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Abstract
Randomized search heuristics are frequently applied to NP-hard combinatorial op-
timization problems. The runtime analysis of randomized search heuristics has
contributed tremendously to their theoretical understanding. Recently, randomized
search heuristics have been examined regarding their achievable progress within a
fixed time budget. We follow this approach and present a fixed budget analysis for
an NP-hard combinatorial optimization problem. We consider the well-known Travel-
ing Salesperson problem (TSP) and analyze the fitness increase that randomized search
heuristics are able to achieve within a given fixed time budget. In particular, we an-
alyze Manhattan and Euclidean TSP instances and Randomized Local Search (RLS),
(1+1) EA and (1+λ) EA algorithms for the TSP in a smoothed complexity setting and
derive the lower bounds of the expected fitness gain for a specified number of genera-
tions.

Keywords
Traveling Salesperson Problem, fitness gain, fixed-budget analysis, runtime analysis
theory.

1 Introduction

Randomized search heuristics (RSH) such as randomized local search, evolutionary
algorithms and ant colony optimization have become very popular in recent years
to solve hard combinatorial optimization problems such as the Traveling salesperson
problem [2, 10, 20, 24, 29].

Regarding RSH as classical randomized algorithms [21], a lot of progress has been
made in recent years on their theoretical understanding [1, 11]. Initially, most of the
studies were focused on simple example functions. Gradually, the analysis on combina-
torial optimization problems was also established. We refer the textbook by Neumann
and Witt [23] and the survey article by Oliveto et al. [25] for a comprehensive pre-
sentation on the runtime analysis of randomized search heuristics for problems from
combinatorial optimization.
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All these studies on analyzing the time complexity were based on a single perspec-
tive, the expected optimization time. There were slight variations on this considering
the number of generations or fitness evaluations. Jansen and Zarges [12] and Zhou et
al. [31] pointed out that there is a gap between the empirical results and the theoret-
ical results obtained on the optimization time. Theoretical research most often yields
asymptotic results on finding the global optimum while practitioners concern more
about achieving some good result within a reasonable time budget. Furthermore, it is
beneficial to know how much progress an algorithm can make given some additional
time budget. Experimental studies on this topic have been carried out in the domain of
algorithm engineering [27] and the term fixed budget runtime analysis has been intro-
duced by Jansen and Zarges [13, 15].

So far, fixed budget analysis has been conducted for very simple test functions, on
which the considered randomized search heuristics such as randomized local search
and the (1+1) EA follow a typical search trajectory [6, 15] with high probability. This
implies that on these functions the development of the best fitness over time forms an
almost deterministic curve that describes the algorithm’s typical behavior. Given such
a strong relation between fitness and time, and the availability of upper and lower tail
bounds, it is then possible to derive tight upper and lower bounds on the expected fit-
ness increase over any given period of time. More recent studies in this line of research
include comparisons of fixed budget results obtained by evolutionary algorithms to
other RSH such as artificial immune systems [5, 16], fixed budget analysis in dynamic
optimization [14] and introduction of more general methods of analysis [18].

The goal of obtaining tight upper and lower bounds is only feasible for functions
where randomized search heuristics show a typical search trajectory and tail bounds
are available to bound deviations from this trajectory. This usually does not apply to
hard combinatorial problems like the Traveling Salesperson Problem, and currently no
fixed-budget analysis is available for such problems. We argue that for these problems
fixed budget results can be obtained by relaxing the above goal towards only consider-
ing lower bounds on the expected fitness gain. Lower bounds can be determined based
on the expected minimum improvement made in a generation. In this manner there is
no requirement for obtaining tail bounds, which drastically widens the scope of prob-
lems that can be tackled with this approach. Even though lower bounds on the ex-
pected fitness gain may not be tight, they provide proven guarantees on the progress
made by a RSH. The aim of this approach is to establish guarantees on the expected fit-
ness gain for various kinds of RSH, hence providing guidance for choosing, designing,
and tuning RSH such that they find high-fitness solutions in a short time.

This study provides a starting point for fixed-budget analysis of randomized
search heuristics for combinatorial optimization problems. We consider randomized
local search (RLS) and (1+1) Evolutionary Algorithm ((1+1) EA) on the famous Travel-
ing Salesperson Problem (TSP). The dynamics of evolutionary algorithms on the TSP
have been studied empirically [2, 24], but the authors are not aware of any rigorous
theoretical works studying the fitness of evolutionary algorithms on this problem.

More specifically, here we analyze Manhattan and Euclidean TSP instances in the
setting of smoothed complexity [28]. Smoothed analysis provides a generic framework
to analyze algorithms like 2-Opt for TSP with the capability to interpolate between
average and worst case analysis. This analysis was first proposed by Spielman and
Teng [28] focusing on the simplex algorithm to explain the discrepancy between its
exponential worst case runtime and the fast performance in practice. The probabilistic
model proposed by Englert et al. [8] is a reminiscence of the original smoothed analysis
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model. Later, these results were refined by Manthey and Veestra [19]. Here, we will
adhere to the initial analysis by Englert et al. [8] as our major focus is on transferring
these results to a fixed budget analysis of RSH. Then we further generalize our results
for (1+λ) RLS and (1+λ) EA as well.

We build on the analysis of Englert et al. [9] for 2-Opt which allows to get bounds
on the expected progress of a 2-Opt operation in the smoothed setting. We consider
2-dimensional metric TSP instances. First, we obtain fixed budget results based on the
minimum improvement that RLS and (1+1) EA can make in one generation. We further
improve these results, following [9], by analyzing a sequence of consecutive 2-Opt steps
together to identify linked pairs. Interestingly, considering only single improving steps
gives a constant lower bound on the progress achievable in each of the t generations
whereas the analysis of a sequence of consecutive 2-Opt steps gives a larger expected
progress per step if t is large. The analysis follows in a similar way for the popula-
tion based algorithms also. Additionally, the analysis of population-based algorithms
shows that there is a fitness gain improved by at least Ω(min(λ, n2)) times of the lower
bound of the fitness gain for RLS or (1+1) EA for both single step and consecutive step
cases.

This article extends its conference version [22] by the investigations of the expected
fitness gains for population-based algorithms. Furthermore, it extends the conference
article by the analysis regarding the achieved approximation ratio given a fixed time
budget and experimental analysis on sample algorithm runs.

The organization of the paper is as follows. Section 2 describes problem context
and the considered algorithms. Section 3 and Section 4 contain the analysis for Manhat-
tan and Euclidean instances respectively. Section 5 extends the results for population-
based algorithms. Section 6 presents experimental results on sample algorithm runs.
Finally, Section 7 concludes with highlights and future directions.

2 Preliminaries

Generally, an instance of the TSP consists of a set V = {v1, . . . , vn} of n vertices (de-
pending on the context, synonymously referred to as points) and a distance function
d : V × V → R+

0 that associates a distance value with each pair vi, vj . The goal is to
find a tour of minimal length that visits each vertex exactly once and returns to the
initial vertex. That is to compute a permutation π minimizing Σn−1

i=1 d(vπ(i), vπ(i+1)) +
d(vπ(n), vπ(1)).

A TSP instance is considered to be metric if its distance function is in a metric
space. A metric space satisfies reflexivity, symmetry and triangle inequality conditions.
A pair (V, d) of the set V and a function d : V × V → R+

0 is called a metric space if for
all vi, vj , vk ∈ V the following properties are satisfied:

• d(vi, vj) = 0 if and only if vi = vj ,

• d(vi, vj) = d(vj , vi)

• d(vi, vk) ≤ d(vi, vj) + d(vj , vk).

We consider n cities given by points vi = (xi, yi), 1 ≤ i ≤ n, in the plane. For a
distance metric Lp the distance of two points vi = (xi, yi) and vj = (xj , yj) is

dp(vi, vj) = (|xi − xj |p + |yi − yj |p)
1/p

.
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We study the Euclidean TSP and the Manhattan TSP which are two prominent cases of
the metric TSP having the distance metric Euclidean (L2) and Manhattan (L1) respec-
tively.

2.1 RLS and A Simple Evolutionary Algorithm

Algorithm 1 RLS
x← a random permutation of n cities.
repeat

y := x.
y ← apply a 2-Opt step chosen uniformly at random to y.
if f(y) ≤ f(x) then

x← y.
end if

until forever

Algorithm 2 (1+1) EA
x← a random permutation of n cities.
repeat

draw s from a Poisson distribution with expectation 1.
y := x.
for s+ 1 times do

y ← apply a 2-Opt step chosen uniformly at random to y.
end for
if f(y) ≤ f(x) then

x← y.
end if

until forever

We consider simple randomized search heuristics and analyze them with respect
to the progress that they make within a given time budget. Randomized Local Search
(RLS) (Algorithm 1) and (1+1) EA (Algorithm 2) are two randomized search heuristics
that have won a great popularity during recent years [7]. These algorithms work with a
population size of one and produce one offspring in each generation. A basic mutation
is given by the well-known 2-Opt operator. The usual effect of the 2-Opt is to delete
the two edges {vπ(i−1), vπ(i)} and {vπ(j), vπ(j+1)} from the tour and reconnect the tour
using edges {vπ(i−1), vπ(j)} and {vπ(i), vπ(j+1)} (see Figure 1).

RLS performs one mutation step in each generation to produce an offspring. In
contrast, (1+1) EA chooses an integer variable s drawn from the Poisson distribution
with expectation 1 in each mutation step and performs sequentially s+ 1 mutation op-
erations. In case s + 1 = 1, we speak of a singular mutation, or a singular generation.
(1+1) EA can simulate a mutation step in singular generations, that occurs with a prob-
ability of 1/e, e = exp(1). Moreover, it has a positive probability of generating a global
optimum in every generation by executing the right number and sequence of mutation
steps. Therefore, it is guaranteed to find a global optimum in finite time, though this
time may be exponential in n. Note that in our algorithms we consider the notion of
fitness with regard to the minimization of the tour-length. As evolutionary algorithms
often maximize fitness, we use the term fitness gain to describe fitness improvements,
that is, the decrease of the tour length.

