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Abstract

Many optimization problems arising in applications have to consider several objective
functions at the same time. Evolutionary algorithms seem to be a very natural choice
for dealing with multi-objective problems as the population of such an algorithm can
be used to represent the trade-offs with respect to the given objective functions. In
this paper, we contribute to the theoretical understanding of evolutionary algorithms
for multi-objective problems. We consider indicator-based algorithms whose goal is to
maximize the hypervolume for a given problem by distributing µ points on the Pareto
front. To gain new theoretical insights into the behavior of hypervolume-based algo-
rithms we compare their optimization goal to the goal of achieving an optimal mul-
tiplicative approximation ratio. Our studies are carried out for different Pareto front
shapes of bi-objective problems. For the class of linear fronts and a class of convex
fronts, we prove that maximizing the hypervolume gives the best possible approxima-
tion ratio when assuming that the extreme points have to be included in both distribu-
tions of the points on the Pareto front. Furthermore, we investigate the choice of the
reference point on the approximation behavior of hypervolume-based approaches and
examine Pareto fronts of different shapes by numerical calculations.
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1 Introduction

Multi-objective optimization [15] deals with the task of optimizing several objective
functions at the same time. Here, several attributes of a given problem are employed
as objective functions and are used to define a partial order, called preference order,
on the solutions, for which the set of minimal (maximal) elements is sought. Usually,
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the objective functions are conflicting, which means that improvements with respect
to one function can only be achieved when impairing the solution quality with respect
to another objective function. Due to this, such problems usually do not have a single
optimal function value. Instead, there is a set of optimal objective vectors which repre-
sents the different trade-offs of the different objective functions. Solutions that cannot
be improved with respect to any function without impairing another one are called
Pareto-optimal solutions. The objective vectors associated with these solutions are called
Pareto-optimal objective vectors and the set of all these objective vectors constitutes the
Pareto front.

In contrast to single-objective optimization, in multi-objective optimization the
task is not to compute a single optimal solution but a set of solutions representing
the different trade-offs with respect to the given objective functions. Most of the best-
known single-objective polynomially solvable problems like shortest path or minimum
spanning tree become NP-hard when at least two weight functions have to be opti-
mized at the same time. In this sense, multi-objective optimization is generally consid-
ered as more difficult than single-objective optimization.

Another, more promising, approach to deal with multi-objective optimization
problems is to apply general stochastic search algorithms that evolve a set of possi-
ble solutions into a set of solutions that represent the trade-offs with respect to the ob-
jective functions. Well-known approaches in this field are evolutionary algorithms [2]
and ant colony optimization [14]. Especially, multi-objective evolutionary algorithms
(MOEAs) have been shown to be very successful when dealing with multi-objective
problems [11, 12]. Evolutionary algorithms work with a set of solutions called pop-
ulation which is evolved over time by applying crossover and mutation operators to
produce new possible solutions for the underlying multi-objective problem. Due to
this population-based approach, they are in a natural way well-suited for dealing with
multi-objective optimization problems.

A major problem when dealing with multi-objective optimization problems is that
the number of different trade-offs may be too large. This implies that not all trade-
offs can be computed efficiently, i. e., in polynomial time. In the discrete case the Pareto
front may grow exponentially with respect to the problem size and may be even infinite
in the continuous case. In such a case, it is not possible to compute the whole Pareto
front efficiently and the goal is to compute a good approximation consisting of a not too
large set of Pareto-optimal solutions. It has been observed empirically that MOEAs are
able to obtain good approximations for a wide range of multi-objective optimization
problems.

The aim of this paper is to contribute to the theoretical understanding of MOEAs
in particular with respect to their approximation behavior. Many researchers have
worked on how to use evolutionary algorithms for multi-objective optimization prob-
lems and how to find solutions being close to the Pareto front and covering all parts of
the Pareto front. However, often the optimization goal remains rather unclear as it is
not stated explicitly how to measure the quality of an approximation that a proposed
algorithm should achieve.

One popular approach to achieve the mentioned objectives is to use the hyper-
volume indicator [33] for measuring the quality of a population. This approach has
gained increasing interest in recent years (see e. g. [4, 22, 24, 35]). The hypervolume
indicator implicitly defines an optimization goal for the population of an evolutionary
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algorithm. Unfortunately, this optimization goal is rarely understood from a theoreti-
cal point of view. Auger, Bader, Brockhoff, and Zitzler [1] have shown that the slope of
the front determines which objective vectors maximize the value of the hypervolume
when dealing with continuous Pareto fronts. Comparing hypervolume-optimal sets
and best-approximation sets in the worst-case, Bringmann and Friedrich [9] observed
that maximizing the hypervolume aligns well with an additive approximation while
a good multiplicative approximation is achieved when the hypervolume of logarith-
mized axes is maximized [21]. Whether additive or multiplicative approximation is
appropriate, depends on the meaning of an objective: Additive approximation is in-
variant to shifting the objective function; multiplicative approximation is invariant to
scaling the objective function. While Bringmann and Friedrich [9] studied the worst-
case behavior, we examine the properties of common specific Pareto fronts. The aim
of this paper is to further increase the theoretical understanding of the hypervolume
indicator and examine its multiplicative approximation behavior.

As multi-objective optimization problems often involve a vast number of Pareto-
optimal objective vectors, multi-objective evolutionary algorithms use a population of
fixed size and try to evolve the population into a good approximation of the Pareto
front. However, often it is not stated explicitly what a good approximation for a given
problem is. One approach that allows a rigorous evaluation of the approximation qual-
ity is to measure the quality of a solution set with respect to its approximation ratio [28].
We follow this approach and examine the approximation ratio of a population with re-
spect to all objective vectors of the Pareto front.

The advantage of the approximation ratio is that it gives a meaningful scalar value
which allows us to compare the quality of solutions between different functions, dif-
ferent population sizes, and even different dimensions. This is not the case for the
hypervolume indicator. A specific dominated volume does not give a priori any infor-
mation how well a front is approximated. Also, the hypervolume measures the space
relative to an arbitrary reference point (cf. Section 2.1). This (often unwanted) freedom
of choice not only changes the distribution of the points, but also makes the hyper-
volumes of different solutions measured relative to a (typically dynamically changing)
reference point very hard to compare.

Our aim is to examine whether a given solution set of µ search points maximizing
the hypervolume (called the optimal hypervolume distribution) gives a good approxi-
mation measured with respect to the approximation ratio. We do this by investigating
two classes of objective functions having two objectives each and analyze the optimal
distribution for the hypervolume indicator and the one achieving the optimal approxi-
mation ratio.

In a first step, we assume that both sets of µ points have to include both opti-
mal points regarding the given two single objective functions. We point out situations
where maximizing the hypervolume provably leads to the best approximation ratio
achievable by choosing µ Pareto-optimal solutions. After these theoretical investiga-
tions, we carry out numerical investigations to see how the shape of the Pareto front in-
fluences the approximation behavior of the hypervolume indicator and point out where
the approximation given by the hypervolume differs from the best one achievable by a
solution set of µ points. These initial theoretical and experimental results investigating
the correlation between the hypervolume indicator and multiplicative approximations
have been published as a conference version in [20].
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This paper extends its conference version in Section 4 to the case where the optimal
hypervolume distribution is dependent on the chosen reference point. The reference
point is a crucial parameter when applying hypervolume-based algorithms. It deter-
mines the area in the objective space where the algorithm focuses its search. As the
hypervolume indicator itself, it is hard to understand the impact of the choice of the
reference point. Different studies have been carried out on this topic and initial results
on the optimal hypervolume distribution in the dependence of the reference point have
been obtained in [1] and [10]. We provide new insights into how the choice of the refer-
ence point may affect the approximation behavior of hypervolume-based algorithms.
In our studies, we relate the optimal hypervolume distribution with respect to a given
reference to the optimal approximation ratio obtainable when having the freedom to
choose the µ points arbitrarily.

