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Abstract

Submodular optimization problems play a key role in artificial intelligence as they allow
to capture many important problems in machine learning, data science, and social net-
works. Pareto optimization using evolutionary multi-objective algorithms such as GSEMO
(also called POMC) has been widely applied to solve constrained submodular optimization
problems. A crucial factor determining the runtime of the used evolutionary algorithms to
obtain good approximations is the population size of the algorithms which usually grows
with the number of trade-offs that the algorithms encounter. In this paper, we introduce
a sliding window speed up technique for recently introduced algorithms. We first examine
the setting of deterministic constraints for which bi-objective formulations have been pro-
posed in the literature. We prove that our technique eliminates the population size as a
crucial factor negatively impacting the runtime bounds of the classical GSEMO algorithm
and achieves the same theoretical performance guarantees as previous approaches within
less computation time. Our experimental investigations for the classical maximum coverage
problem confirm that our sliding window technique clearly leads to better results for a wide
range of instances and constraint settings. After we have shown that the sliding approach
leads to significant improvements for bi-objective formulations, we examine how to speed up
a recently introduced 3-objective formulation for stochastic constraints. We show through
theoretical and experimental investigations that the sliding window approach also leads to
significant improvements for such 3-objective formulations as it allows for a more tailored
parent selection that matches the optimization progress of the algorithm.

1 Introduction

General heuristic search methods (Zhang et all, 2001; Korf, 2010), evolutionary algorithms (Eiben and
Smith, 2015), and constrained programming (Rossi et all, 2006) provide methods for solving a wide range
of complex optimization and search problems in areas such as planning, scheduling, robotics and games.
An important area where greedy heuristic_search methods and evolutionary algorithms have been applied
is the area of submodular optimization (Krause and Golovin, 2014; Qian et all, 2019; Gu et all, 2023).
The research in this domain captures a wide range of important problems arising in artificial intelligence
such as influence maximization in social networks (Kempe et all, 2015) or regression problems in machine
learning (Das and Kempg, 2011)). These and many other real-world optimization problems face diminishing
returns when adding additional elements to a._solution and can be formulated in terms of a submodular
function (Nemhauser and Wolsey, [1978; Krause and Golovin, 2014). Other important problems that can be
stated in terms of a submodular function include classical NP-hard combinatorial optimization problems such
as the computation of a maximum coverage (Khuller et all, 1999) or maximum cut (Goemans and Williamson,
1995) in graphs which are often underlying problems to be solved as part of complex applications.
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Evolutionary algorithms have been widely applied to tackle complex optimization problems from the ar-
eas of artificial intelligence and operations research. One of their major success stories is in the area of
multi-objective optimization. As evolutionary algorithms use a population to solve a given problem, such
a population can be used to evolve a set of solutions that represents trade-offs according to a given set of
(conflicting) objective functions. Evolutionary multi-objective algorithms have also been widely applied to
constrained single-objective optimization problems. Here, the constraint is treated as an additional objective.
Formulating a constrained single-objective optimization problem as a multi-objective problem allows evolu-
tionary algorithms a different way of tackling the given problem Friedrich and Neumann (2015); Knowles
et al) (2001). In particular, this enables evolutionary multi-objective algorithms to mimic a greedy behavior
which is highly beneficial for tackling constrained submodular optimization problems.

Classical approximation algorithms for monotone submodular optimization problems under different types
of constraints rely on greedy approaches which select elements with the largest benefit/cost gain according
to the gain with respect to the given submodular function and the additional cost with respect to the given
constraint (Zhang and Vorobeychik, 2016; Krause and Golovin, 2014). During the last years, evolution-
ary multi-objective algorithms such as GSEMO (also called POMC in the artificial intelligence literature)
have been shown to provide the same theoretical worst case performance guarantees on solution quality
as the _greedy approaches while clearly outperforming classical greedy approximation algorithms in prac-
tice (Friedrich and Neumann, 2015; Qian et al|, 2015, 2017; Neumann and Neumann, 2025). Results are
obtained by means of rigorous runtime analysis (see (Neumann and Witt, 2010; Doerr and Neumany|, 2020)
for comprehensive overviews) which is a major tool for the analysis of evolutionary algorithms. In partic-
ular, this tool gives rigorously proven performance guarantees for the algorithms, including guidelines for
high-performing parameter choices.

Solving constrained single-objective problems through multipbjectivization (Knowles et all, 001) has been
shown to be highly successful for a wide range of problems (Ma et all, 2023). In the context of submodular
optimization, the analyzed approaches use a 2-objective formulation of the problem where the first objective
is to maximize the given submodular function and the second objective is to minimize the cost of the given
constraint. The two objectives are optimized simultaneously using variants of the GSEMO algorithm (Lau-
manns et al), 2004; Giel, 2003) and the algorithm outputs the feasible solution with the highest function
value when terminating. Before GSEMO has been analyzed for submodular problems, similar multi-objective
setups have already been shown to be provably successful for other constrained single-objective optimiza-
tion problems such as minimum spanning trees (Neumann and Wegener, 2006) and vertex and set covering
problems (Friedrich et al|, 2010; Kratsch and Neumann, 2013) through different types of runtime analyses.
A crucial factor which significantly influences the runtime of these Pareto optimization approaches using
GSEMO is the size of the population that the algorithm encounters. This is in particular the case for
problems where both objectives can potentially attain exponentially many different function values. In
the context of submodular optimization this is the case iff the function f to be optimized as well as the
constraint allows exponentially many trade-offs. In order to produce a new solution in the algorithm, a
solution chosen uniformly at random from the current population is mutated to produce an offspring. A
large population size implies that often time is wasted by not selecting the "right” individual for mutation.
This effect becomes even more predominant when problems with more than 2 objectives are considered. In
the context of problems with stochastic constraints, it has recently been shown that 3-objective formulations
where the given constraint is relaxed into a third objective lead to better performance than 2-objective for-
mulations that optimize the expected value and variance of the given stochastic components under the given
constraint (Neumann and Witt, 20234, 2025). The experimental investigations for the chance constrained
dominating set problem carried out in Neumann and Witt] (2023a) show that the 3-objective approach is
beneficial and outperforms the bi-objective one introduced in Neumann and Witt (2025) for medium size
instances of the problem. However, it has difficulties in computing even a feasible solution for larger graphs.
In order to deal with large problem instances, we design a new 3-objective Pareto optimization approach
based on the sliding window technique.