We study these algorithms regarding the expected progress that they make within
a given number of t generations. We consider the algorithms on random instances in
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Figure 1: The effect of the 2-Opt operation on a TSP tour. Inverting a subsequence in
the permutation representation corresponds to a 2-Opt move in which a pair of edges
in the current tour is replaced by a pair of edges not in the tour.

the setting of smoothed analysis [9, 28].
In this model, n points are placed in a d-dimensional unit hypercube [0, 1]d for

d ≥ 2. Each point vi, i = 1, 2, . . . , n, is chosen independently according to its own
probability density function fi : [0, 1]d → [0, φ] for some parameter φ ≥ 1 defining the
maximal density. For example, the uniform distribution has the probability density
function

f(x) =

{
1/(b− a) if a ≤ x ≤ b
0 otherwise.

This means that for any given point within the interval [a, b] the only choice for the
probability density is 1/(b− a). Accordingly, for the unit hypercube this would be 1. In
fact this value is the maximal density φ for the uniform distribution over the considered
unit hypercube. To model worst-case instances, it is assumed that these densities are
chosen by an adversary who is trying to create the most difficult random instances pos-
sible. By adjusting the parameter φ, one can tune the power of this adversary and hence
interpolate between worst and average case. The larger φ, the more concentrated the
probability mass can be, the better the adversary can approximate worst case instances
by the distributions. On the other hand when φ gets closer to 1 the probability mass gets
less concentrated and thus the points are positioned more randomly. When φ = 1 the
points are positioned uniformly at random in the unit hypercube resulting in average
case analysis. The two types of instances are called φ-perturbed Manhattan instances
and φ-perturbed Euclidean instances [9]. For our analysis we consider the n points in
a 2 dimensional unit hypercube [0, 1]2.

This model covers a smoothed analysis also with a slight modification. There the
adversary determines the initial distribution of points and then a slight perturbation is
applied to each position, adding a Gaussian random variable with small standard de-
viation σ. There φ has to be set as 1/(

√
2πσ)d [9] 1. This smoothed model is considered

in the study by Manthey and Veestra [19].
Analyzing our algorithms in this setting, we may assume that any two different

1This follows from the fact that the density of a d-dimensional Gaussian with standard deviation σ is
bounded by (2σ)−d
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tours have different function values. Hence, both algorithms always accept strict im-
provements.

2.2 Minimum Improvement of a 2-Opt Step

We now summarize results by Englert et al. [9] on the minimal improvement of a 2-Opt
step. Later on, these results will be used in our analysis of the randomized search
heuristics. We denote the random variable ∆ that describes the fitness gain obtained in
one generation and ∆t the fitness gain in t generations. We call a 2-Opt step improving
if it decreases the tour length in TSP. A 2-Opt step is called singular if it is the only
2-Opt step executed in that generation. Based on the smallest improvement of any
improving 2-Opt step we can find the expected improvement made in t generations
of (1+1) EA. We set the interval (0, ε], describing a range of a 2-Opt improvement for
an ε > 0 2. Let us first consider a fixed 2-Opt step in which the edges e1 and e2 are
exchanged with the edges e3 and e4. This 2-Opt step decreases the length of the tour
by ∆(e1, e2, e3, e4) = d(e1) + d(e2)− d(e3)− d(e4).

Let ∆min denote the smallest possible improvement made by any improving 2-Opt
step:

∆min = min{∆ | ∆ > 0}.

Inspired by the original ideas of Kern [17], Chandra et al. [4] bounded the probability
that this smallest improvement lies within the interval (0, ε] with a high probability for
the uniform distribution.

We will make use of the following theorem by Englert et al. [9] which gives an
upper bound on the probability that an improving 2-Opt step gives an improvement
of at most ε for the Manhattan metric. Throughout this analysis we consider the two
dimensional space.

Theorem 1 (Manhattan metric [9, Theorem 7]). For the Manhattan metric any ε > 0, it
holds

Pr(∆min ≤ ε) ≤ 4!2εn4φ.

Based on this result we get a lower bound on the probability that the smallest
improvement is greater than any given ε (see Theorem 5). It should be noted that here
we consider the algorithms to accept non-strict improvements so that it may be possible
to have ∆ = 0. However, this is not probable with the considered smoothed setting
because a necessary condition for this event is that there exist two edges with the same
length, which for two fixed edges has probability 0 (if φ < ∞). The union bound over
all pairs of edges gives a probability upper bound of 0. Therefore, we almost surely
have ∆ > 0.

Similar to the Manhattan instances, for the Euclidean instances also, the minimum
improvement per a 2-Opt step is inspired by the original ideas of Kern [17]. Based
on this, the expected runtime was proved polynomial for the uniform distribution by
Chandra et al. [4]. This was later extended for a more generalized setting having any
probability distribution by Englert et al. [9].

Lemma 2 (Euclidean metric [9, Lemma 18]). For the Euclidean metric and any ε > 0, it
holds

Pr(∆min ≤ ε) ≤ 1536n4 · ε · log(1/ε) · φ3.

2ε > 0 is in fact a variable which is used within the analysis. This does not appear in the fitness gain
results. We choose a value for ε such that it satisfies a certain criteria. This value differs in each Theorem.
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In case the considered algorithms reach a local optimum, we cannot guarantee a
steady fitness gain. So instead we use the fact that local optima have a good approxima-
tion ratio. The approximation ratio for the worst local optimum with regard to 2-Opt
was proven originally in Chandra et al. [4] for the uniform distribution. This was later
generalized by Englert et al. [9] for any probability distribution with a given density
function with maximal density φ.
Theorem 3 ([9, Theorem 4]). Let p ∈ N ∪ {∞}. For φ-perturbed Lp instances the expected
approximation ratio of the worst tour that is locally optimal for 2-Opt is O( d

√
φ), where d

represents the number of dimensions.

3 Analysis for Manhattan Instances

In this section, we first present the analysis for RLS and (1+1) EA based on the min-
imum possible improvement for a single 2-Opt step. We later extend the analysis for
the improvement in a sequence of consecutive 2-Opt steps. The fitness gain results hold
for the considered algorithms if they have not reached a local optimum. Otherwise, we
provide an upper bound on the approximation ratio. Some of our results are also stated
for a variant of the (1+1) EA, called (1+1) EA*, which is defined later on in Algorithm 3.
Theorem 4. For φ-perturbed Manhattan instances and for RLS, (1+1) EA and (1+1) EA*, the
approximation ratio for the worst local optimum is bounded above by O(

√
φ).

Proof. We consider Manhattan instances in a 2 dimensional unit hypercube [0, 1]2.
Then as a direct consequence from Theorem 3 the expected approximation ratio is at
most O(

√
φ).

3.1 Analysis of a Single 2-Opt Step

We start by showing a lower bound on the fitness gain achievable by RLS.
Theorem 5. In t generations, RLS achieves an expected fitness gain of Ω(t/(n6φ)) unless a
local optimum is reached.

Proof. Based on Theorem 1, we get

Pr(∆min ≥ ε) ≥ 1− 4!2εn4φ = 1− 576εn4φ.

as a lower bound on the probability that the minimum improvement is at least ε.
Let ∆ denote the random variable describing the fitness gain obtained in a single

improving 2-Opt step. This is obviously no less than the minimum possible improve-
ment ∆min. For any fixed ε > 0, the expected fitness gain per one improving 2-Opt step
can be bounded from below as follows:

E(∆) =

∫
∆

Pr(∆) ·∆

≥ Pr(∆ ≥ ε) · ε
≥ Pr(∆min ≥ ε) · ε
≥ (1− 576εn4φ) · ε

Setting ε = 1/(2 · 576n4φ) we get

Pr(∆min ≥ ε) ≥ 1/2

and accordingly
E(∆) ≥ 1/(2304n4φ).
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Figure 2: An example for a linked pair: The edges {v1, v2} and {v3, v4} are replaced
by {v1, v3} and {v2, v4} in the first 2-Opt step, and {v1, v3} and {v5, v6} are replaced by
{v1, v6} and {v3, v5} in the second 2-Opt step resulting in a linked pair formed by the
edges {v2, v4} and {v5, v6}.

The number of mutations occurring in one generation is 1 and the probability for an
improving 2-Opt step is at least 1/

(
n
2

)
≥ 2/n2 if the current solution is not locally op-

timal. Therefore, the expected value for the fitness gain ∆ in any 2-Opt step can be
bounded from below by

E(∆) ≥ 1/(1152n6φ).

Hence, the expected value for the fitness gain in t generations if no locally optimal
solution has been obtained in between can be derived as E(∆t) ≥ t/(1152n6φ).

Theorem 6. In t generations (1+1) EA achieves an expected fitness gain of Ω(t/(n6φ)) unless
a local optimum is reached.

Proof. We only account for the progress in singular steps. The expectation for the fit-
ness gain in a singular improving 2-Opt step can be derived following the above proof
in Theorem 5. The probability of a singular mutation occurring in a generation is 1/e
due to the Poisson distribution with expectation 1. The probability of a singular im-
proving 2-Opt step is therefore at least 2/(en2). Accordingly, and following the steps
in Theorem 5 the expected value for the fitness gain in t generations can be derived as
E(∆t) ≥ t/(1152en6φ).

3.2 Analysis of Linked Steps for RLS

The lower bound for the expected fitness gain presented in the previous section is based
on the minimum improvement in a single 2-Opt step. This bound can be improved
further by considering the improvement made in a sequence of consecutive 2-Opt steps.

