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Abstract
The generalized travelling salesperson problem is an important NP-hard combinato-
rial optimization problem for which meta-heuristics, such as local search and evolu-
tionary algorithms, have been used very successfully. Two hierarchical approaches
with different neighbourhood structures, namely a Cluster-Based approach and a
Node-Based approach, have been proposed by [10] for solving this problem. In this
paper, local search algorithms and simple evolutionary algorithms based on these ap-
proaches are investigated from a theoretical perspective. For local search algorithms,
we point out the complementary abilities of the two approaches by presenting in-
stances where they mutually outperform each other. Afterwards, we introduce an
instance which is hard for both approaches when initialized on a particular point of
the search space, but where a variable neighbourhood search combining them finds
the optimal solution in polynomial time. Then we turn our attention to analysing
the behaviour of simple evolutionary algorithms that use these approaches. We show
that the Node-Based approach solves the hard instance of the Cluster-Based approach
presented in [3] in polynomial time. Furthermore, we prove an exponential lower
bound on the optimization time of the Node-Based approach for a class of Euclidean
instances.
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1 Introduction

Evolutionary algorithms and other metaheuristics have been applied to a wide range of
combinatorial optimization problems. Understanding the behaviour of metaheuristics
on problems from combinatorial optimization is a challenging task due to the large
amount of randomness involved in these algorithms.

During the past decade, lot of progress has been made on the analysis of evolu-
tionary algorithms and ant colony optimization for problems of classical benchmark
functions and problems from combinatorial optimization [2, 11]. Results have been
achieved for classical polynomially solvable problems such as sorting, shortest path,
minimum spanning trees and maximum matching as well as for some of the best
known NP-hard combinatorial optimization problems such as vertex cover, makespan
scheduling, and the travelling salesperson problem [16, 23].
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Furthermore, bio-inspired computing methods have been studied in the context
of parameterized complexity [5, 14, 15]. This approach allows to study the runtime in
dependence of some structural parameters of the given instances and helps to classify
when an instance gets hard for the examined algorithm. Results have been obtained
for some of the most prominent NP-hard combinatorial optimization problems such
as vertex cover, makespan scheduling [21] and the Euclidean Travelling Salesperson
problem [22]. The parameterized analysis has also been used to study the generalized
minimum spanning tree problem (GMSTP) and the generalized travelling salesperson
problem (GTSP) [3]. This paper aims to investigate the latter problem in more detail.

The generalized travelling salesperson problem (GTSP) is given by a set of cities
with distances between them. The cities are divided into clusters and the goal is to
find a tour of minimal cost that visits one city from each cluster exactly once. Hu and
Raidl [10] have presented two hierarchical approaches for solving the GTSP: Cluster-
Based approach, which uses a permutation on the different clusters in the upper level
and finds the best node selection for that permutation on the lower level, and Node-
Based approach, which selects a node for each cluster and then works on finding the best
permutation of the chosen nodes. Combining the two hierarchical approaches, they
have also presented a variable neighbourhood search algorithm for solving the GTSP.
With this paper, we contribute to the theoretical understanding of local search methods
and simple evolutionary algorithms based on these hierarchical approaches for GTSP.
The analysis on local search methods (based on the conference version [19]) is presented
in Section 3. We investigate the local search methods by presenting instances for which
the two approaches mutually outperform each other. We also present a situation where
both Cluster-Based and Node-Based local search approaches stick to a local optimum,
but the combination of the two approaches solves the problem to optimality.

After investigating local search methods, this paper extends the conference version
[19] by investigating simple evolutionary algorithms in Section 4. A (1+1) EA using the
Cluster-Based approach is analysed in [3] by presenting upper and lower bounds for
the optimization time of the algorithm. In this paper, we show that the worst case
instance presented there for the Cluster-Based approach can be solved in polynomial
time by means of the Node-Based approach; hence, there are instances of the problem
which the latter approach can solve more efficiently. Then we provide a lower bound
analysis of this approach for the Euclidean generalized travelling salesperson problem.

Showing lower bounds for the Euclidean travelling salesperson problem has been
shown to be quite difficult. Englert et al. [6] have shown that there are instances of
the Euclidean TSP for which finding a local optimal solution takes exponential time
by means of a deterministic local search algorithm based on 2-opt. In this paper we
present a Euclidean class of instances where a simple evolutionary algorithm using the
Node-Based approach requires exponential time with respect to the number of clusters.
To our knowledge currently an exponential lower bound for solving TSP by a stochas-
tic search algorithm is available only for ant colony optimization in the non-Euclidean
case [13]. Our instance for the GTSP places nodes on two different circles with radius r
and r′ of a given centre. Exploiting the geometric properties of this instance class, we
show by multiplicative drift analysis [4] that the evolutionary algorithm under inves-
tigation ends up in a local optimum which has different chosen nodes for almost all
clusters. Leaving such a local optimum requires exponential time for many mutation-
based evolutionary algorithms and leads to an exponential lower bound with respect
to the number of clusters for the investigated algorithm.

The outline of this paper is as follows. Section 2 introduces the problem and the
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algorithms that are subject to our investigations. Our runtime analysis for local search
methods and simple evolutionary algorithms are presented in Section 3 and Section 4
respectively. Finally, we finish with some concluding remarks in Section 5.

2 Problem and Algorithms

The generalized travelling salesperson problem (GTSP) is a combinatorial optimization
problem with applications in routing, design of ring networks, sequencing of computer
files, manufacture planning [8]. The input is given by a complete undirected graph
G = (V,E, c) with cost function c : E → R+ on the edges and a partitioning of the set of
nodes V into m clusters V1, V2, . . . , Vm such that V =

⋃m
i=1 Vi and Vi ∩ Vj = ∅ for i 6= j.

The aim is to find a tour of minimum costs that contains exactly one node from each
cluster.

A candidate solution for this problem consists of two parts. The set of span-
ning nodes, P = {p1, . . . , pm} where pi ∈ Vi, and the permutation of the clusters,
π = (π1, . . . , πm), which makes a Hamiltonian cycle onG[P ] = G(P, {e ∈ E | e ⊆ P}, c).
Here, G[P ] is the sub-graph induced by P consisting of all nodes in P and all edges be-
tween them. Following [10], we represent a candidate solution as S = (P, π). Let pπi
be the chosen node for cluster Vπi , 1 ≤ i ≤ m. Then the cost of a solution S = (P, π) is
given by c(S) = c(pπm , pπ1

) +
∑m−1
i=1 c(pπi , pπi+1

).
There are two hierarchical approaches for solving this problem [10], the Cluster-

Based approach and the Node-Based approach. In the former, an upper level algorithm
searches for finding the best permutation of clusters, while a lower level algorithm finds
the optimal spanning node set. In the two levels of Node-Based approach, these tasks
are swapped. In the following, we describe four algorithms that make use of these two
hierarchical approaches. We analyse these algorithms with respect to the (expected)
number of iterations on the upper level, until they have found an optimal solution and
call this the (expected) optimization time of the algorithms.

2.1 Cluster-Based Local Search

In the Cluster-Based approach, constructing the permutation of clusters constitutes the
upper level and the node selection is done in the lower level [10]. Let π = (π1, · · · , πm)
be a permutation of the m clusters. The 2-opt neighbourhood of π is given by

N(π) = {π′ | π′ = (π1, · · · , πi−1, πj , πj−1, · · · , πi, πj+1, · · · , πm), 1 ≤ i < j ≤ m}

The Cluster-Based local search (CBLS) algorithm working with this neighbour-

Algorithm 1: Cluster-Based Local Search (CBLS)

1 Choose a permutation π = (π1, . . . , πm);
2 Find the optimal set of spanning nodes P with respect to π to obtain the

solution S = (P, π);
3 for π′ ∈ N(π) do
4 Find an optimal set of nodes P ′ = {p′1, . . . , p′m}with respect to π′ to obtain

the solution S′ = (P ′, π′);
5 if c(S′) < c(S) then
6 S = S′;
7 GO TO 3
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Algorithm 2: Node Exchange Neighbourhood Local Search (NEN-LS)

1 Choose P = {p1, p2, . . . , pm}, pi ∈ Vi;
2 Let π be the permutation of clusters obtained by performing a 2-opt local search

on G[P ] and S = (P, π) be the resulting solution;
3 for P ′ ∈ N ′(P ) do
4 Let π′ be the permutation of clusters obtained from π by performing a 2-opt

local search on G[P ′] and S′ = (P ′, π′) be the resulting solution;
5 if c(S′) < c(S) then
6 S = S′;
7 GO TO 3

Algorithm 3: Node Exchange Neighbourhood Local Search* (NEN-LS*)

1 Choose P = {p1, p2, · · · , pm}, pi ∈ Vi;
2 Find a minimum-cost permutation π for G[P ] and let S = (P, π) be the resulting

solution;
3 for P ′ ∈ N ′(P ) do
4 Find a minimum-cost permutation π′ for G[P ′] and let S′ = (P ′, π′) be the

resulting solution;
5 if c(S′) < c(S) then
6 S = S′;
7 GO TO 3

hood structure, given in Algorithm 1, starts with an initial permutation of clusters. At
each step, a new permutation π′ is selected from the 2-opt neighbourhood of π, the
current permutation of clusters. Then the lower level uses a shortest path algorithm to
find the best spanning node set. Hu and Raidl [10] have applied an incremental bidi-
rectional shortest path calculation for this purpose. The shortest path algorithm of [12]
is another option, which is an improved version of dynamic programming algorithm
given in [7] for finding an optimal set of spanning nodes for a given permutation in
time O(n3). The new solution S′ = (P ′, π′) replaces the old one if it is less costly, and
the algorithm terminates if no better solution can be found in the 2-opt neighbourhood
of π.

2.2 Node-Based Local Search

In the Node-Based approach [10], selection of the spanning nodes is done in the upper
level and the lower level consists of finding a shortest tour on the spanning nodes.
Given a spanning nodes set P , in the Node-Based local search algorithm, the upper
level performs a local search based on the node exchange neighbourhoodN ′(P ), which
is defined as

N ′(P ) = {P ′ | P ′ = {p1, · · · , pi−1, p
′
i, pi+1, . . . , pm}, p′i ∈ Vi \ {pi}, 1 ≤ i ≤ m}

Note that the lower level involves solving the classical TSP; it therefore poses in
general an NP-hard problem on its own. For our theoretical investigations, we con-
sider two algorithms: NEN-LS (Node Exchange Neighbourhood Local Search) and
NEN-LS*, presented in Algorithm 2 and Algorithm 3, respectively. NEN-LS computes
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Algorithm 4: Variable Neighbourhood Search (VNS)

1 Choose an initial solution S = (P, π);
2 l = 1;
3 while l ≤ 2 do
4 for S′ ∈ Nl(S) do
5 if c(S′) < c(S) then
6 S = S′;
7 l = 1;
8 GO TO 3

9 l = l + 1

a permutation on the lower level using 2-opt local search and is therefore not guaran-
teed to reach an optimal permutation π for a given spanning node set P . NEN-LS* uses
an optimal solver to find an optimal permutation π for a given spanning node set P .
Such a permutation can be obtained in time O(m22m) using dynamic programming [9]
and is practical if the number of clusters is small. We use NEN-LS* and show where it
gets stuck in local optima even if the travelling salesperson problem on the lower level
is solved to optimality.