The rest of the paper is structured as follows. In Section 2, we introduce the hyper-
volume indicator and our notation of approximations. Section 3 gives analytic results
for the approximation achievable by the hypervolume indicator under the assumption
that both extreme points have to be included in the two distributions and reports on
our numerical investigations Pareto fronts having different shapes. In Section 4, we
generalize our results and study the impact of the reference point on the optimal hy-
pervolume distribution and relate this choice to the best possible overall approximation
ratio when choosing µ points. Finally, we finish with some concluding remarks.

2 The Hypervolume Indicator and Multiplicative Approximations

In this paper, we consider bi-objective maximization problems P : S → R2 for an ar-
bitrary decision space S . We are interested in the so-called Pareto front of P , which
consists of all maximal elements of P (S) with respect to the weak Pareto dominance
relation. We restrict ourselves to problems with a Pareto front that can be written as
{(x, f(x)) | x ∈ [xmin, xmax]} where f : [xmin, xmax] → R is a continuous, differen-
tiable, and strictly monotonically decreasing function. This allows us to denote with
f not only the actual function f : [xmin, xmax] → R, but also the front {(x, f(x)) | x ∈
[xmin, xmax]} itself. We assume further that xmin > 0 and f(xmax) > 0 hold.

We intend to find a solution set X∗ = {x∗1, x∗2, . . . , x∗µ} of µ Pareto-optimal search
points (x∗i , f(x

∗
i )) that constitutes a good approximation of the front f .

2.1 Hypervolume indicator

The hypervolume (HYP) measures the volume of the dominated portion of the object-
ive space. It was first introduced for performance assessment in multi-objective opti-
mization by Zitzler and Thiele [33]. Later on it was used to guide the search in various
hypervolume-based evolutionary optimizers [4, 16, 22, 25, 31, 35].

Geometrically speaking, the hypervolume indicator measures the volume of the
dominated space of all solutions contained in a solution set X ⊆ Rd. This space is trun-
cated at a fixed footpoint called the reference point r = (r1, r2, . . . , rd). The hypervolume
HYPr(Y ) of a solution set Y in dependence of a given reference point r = (r1, r2, . . . , rd)
is then defined as

HYPr(Y ) := VOL

( ⋃
(y1,...,yd)∈Y

[r1, y1]× · · · × [rd, yd]

)
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Figure 1: Point distribution X = {1, 1.6, 2} for the linear front f : [1, 2] → [1, 2] with f(x) =
3− x, which achieves a hypervolume of HYP(X) = 1.865 with respect to the reference point
r = (0.5, 0.25) and an approximation ratio of APP(X) = 1.25. The shaded areas show the
dominated portion of the objective space and the approximated portion of the objective space,
respectively.

with VOL(·) being the usual Lebesgue measure (see Figure 1(a) for an illustration).

The hypervolume indicator is a popular second-level sorting criterion in many
recent multi-objective evolutionary algorithms for several reasons. Besides having a
very intuitive interpretation, it is also the only common indicator that is strictly Pareto-
compliant [34]. Strictly Pareto-compliant means that given two solution sets A and B
the indicator values A higher than B if the solution set A dominates the solution set B.
It has further been shown by Bringmann and Friedrich [9] that the worst-case approxi-
mation factor of all possible Pareto fronts obtained by any hypervolume-optimal set of
fixed size µ is asymptotically equal to the best worst-case approximation factor achiev-
able by any set of size µ.

In the last years, the hypervolume has become very popular and several algo-
rithms have been developed to calculate it. The first one was the Hypervolume
by Slicing Objectives (HSO) algorithm, which was suggested independently by Zit-
zler [30] and Knowles [23]. For d ≤ 3 it can be solved in (asymptotically opti-
mal) time O(n log n) [19]. The currently best asymptotic runtime for d ∈ {4, 5, 6}
is O(n(d−1)/2 log n) [29]. The best known bound for large dimensions d ≥ 7 is
O(n(d+2)/3) [5].

On the other hand, Bringmann and Friedrich [6] proved that all hypervolume al-
gorithms must have a superpolynomial runtime in the number of objectives (unless
P = NP). Assuming the widely accepted exponential time hypothesis, the runtime
must even be at least nΩ(d) [8]. As this dashes the hope for fast and exact hypervol-
ume algorithms, there are several estimation algorithms [3, 6, 7] for approximating the
hypervolume based on Monte Carlo sampling.

2.2 Approximations

In the following, we define our notion of approximation in a formal way. Let X =
{x1, . . . , xµ} be a solution set and f a function that describes the Pareto front. We call
a Pareto front convex if the function defining the Pareto front is a convex function.
Otherwise, we call the Pareto front concave. Note that this differs from the notation
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used in [20].

The approximation ratio APP(X) of a solution set X with respect to f is defined ac-
cording to [28] as follows.

Definition 1 Let f : [xmin, xmax] → R and X = {x1, x2, . . . , xµ}. The solution set X is a
δ-approximation of f iff for each x ∈ [xmin, xmax] there is an xi ∈ X with

x ≤ δ · xi and f(x) ≤ δ · f(xi)

where δ ∈ R, δ ≥ 1. The approximation ratio of X with respect to f is defined as

APP(X) := min{δ ∈ R | X is a δ-approximation of f}.

Figure 1(b) shows the area of the objective space that a certain solution set X δ-
approximates for δ = 1.25. Note that this area covers the entire Pareto front f . Since the
objective vector (1.25, 1.75) is not δ-approximated for all δ < 1.25, the approximation
ratio of X is 1.25.

Our definition of approximation is similar to the definition of multiplicative ε-
dominance given in [26]. In this paper, an algorithmic framework for discrete multi-
objective optimization is proposed which converges to a (1 + ε)-approximation of the
Pareto front.

3 Results independent of the reference point

The goal of this paper is to relate the above definition of approximation to the optimiza-
tion goal implicitly defined by the hypervolume indicator. Using the hypervolume, the
choice of the reference point decides which parts of the front are covered. In this section
we avoid the additional influence of the reference point by considering only solutions
where both extreme points have to be included. The influence of the reference point is
studied in Section 4.

All the functions that we consider in this paper have positive and bounded do-
mains and codomains. Furthermore, the functions that are under consideration don’t
have infinite or zero derivative at the extremes. Hence, choosing the reference point
r = (r1, r2) for appropriate r1, r2 ≤ 0 ensures that the points xmin and xmax are con-
tained in an optimal hypervolume distribution. A detailed calculation on how to
choose the reference point such that xmin and xmax are contained in an optimal hyper-
volume distribution is given in [1]. Assuming that xmin and xmax have to be included
in the optimal hypervolume distribution, the value of the volume is in this section in-
dependent of the choice of the reference point. Therefore, we write HYP(X) instead of
HYPr(X).

Consider a Pareto front f . There is an infinite number of possible solution sets of
fixed size µ. To make this more formal, let X (µ, f) be the set of all subsets of

{(x, f(x)) | x ∈ [xmin, xmax]}

of cardinality µwhich contain (xmin, f(xmin)) and (xmax, f(xmax)). We want to compare
two specific solution sets from X called optimal hypervolume distribution and optimal ap-
proximation distribution defined as follows.
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Definition 2 The optimal hypervolume distribution

XHYP
opt (µ, f) := argmax

X∈X (µ,f)

HYP(X)

consists of µ points that maximize the hypervolume with respect to f . The optimal approxima-
tion distribution

XAPP
opt (µ, f) := argmin

X∈X (µ,f)

APP(X)

consists of µ points that minimize the approximation ratio with respect to f . For brevity, we
will also use Xopt(µ, f) in Figures 5–7 as a short form to refer to both sets XHYP

opt (µ, f) and
XAPP

opt (µ, f).

Note that “optimal hypervolume distributions” are also called “optimal
µ-distributions” [1, 10] or “maximum hypervolume set” [9] in the literature.

We want to investigate the approximation ratio obtained by a solution set maxi-
mizing the hypervolume indicator in comparison to an optimal one. For this, we first
examine conditions for an optimal approximation distribution XAPP

opt (µ, f). Later on,
we consider two classes of functions f on which the optimal hypervolume distribution
XHYP

opt (µ, f) is equivalent to the optimal approximation distribution XAPP
opt (µ, f) and

therefore provably leads to the best achievable approximation ratio.