The analysis of consecutive steps in Englert et al. [9] is based on the number of
disjoint pairs of 2-Opt steps linked by an edge, such that in one step an edge is added
and in the other it is removed. We call such a pair of 2-Opt steps a linked pair(see
Figure 2). Different types of linked pairs of 2-Opt steps are considered as follows. Let
{v1, v2} and {v3, v4} be the edges that are replaced by {v1, v3} and {v2, v4} in the first
2-Opt step, and {v1, v3} and {v5, v6} be replaced by {v1, v6} and {v3, v5} in the second
2-Opt step. This second step could occur anytime after the first step in a sequence of
2-Opt steps.

Following [9], we consider three different types of steps:

type 0: |{v2, v4} ∩ {v5, v6}| = 0.

type 1: |{v2, v4} ∩ {v5, v6}| = 1.
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Figure 3: Types of linked pairs: type 0 (top) type 1 (middle) and type 2 (bottom). The
existing edges to be removed, the new edges to be added by the 2-Opt step and the
path segments connecting multiple edges are indicated in bold black lines, dotted lines
and dashed path segments respectively. Note that for some cases (type 0 case 2, type
1 and 2 all cases), unrelated 2-Opt steps in between (represented by ... + ... + ...) are
necessary to alter the tour to enable the second 2-Opt step.

type 2: |{v2, v4} ∩ {v5, v6}| = 2.

Examples for the three types of the linked steps are shown in Figure 3. As ex-
plained in [9], it is important to limit the number of occurrences of type 2 as no guaran-
tee on the fitness gain made by type 2 steps is available. We need to show that there is
a sufficient number of linked pairs of type 0 and 1 as for the linked pairs of type 0 and
1 a good progress can be guaranteed.

Due to [9, Lemma 9] there are at least t/6− 7n(n− 1)/24 such pairs in a sequence
of t consecutive 2-Opt steps. The analysis in [9] considers all 2-Opt steps S1, . . . , St in
sequence and constructs (disjoint) linked pairs (of any type) in a greedy fashion. When
processing some step Si, we search for steps Sj and S′j , where the two edges inserted
by Si are being removed again, if such steps exist. If either Sj or S′j exist, the respective
pair (Si, Sj) or (Si, S

′
j) is being added to a list of disjoint linked 2-Opt steps, and both Sj

and S′j are being removed from the list to ensure disjointness of pairs. For an example
of this process, we refer to Figure 6 in Englert et. al. [9]. The proof of [9, Lemma 9]

Evolutionary Computation Volume x, Number x 9
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Figure 4: Example scenario that the steps Si (top left), Sj (top right), j > i form a type
2 pair and then the steps Sj , Sl (bottom left), l > j and the steps Sj , S′l (bottom right),
l′ > j form type 2 pairs. These steps are not accepted as the improvement is negative.

shows that when removing all pairs of type 2 from this list, at least t/6− 7n(n− 1)/24
pairs of type 0 or 1 remain.

We further improve this bound, considering the fact that the possible number of
pairs excluded is constrained by the number of edges in the final tour.

Lemma 7. Let u be the total number of linked pairs in an improving 2-Opt sequence. Then the
number of linked pairs v of type 0 or 1 in that sequence is at least u/2− n/4.

Proof. Consider a fixed pair of 2-Opt steps linked by an edge. Without loss of generality
assume that in the first step Si the edges {v1, v2} and {v3, v4} are exchanged with the
edges {v1, v3} and {v2, v4}, for distinct vertices v1, . . . , v4. Also without loss of general-
ity assume that in the second step Sj the edges {v1, v3} and {v5, v6} are exchanged with
the edges {v1, v5} and {v3, v6}. Consider the two steps Si and Sj with i < j that form a
pair of type 2. Let us consider the next steps as Sl with l > j in which the edge {v1, v4}
is removed from the tour, if such a step exists, and Sl′ with l′ > j in which the edge
{v2, v3} is removed from the tour if such a step exists. Observe that neither (Sj , Sl) nor
(Sj , S

′
l) can be a pair of type 2 because otherwise the improvement of one of the steps

Si, Sj , and Sl or one of the steps Si, Sj , and Sl′ must be negative. In particular, we must
have l 6= l′. Figure 4 illustrates this situation.

Thus, there cannot be a type 2 linked pair that associates with another type 2 linked
pair. Therefore, each of the type 2 pairs (Si, Sj) can be associated with at most two dif-
ferent pairs (Sj , Sl) and (Sj , Sl′) of type 0 or 1, unless the steps Sl or Sl′ are undefined.
This happens if the edges added to the tour in Sj are never removed. Since the final
tour contains n edges, at most n/2 pairs are excluded due to this. If we consider the
number of type 2 pairs as x then the total number of pairs of type 0 or 1 must be at least
x− n/2. This implies u ≥ x+ (x− n/2) and x ≤ u/2 + n/4. The number of good (type
0 or 1) pairs is therefore u− x ≥ u/2− n/4.

10 Evolutionary Computation Volume x, Number x
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Now we can estimate the number of good pairs in a sequence of consecutive 2-Opt
steps. Following the above argument, we can improve [9, Lemma 8] on the total num-
ber of (disjoint) linked pairs. The below Lemma 8 provides an improved bound for the
number of good disjoint pairs in a sequence of 2-Opt steps.

Lemma 8. In every sequence of t consecutive 2-Opt steps, the number of disjoint pairs of 2-Opt
steps of type 0 or 1 is at least t/6− n/2.

Proof. From [9, Lemma 8], for each processed 2-Opt step Si at most two other steps Sj
S′j are excluded from being processed if j or j′ is defined. Hence, for a sequence of t
steps there are at least t/3 pairs, from which we have to subtract the number of steps
Si where neither j nor j′ are defined. This happens if they are currently in the tour.
Therefore, this number is n/2 considering that the number of edges in the final tour
is exactly n, and Si can only be excluded if both edges inserted in the tour are never
removed again. Therefore, the total number of disjoint pairs is at least u = t/3 − n/2.
Combining the result of above Lemma 7 to this we obtain the number of disjoint pairs
of type 0 and 1.

Due to above Lemma 8 there are at least t/6 − n/2 such pairs in a sequence of
t consecutive 2-Opt steps. Here we consider the probability of both 2-Opt steps in a
linked pair having improvement at least ε. We derive this probability from the follow-
ing Lemma from Englert et al. [9] which bounds the probability that improvement falls
within the interval of (0, ε].

Lemma 9 ([9, Lemma 10]). In a φ-perturbed L1 instance with n vertices, the probability that
there exists a pair of type 0 or 1 in which both 2-Opt steps are improvements by at most ε is
bounded by O(n6 · ε2 · φ2).

Based on the above Lemmas (8 and 9), we can bound the fitness gain for a given
number of t generations. Note that the theorem requires a lower bound on the number
of generations as only for large enough t we can guarantee that linked 2-Opt steps of
type 0 or 1 do exist.

Theorem 10. In t ≥ cn3 generations, c > 3/2 constant, RLS obtains an expected fitness gain
of Ω(t/(n5φ)) unless a local optimum is reached.

Proof. Let ∆min denote the minimum possible improvement made by any pair of type
0 or 1. Using above result in Lemma 9,

Pr(∆min ≥ ε) ≥ 1− c′n6 · ε2 · φ2

for a constant c′ > 0. Let ∆ be the random variable describing the fitness gain obtained
in a pair of linked 2-Opt steps of type 0 or 1. For any ε > 0, the expected fitness gain
E(∆) can be bounded as follows.

E(∆) =

∫
∆

Pr(∆) ·∆

≥ Pr(∆ ≥ ε) · ε
≥ (1− c′n6 · ε2 · φ2) · ε.

Setting ε = 1/(
√

(c′2n6 · φ2)) we get Pr(∆min ≥ ε) ≥ 1/2 and as a consequence

E(∆) ≥ 1/(2
√

(2c′n6 · φ2)) ≥ 1/(2
√

2
√
c′n3φ) = Ω(1/(n3φ)).
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The probability of making an improving 2-Opt step is at least 1/
(
n
2

)
≥ 2/n2, so long

as no local optimum has been reached. Therefore, the expected number of improving
2-Opt steps made in t generations is at least 2t/n2. Let t∗ be the number of improving
steps. The improving steps are the steps accepted by RLS generating a sequence of
consecutive steps. By Lemma 8 we know there are at least t∗/6− n/2 disjoint type 0 or
1 pairs in such a sequence of t∗ consecutive steps. Therefore,

t∗/6− n/2 ≥ 2t

6n2
− n

2
.

As t ≥ cn3 for c > 3/2, we have 2t = (2− 3/c) · t+ (3t)/c ≥ (2− 3/c) · t+ 3n3. Then

2t

6n2
− n

2
≥ (2− 3/c) · t

6n2
= Ω(t/n2).

A lower bound for the expected fitness gain for t generations is therefore

E(∆t) = E(∆) · Ω(t/n2) ≥ Ω(t/(n5φ)).

3.3 Analysis of Linked Steps for (1+1) EA

The challenge for analyzing the (1+1) EA instead of RLS lies in the fact that the (1+1) EA
can execute multiple 2-Opt steps in one generation. For RLS Englert et al. [9] showed
that certain pairs of improving 2-Opt steps yield a large fitness increase on perturbed
instances, with high probability. Executing multiple 2-Opt steps in one generation com-
plicates this argument, as some of these mutations may not be improving. As such, they
might interfere with the mentioned pairs, and prohibit a large fitness increase. In the
following, we show that there are sufficiently many linked 2-Opt operations that take
place in generations where only one 2-Opt step is executed.

To this end, we consider a slightly modified variant of the (1+1) EA, which we
call (1+1) EA* (see Algorithm 3). The (1+1) EA* will exclude generations containing
multiple 2-Opt steps where an edge e is being inserted in one of these 2-Opt steps and
being removed in a later 2-Opt step of the same generation.