NEN-LS and NEN-LS* start with a spanning node set P and search for a good
or optimal permutation with respect to P . Then each solution P ′ ∈ N ′(P ) together
with its permutation π′ is considered and S′ = (P ′, π′) replaces the current solution
S = (P, π) if it is of smaller cost. Both algorithms terminate if there is no improvement
possible in the neighbourhood N ′(P ) of the current solution P .

2.3 Variable Neighbourhood Search

Now we describe the combination of two approaches into variable neighbourhood
search, which is introduced in [10]. Two neighbourhood structures of CBLS and NEN-
LS are used in this algorithms, where the NEN-LS neighbourhood is used only when
the algorithm is in a local optimum with respect to the CBLS neighbourhood.

Let S = (P, π) be a solution to the GTSP. We define the two neighbourhoods N1

and N2 based on the 2-opt neighbourhood N and the node exchange neighbourhood
N ′ as

• N1(S) = {S′ = (P ′, π′) | π′ ∈ N(π), P ′ = optimal set of nodes with respect to π′}

• N2(S) = {S′ = (P ′, π′) | P ′ ∈ N ′(P ), π′ = order of clusters obtained by 2-opt from
π on G[P ′]}

Combining the two local searches of Cluster-Based approach and Node-Based ap-
proach is done by alternating between N1 and N2. Since the computational complexity
of finding P ′ for solutions in neighbourhood N1 is lower than that of finding π′ for
solutions in neighbourhood N2, the first neighbourhood to search is N1. When a local
optimum has been found with respect to that neighbourhood, then N2 is searched. The
resulting variable neighbourhood search (VNS) algorithm is given in Algorithm 4.

2.4 Node-Based (1+1) EA

In the Node-Based approach, selecting the spanning nodes is done in the upper level
and the corresponding shortest Hamiltonian cycle is found in the lower level. The
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Algorithm 5: Node-Based (1+1) EA

1 Let P = {p1, p2, . . . , pm}, where pi ∈ Vi are chosen uniformly at random;
2 Let π be the optimal permutation for G[P ] and S = (P, π) be the resulting

solution;
3 while termination condition not satisfied do
4 P ′ ← P ;
5 for i ∈ {1, · · · ,m} do
6 with probability 1/m, sample p′i ∼ Unif(Vi);

7 Let π′ be the optimal permutation for G[P ′] and S′ = (P ′, π′) be the
resulting solution;

8 if c(S′) < c(S) then
9 S = S′;

Node-Based (1+1) EA is presented in Algorithm 5. In contrast to Node-Based local
search algorithm of Section 2.2, the upper level uses the (1+1) EA to search for the
best spanning set instead of a local search method; hence, more than one change on
the spanning set is possible on the upper level, at each iteration of the algorithm. The
condition for accepting the new solution is a strict improvement.

Note that the lower level consists of an NP-hard problem; hence, when showing
polynomial upper bounds on the expected optimization time of this algorithm, we only
consider instances where the lower level can be solved in polynomial time. For general
case, there exist very effective solvers for TSP such as Concorde [1], that can be used in
the lower level. Note that the lower level does not need to solve an NP-hard problem
in the Cluster-Based approach. Nevertheless, we prove that there are instances that
can be solved in polynomial time with Node-Based (1+1) EA, while the Cluster-Based
(1+1) EA [3] needs exponential time to find an optimal solution for them.

3 Local Search Methods

This section presents the analysis on the behaviour of the local search methods. Cluster-
Based and Node-Based Local search algorithms and also the variable neighbourhood
search algorithm presented in Sections 2.1, 2.2 and 2.3 are investigated in this section.

3.1 Benefits of NEN-LS

In this section, we present an instance of the problem that can not be solved by CBLS.
In contrast to this, NEN-LS finds an optimal solution in polynomial time.

Figure 1: G1, an easy instance for NEN-LS and a hard instance for CBLS

We consider the undirected complete graph, G1 = (V,E) which is illustrated in
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Figure 1. The graph has n nodes and 6 clusters Vi, 1 ≤ i ≤ 6. Cluster V1 contains n/12
white and n/12 grey nodes. We denote by V1W the subset of white nodes and by V1G

the subset of grey nodes of cluster V1. Each other cluster Vj , 2 ≤ j ≤ 6, consists of
n/6 white nodes. The node set V = ∪6

i=1Vi of G1 consists of nodes of all clusters. For
simplicity, Figure 1 shows only one node for each group of similar nodes with similar
edges in the picture. The edge set E consists of 4 types of edges which we define in the
following.

• TypeA: Edges of this type have a cost of 1. All edges between clusters 2 and 3, and
between clusters 4 and 5 and also between clusters 6 and 1, are of this type.

A = {{vi, vj} | (vi ∈ V1W ∪ V1G ∧ vj ∈ V6) ∨ (vi ∈ V2 ∧ vj ∈ V3) ∨ (vi ∈ V4 ∧ vj ∈ V5)}

• Type B: Edges of this type have a cost of 3. All edges connecting the nodes of
cluster 1 to cluster 2 are of this type. So are the edges that connect nodes of cluster
3 to 4 and cluster 5 to 6.

B = {{vi, vj} | (vi ∈ V1W ∪ V1G ∧ vj ∈ V2) ∨ (vi ∈ V3 ∧ vj ∈ V4) ∨ (vi ∈ V5 ∧ vj ∈ V6)}

• Type C: Edges of this type have a cost of 4. All edges between nodes of cluster
2 and 5 and also between clusters 3 and 6 are of this type. All edges that connect
white nodes of the first cluster to nodes of the fourth cluster are also of this type.

C = {{vi, vj} | (vi ∈ V1W ∧ vj ∈ V4) ∨ (vi ∈ V2 ∧ vj ∈ V5) ∨ (vi ∈ V3 ∧ vj ∈ V6)}

• Type D: Edges of this type have a large cost of 100. All edges other than those of
type A or B or C in this complete graph, including the edges between grey nodes
of the first cluster and the nodes of the fourth cluster, are of Type D.

D = E \ {A ∪B ∪ C}

We say that a permutation π = (π(1), . . . , π(n)) visits the cities in consecutive order
iff π(i + 1) = (π(i) mod n) + 1, 1 ≤ i ≤ n and say that π = (π(1), . . . , π(n)) visits the
cities in reverse-consecutive order iff π(i) = (π(i+ 1) mod n) + 1, 1 ≤ i ≤ n.

We now define a property, and then in Theorem 2 we analyse the behaviour of
CBLS on G1.

Property 1. For the instance G1, each solution visiting the clusters in consecutive or reverse-
consecutive order is optimal.

Proof. The graph consists of 6 clusters which implies that 6 edges are needed for a tour.
The least costly edges are of typeA, which are available only between 3 pairs of clusters.
The second least costly type of edge is B with weights of 3. This implies that no tour
can be less costly than 3 · 1 + 3 · 3 = 12, which is the cost of every solutions with a
permutation in consecutive or reverse-consecutive order.

Theorem 2. Starting with the solution consisting of only white nodes and the permutation
π = (1, 4, 5, 2, 3, 6), CBLS is not able to achieve any improvement.

Proof. Here we analyse the behaviour of CBLS on G1, starting with all white nodes and
a permutation π = (1, 4, 5, 2, 3, 6). The initial solution contains three Type-A edges of
cost 1 and three Type-C edges of cost 4. This implies a total cost of 15 which is not
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optimal. The edges belonging to this tour are marked solid in Figure 1. We claim that
this solution is locally optimal, i.e. can not be improved by a 2-opt step.

When a 2-opt move is performed, depending on the different types of edges that
are removed from the current tour, we show that the resulting tours have costs greater
than 15.

Note, that all 3 edges of cost 1 are already used in the current permutation which
means that no additional edge of cost 1 can be added. We inspect the different 2-opt
steps with respect to the edges that are removed.

• If two edges of type A which have cost of 1 are removed, two other edges need
to be added and the least costly edges that can be added have a weight of 3. This
makes the total cost of the resulting solution to be at least 15 − 2 · 1 + 2 · 3 = 19
which is greater than 15.

• If one edge of type A (weight 1) and one edge of type C (weight 4) are removed,
again with the minimum two edges of cost 3 that are added, the total cost is at least
15− 1− 4 + 2 · 3 = 16 which is greater than 15.

• For removing two edges of Type C, there are three options, listed below. In all of
them, the operation adds two edges of typeD to the solution, making the total cost
greater than 15.

– Remove the edge between cluster 1 and cluster 4 and also the edge between
cluster 2 and cluster 5. This 2-opt results in permutation π′ = (1, 5, 4, 2, 3, 6).

– Remove the edge between cluster 1 and cluster 4 and also the edge between
cluster 3 and cluster 6. This 2-opt results in permutation π′ = (1, 3, 2, 5, 4, 6).

– Remove the edge between cluster 2 and cluster 5 and also the edge between
cluster 3 and cluster 6. This 2-opt results in permutation π′ = (1, 4, 5, 3, 2, 6).

We have shown that no 2-opt step is accepted, which completes the proof.

In contrast to the negative result for CBLS, we show that NEN-LS is able to reach
an optimal solution when starting with the same solution.

Theorem 3. Starting with π = (1, 4, 5, 2, 3, 6), NEN-LS finds an optimal solution for the
instance G1 in expected time O(n).

Proof. Starting with a solution with only white nodes and the permutation of π =
(1, 4, 5, 2, 3, 6), no improvement can be found by a 2-opt local search (similar to the
arguments in the proof of Theorem 2). Therefore, the lower level is already locally
optimal and the solution does not change unless a grey node in cluster V1 is selected.

Let P = {p1, · · · , p6} be the current set of spanning nodes. Selecting a grey node p′1
for cluster V1 leads to the set of spanning nodes P ′ = {p′1, p2, · · · , p6}. P ′ in combination
with the the current permutation π = (1, 4, 5, 2, 3, 6) has a total cost of 111 as there is
one edge of type D with cost 100. We now show that starting from this solution and
performing a 2-opt local search on the lower level results in an optimal solution.

In order to accept a new permutation on the lower level a solution of cost at most
111 has to be obtained. We do a case distinction according to the different types of
edges that are removed in a 2-opt operation. If we only remove edges of type A and
C, we reach a solution with total cost of greater than 111 using the arguments in the
proof of Theorem 2. Hence, we only need to consider the case where at least one edge
of type D is removed.
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• There are two possibilities of removing one edge of type D and one of the edge of
type C leading to the permutations π′ = (1, 5, 4, 2, 3, 6) and π′′ = (1, 3, 2, 5, 4, 6).
Both have two edges of type D which implies a total cost of greater than 111 and
are therefore rejected.