3.1 Optimal approximations

We now consider the optimal approximation ratio that can be achieved placing µ points
on the Pareto front given by the function f . The following lemma states a condition
which allows to check whether a given set consisting of µ points achieves an optimal
approximation ratio for a given function f .

Lemma 1 Let f : [xmin, xmax] → R be a Pareto front and X = {x1, . . . , xµ} be an arbitrary
solution set with x1 = xmin, xµ = xmax, and xi ≤ xi+1 for all 1 ≤ i < µ. If there is a
constant δ > 1 and a set = Z = {z1, . . . , zµ−1} with xi ≤ zi ≤ xi+1 and δ = zi

xi
= f(zi)

f(xi+1)

for all 1 ≤ i < µ, then X = XAPP
opt (µ, f) is the optimal approximation distribution with

approximation ratio δ.

Proof. We assume that a better approximation ratio than δ can be achieved by choosing
a different set of solutions X ′ = {x′1, . . . , x′µ}with x′1 = xmin, x′µ = xmax, and x′i ≤ x′i+1,
1 ≤ i < µ, and show a contradiction.

The points zi, 1 ≤ i ≤ µ − 1, are the points that are worst approximated by the
set X . Each zi is approximated by a factor of δ. Hence, in order to obtain a better ap-
proximation than the one achieved by the set X , the points zi have to be approximated
within a ratio of less than δ. We now assume that there is a point zi for which a better
approximation is achieved by the set X ′. Getting a better approximation of zi than δ
means that there is at least one point x′j ∈ X ′ with xi < x′j < xi+1 as otherwise zi is
approximated within a ratio of at least zi

xi
= f(zi)

f(xi+1) = δ.

We assume w. l. o. g. that j ≤ i + 1 and show that there is at least one point z with
z ≤ zi that is not approximated by a factor of δ or that x′1 > xmin holds. To approximate
all points z with xi−1 ≤ z ≤ x′j by a factor of δ, the inequality xi−1 < x′j−1 < xi
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Figure 2: Optimal point distribution XHYP
opt (12, f) = XAPP

opt (12, f) for (a) the linear front
f : [1, 2] → [1, 2] with f(x) = 3 − x and (b,c) the convex fronts f : [1, c] → [1, c] with
f(x) = c/x. The respective optimal hypervolume distributions and optimal approximation
distributions are equivalent in all three cases.

has to hold as otherwise zi−1 is approximated within a ratio of more than δ by X ′.
We iterate the arguments. In order to approximate all points in xi−s ≤ y ≤ xi−s+1,
xi−s < x′j−s < xi−s+1 has to hold as otherwise zi−s is not approximated within a ratio
of δ by X ′. Considering s = j − 1 either one of the points z, xi−j+1 ≤ y ≤ xi−j+2 is
not approximated within a ratio of δ by X ′ or xmin = x1 ≤ xi−j+1 < x′1 holds, which
contradicts the assumption that X ′ includes xmin and constitutes an approximation
better than δ.

The case j > i+1 can be handled symmetrically, by showing that either x′n < xmax

or there is a point z ≥ zi+1 that is not approximated within a ratio of δ by X ′. This
completes the proof.

We will use this lemma in the rest of the paper to check whether an approximation
obtained by the hypervolume indicator is optimal as well as use these ideas to identify
sets of points that achieve an optimal approximation ratio.

3.2 Analytic results for linear fronts

The distribution of points maximizing the hypervolume for linear fronts has already
been investigated in [1, 17]. Therefore, we start by considering the hypervolume indi-
cator with respect to the approximation it achieves when the Pareto front is given by a
linear function

f : [1, (1− d)/c]→ [1, c+ d] with f(x) = c · x+ d

where c < 0 and d > 1− c are arbitrary constants.

Auger et al. [1] and Emmerich et al. [17] have shown that the maximum hyper-
volume of µ points on a linear front is reached when the points are distributed in an
equally spaced manner. We assume that the reference point is chosen such that the ex-
treme points of the Pareto front are included in the optimal distribution of the µ points
on the Pareto front, that is, x1 = xmin = 1 and xµ = xmax = (1−d)/c hold. The maximal

8 Evolutionary Computation Volume x, Number x



Multiplicative Approximations, . . .

hypervolume is achieved by choosing

xi = xmin +
i− 1

µ− 1
· (xmax − xmin)

= 1 +
i− 1

µ− 1
·
(
1− d
c
− 1

)
(1)

due to Theorem 6 in [1].

The following theorem shows that the optimal approximation distribution coin-
cides with the optimal hypervolume distribution.

Theorem 2 Let f : [1, (1−d)/c]→ [1, c+d] be a linear function f(x) = c ·x+d where c < 0
and d > 1− c are arbitrary constants. Then

XHYP
opt (µ, f) = XAPP

opt (µ, f).

Proof. We determine the approximation ratio that the optimal hypervolume distribu-
tion XHYP

opt (µ, f) = {x1, . . . , xµ} using µ points achieves. Let x̃, xi < x̃ < xi+1, be a
Pareto-optimal x-coordinate. The approximation given by xi and xi+1 is

min

{
x̃

xi
,
f(x̃)

f(xi+1)

}
as f is monotonically decreasing.

Furthermore, as f is monotonically decreasing, the worst-case approximation is
attained for a point x̃, xi < x̃ < xi+1, if

x̃

xi
=

f(x̃)

f(xi+1)
(2)

holds.

Using

xi = 1 +
i− 1

µ− 1
·
(
1− d
c
− 1

)
and resolving the Equation 2 with respect to x̃, we get

x̃ =
d ((d+ c− 1) i− cµ− d+ 1)

c ((µ− 2) d− c+ 1)
.

For the approximation ratio we get

x̃

xi
=

f(x̃)

f(xi+1)
=

d(µ− 1)

d(µ− 2)− c+ 1
.

Hence, the worst-case approximation is independent of the choice of i and the same
for all intervals [xi, xi+1] of the Pareto front. Lemma 1 implies that the hypervolume
achieves the best possible approximation ratio on the class of linear fronts.

Figure 2 (a) shows the optimal distribution for f(x) = 3− x and µ = 12.

Evolutionary Computation Volume x, Number x 9
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3.3 Analytic results for a class of convex fronts

We now consider the distribution of µ points on a convex front maximizing the hyper-
volume. In contrast to the class of linear functions where an optimal approximation can
be achieved by distributing the µ points in an equally spaced manner along the front,
the class of functions considered in this section requires that the points are distributed
exponentially to obtain an optimal approximation.

As already argued we want to make sure that optimal hypervolume distribution
includes xmin and xmax. For the class of convex fronts that we consider, this can be
achieved by choosing the reference point r = (0, 0).

The hypervolume of a set of points X = {x1, . . . , xµ}, where w. l. o. g. x1 ≤ x2 ≤
· · · ≤ xµ, is then given by

HYP(X) = x1 · f(x1) + x2 · f(x2)− x1 · f(x2) + · · ·+ xµ · f(xµ)− xµ−1 · f(xµ)
= x1 · f(x1) + x2 · f(x2) + · · ·+ xµ · f(xµ)− (x1 · f(x2) + · · ·+ xµ−1 · f(xµ)).

We consider a Pareto front given by the function

f : [1, c]→ [1, c] and f(x) = c/x

where c > 1 is an arbitrary constant. Then we get

HYP(X) = c · µ− c ·
(
x1

x2
+
x2

x3
+ · · ·+ xµ−2

xµ−1
+
xµ−1

xµ

)
.

Hence, to maximize the hypervolume we have to find µ points minimizing

h(x1, . . . , xµ) :=

(
x1

x2
+ · · ·+ xµ−1

xµ

)
.

Setting x1 = 1 and xµ = c minimizes h, since x1 and xµ occur just in the first and last
term of h, respectively. Furthermore, we have 1 = x1 < x2 < . . . < xµ = c as the
equality of two points implies that one of them can be exchanged for another unchosen
point on the Pareto front and thereby increases the hypervolume.