Algorithm 3 (1+1) EA*
x← a random permutation of n cities.
repeat

draw s from a Poisson distribution with expectation 1.
y := x
for s+ 1 times do

y ← apply a 2-Opt step chosen uniformly at random to y.
end for
if f(y) ≤ f(x) then

Check whether one of the above mutations has removed an edge that was inserted
in the same generation. If so, reject y. Otherwise, x← y.

end if
until forever

The purpose of this modification is to enable a theoretical analysis as some of the
excluded steps are difficult to handle. (1+1) EA and (1+1) EA* show identical behavior
most of the time; it is easy to show that the probability of removing an edge that was in-
serted in the same generation is Θ(1/n). So (1+1) EA and (1+1) EA* are identical most
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of the time, apart from a small fraction of steps. However, even a small fraction can
be harmful as it can take the algorithm on a different trajectory, with unforeseen conse-
quences. Note that, when the (1+1) EA* does behave differently from the (1+1) EA, it
rejects a new offspring that would otherwise improve the current tour. We therefore be-
lieve that we are being pessimistic by considering the progress of the (1+1) EA* instead
of that of the (1+1) EA. Experiments presented in Section 6 will further investigate the
difference between the (1+1) EA and the (1+1) EA*.

The following lemma tries to estimate the number of disjoint linked pairs of 2-Opt
steps within a sequence of t generations. First, we estimate the probability of a 2-Opt
step forming a linked pair if one of the matching 2-Opt steps exists. Therefore, inside
the lemma we consider the internal 2-Opt steps x`0 to x`k within a generation `. Then
we combine this result with the number of improving and singular steps in a sequence
following Lemma 7 to obtain a lower bound on the expected number of good pairs
having all singular 2-Opt steps.

Lemma 11. In every sequence of t generations of the (1+1) EA*, the expected number of disjoint
pairs of 2-Opt steps, all of which are singular, is at least

t

3e2n2
− n/2,

unless a local optimum is reached beforehand.

Proof. Recall the definitions for improving and singular 2-Opt steps in Section 2.2. We
adapt the proof of Lemma 8 in [9] to take into account steps that are rejected by the
(1+1) EA*, and the fact that the (1+1) EA* can accept non-improving 2-Opt steps in
generations with multiple 2-Opt steps.

Let S = S1, S2, . . . be a list of all 2-Opt steps executed in t generations. Then we
process this list to create a list L of linked 2-Opt steps, all of which are singular.

The probability of the (1+1) EA* making an improving 2-Opt step is at least
1/
(
n
2

)
≥ 2/n2, so long as no local optimum has been reached. The probability of a

singular generation is 1/e due to the Poisson distribution. So, the probability of having
an improving and singular step is at least 2/(en2).

Following the proof of Lemma 9 we process steps Si, Sj and S′j to create L. The
only difference is that here we consider Si to be both improving and singular.

We estimate the probability of a step Sj occurring and being a singular step. Let
A(e3) denote the event that an accepted generation contains an improving 2-Opt step
where e3 is being removed from the tour.

Let R(e3) denote the set of all edges e such that a 2-Opt move removing e3 and e
results in a strict fitness improvement. Let x`k denote the search point of the (1+1) EA*
at generation l, 2-Opt step k within that generation, and let us regard x`k as a set of
edges in the tour. Note that then |R(e3)∩x`k | describes the number of improving 2-Opt
moves where e3 is being removed from the tour.

Let `0 be the index of the first 2-Opt step in a new generation, and let S + 1 be the
random number of 2-Opt steps being executed in that generation. If S = 0, that is, only
one 2-Opt step is executed, the conditional probability of A(e3) is given by

Pr(A(e3) | S = 0) =
|R(e3) ∩ x`0 |(

n
2

) = p. (1)

If S + 1 > 1 operations are being executed in that generation, the probability of A(e3)
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is bounded by the union bound:

Pr(A(e3) | S = s) ≤
s∑

k=0

|R(e3) ∩ x`k |(
n
2

) .

Note that |R(e3) ∩ x`k | might increase if edges from R(e3) are being inserted into the
tour. However, the additional selection criterion on the (1+1) EA* implies that, if a
following step removes e3 and one of the edges inserted previously, in the same gener-
ation, this sequence of 2-Opt steps will be rejected. Thus, only |R(e3) ∩ x`k | edges can
cause A(e3) and

Pr(A(e3) | S = s) ≤
s∑

k=0

|R(e3) ∩ x`k |(
n
2

) = (s+ 1) · p.

Note that, using the law of total probability,

Pr(A(e3)) =

∞∑
s=0

1

es!
· Pr(A(e3) | S = s)

≤
∞∑
s=0

1

es!
· (s+ 1)p = 2p. (2)

Combining (1) and (2) with Bayes’ Theorem, we get

Pr(S = 0 | A(e3)) =
Pr(A(e3) | S = 0) · Pr(S = 0)

Pr(A(e3))

≥ p · 1/e
2p

=
1

2e
.

It follows that the probability of finding a linked pair (Si, Sj) or (Si, S
′
j) is at least 1/(2e),

if one of the steps Sj or S′j exists.
Recall that the expected number of singular and improving steps Si in t gener-

ations is at least 2t/(en2). Following the same arguments in Lemma 7 provides an
expected number of at most 2t/(3en2)− n/2 processed elements Si, each of which has
a probability of 1/(2e) for pairing with some Sj or S′j , if one of them exists. Hence, the
resulting expected number of pairs is at least

t

3e2n2
− n/2.

The following Theorem now gives a lower bound on the expected fitness gain of
the (1+1) EA*.

Theorem 12. In t ≥ cn3 generations, c > 3e2 constant, (1+1) EA* obtains an expected fitness
gain of Ω(t/(n5φ)) unless a local optimum is reached.

Proof. As in the proof of Theorem 10, we have for a constant c′ > 0

E(∆) ≥ 1/(c′n3φ).
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From Lemma 11 we know that the expected number of disjoint pairs of 2-Opt steps,
both of which are singular, is at least

u =
t

3e2n2
− n

2
.

Lemma 7 implies that among these there are at least

u

2
− n

4
=

t

6e2n2
− n

2
≥ (1− 3e2/c)t

6e2n2
= Ω(t/n2)

type 0 or 1 pairs. The expected fitness gain in t generations, E(∆t), is therefore at least

E(∆) · Ω(t/n2) ≥ Ω(t/(n5φ)).

3.4 The Approximation Ratio over the Algorithm Run

We further interpret our fitness gain results in terms of the expected approximation
ratio. The approximation ratio of an iterative algorithm is defined as

Appt :=
Tourt
OPT

where Tourt is the tour length of the algorithm at time t, and OPT is the length of an
optimal tour. In order to bound OPT, we state the following result as a consequence of
Theorem 4 of Englert et al. [9].

Corollary 13. For metric TSP instances in [0, 1]2 with probability 1− e−n/128

OPT ≥
√
n

288
√
φ
.

Proof. The statement was implicitly shown in the proof of Theorem 4 of Englert et al. [9].
Their result applies for unit hypercubes of arbitrary dimensions d, but here we spe-
cialise their result to d = 2. They show for an integer ` ≤

√
nφ that the length of an

optimal tour is at least [9, page 236]

OPT ≥ n

2532`
≥
√
n

288
√
φ

in a case that occurs with probability 1− e−n/128 [9, (5.2)].

As the bound on the length of the optimal tour holds with overwhelming proba-
bility, the following lemma shows that the expected approximation ratio after t steps
is bounded by the expected tour length after t steps, divided by the upper bound on
OPT, modulo an exponentially small additive term.

Lemma 14. The expected approximation ratio after t steps is at most

E(Appt) ≤ E(Tourt) ·
288
√
φ√

n
+ e−Ω(n).
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Proof. By the law of total expectation,

E

(
Tourt
OPT

)
= E

(
Tourt
OPT

∣∣∣∣∣ OPT ≥
√
n

288
√
φ

)
· Pr

(
OPT ≥

√
n

288
√
φ

)

+ E

(
Tourt
OPT

∣∣∣∣∣ OPT <

√
n

288
√
φ

)
· Pr

(
OPT <

√
n

288
√
φ

)

≤ E(Tourt) ·
288
√
φ√

n
+ E

(
Tourt
OPT

∣∣∣∣∣ OPT <

√
n

288
√
φ

)
· e−n/128.

We estimate the remaining conditional expectation by n/2, using the following argu-
ment from [9, page 236] that applies to all tours. Consider the longest edge in Tourt
and let α be its length and u, v denote its end points. We have Tourt ≤ n · α as α is the
length of its longest edge. Each optimal tour also has to connect u and v. By the trian-
gle inequality, any path between u and v is no shorter than the direct edge of length α.
Hence OPT ≥ 2 · α and Tourt/OPT ≤ n/2.

The expected approximation ratio is thus at most

E(Tourt) ·
288
√
φ√

n
+
n

2
· e−n/128

proving the claim as n/2 · e−n/128 = e−n/128+ln(n/2) = e−Ω(n).

Theorem 15. Based on single step improvements, for Manhattan instances and for RLS, the
expected approximation ratio after t generations is at most (576/3) ·

√
nφ − t/(4n6.5

√
φ) +

e−Ω(n) if the current solution is not already locally optimal.