• Considering the case of removing the edge of type D and one of the edges of type
A, the only applicable 2-opt move leading to a different permutation results in the
permutation π′ = (1, 2, 5, 4, 3, 6). The resulting solution has cost 16 and is therefore
accepted.

After reaching permutation π′ = (1, 2, 5, 4, 3, 6), the only acceptable 2-opt move
leads to the global optimum πopt = (1, 2, 3, 4, 5, 6).

The 2-opt neighbourhood for this instance has a constant size, as the number of
clusters is constant. Moreover, all permutations that were investigated in the lower
level, were either locally optimal with respect to the spanning nodes, or were improved
only twice. Therefore, each lower level optimization is done in constant time. Further-
more, it takes expected time O(n) on the upper level to select a grey node for the first
cluster. As a result, the expected optimization time is bounded by O(n).

3.2 Benefits of CBLS

We now introduce an instance where NEN-LS* with a random initial solution finds
it hard to obtain an optimal solution, while CBLS with an arbitrary starting solution
obtains an optimum in polynomial time. The instance G2 = (V,E) is illustrated in
Figure 2. There are m clusters where m > 2, and all the clusters contain only 2 nodes;
one white and one black. We refer to the white and black nodes of cluster i, 1 ≤ i ≤ m,
by viW and viB , respectively. We call cluster V1 the costly cluster as edges connecting
this cluster to others are more costly than edges connecting other clusters together. The
edge set E of this complete graph is partitioned into 4 different types.

• Type A: Edges of this type have a weight of 1. All connections between white
nodes of different clusters except cluster V1 are of this type.

A = {{viW , vjW } | 2 ≤ i, j ≤ m}

• Type B: Edges of this type have a weight of 2. All connections between black
nodes of different clusters are of this type.

B = {{viB , vjB} | 1 ≤ i, j ≤ m}

• Type C: Edges of this type have a weight of m. All edges between white nodes of
the costly cluster and white nodes of other clusters are of this type.

C = {{v1W , viW } | 2 ≤ i ≤ m}

• Type D: Edges of this type have a weight of m2. All edges between a white and a
black node are of this type.

D = E \ {A ∪B ∪ C} = {{viW , vjB} | 1 ≤ i, j ≤ m}

We first claim that the optimal solution consists of only black nodes. Then, we
bring our main theorems on the runtime behaviour of solving this instance with the
two mentioned approaches.

Evolutionary Computation Volume x, Number x 9
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Figure 2: Graph G2

Property 4. For the graph G2 any solution containing all black nodes is optimal.

Proof. A solution that contains only black nodes has m edges of type B and therefore
total cost of 2m.

Choosing a combination of black and white nodes implies a connection of type D
and therefore a solution of cost at least m2. Choosing all white nodes implies 2 edges
of cost m connected to cluster V1 and m − 2 edges of cost 1. Hence, the total cost of
such a solution is 2m + (m − 2) which implies that a solution selecting all black nodes
is optimal.

We now show that CBLS always finds an optimal solution due to selecting optimal
spanning nodes in time O(n3).

Theorem 5. Starting with an arbitrary permutation π, CBLS finds an optimal solution for G2

in time O(n3).

Proof. As mentioned in Property 4, visiting black nodes of the graph in any order is a
globally optimal solution. For each permutation π the optimal set of nodes is given by
all black nodes and found when constructing the first spanning node set. This set is
constructed in time O(n3) by the shortest path algorithm given in [12].

In contrast to the positive result for CBLS, NEN-LS* is extremely likely to get stuck
in a local optimum if the initial spanning node set is chosen uniformly at random. Note,
that NEN-LS* is even using an exact solver for the lower level.

Theorem 6. Starting with a spanning node set P chosen uniformly at random, NEN-LS* gets
stuck in a local optimum of G2 with probability 1− e−Ω(n).

Proof. Selecting P = {p1, · · · , pm} uniformly at random, the expected number of white
nodes is n

2 . Using Chernoff bounds, the number of white nodes is at least n/4 with
probability 1− e−Ω(n). The same applies to the number of black nodes.

Since connecting white nodes to black nodes is costly, the lower level selects a
permutation which forms a chain of white nodes and a chain of black nodes connected
to each other by only two edges of type D to form a cycle.

Let p1 be the selected node of the costly cluster V1. If p1 is initially white, the lower
level places it at one border between the black chain and the white chain to avoid using
one of the edges of type C. This situation is illustrated in Figure 3-a. If p1 is initially
black, then the initial solution would look like Figure 3-b, in which the costly cluster
is placed somewhere in the black chain. Here we present two auxiliary claims, which
will be used in the rest of the proof of Theorem 6.
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Figure 3: The initial solution for G2 if a) A white node is selected for the costly cluster.
b) A black node is selected for the costly cluster.

Claim 7. Starting with a random initial solution, with probability 1− e−Ω(n) for all the
clusters Vi, 2 ≤ i ≤ m; a change from black to white is improving while no change from
white to black is improving.

Proof. As mentioned earlier, a random initial node set has both kinds of nodes
with probability 1 − e−Ω(n); therefore, the exact solver of the lower level forms a
chain of black nodes and a chain of white nodes. Changing a black node pi, i 6= 1
to white results in shortening the chain of black nodes by removing an edge of
type B and cost 2, while the chain of white nodes gets longer by adding an edge
of type A and cost 1. The new solution is hence improved in terms of fitness and
accepted by the algorithm. On the other hand, the opposite move increases the
cost of the solution; therefore in a cluster Vi, i 6= 1 a change from white to black is
not accepted.

The number of selected white nodes for clusters Vi, i 6= 1 never decreases;
therefore, at all time during the run of the algorithm we have both chains of black
nodes and white nodes, until all the black nodes change to white.

Claim 8. As long as there is at least one cluster Vi, i 6= 1 for which the black node is
selected, a change from white to black is accepted for cluster V1 and the opposite change is
rejected.

Proof. Since there is at least one cluster Vi, i 6= 1, for which the black node is se-
lected, we know that the current solution and the new solution both have a chain
of black nodes and a chain of white nodes. If the white node of cluster V1 is se-
lected in the current solution, changing it to black shortens the chain of white
nodes by removing the edge of type C and increases the number of black nodes
by adding an edge of type B. This move is accepted because the new solution
is improved in terms of cost. The result is illustrated in Figure 3-b. Using simi-
lar arguments, if the black node of cluster V1 is selected in the current solution,
changing it to white is rejected because it increases the cost.

Using Claim 7 we can conclude that all nodes pi, i 6= 1 are gradually changed to
white in NEN-LS. As long as at least one node pi, i 6= 1 is black, a mutation from white
to black for p1 is accepted, and this node remains black. When all other nodes are
changed to white, if p1 is black at this point, it is connected to two white nodes with
edges of type D and cost m2 as illustrated in Figure 4-a. If it changes to white, these
two edges are removed and two edges of type C and cost m are added to the solution
(Figure 4-b). This change is accepted because two edges of cost m are less costly than
two edges of cost m2.

This eventually results in a local optimum with all white nodes selected. The al-
gorithm needs to traverse the clusters on the upper level only twice which gives O(m)
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Figure 4: a) All other clusters change to white one by one. b)Local Optimum for G2.

iterations on the upper level for the algorithm to get stuck in a local optimum. In the
first traversal, for all the clusters the white node will be selected except for the costly
cluster, V1. In the second traversal, the white node will be selected for V1 as well (Fig-
ure 4-b). This completes the proof of Theorem 6.

3.3 Benefits of VNS

In this section we introduce an instance of the problem for which both of the mentioned
neighbourhood search algorithms fail to find the optimal solution. Nevertheless, the
combination of these approaches as described in Algorithm 4 finds the global optimum.

We consider the undirected complete graph G3 shown in Figure 5 which has 6
clusters each containing n/6 nodes. There are three kinds of nodes in this graph: white,
grey and black. The first cluster consists of n/12 black, n/24 white, and n/24 grey
nodes. All other clusters contain n/12 white and n/12 black nodes. We refer to the set
of white, black and grey nodes of cluster Vi by ViW , ViB , andViG, respectively.

Figure 5: Graph G3 showing one node of each type for each cluster and omitting edges
of cost 100.

There are 5 types of edges in this graph, 4 of which are quite similar to the 4 types
of the instance in Section 3.1. The other type, named type D below, includes the edges
between two consecutive black nodes with a cost of 1.5.

• Type A: Edges of this type have a cost of 1.

A = {{vi, vj} | (vi ∈ V1W ∪ V1G ∧ vj ∈ V6W ) ∨
(vi ∈ V2W ∧ vj ∈ V3W ) ∨ (vi ∈ V4W ∧ vj ∈ V5W )}

• Type B: Edges of this type have a cost of 3.

B = {{vi, vj} | (vi ∈ V1W ∪ V1G ∧ vj ∈ V2W ) ∨
(vi ∈ V3W ∧ vj ∈ V4W ) ∨ (vi ∈ V5W ∧ vj ∈ V6W )}
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• Type C: Edges of this type have a cost of 4.

C = {{vi, vj} | (vi ∈ V1W ∧ vj ∈ V4W ) ∨
(vi ∈ V2W ∧ vj ∈ V5W ) ∨ (vi ∈ V3W ∧ vj ∈ V6W )}

• Type D: Edges of this type have a cost of 1.5.

D = {{vi, vj} | (vi ∈ VkB ∧ vj ∈ V(k+1)B , 1 ≤ k ≤ 5) ∨ (vi ∈ V6B ∧ vj ∈ V1B)}

• Type F : Edges of this type have a large cost of 100. All edges other than those of
type A or B or C or D in this complete graph are of Type F . Note that the edges
between grey nodes of the first cluster and the white nodes of the fourth cluster
are also of this type.

F = E \ {A ∪B ∪ C ∪D}

We now show that an optimal solution visits a black node from each cluster in
consecutive or reverse-consecutive order. Then in Theorem 10, we show that the algo-
rithms CBLS and NEN-LS may get stuck in local optimums.
Property 9. The optimal solution for the graph G3 is visiting all black nodes with the consec-
utive or reverse-consecutive order.

Proof. There are three kinds of nodes in this graph; white, grey and black. Any solution
that contains black and one other kind of node has at least two edges of type F and
weight 100 which makes the total cost of that solution more than 200. A solution that
visits all black nodes in consecutive or reverse-consecutive order has 6 edges of type
D and a total cost of 9. On the other hand, if we consider only white and grey nodes,
our graph is the same as the instance of Section 3.1 with the optimal solution of cost 12.
Therefore, visiting all black nodes with the cost of 9 is the optimal solution.

Theorem 10. Starting with a spanning node set P consisting of only white nodes and the
permutation π = (1, 4, 5, 2, 3, 6), CBLS and NEN-LS get stuck in a local optimum of G3.