We work under these assumptions and aim to find a set of points X that mini-
mizes the function h. To do this, we consider the gradient vector given by the partial
derivatives

h′(x1, . . . , xµ) =

(
1

x2
,−x1

x2
2

+
1

x3
, . . . ,−xµ−2

x2
µ−1

+
1

xµ
,−xµ−1

x2
µ

)
.

This implies that h can be minimized by setting

x3 = x2
2/x1 = x2

2,
x4 = x2

3/x2 = x3
2,

...
...

xµ = x2
µ−1/xµ−2 = xµ−1

2 .
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From the last equation we get

x2 = x
1/(µ−1)
µ = c1/(µ−1),

x3 = x2
2 = c2/(µ−1),

...
...

xµ−1 = xµ−2
2 = c(µ−2)/(µ−1).

(3)

The following theorem shows that the optimal approximation distribution coin-
cides with the optimal hypervolume distribution.

Theorem 3 Let f : [1, c] → [1, c] be a convex front with f(x) = c/x where c > 1 is an
arbitrary constant. Then

XHYP
opt (µ, f) = XAPP

opt (µ, f).

Proof. We determine the approximation ratio that the optimal hypervolume distribu-
tion XHYP

opt (µ, f) = {x1, . . . , xµ} using µ points achieves. As f is monotonically de-
creasing, the worst-case approximation is attained for a point x, xi < x < xi+1, if

x

xi
=

f(x)

f(xi+1)

holds. Substituting the coordinates and function values, we get

x

xi
=

x

c(i−1)/(µ−1)
and

f(x)

f(xi+1)
=

c/x

c/ci/(µ−1)
=
ci/(µ−1)

x
.

Therefore,
x2 = ci/(µ−1) · c(i−1)/(µ−1) = c(2i−1)/(µ−1),

which implies
x = c(2i−1)/(2µ−2).

Hence, the set of search points maximizing the hypervolume achieves an approxima-
tion ratio of

c(2i−1)/(2µ−2)

c(i−1)/(µ−1)
= c1/(2µ−2). (4)

We have seen that the requirements of Lemma 1 are fulfilled. Hence, an application
of Lemma 1 shows that the hypervolume indicator achieves an optimal approximation
ratio when the Pareto front is given by f : [1, c]→ [1, c] with f(x) = c/x where c ∈ R>1

is any constant.

Figure 2 shows the optimal distribution for µ = 12 and c = 2 as well as c = 200.

3.4 Numerical evaluation for fronts of different shapes

The analysis of the distribution of an optimal set of search points tends to be hard
or is impossible for more complex functions. Hence, resorting to numerical analysis
methods constitutes a possible escape from this dilemma. This section is dedicated to
the numerical analysis of a larger class of functions.
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Figure 3: Optimal point distributions for symmetric front f
sym
2 . Note that the opti-

mal hypervolume distribution and the optimal approximation distribution differ in this
case. The set of points maximizing the hypervolume yields an approximation ratio of
APP(XHYP

opt (12, f
sym
2 )) ≈ 1.025, which is 0.457% larger than the optimal approximation ratio

APP(XAPP
opt (12, f

sym
2 )) ≈ 1.021.

Our goal is to study the optimal hypervolume distribution for different shapes of
Pareto fronts and investigate how the shape of such a front influences the approxima-
tion behavior of the hypervolume indicator. We examine a family of fronts of the shape
xp where p > 0 is a parameter that determines the degree of the polynomial describing
the Pareto front. Furthernmore, we allow scaling in both dimensions.

The Pareto fronts that we consider can be defined by a function of the form
fp : [x1, xµ]→ [yµ, y1] with

fp(x) := yµ − (yµ − y1) ·
(
1−

(
x− x1

xµ − x1

)p)1/p

.

We use the notation yi = f(xi) for the function value f(xi) of a point xi. As we assume
the reference point to be sufficiently negative, the leftmost point (x1, y1) and the right-
most point (xµ, yµ) are always contained in the optimal hypervolume distribution as
well as in the optimal approximation. We will mainly concentrate on two parameter
sets of fp, that is,

• the symmetric front f sym
p : [1, 2]→ [1, 2] and

• the asymmetric front f asy
p : [1, 201]→ [1, 2].

Note, that choosing p = 1 corresponds to the well-known test function DTLZ1 [13].
For p = 2 the shape of the front corresponds to functions DTLZ2, DTLZ3, and DTLZ4.

Our goal is to study the optimal hypervolume distribution for our parametrized
family of Pareto fronts and relate it to an optimal multiplicative approximation. There-
fore, we calculate for different functions fp and µ ≥ 3

• the set of µ pointsXHYP
opt (µ, fp) which maximizes the dominated hypervolume, and

• the set of µ points XAPP
opt (µ, fp) which minimizes the multiplicative approximation

ratio.

As in Section 3, we assume that both extreme have to be included in both distribu-
tions. For the optimal hypervolume distribution, it suffices to find the x2, x3, . . . , xµ−1
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Figure 4: Optimal point distributions for asymmetric front f
asy
2 . Note that the opti-

mal hypervolume distribution and the optimal approximation distribution differ in this
case. The set of points maximizing the hypervolume yields an approximation ratio of
APP(XHYP

opt (12, f
asy
2 )) ≈ 1.038, which is 0.839% larger than the optimal approximation ra-

tio APP(XAPP
opt (12, f

asy
2 )) ≈ 1.030.

that maximize the dominated hypervolume, that is, the solutions of

argmax
x2,...,xµ−1

(
(x2 − x1) · (f(x2)− f(xµ)) +

µ−1∑
i=3

(xi − xi−1) · (f(xi)− f(xµ))

)

We solve the arising nonlinear continuous optimization problem numerically by means
of sequential quadratic programming [18].

In the optimal multiplicative approximation, we have to solve the following sys-
tem of nonlinear equations

z1

x1
=
z2

x2
= · · · = zµ−1

xµ−1
=

=
f(z1)

f(x2)
=
f(z2)

f(x3)
= · · · = f(zµ−1)

f(xµ)

with auxiliary variables z1, . . . , zµ−1 due to Lemma 1. The numerical solution of this
system of equations can be determined easily by any standard computer algebra sys-
tem. We used the Optimization package of Maple 15.

In the following, we present the results that have been obtained by our numerical
investigations. We first examine the case of f2. Figures 3 and 4 show different point
distributions for f2. It can be observed that the hypervolume distribution differs from
the optimal distribution. Figures 3(a) and 3(b) show the distributions for the symmetric
front

f2(x) = 1 +
√
1− (x− 1)2

with (x1, y1) = (1, 2) and (xµ, yµ) = (2, 1). Figures 4(a) and 4(b) show the asymmetric
front

f2(x) = 1 +
√

1− (x/200− 1/200)2

with (x1, y1) = (1, 2) and (xµ, yµ) = (201, 1).

It can be observed that the relative positions of the hypervolume points stay the
same in Figures 3(a) and 4(a) while the relative positions achieving an optimal approx-
imation change with scaling (cf. Figures 3(b) and 4(b)). Hence, the relative position of
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APP(Xopt(3, f1/2)).
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(c)
APP(Xopt(3, f1)).
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(d)
APP(Xopt(3, f2)).
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(e)
APP(Xopt(3, f3)).

Figure 5: Approximation ratio of the optimal hypervolume distribution ( ) and the optimal ap-
proximation distribution ( ) depending on the scaling xµ of the fronts fp (cf. Definition 2). We
omit the values of the y-axis as we are only interested in the relative comparison ( vs. ) for
each front fp. Note that as analytically predicted in Theorem 2, both curves coincide in (c) for
the linear function f1 independent of the scaling.

the points maximizing the hypervolume is robust with respect to scaling. But as the op-
timal point distribution for a multiplicative approximation is dependent on the scaling,
the hypervolume cannot achieve the best possible approximation quality.

