from common benchmarks’ prob-
lems in continuous optimisation are not very diverse, but cover only relatively small
areas of the overall problem instance space.

Another important direction for future work is the improvement of problem-
specific features in general. Aside from the directions outlined previously (monitoring
features as well as features for mixed and multi-objective problems), more informative
and cheaper features are always desirable and likely to pave the way towards more
effective applications of algorithm selection and related techniques.

An interesting open question regards the trade-off between the performance
achieved by algorithm selection approaches, e.g., in relation to a hypothetical per-
fect selector (VBS), and their complexity, including the complexity of the feature sets
they operate on. There is recent evidence from an application of algorithm selection
to solvers for quantified Boolean formulae (QBF) that suggests that sometimes, a small
number of simple features is sufficient for achieving excellent performance (Hoos et al.,

5https://www.coseal.net/
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2018). However, it is presently unclear to which extent this situation arises in other
application scenarios, and to which degree it is contingent on the use of highly sophis-
ticated algorithm selection techniques.

Finally, an intriguing direction for future work is the development of algorithm se-
lection techniques for automated algorithm configurators and selectors. Intuitively, it is
clear that different algorithm configuration scenarios would be handled most efficiently
using rather different configuration procedures (depending, e.g., on the prevalence of
numerical vs. categorical parameters). Likewise, it has been observed in the recent
Open Algorithm Selection Competition (Lindauer et al., 2018) that different AS techniques
work best on different AS scenarios – suggesting that meta-algorithm selection (i.e.,
AS applied to AS strategies) might be useful for quickly identifying the selection strat-
egy to be used in a particular application context. In both cases, configurator selection
and meta-selection, the limited amount of training data is likely to give rise to specific
challenges, which may well require the development of new AS techniques.
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