Proof. We first show that the mentioned initial solution is a local optimum for CBLS.
The cost of this solution is 15 which is less than any of the edges between black nodes
and white or grey nodes. Therefore, any solution consisting of black and another kind
of node, cannot be accepted. If we do not consider the black nodes and their edges,
then G3 is similar to G1, and according to Theorem 2, starting with the initial permu-
tation, no improvements can be achieved with Algorithm 1. Particularly, permutation
π′ = (1, 2, 3, 4, 5, 6) is not achievable by searching the 2-opt neighbourhood of the initial
solution. A solution consisting of black nodes is less costly only if they are visited in
the optimal order of π′ = (1, 2, 3, 4, 5, 6) which is proved not to be achievable by CBLS.

Now we investigate the behaviour of NEN-LS which performs a local search based
on the Node-Based approach for this instance. We show that this algorithm finds an-
other locally optimal solution. Starting with the initial solution that is specified in the
theorem, all black nodes can not be selected in one step and trying any one of the black
nodes is rejected, because using two edges of type F are inevitable which makes the
solution worse than the initial solution. The only spanning node set left in the NEN
has the grey node of the first cluster. For this selection of nodes, the 2-opt TSP solver of
the lower level finds the optimal order of clusters similar to what we described in the
proof of Theorem 3 of Section 3.1 which form a solution of cost 12. From this point any
Node-Exchange-Neighbourhood search fails to find a better solution.
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Using a variable-neighbourhood search that combines the two hierarchical ap-
proaches, we are able to escape these local optima. In the following, we show that
VNS obtains an optimal solution when starting with the same solution as investigated
in Theorem 10.

Theorem 11. Starting with a spanning node set P consisting only of white nodes and the
π = (1, 4, 5, 2, 3, 6), VNS obtains an optimal solution in time O(n3).

Proof. This approach is supposed to start with Cluster-Based algorithm and alternate
between the two algorithms whenever CBLS is stuck in a locally optimal solution. As
we saw, from the initial solution, Algorithm 1 can not find any better solutions, because
the initial solution is a local optimum for that algorithm. Finding this out requires
searching all the 2-opt neighbourhood which can be done in constant time, because the
number of clusters is fixed. Then NEN-LS manages to find another solution with the
permutation of π′ = (1, 2, 3, 4, 5, 6). This can also be done in polynomial time as we
described in Theorem 3 of Section 3.1. Then CBLS uses this as a starting solution. As
π′ = (1, 2, 3, 4, 5, 6) is an optimal permutation the optimal set of nodes P consisting of
all black nodes is found in time O(n3) on the lower level.

The investigations of this section have pointed out that a combination of the two hi-
erarchical approaches into a variable neighbourhood search is beneficial, because each
approach helps escape local optimum of the other approach.

4 Simple Evolutionary Algorithms

A simple evolutionary algorithm with the Cluster-Based approach for solving GTSP
has been studied in [3] and a hard instance is presented there to prove the exponential
lower bound on the runtime of that algorithm which holds with high probability. In this
section, we analyse the behaviour of Node-Based (1+1) EA presented in Algorithm 5
on that instance (Section 4.1). Moreover, we find a lower bound for optimisation time
of Node-Based (1+1) EA in Section 4.2. Our analysis gives an exponential lower bound
on the optimization time of the upper level; therefore, implies exponential time even if
the lower level is solved efficiently.

4.1 Behaviour of Node-Based (1+1) EA on the Hard Instance of Cluster-Based
(1+1) EA

In this section, we show that the hard instance for Cluster-Based (1+1) EA introduced
in [3] can be solved in polynomial time by the Node-Based approach. Moreover, we
perform experiments in Section 4.1.2, which confirm the theoretical results of this sec-
tion.

The hard instance of Cluster-Based (1+1) EA [3] is illustrated in Figure 6. In this
instance, there are m clusters and all of them comprise two nodes; a white node which
represents the suboptimal node, and a black node which is the optimal node. All the
white nodes are connected to each other with edges of cost 1, except for the white nodes
of consecutive clusters (shown in the picture) which are connected with edges of cost
2. All the edges between a black node and a white node have a cost of m2. All edges
between black nodes also have a cost of m2, except the ones that connect consecutive
clusters (shown in the picture) which have a small cost of 1

m .
The optimal node selection is to select all the black nodes and the optimal per-

mutation of clusters is a clockwise or anti-clockwise order of them. The cost of edges
between black nodes and white nodes in this permutation are 1

m and 2 respectively.
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Figure 6: Illustration of GG, hard instance of Cluster-Based (1+1) EA [3]

Algorithm 6: A Lower Level TSP Solver
1: Consider G′ a graph consisting of nodes of G[P ] with no edges
2: Add the edges of G[P ] that have a cost of 1/m to G′

3: Find a shortest path visiting all white nodes in G[P ] and add the edges of that to
G′.

4: Use edges of cost m2 to make a Hamiltonian cycle out of the paths that are formed
in G′ and the disconnected black nodes

Therefore, optimal solution will consist of all 1
m edges and it is shown that the local

optimum is selecting all white nodes in an order which does not have any of the 2-
weighted edges. For this instance of the problem, it is proved in [3] that with an over-
whelmingly high probability, the proposed Cluster-Based (1+1) EA needs exponential
time to find the optimal solution.

4.1.1 Theoretical Analysis of Node-Based (1+1) EA on GG
Here we prove that, with probability 1− o(1), GG can be solved in polynomial time by
the Node-Based approach. We call this probability a high probability, since by defini-
tion, o(1) approaches 0 when the input size approaches infinity. In order to prove this,
we first need to analyse how an optimal TSP tour can be found on the lower level of this
approach. Although solving TSP in general is NP-hard, it can be solved in polynomial
time for the instances induced by picking one node of each cluster of the graph GG. Al-
gorithm 6 provides such a method. In step 3 of this algorithm, if the number of white
nodes is at most 3, finding the shortest path can be done by checking all configurations.
If the number of white nodes is more than 3, only edges of cost 1 will be used in the
shortest path since all white nodes are connected tom−2 other white nodes with a cost
of 1. Finding this can be done by a depth-first-search and checking all configurations
of connecting the last 4 nodes of the path. Therefore step 3 needs time O(m) to find the
shortest path on white nodes. Since the required time for other steps of the algorithm
is also at most O(m), we can conclude that Algorithm 6 runs in time O(m).

To prove that Algorithm 6 finds the optimal tour with respect to the spanning set
fixed on the upper level, we first present two properties on the solutions of lower level.
Then in Lemma 14 we show that Algorithm 6 finds the optimal tour.

Property 12. Let w be the number of white nodes selected on the upper level. If 2 ≤ w ≤ 3 and
all the selected white nodes are from consecutive clusters, then Step 3 of Algorithm 6 uses one
edge of cost 2 (and one edge of cost 1 in case w = 3). Otherwise, it only uses edges of cost 1.
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Figure 7: Blocks of black nodes

Property 13. Let C(S) denote the total cost of a solution S. Also, let Y andX be two solutions
with r and s edges of weight m2 respectively. If r > s then we have C(Y ) > C(X).

Lemma 14. Let w and r = m − w be the number of white and black nodes selected on the
upper level, respectively. Moreover, let s be the number of black nodes where the selected node
in proceeding cluster with respect to the optimal solution is also black. Algorithm 6 finds an
optimal tour with total cost of

• s · 1
m + (m− r − 1) + (r − s+ 1) ·m2; if conditions of Property 12 do not hold

• s · 1
m + (m− r) + (r − s+ 1) ·m2; if conditions of Property 12 hold

Proof. There are r black nodes in the spanning set; therefore, in order to make a Hamil-
tonian cycle, at least r + 1 edges that are connected to these nodes are required. Since
all edges connected to black nodes, except for s edges of cost 1/m, are of cost m2, at
least r + 1 − s edges of cost m2 are needed, and refusing to select any of edges of cost
1/m, increases this number. Moreover, according to Property 13, the optimal solution
of the lower level has a minimum number of m2-edges. Therefore, the lower level has
to select all edges of cost 1/m, which is done in step 2 of the algorithm.

On the other hand, in order to minimise the number of white-black connections
which are of cost m2, all white nodes need to form one chain which is done is step 3
of the algorithm. This chain will be connected to two black nodes from its two ends.
If conditions of Property 12 do not hold, then only edges of cost 1 are used in forming
the white chain. Otherwise, one edge of cost 2 is also required. Therefore, the cost of
forming the white chain is m− r − 1 in the former case, and m− r in the latter case.

So far, we have formed some chains of black nodes and one chain of white nodes.
In order to connect these chains together, we have to use r + 1 − s edges of weight
m2, which is done in step 4 of the algorithm. Summing up, the optimal tour on the
selected set of nodes consists of s edges of weight 1

mand r − s+ 1 edges of weight m2.
Furthermore, if conditions of Property 12 hold, it contains m− r− 2 edges of cost 1 and
one edge of cost 2; otherwise, it contains m − r − 1 edges of cost 1. All together, these
edges give the total cost as stated in the lemma.

From now on, we only consider the number of iterations on the upper level. Note
that the lower level uses Algorithm 6 which adds only a factor of O(m) to our anal-
ysis. We start analysing the behaviour of Node-Based (1+1) EA on GG with a couple
of definitions that helps us in describing a TSP tour that the lower level forms. In the
following, w denotes the number of white nodes in the solution.

Definition 15. A black block of size l, l > 0 an integer, is a path on exactly l consecutive
black nodes, which consists of l − 1 edges of cost 1/m.

The two end nodes of a black block are connected to edges of costm2. Black blocks
of size 1, 2 and 3 nodes are illustrated in Figure 7.
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Definition 16. A solution is critical if 3 ≤ w ≤ 4 and all the selected white nodes are from
consecutive clusters.

Note that a one-bit flip on a white node of a critical solution results in either a
solution with a greater number of black blocks, or a solution that fulfils conditions of
Property 12. In the rest of this section we prove that with high probability, in time
O(m2) the algorithm either finds the optimal solution, or reaches a critical solution.
From a critical solution, we prove that a 2-bit flip can make an improvement, and with
high probability, in timeO(m2 logm) the optimal solution is found. Lemmata 19 and 22
prove the upper bound if we do not face a critical solution, and Lemma 23 investigates
the behaviour of the algorithm, otherwise. Lemmata 17 and 18 help us with the proof
of Lemma 19.

Lemma 17. Other than a situation where w = 3 and all selected white nodes are from consec-
utive clusters, w can only increase in a step in which the number of m2-edges decreases.

Proof. Having r = m − w black nodes, Lemma 14 gives the total cost of a solution as
s· 1
m+(m−r−1)+(r−s+1)·m2 when conditions of Property 12 do not hold. Here s is the

number of edges of weight 1
m ,m−r−1 is the number of edges of weight 1 (that connect

white nodes), and (r − s + 1) is the number of edges of weight m2. When w increases,
the number of edges of weight 1 increases, and since the total number of edges stay the
same, either s has to decrease or r− s+ 1. Decreasing s cannot compensate the increase
in the total cost that is caused by adding new edges of weight 1. Therefore, in order to
prevent an increase in the total cost, r − s+ 1, which is the number of m2-edges, has to
decrease.