In the example of Figures 3 and 4 the optimal multiplicative approximation factor
for the symmetric and asymmetric case is 1.021 (Figure 3(b)) and 1.030 (Figure 4(b)),
respectively, while the hypervolume only achieves an approximation of 1.025 (Fig-
ure 3(a)) and 1.038 (Figure 4(a)), respectively. Therefore in the symmetric and asym-
metric case of f2 the hypervolume is not calculating the set of points with the optimal
multiplicative approximation.

We have already seen that scaling the function has a high impact on the optimal
approximation distribution but not on the optimal hypervolume distribution. We want
to investigate this effect in greater detail. The influence of scaling the parameter xµ ≥ 2
of different functions fp : [1, xµ] → [1, 2] is depicted in Figure 5 for p = 1/3, 1/2, 1, 2, 3.
For fixed µ = 3 it shows the achieved approximation ratio. As expected, the larger
the asymmetry (xµ) the larger the approximation ratios. For concave fronts (p > 1) the
approximation ratios seem to converge quickly for large enough xµ. The approximation
of f2 tends towards the golden ratio

√
5− 1 ≈ 1.236 for the optimal approximation and

4/3 ≈ 1.333 for the optimal hypervolume. For f3 they tend towards 1.164 and 1.253,
respectively. Hence, for f2 and f3 the hypervolume is never more than 8% worse than
the optimal approximation. This is different for the convex fronts (p < 1). There, the
ratio between the hypervolume and the optimal approximation appears divergent.

Another important question is how the choice of the population size influences the
relation between an optimal approximation and the approximation achieved by an op-
timal hypervolume distribution. We investigate the influence of the choice of µ on the
approximation behavior in greater detail. Figure 6 shows the achieved approximation
ratios depending on the number of points µ. For symmetric fp’s with (x1, y1) = (yµ, xµ)
and µ = 3 the hypervolume achieves an optimal approximation distribution for all
p > 0. The same holds for the linear function f1 independent of the scaling implied by
(x1, y1) and (yµ, xµ).

For larger populations, the approximation ratio of the hypervolume distribution
and the optimal distribution decreases. However, the performance of the hypervolume

14 Evolutionary Computation Volume x, Number x



Multiplicative Approximations, . . .

3 5 10 15 20

(a)
APP(Xopt(µ, f

sym
1/3

)).

3 5 10 15 20

(b)
APP(Xopt(µ, f

sym
1/2

)).

3 5 10 15 20

(c)
APP(Xopt(µ, f

sym
1 )).

3 5 10 15 20

(d)
APP(Xopt(µ, f

sym
2 )).

3 5 10 15 20

(e)
APP(Xopt(µ, f

sym
3 )).

3 5 10 15 20

(f)
APP(Xopt(µ, f

asy
1/3

)).

3 5 10 15 20

(g)
APP(Xopt(µ, f

asy
1/2

)).

3 5 10 15 20

(h)
APP(Xopt(µ, f

asy
1 )).

3 5 10 15 20

(i)
APP(Xopt(µ, f

asy
2 )).

3 5 10 15 20

(j)
APP(Xopt(µ, f

asy
3 )).

Figure 6: Approximation ratio of the optimal hypervolume distribution ( ) and the optimal ap-
proximation distribution ( ) depending on the number of points µ for symmetric and asym-
metric fronts fp and different parameters p (cf. Definition 2). We omit the values of the y-
axis as we are only interested in the relative comparison ( vs. ) for each front fp. Note
that (c) and (h) show that the approximation ratio of the optimal hypervolume distribution
APP(XHYP

opt (µ, f
sym
1 )) and the optimal approximation distribution APP(XHYP

opt (µ, f
sym
1 )) are

equivalent for all examined µ. That maximizing the hypervolume yields the optimal approx-
imation ratio can also be observed for all symmetric f sym

p with µ = 3 in (a)–(e).

measure is especially poor even for larger µ for convex asymmetric fronts, that is, f asy
p

with p < 1 (e.g. Figures 6(f) and 6(g)). Our investigations show that the approxima-
tion of an optimal hypervolume distribution may differ significantly from an optimal
one depending on the choice of p. An important issue is whether the front is convex
or concave [27]. The hypervolume was thought to prefer convex regions to concave
regions [32] while [1] showed that the density of points only depends on the slope of
the front and not on convexity or concavity. To illuminate the impact of convex vs. con-
cave further, Figure 7 shows the approximation ratios depending on p. As expected, for
p = 1 the hypervolume calculates the optimal approximation. However, the influence
of the p is very different for the symmetric and the asymmetric test function. For f sym

p

the convex (p < 1) fronts are much better approximated by the hypervolume than the
concave (p > 1) fronts (cf. Figure 7(a)–(d)). For f asy

p this is surprisingly the other way
around (cf. Figure 7(e)–(h)).

4 Influence of the reference point

In all previous investigations, we have not considered the impact of the reference point.
To allow a fair comparison we assumed that the optimal approximation distribution
and the optimal hypervolume distribution have to include both extreme points. This is
clearly not optimal when considering the optimal approximation distribution. There-
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Figure 7: Approximation ratio of the optimal hypervolume distribution ( ) and the optimal ap-
proximation distribution ( ) depending on the convexity/concavity parameter p for symmetric
and asymmetric fronts fp and different population sizes µ (cf. Definition 2). The x-axis is
scaled logarithmically. We omit the values of the y-axis as we are only interested in the rela-
tive comparison ( vs. ) for each front fp and population size µ. Note that (a) shows that the
approximation ratio of the optimal hypervolume distribution APP(XHYP

opt (3, f
sym
p )) and the

optimal approximation distribution APP(XAPP
opt (3, f

sym
p )) are equivalent for all examined p.

fore, we relax our assumption and allow any set consisting of µ points and raise the
question how the optimal approximation distribution looks in this case. Considering
the hypervolume indicator, the question arises whether this optimal approximation
distribution can be achieved by choosing a certain reference point. Therefore, the goal
of this section is to examine the impact of the reference point for determining optimal
approximation distributions.

For this we have to redefine parts of the notation. We mark all variables with a hat
(like ̂) to make clear that we do not require the extreme points to be included anymore.

Consider again a Pareto front f . We now let Xr(µ, f) be the set of all subsets of

{(x, f(x)) | x ∈ [xmin, xmax]}

of cardinality µ, where we do not assume that (xmin, f(xmin)) and (xmax, f(xmax)) have
to be necessarily contained. We also have to redefine the notion of optimal hypervol-
ume distributions and optimal approximation distribution.

Definition 3 The optimal hypervolume distribution

X̂HYP
opt (µ, r, f) := argmax

X∈Xr(µ,f)

HYPr(X)

consists of µ points that maximize the hypervolume with respect to f . The optimal approxima-
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tion distribution
X̂APP

opt (µ, f) := argmin
X∈Xr(µ,f)

APP(X)

consists of µ points that minimize the approximation ratio with respect to f .

4.1 Optimal approximations

Similar to Lemma 1, the following lemma states conditions for an optimal approxima-
tion distribution which does not have to contain the extreme points.

Lemma 4 Let f : [xmin, xmax] → R be a Pareto front and X = {x1, . . . , xµ} a solution set
with xi < xi+1 for all 1 ≤ i < µ. If there is a ratio δ > 1 and a set Z = {z1, . . . , zµ−1} with
xi < zi < xi+1 for all 1 ≤ i < µ such that

• zi = δ · xi for all 1 ≤ i ≤ µ (where zµ = xmax) and
• f(zi) = δ · f(xi+1) for all 0 ≤ i < µ (where z0 = xmin)

then X = X̂APP
opt (µ, f) is the optimal approximation distribution with approximation ratio δ.

Proof. For each i, 1 ≤ i ≤ µ − 1, zi is the worst approximated point in the interval
[xi, xi+1]. Furthermore, z0 = xmin is the worst approximated point in the interval
[xmin, x1] and zµ = xmax is the worst approximated point in the interval [xµ, xmax].
This implies that the approximation ratio of X is

δ = max

{
f(z0)

f(x1)
,
zµ
xµ
,
zi
xi
,
f(zi)

f(xi+1)

∣∣∣ 1 ≤ i ≤ µ− 1

}
.