Proof. Based on Lemma 14, the expected approximation ratio at iteration t is

E(Appt) ≤ E(Tourt) ·
288
√
φ√

n
+ e−Ω(n) ≤ E(Tour0 −∆t) ·

288
√
φ√

n
+ e−Ω(n).

where the expected fitness gain for t iterations is ∆t. As the initial tour Tour0 is gen-
erated uniformly at random, E(Tour0) is bounded as follows. By linearity of expec-
tation, E(Tour0) equals n times the expected Manhattan distance between two points
P1(x1, y1), P2(x2, y2) chosen uniformly at random from the unit square. The latter is
twice the expected absolute difference of x-coordinates:

E(|x1 − x2|) =

∫ 1

0

∫ 1

0

|x1 − x2|dx2dx1

=

∫ 1

0

(∫ x1

0

z dz +

∫ 1−x1

0

z dz

)
dx1

=

∫ 1

0

(
x2

1

2
+

(1− x1)2

2

)
dx1

=

∫ 1

0

(
1

2
− x1 + x2

1

)
dx1 =

1

3
.
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Hence E(Tour0) = 2n/3. Therefore, substituting the values for the starting tour Tour0

and the expected fitness gain E(∆) from the proof of Theorem 5 this yields

E(Appt) ≤ E(Tour0 −∆t) ·
288
√
φ√

n
+ e−Ω(n) ≤ ((2n/3)− t/(1152n6 · φ)) · 288

√
φ√

n
+ e−Ω(n)

=
(

(576/3) ·
√
nφ− t/(4n6.5

√
φ)
)

+ e−Ω(n).

to the final result of the theorem if not locally optimal.

Similarly, we can derive upper bounds on the expected approximation ratio after
t generations for the considered algorithms and the Manhattan metric as presented in
Table 1.

Algorithm
Manhattan metric

Single Step (any t) Consecutive Steps

RLS (576/3) ·
√
nφ− t

4n6.5
√
φ

(576/3) ·
√
nφ− 288c10t

n5.5
√
φ

, t ≥ (3/2) · n3

(1+1) EA/(1+1) EA* (576/3) ·
√
nφ− t

4en6.5
√
φ

(576/3) ·
√
nφ− 288c12t

n5.5
√
φ

, t ≥ 3e2 · n3

Table 1: Upper bounds on the expected approximation ratio in t generations for RLS and
(1+1) EA or (1+1) EA* for Manhattan instances due to single-step and consecutive-steps analysis
if the current solution is not locally optimal. (The e−Ω(n) term is omitted for clarity.) Other-
wise, the approximation ratio is O(

√
φ). The results for RLS single step, consecutive steps and

(1+1) EA single step and consecutive steps are based on Theorems 5, 10, 6 and 12 respectively.
The constants c10 and c12 are the hidden constants in the expected fitness gain from Theorem 10
and Theorem 12, respectively.

4 Analysis for Euclidean Instances

We now turn our attention to Euclidean instances. First, we obtain the expected
progress based on a single 2-Opt step for RLS and (1+1) EA, and later improve these
results by analyzing a sequence of consecutive 2-Opt steps. The fitness gain results
presented in this section hold for the considered algorithms if they have not reached a
local optimum. Otherwise, we provide an upper bound on the approximation ratio.

Theorem 16. For φ-perturbed Euclidean instances and for RLS, (1+1) EA and (1+1) EA*, the
approximation ratio for the worst local optimum is bounded above by O(

√
φ).

Proof. We consider Euclidean instances in a 2 dimensional unit hypercube [0, 1]2.
Then as a direct consequence from Theorem 3 the expected approximation ratio is at
most O(

√
φ).

4.1 Analysis of a Single 2-Opt Step

Theorem 17. In t generations RLS achieves an expected fitness gain of Ω(t/(log(nφ)·(n6φ3)))
unless a local optimum is reached.

Proof. Due to Lemma 2, we have

Pr(∆min ≥ ε) ≥ 1− 1536n4 · ε · log(1/ε) · φ3.
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Let ∆ denote the random variable that describes the fitness gain in an improving 2-Opt
step. Then similar to the proof for the Manhattan instances (Theorem 5), we get

E(∆) ≥ (1− (1536n4 · ε · log(1/ε) · φ3)) · ε.

Let us set ε = c/(1536 log(nφ) · (n4φ3)), c > 0 a small enough constant such that
Pr(∆min ≥ ε) ≥ 1/2, which is established in the following calculation. Let us consider
the formula 1536 · n4φ3 · ε · log(1/ε). By substituting the value for the ε this gives,

1536 · n4φ3 · c

1536 · n4φ3 · log(nφ)
· log(c−1 · 1536 · n4φ3 · log(nφ))

=
c

log(nφ)
· log(c−1 · 1536 · n4φ3 · log(nφ))

log(nφ) is less than nφ. Therefore the above formula is

≤ c

log(nφ)
· log(c−1 · 1536 · n5φ4)

≤ c

log(nφ)
· (5 log(nφ) + log(1536/c))

= 5c+
c log(1536/c)

log(nφ)
≤ 1/2, for a small enough c > 0.

Subsequently, we get

E(∆) ≥ c/(log(nφ) · (2n4φ3)).

The number of mutations occurring in one generation is 1 and the probability for
an improving 2-Opt step is at least 1/

(
n
2

)
≥ 2/n2. Therefore, the expected value for the

fitness gain ∆ in any generation is

E(∆) ≥ c/(log(nφ) · (n6φ3)).

The expected value for the fitness gain in t generations is

E(∆t) ≥ c(t/(log(nφ) · (n6φ3)))

= Ω(t/(log(nφ) · (n6φ3))).

Theorem 18. In t generations (1+1) EA achieves an expected fitness gain of Ω(t/(log(nφ) ·
(n6φ3))) unless a local optimum is reached.

Proof. The expected fitness gain for an improving singular generation can be derived
following the above proof on RLS in Theorem 17 with the exception that here the prob-
ability of a single step mutation occur in a generation is 1/e. Hence, the expected fitness
gain E(∆) for any generation is

E(∆) ≥ c/(log(nφ) · (en6φ3)).

Accordingly, the expected value for the fitness gain in t generations is ct/(log(nφ) ·
(en6φ3)) = Ω(t/(log(nφ) · (n6φ3))).
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4.2 Analysis of Linked Steps for RLS

The above lower bounds are based on the minimum possible improvement a single
2-Opt step can make. We can further improve this bound considering the improvement
made in a sequence of consecutive steps. Similar to the analysis on the consecutive
steps for Manhattan instances in Section 3 here we also consider the set of linked pairs
of type 0 and 1. In a sequence of t generations, there are at least t/6−n/2 such pairs due
to Lemma 8. Here we consider Lemma 14 in Englert et al. [9] related to the probability
of existence of each of the two types of linked pairs in a sequence of consecutive steps
for Euclidean instances. Based on these we can bound the expected fitness gain made
in t generations.

Lemma 19 ([9, Lemma 14]). For φ-perturbed L2 instances, the probability that there exists a
pair of type 0 and 1 in which both 2-Opt steps are improvements by at most ε ≤ 1/2 is bounded
by O(n6 · φ5 · ε2 · log2(1/ε)) +O(n5 · φ4 · ε3/2 log(1/ε)).

Theorem 20. In t ≥ cn3 generations, c > 3/2 constant, RLS achieves an expected fitness gain
of Ω(t/(log(nφ)(n16/3φ8/3))) unless a local optimum is reached.

Proof. Using Lemma 19, the probability that the improvement ∆min in a linked 2-Opt
step of type 0 or 1 is less than ε is at most

Pr(∆min ≤ ε) = O(n6 · φ5 · ε2 · log2(1/ε)) +O(n5 · φ4 · ε3/2 · log(1/ε)).

Following the proof ideas of Theorem 10 on the consecutive 2-Opt steps for Manhattan
instances, the expected fitness gain E(∆) for a pair of linked 2-Opt steps of type 0 or 1
can be bounded from below as

E(∆) ≥ (1− Pr(∆min ≤ ε)) · ε
≥ (1− c1(n6 · φ5 · ε2 · log2(1/ε))− c2(n5 · φ4 · ε3/2 · log(1/ε))) · ε.

We set ε = c′/(log(nφ) · n10/3φ8/3) for a small enough constant c′ > 0 such that
Pr(∆min > ε) ≥ 1/2, justified in the following. When plugging in ε,

c1(n6 · φ5 · ε2 · log2(1/ε)) = c′2 ·O(n6−20/3φ5−16/3) = c′2 · o(1)

since log2((log(nφ)n10/3φ8/3)/c′)
log2(nφ)

= O(1). Likewise, when plugging in ε,

c2(n5 · φ4 · ε3/2 · log(1/ε)) = c′3/2 ·O(n0φ0) = c′3/2 ·O(1)

since log((log(nφ)n10/3φ8/3)/c′)

log3/2(nφ)
= o(1). For both terms, the implicit constants can be made

arbitrarily small by choosing c′ small, thus establishing Pr(∆min > ε) ≥ 1/2.
This implies

E(∆) ≥ c′/(log(nφ) · (2n10/3φ8/3)).

Following the same argument in Theorem 10 the expected number of type 0 or 1 pairs
in a sequence of t steps is Ω(t/n2). A lower bound for the expected fitness gain for t
generations is therefore

E(∆t) ≥ E(∆) · Ω(t/n2) = Ω(t/(log(nφ) · (n16/3φ8/3))).
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Metric
RLS (1+1) EA/(1+1) EA*

Single Step (any t) Consecutive (t ≥ 3
2 · n

3) Single Con. (t ≥ 3e2 · n3)

Man Ω
(

t
n6φ

)
Ω
(

t
n5φ

)
Ω
(

t
n6φ

)
Ω
(

t
n5φ

)
Euc Ω

(
t

log(nφ)·n6φ3

)
Ω
(

t
log(nφ)·n16/3φ8/3

)
Ω
(

t
log(nφ)·n6φ3

)
Ω
(

t
log(nφ)·n16/3φ8/3

)
Table 2: Expected fitness gain in t generations for RLS and (1+1) EA for Manhattan and Eu-
clidean instances due to single-step and consecutive-steps analysis. The former applies for any
time span t; the latter requires t = Ω(n3). The consecutive-steps analysis was formally proven
for the (1+1) EA* and transfers to the (1+1) EA if, as conjectured, the latter does not perform
worse. All fitness gains assume that no local optimum is reached. Otherwise the expected ap-
proximation ratio isO(

√
φ).The results for RLS single step, consecutive steps and (1+1) EA single

step and consecutive steps are based on Theorems 5, 10, 6 and 12 for Manhattan metric and
Theorems 17, 20, 18 and 21 for Euclidean metric respectively.