For the situation where w = 2 and the selected white nodes are from consecutive
clusters, according to Lemma 14 the total cost is m−3

m + 2 + 2 · m2. Observe that all
solutions with w ≥ 4 have a larger cost. For w = 3, the solution either needs more
than 2 m2-edges, which is clearly more costly, or all three white nodes need to be from
consecutive clusters. In this situation, Lemma 14 gives the total cost as m−4

m + 3 + 2 ·m2

which is also more costly and rejected by the algorithm.

Lemma 18. In a phase of Cm2 steps, C a constant, if we do not face a critical solution, with
probability 1− o(1), the sum of all increments on the number of white nodes is at most 5m.

Proof. From Lemma 17 we know that the number of white nodes can increase only
when the number of blocks reduces. Since the number of blocks is bounded by m, this
can only happen in at most m steps. At each of those steps, either two black blocks
are merged or a black block mutates to white, and some additional nodes may also
mutate. We here prove that with high probability no blocks of size larger than 3 mutate
in this phase, which results in at most 3m white to black mutations. We also prove that
the number of additional nodes that mutate at the same steps is with high probability
bounded by 2m. Therefore, we find that in this phase, the sum of all increments on the
number of white nodes is at most 5m.

At each step, each cluster is selected for a mutation with probability 1
m , and its

white node is selected with probability 1
2 . Therefore, the probability that a block of size

at least 4 mutates to white in one step is at most 1
(2m)4

. Since the number of blocks is
bounded by m, the probability that at least one block of size at leas 4 mutates to white
at one step is at most 1

16m3 . Hence, the probability that at least one of them mutates in
a phase of C ·m2 steps is O( 1

m ). Therefore, with probability at least 1 − o(1), no black
block of size 4 or more mutates to white. In other words, all blocks that mutate to white
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in a phase of C ·m2 steps are of size at most 3. This implies that at most 3m nodes can
belong to the blocks that mutate from black to white in a phase of C ·m2 steps.

However, at each step that the number of blocks is reduced, some additional nodes
may also mutate to white. Let Xij be a random variable such that Xij = 1 if node j is
selected for mutation at step i. Note that we only need to consider the steps in which
the number of black blocks is reduced, because according to Lemma 17 a mutation from
black to white is not accepted in other steps. Since the number of blocks is bounded by
m, there are at most m steps in which the number of blocks reduce. The expected value
of X =

∑m
i=1

∑m
j=1Xij is E[X] =

∑m
i=1

∑m
j=1

1
m = m and by Chernoff bounds we get

Prob(X ≥ 2m) ≤ e−Ω(m). Therefore, with probability 1− e−Ω(m) at most 2m additional
nodes mutate during the steps at which the number of black blocks is reduced, and
with probability (1− o(1))(1− e−Ω(m)) = 1− o(1) at most 2m additional nodes mutate
during the considered phase. As a result, together with at most 3m black to white
mutations, we find that with probability 1− o(1) at most 3m+ 2m black nodes mutate
to white in a phase of C ·m2 steps.

Lemma 19. If we do not face a solution with no black nodes or a critical solution, then with
probability 1− o(1), in time 24em2 a solution with w = 0 is found.

Proof. According to Lemma 18, with probability 1−o(1) during a phase of C ·m2 steps,
C a constant, at most 5m black nodes turn into white. Since the number of white nodes
in the initial solution is at most m, at most 6m steps of increasing the number of black
nodes is sufficient for reaching a situation with w = 0.

While the number of black nodes is at least one and we have not reached w = 0 or
a critical solution yet, there is always at least one white node that if it mutates to black,
the length of a black block increases. This move is accepted by the algorithm, because
it shortens the white path by removing an edge of cost 1, while adds one edge of cost
1
m to the black block. At each step, the node of each cluster is mutated to white with
probability 1

2m . Therefore, the probability that only the mentioned mutation happens
at one step is at least 1

2·m ·
(
1− 1

m

)m−1 ≥ 1
2em , where

(
1− 1

m

)m−1 is the probability that
no other mutations happen at that step.

Let X =
∑T
i=1Xi, where Xi is a random variable such that Xi = 1 if a white node

mutates to black at step i, and Xi = 0 otherwise. At each step i, before reaching w = 0
or a critical solution, Prob(Xi = 1) ≥ 1

2em . Considering a phase of T = 24em2 steps, by
linearity of expectation we get E [X] ≥ 24em2 · 1

2em = 12m. Using Chernoff Bounds we
get Prob

(
X ≤ (1− 1

2 )12m
)
≤ e−Ω(m). As a result, in a phase of 24em2 steps, we either

find a solution with w = 0, or with probability 1 − e−Ω(m) at least 6m white nodes
mutate to black, which results in a situation with w = 0 because 6m is an upper bound
on the number of white to black mutations. Overall with probability 1 − o(1), the a
solution with w = 0 is reached in time 24em2.

Lemma 20. The initial solution, chosen uniformly at random, has at least m48 single black nodes
with probability 1− e−Ω(m)

Proof. Considering the consecutive clusters with respect to their optimal permutation,
for any specific cluster, a black (or white) node may be selected for its following cluster
with a probability of 1/2. As a result, any selection of nodes in 3 consecutive clusters
can happen with probability (1/2)3. There are at least m/3 separate sets of consecutive
clusters; therefore, the expected number of single black nodes is at least m

3·8 . Using
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Chernoff bounds and considering X to be the number of single black nodes in the
initial solution, we have: P (X < (1− 1/2) m3·8 ) ≤ e− m

3·8 ·
1
8

As a result, with a probability 1 − e−Ω(m) the initial solution has at least m
48 single

black nodes as described.

In the proof of the next lemma, we use the Simplified Drift Theorem (Theorem 21)
presented in [17, 18]. Consider a random variable Xt, t ≥ 0 with positive values that is
changed in a stochastic process. Also consider an interval of [a, b], a ≥ 0. The simplified
drift theorem shows that the lower limit of the interval is not reached by Xt with high
probability, if the starting point is above b, the average drift of the value of the random
variable is positive, and the probability of having big changes on it is small. In this
theorem, Ft denotes a filtration on states. In the proof of Lemma 22, we analyse the
changes on the size of a large black block, and the filtration is done according to the
steps where an accepted change happens on the size of that block.

Theorem 21. (Simplified Drift Theorem [18]) Let Xt , t ≥ 0, be real-valued random variables
describing a stochastic process over some state space. Suppose there exist an interval [a, b] ⊆ R,
two constants δ, ε > 0 and, possibly depending on l := b − a , a function r(l) satisfying
1 ≤ r(l) = o(l/ log(l)) such that for all t ≥ 0 the following two conditions hold:
1. E[Xt+1 −Xt | Ft ∧ a < Xt < b] ≥ ε,
2. Prob(|Xt+1 −Xt| ≥ j | Ft ∧ a < Xt) ≤ r(l)

(1+δ)j for j ∈ N.
Then there is a constant c∗ > 0 such that for T ∗ := min{t ≥ 0 : Xt ≤ a|Ft∧X0 ≥ b} it holds
Prob(T ∗ ≤ 2c

∗l/r(l)) = 2−Ω(l/r(l)).

Lemma 22. With probability 1−o(1), the number of black nodes is at least one during 24e ·m2

steps of the Node-Based (1+1) EA.

Proof. Let r be the number of all black blocks in the solution. From Lemma 20 we know
that with high probability, the initial solution consists of at least m

48 single black nodes.
As a result, in the initial solution r = Ω(m).

In order to reach a solution in which all nodes are white, the number of black
blocks needs to reduce. Let’s consider the step when for the first time r ≤ mε, where
0 < ε < 1 is a small constant. At this step, r ≥ mε

2 ; otherwise, at least mε

2 mutations
have to had happened at one step which is exponentially unlikely.

We first show that we either have a block of size greater than one at this stage, or
we will reach such a situation. Let us assume that all of the blocks at this stage are
of size one. For any single black node, there exist two adjacent white nodes that can
extend the size of that block, by mutating to black. The probability that a white node
is selected and mutated to black is 1

2m ; therefore, with probability P+
1 ≥ 2

2·e·m the size
of that block is extended. On the other hand, the probability that this single black node
mutates to white is P−1 ≤ 1

2·m . Therefore, if a change happens on the size of this block,
it would be an increase with probability at least

P+
1N =

P+
1

P+
1 + P−1

≥
1
em

1
em + 1

2m

≥ 2

2 + e

Therefore, the probability that none of these blocks experience an increase in the size

when they change for the first time, is
(

1− 2
2+e

)r
≤
(

1− 2
2+e

)mε
2

= e−Ω(mε). As a

result, with probability 1 − e−Ω(mε), we reach a stage at which there are r ≤ mε blocks
and one of the blocks is of size at least 2. We refer to this block as the large block.
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Now we show that in a phase of m1+ε we reach this stage. Since each single black
node has a probability of P+

1 +P−1 ≥ 1
em to change at each step, the expected number of

steps that is required to make a change on each single black node is at most em. There-
fore, by Markov’s inequality we know that the probability of not changing each single
black node in a phase of 2em is at most 1

2 . Considering a phase of m1+ε steps, we see
that the probability of not changing each single black nodes is at most e−Ω(mε). There
are at mostmε single black nodes, and by union bound we can see that with probability
at most mε · e−Ω(mε) = e−Ω(mε) at least one of them does not change. Therefore, with
probability 1− e−Ω(mε) all these nodes face a change in the mentioned phase.

For a black block of size l ≥ 2, there is a probability of P+
l ≥

2
2·e·m that a white

node mutates to black and extends the size of that block. But to decrease the size of
the block, either the whole block needs to mutate at one step (with probability at most

1
(2m)l

), or one improving move needs to happen somewhere else at the same step that
a black node of either end of the large block is mutating to white (with probability at
most 2

2m ). An improving move can be a mutation on a white node that extends a black
block, which happens with probability at most 2

2m for each block, or a mutation on
all black nodes of a block, the probability of which is upper bounded by 1

2m for each
block. Since the number of blocks is at most mε, the probability of an improving move
to happen, is at most 2·mε

2m + mε

2m . Overall, the probability of decreasing the size of the
large block is

P−l ≤
1

(2m)l
+

2

2m
·
(

2 ·mε

2m
+
mε

2m

)
≤ 1

(2m)l
+

1

m
· 3 ·mε

2m
≤ 4mε

2m2

Now consider a phase of m
3
2 steps. With probability at most 4mε

2m2 · m
3
2 = 2mε√

m

the size of the large block is decreased at least once. Therefore, with probability 1 −
O(mε−1/2) = 1− o(1) its size is not decreased in the mentioned phase.