Assume there is a different solution set X ′ = {x′1, . . . , x′µ} with x′i < x′i+1 for all
1 ≤ i < µ and approximation ratio at most δ.

Since X ′ 6= X there is an index i with x′i 6= xi. Consider the smallest such index.
We distinguish the two cases x′i < xi and x′i > xi.

Assume x′i < xi. Consider the point z′i = δ · x′i. Since z′i = δ · x′i < δ · xi = zi, we
derive x′i+1 < xi+1 as otherwise f(z′i)

f(x′i+1) ≥
f(z′i)
f(xi+1) > δ would contradict our assumption

that X ′ achieves an approximation ratio of at most δ. Repeating the argument (µ − i)-
times leads to x′µ < xµ, which gives δ · x′µ < δ · xµ = xmax. This implies that the
approximation of xmax by X ′ is xmax

x′µ
> δ which contradicts the assumption that X ′

achieves an approximation ratio of at most δ.

Assume x′i > xi. Then all points within (zi−1, f
−1(δ · f(x′i))) are not δ-

approximated. The interval is not empty since f−1(δ · f(x′i)) > x′i > xi > zi−1 due
to δ > 1 and f strictly monotonically decreasing. We have another contradiction.

Altogether, we get that X = X̂APP
opt (µ, f) is the unique set achieving an approxima-

tion ratio of at most δ and therefore an optimal approximation distribution.

The previous lemma can be used to compute the overall optimal approximation
distribution of µ for a given function describing the Pareto front. In the following, we
will use this to compare it to the optimal hypervolume distribution depending on the
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chosen reference point. Again we consider the class of linear fronts and the class of
convex fronts given in Section 3.

4.2 Analytic results for linear fronts

We first consider linear fronts. The optimal multiplicative approximation factor can be
easily determined with Lemma 4 as shown in the following theorem.

Theorem 5 Let f : [1, (1−d)/c]→ [1, c+d] be a linear function f(x) = c ·x+d where c < 0
and d > 1− c are arbitrary constants. Then

X̂APP
opt (µ, f) = {x1, . . . , xµ},

where xi =
d (µc−i (c+d−1))
c (c+(µ+1) d−1) , 1 ≤ i ≤ µ, and

APP(X̂APP
opt (µ, f)) =

c+ (µ+ 1) d− 1

µd
.

Proof. Using Lemma 4, we get the following system of 2 (µ+ 1) linear equations

z0 = 1,

zi = δ xi for i = 1 . . . µ,

zµ = (1− d)/c,
c yi + d = δ (c xi+1 + d) for i = 0 . . . µ− 1.

The unique solution of this system of linear equations is

δ =
c+ (µ+ 1) d− 1

µd
,

xi =
d (µ c− i (c+ d− 1))

c (c+ (µ+ 1) d− 1)
for i = 1 . . . µ,

zi = 1− i c+ d− 1

µ c
for i = 0 . . . µ,

which proves the claim.

It remains to analyze the approximation factor achieved by an optimal hypervol-
ume distribution. The impact of the reference point for the class of linear functions has
been investigated by Brockhoff in [10]. Using his results, we can conclude the following
theorem.

Theorem 6 Let f : [1, (1−d)/c]→ [1, c+d] be a linear function f(x) = c ·x+d where c < 0
and d > 1− c are arbitrary constants. Let µ ≥ 2 and

M1 := min

{
c+ d− r1,

µ

µ− 1
· (c+ d− 1),

(d− 1) +
d+ (µ+ 1) c

µ
+
r2 + d− 1

µc
+
d− 1

µc2

}
,

M2 := min

{
1− d
c
− r2,

µ

µ− 1
· 1− c− d

c
,
1− c− d

c
+
r1 − c− d

µc

}
.

18 Evolutionary Computation Volume x, Number x



Multiplicative Approximations, . . .

Then the optimal hypervolume distribution with respect to the reference point r is

X̂HYP
opt (µ, r, f) = {x1, . . . , xµ}

where
xi =

M1 − d+ 1

c
+ i · d−M1 + (M2 + 1) c− 1

c (µ+ 1)
.

Theorem 2 follows immediately from Theorem 3 of Brockhoff [10] by translating
their minimization setting into our maximization setting. Knowing the set of points
which maximize the hypervolume, we can now determine the achieved approximation
depending on the chosen reference point.

Theorem 7 Let f : [1, (1−d)/c]→ [1, c+d] be a linear function f(x) = c ·x+d where c < 0
and d > 1− c are arbitrary constants. Let µ ≥ 2 and M1 and M2 defined as in Theorem 6, then

APP(X̂HYP
opt (µ, r, f)) = max{A`, Ac, Ar}

where

A` :=
(c+ d) (µ+ 1)

µ+ c+ d+M1µ+M2c
,

Ac :=
d (µ+ 1)

dµ+ c+ 2d− 1−M1 +M2c
,

Ar :=
(1− d) (µ+ 1)

cµ− d+ 1 +M1 +M2cµ
.

Proof. We want to determine the approximation ratio of the optimal hypervolume dis-
tribution X̂HYP

opt (µ, r, f) = {x1, . . . , xµ} as defined in Theorem 6. For this, we distinguish
between three cases. The approximation ratio of the inner points x̃ with x1 ≤ x̃ ≤ xµ
can be determined as in the proof of Theorem 2. It suffices to plug the definition of xi
and xi+1 from Theorem 6 into equation 2. Let x̃ be the solution of this linear equation.
Then the inner approximation factor is

Ac =
x̃

xi
=

d (µ+ 1)

dµ+ c+ 2d− 1−M1 +M2c
,

which is independent of i.

It remains to determine the outer approximation factors. The approximation factor
of the points x̃ with 1 ≤ x̃ ≤ x1 is maximized for x̃ = 1. The left approximation factor
is therefore

A` =
c+ d

f(x1)
=

(c+ d) (µ+ 1)

µ+ c+ d+M1µ+M2c
.

The approximation factor of the points x̃ with xµ ≤ x̃ ≤ (1 − d)/c is maximized for
x̃ = xµ. The right approximation factor is therefore

Ar =
1− d
cxµ

=
(1− d) (µ+ 1)

cµ− d+ 1 +M1 +M2cµ
.

The overall approximation factor is then the largest approximation factor of the three
parts, that is, max{A`, Ac, Ar}.
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4.3 Analytic results for a class of convex fronts

We now consider convex fronts and investigate the overall optimal multiplicative ap-
proximation first which does not have to include the extreme points. The following
theorem shows how such an optimal approximations looks like and will serve later for
the comparison to an optimal hypervolume distribution in dependence of the chosen
reference point.

Theorem 8 Let f : [1, c] → [1, c] be a convex front with f(x) = c/x where c > 1 is an
arbitrary constant. Then

X̂APP
opt (µ, f) = {x1, . . . , xµ},

where xi = c
2i−1
2µ , 1 ≤ i ≤ µ, and APP(X̂APP

opt (µ, f)) = c
1
2µ .

Proof. Using Lemma 4, we have z0 = xmin = 1 and zµ = xmax = c. Furthermore,

f(z0) = δf(x1)

⇔ c = δ · c
x1

⇒ x1 = δ.

We have zi = δxi, 1 ≤ i ≤ µ, and

f(zi) = δ · f(xi+1)

⇔ c

zi
= δ

c

xi+1

=
c

δxi
= δ

c

xi+1

⇒ xi+1

xi
= δ2

for 1 ≤ i < µ. This implies xi = δ2i−1, 1 ≤ i ≤ µ. Furthermore,

yµ = δ xµ

⇔ c = δ2µ

⇒ δ = c
1
2µ

This implies xi = c
2i−1
2µ , 1 ≤ i ≤ µ and APP(X̂APP

opt (µ, f)) = c
1
2µ which completes the

proof.

Now, we consider the optimal hypervolume distribution depending on the choice
of the reference point and compare it to the optimal multiplicative approximation.