4.3 Analysis of Linked Steps for (1+1) EA

We improve the current results for (1+1) EA with the analysis for consecutive 2-Opt
steps in a similar way to the analysis presented in the previous section. Again, we
consider the (1+1) EA* but conjecture that the expected fitness gain in the (1+1) EA
is no smaller than that for the (1+1) EA*. Based on our arguments on the number of
type 0 or 1 linked pairs from Lemmas 11 and 8 and the stated Lemma 19 of [9] on
the probability of the existence of a pair of both improving steps we can bound the
expected fitness gain in t generations.

Theorem 21. In t ≥ cn3 generations, c > 3e2 constant, (1+1) EA* achieves an expected
fitness gain of Ω(t/(log(nφ) · (n16/3φ8/3))) unless a local optimum is reached.

Proof. Following the proof ideas in above Theorem 20 we get for a c′ > 0

E(∆) ≥ c′/(log(nφ) · (2n10/3φ8/3)).

From Lemma 11 we know that the number of disjoint pairs of 2-Opt steps, both of
which are singular, is at least

u =
t

3e2n2
− n

2
.

Lemma 7 implies that among these there are at least

u

2
− n

4
=

t

6e2n2
− n

2
≥ (1− 3e2/c)t

6e2n2
= Ω(t/n2).

type 0 or 1 pairs.
The expected fitness gain in t generations, E(∆t), is therefore at least

E(∆) · Ω(t/n2) = Ω(t/(log(nφ) · (n16/3φ8/3))).

The lower bounds on the expected fitness gain for RLS, (1+1) EA and (1+1) EA* are
presented in Table 2.
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4.4 The Approximation Ratio over the Algorithm Run

We again interpret our fitness gain results in terms of the expected approximation ratio,
similar to the previous analysis on Manhattan instances. Here, we refer to the previous
study of Burgstaller and Pillichshammer [3] to derive the expected length of the initial
tour.

Theorem 22. Based on the single step improvements, for Euclidean instances and
for RLS, the expected approximation ratio after t generations is at most 151

√
nφ −

288c17t/(log(nφ)n6.5φ2.5) + e−Ω(n), for c17 the hidden constant in the expected fitness gain
in Theorem 17, if the current solution is not already locally optimal.

Proof. The proof is essentially the same as that of Theorem 15. For the Euclidean
metric E(Tour0) equals n times the expected Euclidean distance between two points
P1(x1, y1), P2(x2, y2) chosen uniformly at random from the unit square. The latter is
derived as E(|P1 − P2|) = (2 +

√
2 + 5 log(

√
2 + 1)) · 1

15 [3, Example 3]. This gives
E(|P1 − P2|) ≤ 0.522. Accordingly, E(Tour0) ≤ 0.522n, and using Lemma 14 and The-
orem 17 yields an expected approximation ratio of at most

E(Appt) ≤ E(Tour0 −∆t) ·
288
√
φ√

n
+ e−Ω(n)

≤ 151
√
nφ− 288c17t

log(nφ) · n6.5φ2.5
+ e−Ω(n).

Similarly, we can derive upper bounds on the expected approximation ratio after
t generations for the considered algorithms and the Euclidean metric as presented in
Table 3.

Algorithm

Euclidean metric

Single Steps Consecutive Steps

RLS 151
√
nφ− 288c17t

log(nφ)·n6.5φ2.5 151
√
nφ− 288c20t

log(nφ)·n35/6φ13/6 , t ≥ 3/2 · n3

(1+1) EA/EA* 151
√
nφ− 288c18t

e log(nφ)·n6.5φ2.5 151
√
nφ− 288c21t

log(nφ)·n35/6φ13/6 , t ≥ 3e2 · n3

Table 3: Upper bounds on the expected approximation ratio in t generations for RLS
and (1+1) EA or (1+1) EA* for Euclidean instances due to single-step and consecutive-
steps analysis if the current solution is not locally optimal (The e−Ω(n) term is omitted
for clarity.). Otherwise, the approximation ratio is O(

√
φ). The results are based on

the theorems mentioned in the caption of Table 2. The constants c17, c20, c18, and c21

are the hidden constants in the expected fitness gain from Theorems 17, 20, 18, and 21,
respectively.

5 Population-based Algorithms

We now extend our considerations to search heuristics with offspring populations and
investigate the algorithms (1+λ) RLS and (1+λ) EA shown in Algorithms 4 and 5, re-
spectively. Both algorithms generate λ offspring in one generation and replace the cur-
rent solution x by an offspring ybest (individual of best fitness among the λ individuals)
if its fitness is not inferior to x. In the context of TSP the best individual represents the
shortest tour. Offspring populations are popular as all offspring can be generated and
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evaluated in parallel. In this sense, the number of generations is considered as the par-
allel runtime of the algorithm. The total number of function evaluations can be derived
by multiplying the number of generations by λ.

Algorithm 4 (1+λ) RLS
x← a random permutation of n cities.
repeat

for i = 1 to λ do
yi := x.
yi ← apply a 2-Opt step chosen uniformly at random to yi.

end for
Let ybest be an individual with minimum tour length among y1, . . . , yλ.
if f(ybest) ≤ f(x) then

x← ybest.
end if

until forever

Algorithm 5 (1+λ) EA
x← a random permutation of n cities.
repeat

for i = 1 to λ do
draw s from a Poisson distribution with expectation 1.
yi := x.
for s+ 1 times do

yi ← apply a 2-Opt step chosen uniformly at random to yi.
end for

end for
Let ybest be an individual with minimum tour length among y1, . . . , yλ.
if f(ybest) ≤ f(x) then

x← ybest.
end if

until forever

5.1 Fitness Gain based on Single Step Improvements

In one generation, λ offspring are created and out of the (1+λ) individuals a fittest indi-
vidual is selected for the next generation. Hence, we can calculate the fitness gain based
on the probability that any of these offspring creates a sufficiently large improvement.

We first consider the case for RLS and Manhattan instances. The following lemma
estimates the probability that one of λ independent trials will yield a desirable event
that happens with some probability p.
Lemma 23. For any 0 ≤ p ≤ 1, and any λ ∈ N

1− (1− p)λ ≥ λp

1 + λp
≥ min(λp, 1)

2
.

Proof. The first inequality follows easily from Lemma 8 in [26] which states that (1 −
x)n ≤ 1

1+nx . The second one follows from

λp

1 + λp
≥ λp

2 max(λp, 1)
=

min(λp, 1)

2
.
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The following theorem shows that the lower bound on the expected fitness gain of
(1+λ) RLS is by a factor of order min(λ, n2) larger than the lower bound on the expected
fitness gain of RLS, at the expense of making λ fitness evaluations in one generation.

Theorem 24. For Manhattan instances in t generations, (1+λ) RLS and (1+λ) EA achieve an
expected fitness gain of Ω(tmin(λ, n2) · 1/(n6φ)) unless a local optimum is reached.

The minimum in min(λ, n2) can be explained as follows. For small offspring popu-
lation sizes λ, the probability of making a successful 2-Opt step increases linearly with λ
(cf. Lemma 23). For λ = n2 this probability is Ω(1), and this asymptotic growth does
not increase, even if λ increases beyond n2. Hence, increasing the offspring population
size beyond n2 does not lead to a further increase of the lower bound on the fitness
gain.

Note that, to see the expected fitness gain per fitness evaluation, we may simply
divide the expected fitness gain per generation by λ. Then the above factor becomes
min(1, n2/λ), that is, our bounds on the expected fitness gain per fitness evaluation do
not improve when using offspring populations. This makes sense as an elitist (1+1) al-
gorithm mutates the best search point seen so far, whereas offspring populations make
λ mutations of the previous generation’s best search point. The advantage of offspring
populations lies in the fact that offspring generation can be parallelized. For that reason
and for simplicity, we state the fitness gain with respect to the number of generations.

Proof of Theorem 24. From Theorem 5 we can derive the expected fitness gain given that
a step is an improving step as

E(∆) ≥ 1/(2304n4φ).

For each offspring generated in (1+λ) RLS, the probability for an improving 2-Opt
step is at least 1/

(
n
2

)
≥ 2/n2 if the current solution is not locally optimal. For each

offspring in the (1+λ) EA this probability is at least 2/(en2) as in Theorem 6. Since we
have λ offspring, the probability of the best one making an improving 2-Opt step can
be derived according to Lemma 23 for p = 2/n2 and p = 2/(en2), respectively. In both
cases

1− (1− p)λ ≥ min(λp, 1)

2
≥ Ω(min(λ/n2, 1)).

Therefore, for both algorithms the expected value for the fitness gain ∆ in any
2-Opt step can be bounded from below as

E(∆) ≥ Ω(min(λ/n2, 1)/(2304n4φ)) = Ω(min(λ, n2)/(n6φ)).

Hence, the expected value for the fitness gain in t generations if no locally op-
timal solution has been obtained in between can be derived as E(∆t) ≥ Ω(t ·
min(λ, n2)/(n6φ)).

Similarly for Euclidean instances the fitness gains can be derived following Theo-
rem 24, Theorem 17 and Theorem 18.

Corollary 25. For Euclidean instances in t generations (1+λ) RLS and (1+λ) EA achieve an
expected fitness gain of Ω(tmin(λ, n2)/(log(nφ) · (n6φ3))) unless a locally optimal solution is
reached.
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5.2 Fitness Gain based on Linked Steps

For (1+λ) RLS the analysis on linked steps follows from the previous analysis of RLS
(Theorem 10). Recall that Theorem 10 required t = Ω(n3). Compared to this, the mini-
mum value for t for (1+λ) RLS is by a factor of order min(λ, n2) smaller.