On the other hand, there is a probability of at least P+
l ≥

1
e·m at each step, that the

size of the block is increased. Let Xi be a random variable such that Xi = 1 if the size
of large block is increased at step i, and Xi = 0 otherwise. The expected number of

increases in the size of that block in a phase of m
3
2 steps is

∑m3/2

i=0 Xi ≥
√
m
e . Moreover,

by Chernoff bounds we have
∑m3/2

i=0 Xi ≥
√
m

2e with probability at least 1 − e−Ω(
√
m),

which means with probability 1− o(1), the size of the large block is at least
√
m

2e after a
phase of m

3
2 steps.

After this phase, we consider a phase of 24e · m2 steps and show that with high
probability, the large black block does not lose more than half of its nodes. In order to
show this, we use the Simplified Drift Theorem [17, 18] presented in Theorem 21. Let
t0 be the first step after the previous phase has finished and let L be the largest block at
that time. We define Xt, t ≥ 0, as

Xt := size of L at t0
+ the number of steps increasing size of L from t0 until t0 + t

− the number of nodes removed from L from t0 until t0 + t.

Note that Xt always represents a lower bound on the size of L at time t + t0. We
filter the steps and only consider the relevant steps, i. e. the steps in which a change
happens on the size of L. Moreover, we set a = X0

2 , b = X0, r = 1, ε = 1
4e and δ = 1.

Earlier, we found an upper bound on P−l and a lower bound on P+
l . An upper

bound on the latter is P+
l ≤

2
2m , because in order to increase the size of a black block, at
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least one of the two white neighbours of it need to mutate to black. Using these bounds,
we get upper and lower bounds for Prel = P+

l + P−l , the probability of each step to be
a relevant step:

1

e ·m
≤ Prel ≤

1

m
+

4mε

2m2
≤ 2

m

The last inequality holds for sufficiently large m, because ε < 1. At each step, with
probability at least 1

em , an increase happens on the size of L; hence, the positive drift
on Xt is 1

em . Considering conditional probability, at each relative step, the probability
of an increase on the size of L is 1/em

Prel
. Therefore, the positive drift on Xt in the relevant

steps is:

∆+ ≥ 1

em
.

1

Prel
≥ 1

em
· m

2
≥ 1

2e

Similarly, the expected decrease in the number of black nodes of that block, in the rele-
vant steps is

∆− ≤

(
l

(2m)l
+

(
m∑
k=1

k · k + 1

(2m)k

)
·
(

2 ·mε

2m
+
mε

2m

))
· 1

Prel

≤
(

1

(2m)l
+

2

m
· 3 ·mε

2m

)
· 1

Prel
≤ 4mε

m2
· 1

Prel
≤ 4mε

m2
· em ≤ 4emε

m

where k is the number of black nodes that are removed from the large block, and k+1
(2m)k

is the probability of such mutations happening in one step. Here, k+1 is the number of
possible ways that L can lose k nodes, since all these nodes have to be taken from the
two ends of the block. Also, 1

(2m)k
is the probability that those nodes mutate to white.

Moreover,
∑m
k=1 k ·

k+1
(2m)k

= 1
m + 2×3

(2m)2 + 3×4
(2m)3 + · · · + m×(m+1)

(2m)m ≤ 1
m + 1

2m + 1
22m +

· · · + 1
2k−1m

+ · · · + 1
2m−1m ≤

2
m holds for m ≥ 3. Using ∆− we find the total expected

difference of

E[Xt+1 −Xt | Ft ∧ a < Xt < b] = ∆+ −∆− ≥ 1

2e
− 4emε

m

Therefore, the first condition of the simplified drift theorem holds for an appropriate
choice of ε. The second condition also holds because at each step Xt can be increased
by at most 1 and the probability of decreasing it by j is

Prob(Xt −Xt+1 ≥ j | Ft ∧ a < Xt) ≤
j + 1

(2m)j
· 1

Prel
≤ 1

2j
.

Therefore, the conditions of simplified drift theorem hold and we get

Prob(T ∗ ≤ 2c
∗·X0/2) = 2−Ω(X0/2),

As a result, with probability 1 − 2−Ω(
√
m), the size of the large block does not decrease

to less than a, in a phase of c ·m2 steps. Overall, with probability 1− o(1), the number
of black blocks is at least one during the mentioned phase.

Lemma 23. From a critical solution, with probability 1− o(1), the optimal solution is reached
in time O(m2 + logm), where ε > 0 is a constant.
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Proof. The cost of a critical solution withw = 3 is m−4
m +3+2·m2, and it can be observed

from Lemma 17 that all solutions with w ≥ 5 have a larger cost and can not replace this
solution. Therefore, only a solution with w ≤ 2 or a critical solution with w = 4 can
replace this solution which can be obtained by a 1-bit flip.

From a critical solution with w = 4, the number of white nodes does not increase,
because there are only two m2-edges which connect black and white chains in this sit-
uation, and according to Lemma 17, in order to increase the number of white nodes, all
black nodes need to mutate to white at one step, which is exponentially unlikely. More-
over, a non-critical solution with the same number of white nodes is not accepted after
a critical solution either, because if the selected white nodes are not from consecutive
clusters, more than two m2-edges are required in the tour.

Here we show that there exists a 2-bit flip in a critical solution that reduces the
number of white nodes by two, and results in a solution with one chain of n − 2 black
nodes and one chain of 2 white nodes. From that solution, similar to our argument in
the above paragraph, increasing the number of white nodes is exponentially unlikely,
and according to Lemma 19, with probability 1− o(1), the optimal solution is found in
time O(m2).

From Lemma 14 we know that the cost of a critical solution is (m−5)· 1
m+3+2·m2.

By flipping two white nodes of one end of the white chain, conditions of Property 12
hold and the cost of the new solution is (m − 3) · 1

m + 2 + 2 ·m2, which is better than
the cost of the critical solution with respect to the fitness function. Therefore, this so-
lution is accepted by the algorithm. This move has a probability of 1

m2 . Therefore,
the expected time until it happens is m2, and with probability at least 1

2 it happens in
2 ·m2 steps. Considering logm phases of 2 ·m2 steps, by Markov’s inequality we get
that with probability 1 − ( 1

2 )logm = 1− 1
m , this 2-bit flip happens in time O(m2 logm),

which completes the proof.

Theorem 24. Starting from an initial solution chosen uniformly at random, the Node-Based
(1+1) EA finds the optimal solution of GG in time O(m2 logm) with probability 1− o(1).

Proof. Lemma 22 shows that in a phase of c · m2, c = 24e, steps, the number of black
nodes does not decrease to 0 with probability 1 − o(1). Therefore, due to Lemma 19,
if we do not face a critical solution, the optimal solution is found in time O(m2) with
probability 1 − o(1). Moreover, if we face a critical solution, according to Lemma 23,
with probability 1 − o(1) it takes O(m2 logm) additional steps to find the optimal so-
lution. Overall, with probability 1 − o(1), in time O(m2 logm), the optimal solution is
found by the Node-Based (1+1) EA.

4.1.2 Experimental Results

In this section, we present experimental results that confirm our theoretical analysis on
the behaviour of Nodes-Based (1+1) EA optimizing GG. We have run the algorithm
for instances of different sizes, and we have done that 30 times with a maximum of
107 iterations for each instance. The results are summarised in Table 1. The first and
second columns indicate the input size and the percentage of runs that result in the
optimal solution. The average and the maximum number of iterations until finding
this solution are presented in the third and fourth columns. Observe that %100 of all
runs find the optimal solution and the maximum runtime is in O(m2), which confirm
the theoretical results.
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Table 1: Experimental results of Node-Based (1+1) EA on GG
Input Size (m) %Optimum Average Runtime Maximum Runtime
20 100 495 3954
50 100 1873 10800
100 100 4076 19252
200 100 27817 190882
500 100 33280 280873
1000 100 110186 2518061

4.2 Lower Bound Analysis for Node-Based (1+1) EA

In this section we prove an exponential lower bound on the optimization time of Node-
Based (1+1) EA. In Section 4.2.1 we introduce an instance of the Euclidean GTSP, GS ,
that is difficult to solve by means of our algorithm and discuss some geometric prop-
erties of it. In Section 4.2.2 we show how the algorithm reaches a local optimum in our
instance and discuss how it can reach the global optimum after reaching the local opti-
mum. Consequently we find a lower bound for the optimization time of the algorithm.
In Section 4.2.3, using an efficient algorithm that solves the lower lever problems of this
instance, we present some experimental results that confirm the obtained lower bound.

4.2.1 A Hard Instance and its Geometric Properties

The hard instance presented in this section, which is partly illustrated in Figure 8, is
composed of m clusters. Let a > 1 be a constant. Only m

a of these clusters have one
node. Other clusters contain m nodes which makes the total number of nodes n =
m(m−m

a )+m
a . All nodes are connected to each other and the cost of travelling between

them is their Euclidean distance.
In the clusters that have m nodes, m − 1 nodes are placed on the small circle and

are shown by a star in the picture. We refer to them as white nodes or inner nodes.
For simplicity we assume that the inner nodes of each cluster all lie on the same posi-
tion. The same result can be obtained by placing the nodes within a small circle having
an arbitrarily small radius ε. The remaining node of each cluster, shown black in the
picture, is placed on the larger circle. Other m

a clusters do not have any nodes on the
small circle and have only one black node on the larger circle. The figure demonstrates
how the clusters are distributed on the two circles. The arc between black nodes of two
consecutive clusters subtend an angle of 2π

m , while the arc between two consecutive
one-node clusters subtend an angle of a · 2π

m .
If we represent the radius of inner and outer circles by r and r′ respectively, then

a black node and a white node have distance at least r′ − r and the length of edges
between two adjacent black nodes is 2r′ sin( πm ). The minimum length of edges between
two black nodes of one-node clusters is also quite similar to previous formula with a
greater angle: 2r′ sin( πm

a
).

Here we define a characteristic for the introduced instance, which is required
for proving the exponential lower bound on the optimization time of Node-Based
(1+1) EA. This characteristic shows the ratio of r to r′ and is defined by the follow-
ing inequality.

r <
1

2

(
2 sin

( π
m

)
− sin

(
2π

m

))
r′ (1)
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Figure 8: Euclidean hard instance, GS , for Node-Based (1+1) EA

We now prove that if the introduced instance has this characteristic, then for m ≥
8a, the best tour on any spanning set that has at least one white node, contains only 2
edges between outer and inner circles. We also show that the optimal solution consists
of all the black nodes, but with high probability, the Node-Based (1+1) EA reaches a
plateau of local optimums with m

a black nodes and m − m
a white nodes. Note that in

such local optimums, selecting m
a black nodes is a must, since there’s no other choice

for those clusters. The local optimum in this instance is a basin of attraction since the
distance between white nodes are smaller than the distance between the black nodes.

In the proof of the following property, we have used a couple of theorems
from [20]. Given a set of vertices, it is stated in Theorem 1 of that paper that the shortest
spherical or planar polygon does not intersect itself. Moreover, Theorem 2 of that pa-
per proves that the shortest polygon contains the vertices on the boundary of its convex
hull in their cyclic order.