Theorem 9 Let f : [1, c] → [1, c] be a convex front with f(x) = c/x where c > 1 is an
arbitrary constant. Then

X̂HYP
opt (µ, r, f) = {x1, . . . , xµ},

where xi, 1 ≤ i ≤ µ, depend on the choice of the reference point r as follows:

1. If r1 ≤ c−1/(µ−1) and r2 ≤ c−1/(µ−1), then x1 = 1, xµ = c, xi = c(i−1)/(µ−1) for
1 ≤ i ≤ µ, and

APP(X̂HYP
opt (µ, r, f)) = c

1
2µ−2 .
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x1 = 1,
xµ = c

x1 = 1,
xµ < c

x1 > 1,
xµ = c
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Figure 8: Position of the extremal points of optimal hypervolume distributions depending on
the reference point for concave functions f : [1, c] → [1, c] with f(x) = c/x and c > 1. De-
pending on the position of the reference point, the leftmost point of a optimal hypervolume
distribution x1 is either at the border (x1 = xmin = 1) or inside the domain (x1 > xmin = 1).
Similarly, the rightmost point xµ is either at the border (xµ = xmax = c) or inside the domain
(xµ < xmax = c). (Note that the figure looks very similar for linear functions.)

2. If r1 ≤ c rµ2 and r2 ≤ c rµ1 , then x1 > 1, xµ < c, xi = (ci rµ−i+1
1 /ri2)

1/(µ+1) for
1 ≤ i ≤ µ, and

APP(X̂HYP
opt (µ, r, f)) = max

{(
c · rµ1
r2

) 1
µ+1

,

(
c

r1r2

) 1
2(µ+1)

, c

(
rµ2

cµ · r1

) 1
µ+1

}
.

3. If r2 ≥ c−1/(µ−1), r2 ≤ c, and r2 ≥ crµ1 , then x1 = 1, xi = (c/r2)
(i−1)/µ for 1 ≤ i ≤ µ,

and

APP(X̂HYP
opt (µ, r, f)) = max

{(
c

r2

) 1
2µ

, c

(
c

r2

) µ
µ−1

}
.

4. If r1 ≥ c−1/(µ−1), r1 ≤ c and r1 ≥ c rµ2 , then xµ = c, xi = r1(c/r1)
i/µ for 1 ≤ i ≤ µ,

and

APP(X̂HYP
opt (µ, r, f)) = max

{(
c

r1

) 1
2µ

,
(
crµ−1

1

) 1
µ

}
.

Proof. In order to proof Theorem 9, we distinguish four cases, namely whether x1 = 1
or x1 > 1 and whether xµ = c or xµ < c. Figure 8 gives an illustration of the four cases.

The first case x1 = 1 and xµ = c corresponds to the previous situation where we
required that both extreme points are included. The statement of Theorem 9 for this
case follows immediately from equations 3 and 4 in Section 3.3.

The second case x1 > 1 and xµ < c is more involved. First note that we consider
only points that have a positive contribution with respect to the given reference point.
Therefore, we assume that r1 < x1 and r2 < f(xµ) holds.

The hypervolume of a set of points X = {x1, . . . , xµ}, where w. l. o. g. x1 ≤ x2 ≤
· · · ≤ xµ, with respect to a reference point r = (r1, r2) with r1 < x1 and r2 < f(xµ) is
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then given by

HYP(X, r) = (x1 − r1) · (f(x1)− r2)

+ (x2 − x1) · (f(x2)− r2)

. . .

+ (xµ − xµ−1) · (f(xµ)− r2)

= c · µ+ r1r2

− c(r1/x1 + x1/x2 + x2/x3 + · · ·+ xµ−1/xµ)

− xµ · r2.

In order to maximize the hypervolume, we consider the function

h(x1, . . . , xµ) = c

(
r1

x1
+
x1

x2
+
x2

x3
+ · · ·+ xµ−1

xµ

)
+ xµ · r2

and compute its partial derivatives.

We have 1 < x1 < x2 < . . . < xµ < c as the equality of two points implies that
one of them can be exchanged for another and thereby increases the hypervolume. We
work under these assumptions and aim to find a set of points X that minimizes the
function h. To do this, we consider the gradient vector given by the partial derivatives

h′(x1, . . . , xµ) =

(
c

x2
− cr1

x2
1

,
c

x3
− cx1

x2
2

, . . . ,
c

xµ
− cxµ−2

x2
µ−1

, r2 −
cxµ−1

x2
µ

)
.

This implies that h can be minimized by setting

x2 = x2
1/r1

x3 = x2
2/x1 = x3

1/r
2
1

x4 = x2
3/x2 = x4

1/r
3
1

...
xµ = x2

µ−1/xµ−2 = xµ1/r
µ−1
1

x2
µ = cxµ−1/r2.

Hence with
cxµ−1

r2
=

cxµ−1
1

rµ−2
1 r2

=
x2µ

1

r
2(µ−1)
1

we get

x1 = min

{
max

{(
crµ1
r2

) 1
µ+1

, 1

}
, c

}
.

As we can assume x1 ≥ 1 and xµ ≤ c, we get for r2 ≤ crµ1 and r1 ≤ crµ2 that

xi =

(
ci · rµ−i+1

1

ri2

) 1
µ+1

for 1 ≤ i ≤ µ. It now remains to determine the achieved approximation factor. For this,
we proceed as in Theorem 3 and use that

x

xi
=

f(x)

f(xi+1)
=⇒ x =

√
xi · xi+1.
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This gives an approximation factor of the inner points of

xi+1

x
=

(
c

r1r2

) 1
2(µ+1)

.

For the upper end points the approximation is

c

f(x1)
= x1 =

(
c · rµ1
r2

) 1
µ+1

.

For the lower end points the approximation is

c

xµ
= c ·

(
rµ2

cµ · r1

) 1
µ+1

.

Hence the overall approximation factor in the second case is

max

{(
c · rµ1
r2

) 1
µ+1

,

(
c

r1r2

) 1
2(µ+1)

, c ·
(

rµ2
cµ · r1

) 1
µ+1

}
.

The third case x1 = 1 and xµ < c fixes only the left end of the front. Here, we
consider the function

h(x2, . . . , xµ) = c

(
1

x2
+
x2

x3
+
x3

x4
+ · · ·+ xµ−1

xµ

)
+ xµ · r2.

Not that in contrast to the second case, h(·) does not depend on r1. We can assume
without loss of generality that 1 = x1 < x2 < . . . < xµ < c. The partial derivatives are
therefore

h′(x2, . . . , xµ) =

(
c

x3
− c

x2
2

,
c

x4
− cx2

x2
3

, . . . ,
c

xµ
− cxµ−2

x2
µ−1

, r2 −
cxµ−1

x2
µ

)
.

This implies that h can be minimized by setting

x3 = x2
2

x4 = x2
3/x2 = x3

2

x5 = x2
4/x3 = x4

2
...

xµ = x2
µ−1/xµ−2 = xµ−1

2

x2
µ =

cxµ−1

r2
.

Starting with x2
µ = x2

µ we get,

cxµ−1

r2
=
cxµ−2

2

r2
= x

2(µ−1)
2

and

x2 = min

{
max

{(
c

r2

) 1
µ

, 1

}
, c

}
.
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Again using that x2 ≥ 1 and xµ ≤ c and assuming that r2 ≤ c and r2 ≥ c−
1

µ−1 , we get

xi =

(
c

r2

) i−1
µ

.

This results in an approximation factor for the inner points of

xi+1√
xi · xi+1

=

(
c

r2

) 1
2µ

.

For the upper end points the approximation is

c

f(x1)
= x1 = 1.

For the lower end points the approximation is

c

xµ
= c

(r2

c

)µ−1
µ

.

Hence the overall approximation factor in the third case is

max

{(
c

r2

) 1
2µ

, c

(
c

r2

) µ
µ−1

}
.