Theorem 26. For Manhattan instances in t ≥ cn3/min(2λ, n2) generations, c > 6 constant,
(1+λ) RLS achieves an expected fitness gain of Ω(tmin(λ, n2)/(n5φ)) unless a local optimum
is reached.

Proof. Let ∆ be the random variable that describes the fitness gain obtained in a pair of
linked 2-Opt steps of type 0 or 1. For a c′ > 0, the expected fitness gain E(∆) can be
bounded following Theorem 10.

E(∆) ≥ 1/(c′
√

(n6 · φ2)) ≥ 1/(c′n3φ).

The probability p for an improving 2-Opt step is at least 1/
(
n
2

)
≥ 2/n2 if the current

solution is not locally optimal. By substituting this probability p to Lemma 23 we
obtain the probability of improving 2-Opt steps made in one generation as at least
min(2λ/n2, 1)/2. The expected number of improving 2-Opt steps made in t generations
is therefore tmin(2λ/n2, 1)/2.

Let t∗ be the number of improving steps. These steps in fact form a sequence of
consecutive 2-Opt steps due to RLS accepting only the improving steps. By Lemma 8
we know there are at least t∗/6 − n/2 disjoint type 0 or 1 pairs in a sequence of t∗

consecutive steps. By substituting the value for expected number of improving steps
tmin(2λ/n2, 1)/2 for t∗ we obtain the desired result.

t∗/6− n/2 ≥ tmin(2λ/n2, 1)

12
− n

2
.

As t ≥ cn3/(min(2λ, n2)) this is greater than (1−6/c)t·min(2λ/n2,1)
12 . For c > 6, we get

Ω(tmin(λ/n2, 1)).

t∗/6− n/2 ≥ tmin(2λ/n2, 1)

12
− n

2
≥ (1− 6/c)t ·min(2λ/n2, 1)

12
≥ Ω(tmin(λ/n2, 1)).

A lower bound for the expected fitness gain for t generations is therefore

E(∆t) ≥ E(∆) · Ω(tmin(λ/n2, 1)) = Ω(tmin(λ, n2)/(n5φ)).

For Euclidean instances also the results follows from Theorem 20 in a similar way
to Theorem 26.

Corollary 27. For Euclidean instances in t ≥ cn3/min(2λ, n2) generations, c > 6 constant,
(1+λ) RLS achieves an expected fitness gain of Ω(tmin(λ, n2)/(log(nφ) · (n16/3φ8/3))) unless
a local optimum is reached.

Extending our analysis of linked steps to the (1+λ) EA, or the (1+λ) EA*, turns
out to be very challenging. Our analysis of linked steps in the (1+1) EA* (Theorems 12
and 21) were based on improving steps made in singular generations, as only singular
generations allowed us to form linked pairs of improving 2-Opt steps.
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Metric
(1+λ) RLS (1+λ) EA

Single Step (any t) Con. (t ≥ cn3

min(2λ,n2) , c > 6) Single Step (any t)

Man Ω
(
tmin(λ,n2)

n6φ

)
Ω
(
tmin(λ,n2)

n5φ

)
Ω
(
tmin(λ,n2)

n6φ

)
Euc Ω

(
tmin(λ,n2)

log(nφ)·n6φ3

)
Ω
(

tmin(λ,n2)
log(nφ)·n16/3φ8/3

)
Ω
(
tmin(λ,n2)

log(nφ)·n6φ3

)
Table 4: Expected fitness gain in t generations for (1+λ) RLS and (1+λ) EA for Manhattan and
Euclidean instances due to single-step and consecutive-steps analysis if the algorithm is not in a
local optimum. The former applies for any time span t; the latter requires t = Ω(n3/min(λ, n2)).
Otherwise (cf. in a local optima) the expected approximation ratio is O(

√
φ). The results for

(1+λ) RLS single step, consecutive steps and (1+λ) EA single step are based on Theorems 24, 26
for Manhattan metric and Corollaries 25, 27 for Euclidean metric respectively.

The proof of Theorem 12 showed that the next improving step where a particular
edge is being removed is made in a singular generation with probability at least 1/(2e).
This argument does not carry over to the (1+λ) EA: the (1+λ) EA accepts the best out of
λ offspring, and each offspring may be created in a singular or multi-step mutation. If
improvements are easy to find, there is a good chance that the best offspring will result
from a multi-step mutation.

To demonstrate this effect, assume that there are constants 0 < α, β ≤ 1 such
that the fraction of 2-Opt steps increasing the fitness by more than α∆max is at least β,
where ∆max is the maximum fitness increase by any 2-Opt step in the considered metric
(Manhattan or Euclidean distances). Such a situation is particularly likely at the start
of a run, when the tour contains many long edges. Note that singular mutations yield
to a fitness gain of at most ∆max. The probability of one offspring increasing the fitness
by more than ∆max, through a mutation making d1/αe 2-Opt steps, is at least

Pr(S = d1/αe − 1) · βd1/αe · (1− o(1)) = Ω(1)

where the 1−o(1) factor accounts for the fact that the number of 2-Opt steps increasing
the fitness by α may decrease during the application of the S + 1 2-Opt moves.

The probability that no offspring leads to a fitness increase larger than ∆max is then
2−Ω(λ), hence with probability 1 − 2−Ω(λ) the best offspring has a fitness gain larger
than ∆max, which can only happen in a multi-step mutation. So, in this situation with
probability at least 1− 2−Ω(λ) the best offspring will result from a multi-step mutation.

Unless λ is very small, this drastically decreases the chances of finding linked pairs
of 2-Opt steps as in the proof of Theorem 12, and the analysis breaks down. Note that
this is a shortcoming of our theoretical approach; we still conjecture that the expected
fitness gain can be bounded from below by Ω(min(λ, n2)) times the lower bound for the
(1+1) EA* from Theorem 12. However, proving this requires novel ideas and possibly
a different approach.

The lower bounds on the expected fitness gain for (1+λ) RLS and (1+λ) EA are
summarized in Table 4.

Above fitness gain results hold for the considered algorithms if they are not in a
local optimum. Otherwise, we provide an upper bound on the approximation ratio.
Theorem 28. For φ-perturbed Manhattan and Euclidean instances and for (1+λ) RLS,
(1+λ) EA and (1+λ) EA*, the approximation ratio for the worst local optimum is bounded
above by O(

√
φ).

Proof. We consider Manhattan and Euclidean instances in a 2 dimensional unit hyper-
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cube [0, 1]2. Then as a direct consequence from Theorem 3 the expected approximation
ratio is at most O(

√
φ).

5.3 The Approximation Ratio over the Algorithm Run

The results on the expected approximation ratio follow similarly for the population-
based algorithms. In Table 1 and Table 3 the subtrahend, which is proportional to the
(bound on the) expected fitness gain, is multiplied by a factor of Θ(min(λ, n2)), except
for the consecutive steps results for the (1+λ) EA.

6 Experiments

This section presents experimental results on the studied algorithms in the above sec-
tions. In particular, the three simple algorithms RLS, (1+1) EA and (1+1) EA* and the
three population-based variants (1+λ) RLS, (1+λ) EA and (1+λ) EA* are run on Eu-
clidean TSP instances with n = 100 and n = 500. Whereas our theoretical results hold
for distributions of arbitrary density, in this section we restrict our considerations to the
special case of uniform distributions of points.

100 instances are considered for each instance size 100 and 500. Each point is gen-
erated uniformly at random and positioned in the [0, 1]2 unit square. More precisely,
we consider the probability distribution with the density functions fi : [0, 1]d → [0, φ]
where φ = 1 and d = 2 for i ∈ {1, . . . , n}. For every instance size, the algorithms
are run on 100 randomly generated instances, each for 1.000.000 generations. For each
generation the average fitness over the 100 instances is calculated and the results are
displayed in the following graphs.

Our theoretical progress bounds are pessimistic in that they assume that there al-
ways exists only one 2-Opt move that improves the fitness. In the early stages of a
run, this assumption is too pessimistic as there are many 2-Opt moves that improve an
initial solution generated uniformly at random. It is hence not surprising that the tour
length drops sharply during the first few generations, as shown in Figure 5.

Note that our theoretical progress bounds are general in that they apply to every
non-optimal search point. They allow us to address the question how much the fit-
ness is likely to improve if the algorithm run is continued for t further generations.
We expect that our bounds are more precise in such scenarios, where the number of
improving steps is reasonably low.

The rest of the figures therefore focus on the time span after the initial major fitness
gain has been made. The theoretical progress bounds are plotted starting from several
fitness points. These curves represent the respective expected minimum fitness gain
(E(∆)) for the considered algorithm. Within the following figures these positions (fit-
ness points) are chosen (except for Figure 5) closer to the end of the major fitness gain,
in order to have a zoomed picture into the fitness curves after the major/drastic fitness
gain.

Recall that our theoretical progress bounds assume that the algorithm never en-
counters a local optimum. However, the experimental results consist of the fitness data
achieved by an algorithm at a specified generation regardless of whether its in a local
optimum or not. Furthermore, (1+1) EA and (1+λ) EA have the capability to escape
from a local optimum hence these algorithms may gain fitness after being stuck in a
local optimum for some time. Therefore, a comparison of the experimental results with
theoretical progress bounds should be considered in this light, and used to gain some
general insights only.