Property 25. The best tour on a spanning set that has at least one white node, contains only
two edges between nodes on the inner and outer circle for m ≥ 8a.

Proof. We first take into account the tour on a node set consisting of only the black
nodes of one-node clusters. There is no other choice except selecting those nodes be-
cause their clusters have no other node. For such a node set, due to Theorem 2 of [20],
the optimal tour is to visit all the nodes in the order they appear on the convex hull.
This order will be respected in an optimal tour even if there are some inner nodes to
visit as well, because according to Theorem 1 in [20] the optimal solution cannot inter-
sect itself. In other words, if some white nodes are selected in the upper level, while
visiting the outer nodes with respect to their convex hull order, a solution occasionally
travels the distance between outer circle and inner circle to visit some inner nodes, and
then travels roughly the same distance back to the outer circle, to continue visiting the
remaining outer nodes. As illustrated in Figure 9, this can be done generally in two
ways:

1. Case 1: Leaving the outer circle only once and visiting all inner nodes together.

24 Evolutionary Computation Volume x, Number x



45-character paper description goes here

Figure 9: Left side: Case 1, Right side: Case 2

2. Case 2: Leaving the outer circle more than once and visiting some of the inner
nodes each time.

We now show that there exists a solution for Case 1 that is less costly than all the
solutions of Case 2. As a result, the best tour on a spanning set with at least one white
node travels the distance between two circles only twice.

If we represent the number of times a tour leaves the outer circle to visit some
nodes in the inner circle with k, then for the solutions of Case 1, k = 1 and for solutions
of Case 2, k ≥ 2. For both cases the number of edges connecting the two circles is 2k.
The picture at the left side of Figure 9 illustrates a solution with k = 1 for which we
find an upper bound of the tour cost as the following:

C(1) < 2πr′ + 2πr + 2(r′ − r) (2)

The last part of this formula is two times of the length of edge AB which is a
direct line from the inner circle to the outer circle along their radius. The lengths of
edges A′B′ and A”B” are actually more than that because their ends are not from same
clusters. Nevertheless, formula 2 presents an upper bound of the total cost of the tour,
because we are considering the complete circumference of both circles. In other words,
the distance between A and A′ is included in the circumference of the large circle and
the distance between B and B′ is included in that of the small circle and according to
quadrilateral inequality |A′B′| < |A′A|+ |AB|+ |BB′|.

On the other hand, a lower bound of the tour cost in all solutions of Case 2 is:

C(k) >
(m
a
− k
)

2 sin

(
π

m/a

)
r′ + 2k(r′ − r) (3)

In the above formula, 2 sin( π
m/a )r′ is the length of the edges connecting two con-

secutive clusters with one black node. These edges are the longest edges that can be
removed from the tour when we add two edges connecting inner and outer circles.
There are initially at least m/a of these edges and in this formula we have omitted k of
them from the tour.

We can rewrite the right side of inequality 3 as:

C(k) >
(m
a

)
2 sin

(
π

m/a

)
r′ − k · 2 sin

(
π

m/a

)
r′ + 2k(r′ − r).

Since for m > 8a, sin( π
m/a ) < 0.39 and (ma ) sin( π

m/a ) > 3.06 the above expression is at
least:

2(3.06)r′ − 2k · 0.39r′ + 2k(r′ − r)
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This expression is monotone increasing in k when r ≤ 0.61r′; therefore, setting k = 2
we get the smallest lower bound of C(k) for k ≥ 2:

C(k) > 4.56r′ + 4(r′ − r)

Now if we prove that the upper bound we found for C(1) in Inequality 2 is less
than the above expression, we can then conclude thatC(1) < C(k) for k ≥ 2. Therefore,
we should prove that:

2πr′ + 2πr + 2(r′ − r) ≤ 4.56r′ + 4(r′ − r)

⇔ 2πr′ + 2πr ≤ 4.56r′ + 2r′ − 2r

⇔ (π + 1)r ≤ (−π + 3.28)r′

⇔ r ≤ −π + 3.28

π + 1
r′ ≈ 0.033r′

The latest inequality holds, because the constraint we introduced on the value of r
in Equation 1 is quite tight and we can see that for m ≥ 8 it gives us r < 0.03r′ which is
a tighter bound for r than what the right side of equation above gives us.

Property 26. An optimal solution chooses all black nodes and visits them in clockwise or anti-
clockwise order when m ≥ 7a.

Proof. The tour comprising all black nodes has a cost strictly less than 2πr′ which is
the length of the circumference of the circle with radius r′. Therefore, we can state that
2πr′ is an upper bound on the cost of the optimal solution. Besides, in Property 25
we saw that the best tour when at least one white node is selected has only two edges
connecting the two circles. Therefore, as a lower bound on the cost of a solution with
any spanning set other than all black nodes, we can use Formula 3 with k = 1 and get

C(1) ≥
(m
a
− 1
)

2 sin

(
π
m
a

)
r′ + 2(r′ − r).

We here show that with the assumptions we have on the value of r, this lower bound is
greater than the upper bound we found for the cost of optimal solution. By replacing r
with its maximum value from Equation 1 we have:

C(1) ≥
(

2
(m
a
− 1
)

sin

(
π
m
a

)
+ 2−

(
2 sin

( π
m

)
− sin

(
2π

m

)))
r′

since for m ≥ 7a (m
a
− 1
)

sin

(
π
m
a

)
> 2.60

and for m ≥ 4 (
2 sin

( π
m

)
− sin

(
2π

m

))
≤ 0.42

we can conclude that for m ≥ max{4, 7a}

C(1) ≥ (2(2.60) + 2− (0.42))r′ = 6.78r′ > 2πr′

As a result, for m ≥ 7a the minimum cost of such tours, is greater than 2πr′ which
is the maximum cost when all black nodes are selected. Hence the tour consisting of
all black nodes is the optimal solution and since they comprise the convex hull the
optimal Hamiltonian cycle on them would be visiting them in the order they appear in
the convex hull.
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Figure 10: Left: Case 1, adding a new outer node between two outer nodes. Right: Case
2, adding a new outer node just before inner nodes

Property 27. Let P and P ′ be non-optimal spanning sets and Pout ⊂ P and P ′out ⊂ P ′ be
their subset of outer nodes. Moreover, let S and S′ be optimal solutions with respect to P and
P ′ respectively. If Pout ⊂ P ′out and |P ′out| = |Pout|+ 1 then C(S) < C(S′).

Proof. The main idea behind this property is that distances in the inner circle are sig-
nificantly shorter than distances in the large circle and if r is sufficiently smaller than r′

(Inequality 1), any single mutation that replaces an inner node with the outer node of
the same cluster, increases the cost of the whole tour.

According to Property 25, the permutation chosen in the lower level, has all the
inner nodes listed between two black nodes. If one inner node is removed and one
outer node is added, the part of total tour that includes all inner nodes gets shorter
and the part that connects black nodes gets longer. The edges connecting the inner
nodes are at most the size of the diameter of the inner circle. Therefore, the maximum
decrease for removing an inner node is upper bounded by 4r. In the following, we find
the minimum increase for adding a black node.

We analyse the increase in two cases. The first case is illustrated in the left picture
of Figure 10 in which the new black node is placed between two black nodes in the
tour. N is the new node and M and O are its neighbours. The edge connecting M and
O will be removed from the tour and the two other edges in the triangle will be added.
If we show the length of these edges by C, A andB respectively and the cost of the tour
before and after this change by Cold and Cnew, then:

Cnew = Cold − C +A+B

So the increase caused by this change would be:

d = Cnew − Cold = A+B − C

By splitting C with an orthogonal line from N we can write d as:

d = (A− C1) + (B − C2) (4)

We claim that when A and B have their smallest values, d has also its smallest
value. We assume A′ ≥ A and B′ ≥ B and show that the corresponding d′ will be at
least d. When A′ ≥ A the arc between O′ and N ′ is also greater than or equal to the arc
between O and N . Therefore, the angle y′, facing that arc, would be also greater than
or equal to y. Besides, C2 = B · cos(y), and all the things we said about C2 and y hold
for C1 and x too. Altogether, we can write d′ as:

d′ = A′ −A′ · cos(x′) +B′ −B′ · cos(y′)

since y′ ≥ y and x′ ≥ x, and all of them are acute angles

d′ ≥ A′ −A′ · cos(x) +B′ −B′ · cos(y)
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If we represent A′ by αA and B′ by βB where α and β are real numbers greater than
one, then we have:

d′ ≥ α (A−A · cos(x)) + β(B −B · cos(y))

⇒ d′ ≥ α(A− C1) + β(B − C2)

By comparing d′ with the value of d in Equation 4 it holds that d′ ≥ d.
The shortest edges on the outer circle are from two consecutive clusters and have a

length of A = B = 2 sin(π/m)r′. C has similarly the value of 2 sin(2π/m)r′. As a result,
the minimum increase in the convex tour will be:

d = A+B − C = 4 sin
( π
m

)
r′ − 2 sin

(
2π

m

)
r′ (5)

The second case is when the new node is added just before or after visiting the
inner nodes, as illustrated in the right picture of Figure 10. In this case, comparing to
the previous case, edge B is longer and the angle between A and B is closer to the right
angle. The minimum length of A is also the same as the minimum length of that in
previous case. Altogether, with quite similar explanation to what we had for Case 1,
the minimum increase in this case is larger than that in Case 1. Therefore the minimum
increase in the convex tour, d, which is found in 5 is also less than the minimum increase
in Case 2 and can be used for both cases.

On the other hand, as mentioned earlier the maximum decease caused by remov-
ing an inner node is 4r. Therefore the total increase of the tour cost is at least

4 sin
( π
m

)
r′ − 2 sin

(
2π

m

)
r′ − 4r

From our assumption on the value of r in Equation 1 we can find that the above expres-
sion has a positive value; therefore, C(S) < C(S′).

4.2.2 Runtime Analysis
In this section, we give a lower bound on the runtime of Node-Based (1+1) EA. We start
by presenting a Lemma about the initial solution that is chosen uniformly at random.
Then we introduce the Multiplicative Drift Theorem [4] which is used in our analysis
of Lemma 30 to upper bound the time of reaching a locally optimal solution. Then we
discuss the main theorem of this section.
Lemma 28. The initial solution with a spanning set that is chosen uniformly at random, has
at least 0.9

(
1− 1

a

)
(m− 1) white nodes with probability 1− e−Ω(m).