The fourth case x1 > 1 and xµ = c fixes the right end of the front. We consider the
function

h(x1, . . . , xµ−1) = c

(
r1

x1
+
x1

x2
+
x2

x3
+ · · ·+ xµ−2

xµ−1
+
xµ−1

c

)
and compute its partial derivatives

h′(x1, . . . , xµ−1) =

(
c

x2
− cr1

x2
1

,
c

x3
− cx1

x2
2

, . . . ,
c

xµ−1
− cxµ−3

x2
µ−2

, 1− cxµ−2

x2
µ−1

)
.

This implies that h can be minimized by setting

x2 = x2
1/r1

x3 = x2
2/x1 = x3

1/r
2
1

x4 = x2
3/x2 = x4

1/r
3
1

...
xµ−1 = x2

µ−2/xµ−3 = xµ−1
1 /rµ−2

1

x2
µ−1 = cxµ−2.

Setting
cxµ−2 = cxµ−2

1 /rµ−3
1 = x2µ−2

1 /r2µ−4
1
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we get

x1 = min

{
max

{(
crµ−1

1

) 1
µ

, 1

}
, c

}
.

Using that x1 ≥ 1 and xµ−1 ≤ c and assuming r2 ≥ c−1/(µ−1) and r2 ≤ c gives

xi = r1

(
c

r1

) i
µ

.

This results in an approximation factor for the inner points of

xi+1√
xi · xi+1

=

(
c

r1

) 1
2µ

For the upper end points the approximation is

c

f(x1)
= x1 =

(
crµ−1

1

) 1
µ

.

For the lower end points the approximation is
c

xµ
= 1.

Hence the overall approximation factor for the fourth case is

max

{(
c

r1

) 1
2µ

,
(
crµ−1

1

) 1
µ

}
,

which finishes the proof.

4.4 Numerical evaluation for two specific fronts

We now use the theoretical results of this Section 4 on the approximation factor de-
pending on the reference point and study two specific fronts as an example.

First, we consider the linear front f : [1, 2]→ [1, 2] with f(x) = 3− x. A plot of this
front is shown in Figure 2 (a). For µ = 10, Theorem 5 gives that the optimal distribution

X̂APP
opt (µ, f) =

{
33

31
,
36

31
,
39

31
,
42

31
,
45

31
,
48

31
,
51

31
,
54

31
,
57

31
,
60

31

}
achieves the (optimal) approximation of APP(X̂APP

opt (µ, f)) = 31/30. With Theorem 7
we can now also determine the approximation factor of optimal hypervolume distribu-
tions depending on the reference point r. For some specific reference points we get

APP(X̂HYP
opt (µ, r, f)) = 2 for r = (2, 1),

APP(X̂HYP
opt (µ, r, f)) = 4/3 for r = (3/2),

APP(X̂HYP
opt (µ, r, f)) = 22/21 for r = (1, 1),

APP(X̂HYP
opt (µ, r, f)) = 31/30 for r = (30/31, 30/31),

APP(X̂HYP
opt (µ, r, f)) = 27/26 for r ≤ (8/9, 8/9).

Evolutionary Computation Volume x, Number x 25



T. Friedrich, F. Neumann, and C. Thyssen

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0.92 0.94 0.96 0.98 1

0.92

0.94

0.96

0.98

1

Figure 9: Approximation factor of optimal hypervolume distribution depending on the reference
point for the linear function f : [1, 2]→ [1, 2] with f(x) = 3−x for a population size of µ = 10.
The right figure shows a closeup view of the area around the reference reference point with
the best approximation ratio, which is marked with a red dot.

Figure 9 shows a plot of the approximation factor depending on the reference point.
We observe that if r2 > 32 r1 − 30 or r1 > 32 r2 − 30, the approximation factor is
only determined by the inner approximation factor Ac (cf. Theorem 7). Moreover, for
r1 > 10 r2 − 8 and r2 > 10 r1 − 8 the approximation factor only depends on r1 and
r2, respectively. For r ≤ (8/9, 8/9) it is constant. The optimal approximation factor is
achieved for the reference point(

c2+d (c+1+µ)−1
c+d (µ+1)−1 , c

2+d (c+1+µ)−1
c+d (µ+1)−1

)
= (30/31, 30/31).

Let us now consider a specific convex function f : [1, c] → [1, c] with f(x) = c/x
and c = 2 for a population size of µ = 10. The function is shown in Figure 2(b).
Theorem 8 gives that the optimal distribution

X̂APP
opt (µ, f) =

{
2

1
20 , 2

3
20 , 2

5
20 , · · · , 2 15

20 , 2
17
20 , 2

19
20

}
achieves the (optimal) approximation factor of

APP(X̂APP
opt (µ, f)) = 21/20 ≈ 1.0353.

With Theorem 9 we can determine the approximation factor of optimal hypervolume
distributions depending on the reference point r. Figure 10 shows the behavior of the
approximation factor depending on the choice of the reference point r. We observe
that for r2 > c rµ1 and r1 > c rµ2 , the approximation factor only depends on r1 and r2,
respectively. For

r ≤ (c1/(1−µ), c1/(1−µ)) = (2−1/9, 2−1/9) ≈ (0.926, 0.926)

the approximation factor is invariably

c1/(2µ−2) = 21/18 ≈ 1.0393.

The optimal approximation factor is achieved for the reference point

(c−1/2µ, c−1/2µ) = (2−1/20, 2−1/20) ≈ (0.966, 0.966).
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Figure 10: Approximation factor of optimal hypervolume distribution depending on the refer-
ence point for the convex function f : [1, 2] → [1, 2] with f(x) = 2/x for a population size of
µ = 10. The right figure shows a closeup view of the area around the reference point with
the best approximation ratio, which is marked with a red dot.

5 Conclusions

Evolutionary algorithms have been shown to be very successful for dealing with multi-
objective optimization problems. This is mainly due to the fact that such problems are
hard to solve by traditional optimization methods. The use of the population of an
evolutionary algorithm to approximate the Pareto front seems to be a natural choice
for dealing with these problems. The use of the hypervolume indicator to measure
the quality of a population in an evolutionary multi-objective algorithm has become
very popular in recent years. Understanding the optimal distribution of a population
consisting of µ individuals is a hard task and the optimization goal when using the hy-
pervolume indicator is rather unclear. Therefore, it is a challenging task to understand
the optimization goal by using the hypervolume indicator as a quality measure for a
population.

We have examined how the hypervolume indicator approximates Pareto fronts of
different shapes and related it to the best possible approximation ratio. We started by
considering the case where we assumed that the extreme points with respect to the
given objective functions have to be included in both distributions. Considering linear
fronts and a class of convex fronts we have pointed out that the hypervolume indica-
tor gives provably the best multiplicative approximation ratio that is achievable. To
gain further insights into the optimal hypervolume distribution and its relation to mul-
tiplicative approximations, we carried out numerical investigations. These investiga-
tions point out that the shape as well the scaling of the objectives heavily influences the
approximation behavior of the hypervolume indicator. Examining fronts with differ-
ent shapes we have shown that the approximation achieved by an optimal set of points
with respect to the hypervolume may differ from the set of µ points achieving the best
approximation ratio.

After having obtained these results, we analyzed the impact of the reference points
on the hypervolume distribution and compared the multiplicative approximation ra-
tio obtained by this indicator to the overall optimal approximation that does not have
to contain the extreme points. In general, the choice of the reference point determines
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the approximation ratio that a hypervolume-based algorithm can achieve. However,
it is hard to determine the reference point that optimizes the approximation ratio as it
depends on the multi-objective problem under consideration. Our investigations show
that also in this case the hypervolume distribution can lead to an overall optimal ap-
proximation when the reference point is chosen in the right way for the class of linear
and convex functions under investigation. Furthermore, our results point out the im-
pact of the choice of the reference point with respect to the approximation ratio that is
achieved as shown in Figures 9 and 10.

Our results provide insights into the connection of the optimal hypervolume dis-
tribution and approximation ratio for special classes of functions describing the Pareto
fronts of multi-objective problems having two objectives. For future work, it would be
interesting to obtain results for broader classes of functions as well as problems having
more than 2 objectives.
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