As shown in Figure 6 (left) for the instance size 100, the simple algorithms perform
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Figure 5: Average tour length values for 100 Euclidean instances with n = 100 in which the
points are distributed uniformly at random in a [0, 1]2 square.
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Figure 6: Average tour length values for 100 random Euclidean instances with n = 100. Left:
the range is considered after the major fitness gain achieved; 30.000–100.000 generations. Right:
the range is 100.000–1.000.000 generations. Theoretical progress curves represent the respective
E(∆) values starting from the specified fitness points.
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Figure 7: Average tour length values for
λ = 30 and for 100 random Euclidean in-
stances with n = 100.
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Figure 8: Comparison of (1+1) EA and
(1+λ) EA for λ = 30 and for 100 random
Euclidean instances with n = 100.

significantly better than the lower bound on the expected fitness gain. Comparatively,
for the considered data set RLS achieves a higher fitness (hence a lower tour length
value) within fewer generations than the simple evolutionary algorithms. However,
RLS seems to get stuck in a local optimum while evolutionary algorithms may escape.
This can be observed in the zoomed version of the fitness gain as shown in Figure 6
(right). Furthermore, the theoretical progress curves align better with the experimental
progress in the latter part of the algorithm run (see Figure 6 (right)). The pattern holds
for the population-based algorithms although with a greater fitness gain within the
given number of generations (see Figure 7 and Figure 8).

Both (1+1) EA and (1+1) EA* perform almost similar for the considered instances.
This supports our conjecture on these two algorithms that they perform similar except
for a small number of steps. The results of Wilcoxon signed rank test [30] further sup-
ports our claim. The results of the test for instance size 100 is shown in Table 5. A
rank test is performed every 1000 generations. For a test, 100 samples representing the
tour length values achieved by the two algorithms (1+1) EA and (1+1) EA* for the 100
TSP instances for a fixed generation are considered. The statistical significance is rep-
resented by the confidence values (p-value). A general observation from the results of
the rank test is that none of the tests provide statistically significant results based on a
significance level of p = 0.01. Thus we fail to reject the null hypothesis that the tour
length values obtained by the two algorithms are not different. This indicates that the
two algorithms perform similarly.

A similar pattern holds for the instance size 500 also (see Figure 9). Compara-
tively, for each algorithm the number of generations taken to converge is greater for
the instance size 500 than for the instance size 100. Due to space limitations we do not
include the rank test results for the instance size 500 here. Similar to the rank test for
the instance size 100, here also none of the test results are significant for a significance
level of p = 0.01. Thus we fail to reject the null hypothesis that the tour length values
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Figure 9: Average tour length values for 100 Euclidean instances with n = 500.

obtained by the two algorithms are not different. This indicates that the two algorithms
perform similarly for instance size 500 also.

7 Conclusions

We have carried out a fixed budget analysis of randomized local search and evolution-
ary algorithms on the well-known Traveling Salesperson Problem (TSP). Our analysis
allows to estimate the progress, or fitness gain, that these algorithms make within a
given number of t generations.

This is, in particular, useful as it gives a guarantee to practitioners on the progress
that such algorithms can make when deciding between stopping the algorithm or giv-
ing it additional running time.

We analyzed the algorithms in the setting of smoothed complexity for the Man-
hattan and Euclidean metric. First, we provided lower bounds on the expected fitness
gain based on the minimum improvement the algorithms RLS and (1+1) EA can make
in a generation. The results show that for any number of generations both algorithms
gain a fair improvement based on single 2-Opt steps.

We further improved these results by analyzing a sequence of consecutive 2-Opt
steps together to identify linked pairs. Table 2 summarizes these results. It is observed
that a larger lower bound on the improvement can be obtained considering the consec-
utive steps, for this however, the number of generations t needs to be at least Ω(n3).

The variant of the (1+1) EA ((1+1) EA*) analyzed for the linked steps accepts fewer
solutions than the classical (1+1) EA and therefore we expect (1+1) EA* to be slower
than (1+1) EA. Proving this is an interesting technical open problem and would give
additional insights into the advantages of mutations that make multiple changes at the
same time.

Further we have extended the analysis for population-based algorithms (1+λ) RLS
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and (1+λ) EA and the results are summarized in Table 4. The analysis based on single
steps for both algorithms and the analysis based on consecutive steps for (1+λ) RLS
follows from our previous analysis on RLS and (1+1) EA whereas the consecutive step
analysis for (1+λ) EA does not. We have discussed the existing problem with this ap-
proach and leave an open problem to find novel methods for this analysis.

Additionally, we have analyzed the approximation ratio during the algorithm run.
In particular, we have proved an upper bound on the expected approximation ratio
after t generations for the considered algorithms and metrics.

Moreover, experiments are conducted to observe the fitness gain in a typical algo-
rithm run. In particular, Euclidean instances and the uniform distribution are consid-
ered with instance sizes 100 and 500. Results support our conjecture that (1+1) EA* per-
forms similar to (1+1) EA and further indicate an increased fitness gain in population-
based variants over simple evolutionary algorithms. It would be interesting to see if
the increased fitness gain for the population-based variants is mainly due to the fact
that we use the notion of generation or whether there are other considerable factors.
Hence, exploring the effects of populations on the fitness gain would be an interesting
future research direction.
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generation
test 1 test 2

W p-value W p-value

1000 2155 0.8987 2895 0.1020

2000 2317 0.7633 2733 0.2378

3000 2913 0.0914 2137 0.9092

4000 2851 0.1315 2199 0.8692

5000 2882 0.1101 2168 0.8905

6000 3061 0.0327 1988 0.9676

7000 3003 0.0503 2047 0.9500

8000 2717 0.2551 2333 0.7460

9000 2604 0.3936 2446 0.6077

10000 2709 0.2640 2341 0.7371

11000 2666 0.3145 2384 0.6867

12000 2486 0.5540 2564 0.4473

13000 2418 0.6442 2632 0.3571

14000 2353 0.7234 2697 0.2777

15000 2280 0.8002 2769 0.2007

16000 2501 0.5329 2548 0.4685

17000 2574 0.4338 2476 0.5676

18000 2740 0.2304 2310 0.7706

19000 2682 0.2947 2367 0.7065

20000 2678 0.3000 2372 0.7012

21000 2633 0.3552 2416 0.6461

22000 2713 0.2596 2337 0.7415

23000 2600 0.3989 2450 0.6024

24000 2579 0.4270 2471 0.5743

25000 2634 0.3546 2416 0.6467

26000 2743 0.2268 2306 0.7743

27000 2782 0.1889 2268 0.8120

28000 2737 0.2335 2313 0.7675

29000 2772 0.1983 2278 0.8026

30000 2797 0.1753 2253 0.8256

31000 2822 0.1540 2228 0.8468

32000 2740 0.2304 2310 0.7706

33000 2794 0.1780 2256 0.8229

34000 2849 0.1330 2201 0.8677

35000 2704 0.2697 2346 0.7314

36000 2622 0.3700 2428 0.6313

37000 2668 0.3121 2382 0.6891

38000 2744 0.2262 2306 0.7748

39000 2731 0.2399 2319 0.7612

40000 2718 0.2540 2332 0.7471

41000 2655 0.3281 2395 0.6732

42000 2691 0.2847 2359 0.7165

43000 2690 0.2858 2360 0.7153

44000 2728 0.2431 2322 0.7579

45000 2718 0.2540 2332 0.7471

46000 2748 0.2221 2302 0.7789

47000 2768 0.2022 2282 0.7988

48000 2797 0.1753 2253 0.8256

49000 2791 0.1807 2259 0.8202

50000 2769 0.2012 2281 0.7997

generation
test1 test2

W p-value W p-value

51000 2783 0.1880 2267 0.8129

52000 2753 0.2170 2297 0.7840

53000 2746 0.2242 2304 0.7768

54000 2699 0.2754 2351 0.7257

55000 2730 0.2410 2320 0.7601

56000 2697 0.2777 2353 0.7234

57000 2727 0.2442 2323 0.7569

58000 2780 0.1908 2270 0.8102

59000 2766 0.2041 2284 0.7968

60000 2759 0.2110 2291 0.7900

61000 2778 0.1926 2272 0.8083

62000 2745 0.2252 2305 0.7758

63000 2724 0.2475 2326 0.7536

64000 2739 0.2314 2311 0.7696

65000 2717 0.2551 2333 0.7460

66000 2727 0.2442 2323 0.7569

67000 2747 0.2232 2303 0.7779

68000 2700 0.2743 2350 0.7269

69000 2693 0.2823 2357 0.7188

70000 2682 0.2953 2368 0.7059

71000 2667 0.3133 2383 0.6879

72000 2676 0.3024 2374 0.6988

73000 2648 0.3368 2402 0.6644

74000 2654 0.3293 2396 0.6719

75000 2620 0.3726 2430 0.6287

76000 2626 0.3648 2424 0.6365

77000 2637 0.3507 2413 0.6506

78000 2655 0.3281 2395 0.6732

79000 2660 0.3219 2390 0.6794

80000 2659 0.3231 2391 0.6781

81000 2676 0.3024 2374 0.6988

82000 2675 0.3036 2375 0.6976

83000 2674 0.3048 2376 0.6964

84000 2642 0.3444 2408 0.6569

85000 2653 0.3306 2397 0.6707

86000 2648 0.3368 2402 0.6644

87000 2661 0.3206 2389 0.6806

88000 2662 0.3194 2388 0.6818

89000 2665 0.3157 2385 0.6855

90000 2666 0.3145 2384 0.6867

91000 2681 0.2964 2369 0.7047

92000 2687 0.2893 2363 0.7118

93000 2683 0.2941 2367 0.7071

94000 2697 0.2777 2353 0.7234

95000 2702 0.2720 2348 0.7292

96000 2703 0.2708 2347 0.7303

97000 2717 0.2551 2333 0.7460

98000 2710 0.2629 2340 0.7382

99000 2697 0.2777 2353 0.7234

100000 2686 0.2905 2364 0.7107

Table 5: Results of Wilcoxon signed rank tests for the tour length values obtained by the algo-
rithms (1+1) EA and (1+1) EA* for n = 100. (1+1) EA > (1+1) EA* (test1), (1+1) EA* > (1+1) EA
(test2), positive rank sums (W ) and confidence (p) values are displayed accordingly. The row i
represents the test results based on 100 samples of tour length values (from the 100 TSP instances)
for the generation.
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