Proof. For m − m
a clusters that have m nodes, the probability of selecting one of white

nodes is m−1
m . Therefore the expected number of selected white nodes is

E[X] =
(
m− m

a

)(m− 1

m

)
=

(
1− 1

a

)
(m− 1)

By Chernoff bounds we can have:

Prob

(
X < (0.9)(1− 1

a
)(m− 1)

)
≤ e−0.005(1− 1

a )(m−1) = e−Ω(m)

Therefore, the probability that the initial solution has at least (0.9)(1− 1
a )(m− 1) white

nodes is 1− e−Ω(m).
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Theorem 29 (Multiplicative Drift [4]). Let S ⊆ R be a finite set of positive numbers with
minimum smin. Let {X(t)}t∈N be a sequence of random variables over S ∪ {0}. Let T be the
random variable that denotes the first point in time t ∈ N for which X(t) = 0. Suppose that
there exists a real number δ > 0 that

E
[
X(t) −X(t+1) | X(t) = s

]
≥ δs

holds for all s ∈ S with Prob[X(t) = s] > 0.
Then for all s0 ∈ S with Prob[X(0) = s0] > 0, we have

E[T |X(0) = s0] ≤ 1 + ln(s0/smin)

δ

Lemma 30. Starting with an initial solution chosen uniformly at random, with probability
1 − e−Ω(m), the Node-Based (1+1) EA reaches a local optimum on GS in expected time of
O(m lnm).

Proof. For a solution x(t) at time t, we define X(t) to be the number of m-node clusters
for which the outer node is selected. Note that this function, as required in Theorem 29,
maps the local optimum to zero and all other solutions to positive numbers.

If we assume that the number of m-node clusters that their outer node is chosen in
solution x(t) is k, we can find the expected number of that for x(t+1) as follows:

As mentioned in Property 27, if only one mutation operation happens to increase
the number of outer nodes, it will increase the cost and the algorithm will refuse it.
Therefore, if only one mutation happens that is accepted by the algorithm, it has to
change a node from the outer circle to the inner circle and decrease Xt by 1. The prob-
ability of this event is at least

p1 = k

(
1

m

)(
m− 1

m

)(
1− 1

m

)m−1

≥ k

m

(
m− 1

m

)(
1

e

)
.

In the above formula, 1
m is the probability of mutation for any of the nodes in the

spanning set and m−1
m is the probability that the new selected node for the mutated

cluster is a white node. We need one of k clusters to mutate and all others to stay
unchanged. In other words, (1 − 1

m )m−1 in the above formula is the probability of
m− 1 clusters to stay unchanged.

On the other hand, in some situations, some (one or more) mutations in the oppo-
site direction can happen beside a mutation from outer circle to inner circle. If we want
Xt to increase by one, then at least two mutations must happen to change a node from
inner circle to outer circle. The probability of this event is at most

p−1 =
k

m

(
m− 1

m

)(
m− m

a − k
2

)(
1

m

)2(
1

m

)2

≤ k

m

(
1

2!m2

)
.

In the above formula, ( km )(m−1
m ) is the probability of one node to change from outer

circle to inner circle. Then we have the number of different ways we can select two
clusters that their selected nodes lies on the inner circle. The first ( 1

m )2 is the probability
that the 2 selected clusters mutate and the second ( 1

m )2 is the probability that after
mutation the node on the outer circle is selected in those 2 clusters.

Generally, for Xt to increase by q, we need at least one mutation from outer circle
to inner circle and q+1 mutations in opposite direction and the probability of this even
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would be at most

p−q =
k

m

(
m− 1

m

)(
m− m

a − k
q + 1

)(
1

m

)q+1(
1

m

)q+1

≤ k

m

(
1

(q + 1)!mq+1

)
As a result, the difference made in Xt by the next step would be at least

E[X(t) −X(t+1) | X(t) = k] ≥ p1 −
m∑
q=1

q · p−q

By replacing the lower bound of p1 and upper bounds of p−q , we get

E[[X(t) −X(t+1) | X(t) = k] ≥ k

m

(
m− 1

m

)(
1

e

)
− k

m

(
1

2!m2

)
− . . .

−m k

m

(
1

(m+ 1)!mm+1

)
≥ k

m

(
m− 1

em
− 1

m2
− . . .− 1

mm+1

)
≥ k

m

(
m− 1

em
−m · 1

m2

)
≥ k

m

(
m− 1− e

em

)
For m ≥ 4 the expression (m−1−e

em ) is at least 3−e
4e . So setting δ = 3−e

4em and using the
Multiplicative Drift Theorem we find the expected time of reaching the local optimum
as:

E[T | X(0) = 0.1m] ≤ 1 + ln(0.1m/1)
3−e
3em

= O(m lnm)

In the above formula we have assumed X(0) ≤ 0.1m because from Lemma 28 we know
that with probability 1−e−Ω(m), the initial solution has less than 0.1m black nodes other
than the fixed black nodes.

Theorem 31. Starting with an initial solution chosen uniformly at random, ifm ≥ 8a, then the
optimization time of the Node-Based (1+1) EA presented in Algorithm 5 onGS is Ω

(
(n2 )m−

m
a

)
with probability 1− e−Ω(mδ), δ > 0.

Proof. In order to prove this theorem, we introduce a phase P in which

1. The algorithm reaches a local optimum with high probability

2. The algorithm does not reach the global optimum with high probability

Then we show that after this phase, only a direct jump from the local optimum to the
global optimum will help the algorithm improve the results, probability of which is(

1
m2

)m−ma .
As we saw in Lemma 30, the expected time of Node-Based (1+1) EA to reach the

local optimum is O(m lnm). Let c be the appropriate constant, so that c ·m lnm is an
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upper bound on the expected time for reaching that local optimum. Now consider a
phase of 2c ·m lnm steps. If T is the actual time at which the local optimum is reached,
by Markov’s inequality we have: Prob(T > 2c ·m lnm) ≤ 1

2 . If we repeat this phase for
mε

lnm times, ε > 0 a constant, then we get a phase of P = 2c ·m1+ε steps in which the
probability of not reaching the local optimum is:

Prob(T > 2c ·m1+ε) ≤
(

1

2

)− mε

lnm

= e−Ω(mδ),

where 0 < δ < ε. As a result, the algorithm reaches the local optimum in phase P with
probability 1− e−Ω(mδ). We here prove that in this phase, the algorithm does not reach
the global optimum with probability 1− e−Ω(mε).

From Lemma 28 we know that with high probability the initial solution has not
too many black nodes other than the fixed black nodes. Here we show that with high
probability the number of these nodes does not increase significantly during the phase
P ; hence, the global optimum will not be reached. The probability of selecting each
of the clusters for a mutation is 1/m and for clusters with m nodes, the probability of
changing the selected node to the black node is 1

m ; therefore, at each step, the proba-
bility that each cluster’s node is changed from one of its inner nodes to its outer node
is 1

m2 . For m − m
a clusters, at each step the expected number of clusters that face such

a mutation is at most 1
m and in a phase of 2cm1+ε steps, is 2cmε. If we define X as the

number of clusters that will have a mutation like this, then by Chernoff bound we have

Prob(X ≥ 3cmε) ≤ e−2cmε(0.5)2/3 = e−Ω(mε).

Therefore, with high probability, during the mentioned phase, at most 3cmε clus-
ters will happen to have a mutation with the result of selecting their black node. Be-
sides, from Lemma 28 we know that with probability 1−e−Ω(m), the initial solution has
at least 0.9(1− 1

a )(m− 1) white nodes. Hence, with probability e−Ω(mε), the algorithm
will not reach a state with less than 0.9(1− 1

a )(m−1)−3cmε white nodes during phase
P . As a result, the probability of having a direct jump to the global optimum in phase
P is at most

2c ·m1+ε

(
1

m2

)0.9(1− 1
a )(m−1)−3cmε

= m−Ω(m).

Consequently, with high probability, the global optimum will not be reached dur-
ing phase P . According to Property 27, no mutation from the inner circle to the outer
circle can decrease the tour cost when the resulting solution is not the optimal solution.
Hence, such a change may only be accepted by the algorithm when another mutation
on the other direction happens at the same step. At the local optimum, there is no
black node other than the fixed black nodes and no mutation from the outer circle to
the inner circle can happen; therefore, a mutation from the inner circle to the outer cir-
cle can not happen either. As a result, after reaching a local optimum, only a direct
jump to the global optimum can help moving towards the global optimum and the
probability of such a jump is

(
1
m2

)m−ma . We now consider (m
2

2 )m−
m
a steps following

phase P . The probability of reaching the optimum solution is by union bound at most:(
m2

2

)m−ma ( 1
m2

)m−ma = ( 1
2 )m−

m
a . Hence the probability of not reaching the global opti-

mum in the mentioned phase is 1− ( 1
2 )m−

m
a = 1− e−Ω(m). Altogether, with probability

1− e−Ω(mδ), the optimization time is at least
(
m2

2

)m−ma
.
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Table 2: Experimental results of Node-Based (1+1) EA on GS
Input Size (m) %LO Average Runtime to

Reach Local Optimum
Maximum Runtime to
Reach Local Optimum

20 100 15 69
50 100 36 275
100 100 66 346
200 100 82 770
500 100 197 1300
1000 100 680 3120

4.2.3 Experimental Results
In this section we include experimental results that confirm the exponential lower
bound that we have proved in Section 4.2.2 for the optimization time of the studied
instance. We try the algorithm with a maximum of 106 iterations on instances of 6 dif-
ferent input sizes, and we show that they all stick to the local optimum. For the lower
level optimization we have developed an algorithm that visits all the selected black
nodes in the order they appear on the large circle, then visits all selected white nodes
in the order they appear on the small circle, and goes back to the first black node to
form a Hamiltonian circuit. This algorithm assures Property 25 of the optimal lower
level solution, which was important in our theoretical analysis. We have set r = 1 and
r′ = 108 so that the inequality of Equation 1 holds for the maximum input size that
we are running the algorithm with. The results, based on 30 runs of the algorithm, are
summarised in Table 2. The first and second columns indicate the input size and the
percentage of runs that stick to the local optimum, respectively. The average and max-
imum number of iterations until finding the local optimum are presented in the third
and fourth columns, respectively. As the table suggests, %100 of the runs for all input
sizes find the local optimum and stick to that until the maximum iteration number is
reached. This confirms the theory results of Section 4.2.2.

5 Conclusion

Evolutionary algorithms and local search approaches have been shown to be very suc-
cessful for solving the generalized travelling salesperson problem. We have investi-
gated two common hierarchical representations together with local search algorithms
and simple evolutionary algorithms from a theoretical perspective. In the first part of
this paper, which is based on the conference version [19], the focus is on local search
approaches. By presenting instances where they mutually outperform each other, we
have gained new insights into the complimentary abilities of the two approaches. Fur-
thermore, we have presented and analysed a class of instances where combining the
two approaches into a variable-neighbourhood search helps to escape from local op-
tima of the single approaches.

In the second part we have investigated the behaviour of hierarchical evolutionary
algorithms for this problem. We have proved that there are instances which Node-
Based (1+1) EA solves to optimality in polynomial time, while Cluster-Based (1+1) EA
needs exponential time to find an optimal solution for them. Then we have presented a
Euclidean instance of the GTSP to find an exponential lower bound on the optimization
time of this algorithm. Our lower bound analysis for a geometric instance shows that
the Euclidean case is hard to solve even if we assume that the lower level TSP is solved
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to optimality in no time.
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