1.1 Our contribution

In this article, we present a sliding window approach for fast Pareto optimization called SW-GSEMO that
tries to select the "right” parent for mutation at any given point in time. We should note that our sliding win-
dow approaches differ significantly from other parent. selection mechanisms explored in the literature (Laus
manns et al), 2004; Osuna et all, 2020; Bian and Qian, 2022; Antipov et all, 2024). These mechanism have
been designed and explored in the context of standard multi-objective formulations where the goal is to cover
the whole Pareto front.

Our approach is based on the fact that several preyvious runtime analyses of GSEMO for Pareto optimization
(e.g., Friedrich and Neumann (2015); Qian et al| (2017)) consider improving steps of a certain kind only.
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More precisely, they follow an inductive approach, e.g., where high-quality solutions having a cost value of
at most ¢ in the constraint are mutated to high-quality solutions of constraint cost value at most ¢+ 1, which
we call a success. (More general sequences of larger increase per success are possible and will be considered
in this paper.) Steps choosing individuals of other constraint cost values do not have any benefit for the
analysis. Assuming that the successes increasing the quality and cost constraint value have the same success
probability (or at least the same lower bound on it), the analysis essentially considers phases of uniform
length where each phase must be concluded by a success for the next phase to start. More precisely, the
runtime analysis typically allocates a window of t* steps, for a certain number t* depending on the success
probability, and proves that a success is for within an expected number of ¢t* steps or is even highly likely in
such a phase. Nevertheless, although only steps choosing the best individual of constraint value at most ¢
are relevant for the phase, the classical GSEMO selects the individual to be mutated uniformly a random
from the population, leading to the “wasted” steps as mentioned above.

Our sliding window approach replaces the uniform selection with a time-dependent window for selecting
individuals based on their constraint cost value. This time-dependent window is of uniform length T,
which is determined by the parameters of the new algorithm, and chooses high quality individuals with
constraint cost value at most ¢ for T steps each. In our analysis, T' will be at least t*, i.e., a proven
length of the phase allowing a success towards a high-quality solution of the following constraint cost value
with high probability. This allows the algorithm to make time-dependent progress and to focus the search
on solutions of a “beneficial” cost constraint value, which in the end results with high probability in the
same approximation guarantee as the standard Pareto optimization approaches using classical GSEMO. Our
analysis points out that our proven runtime bound is independent of the maximum population size that
the algorithm attains during its run. This provides significantly better upper bounds for our fast Pareto
optimization approach compared to previous Pareto optimization approaches.

Sliding window selection works well with two objectives, one of which represents a constraint value, since
usually the population will only contain one individual for each constraint value. Making the sliding window
technique work for problems with 3 (or more) objectives requires one to deal with a potentially large number of
trade-off solutions even for a small number of constraint values. We design highly effective 3-objective Pareto
optimization approaches based on the sliding window technique. Our theoretical investigations using runtime
analysis for the chance constrained problem under a uniform constraint show that our approach may lead to
a significant speed-up in obtaining all required Pareto optimal solutions. In order to make the approach even
more suitable in practice, we introduce additional techniques that do not hinder the theoretical performance
guarantees, but provide additional benefits in applications. One important technique is to control the sliding
window through an additional parameter a. Choosing a € ]0, 1] allows the algorithm to move the sliding
window faster at the beginning of the optimization process and slow down when approaching the constraint
bound. This allows us to maintain the benefit of the Pareto optimization approach including its theoretical
performance guarantees while focusing more on the improvement of already high quality solutions at the
end of the optimization run. The second technique that we incorporate is especially important for problems
like the dominating set problem where a constraint that is not fulfilled for most of the optimization process
needs to be fulfilled at the end. In order to deal with this, we introduce a parameter tsq. € [0,1] which
determines the fraction of time our sliding window technique is used. If after tfrc - tmas Steps a feasible
solution has not been found yet, then in each step a solution from the population that is closest to feasible
is selected in the parent selection step to achieve feasibility within the last (1 — tjrec) - tmas Steps.

This article is based on two preliminary conference versions. The bi-objective sliding window approach intro-
duced in Neumann and Wit{ (2023b) and the 3-objective sliding window approach introduced in Neumann
and Witt (2024). Furthermore, the investigations in Neumann and Wit{ (2023H) have been extended and
an additional analysis for the expected approximation ratio based on a given time budget is provided in
Section @1

The outline of the article is as follows. In Section E, we introduce the class of problems we consider in
this work. Section B presents our new SW-GSEMO algorithm for bi-objective formulations, including a
theoretical analysis and an experimental evaluation. Our sliding window approach for 3-objective problems
together with its theoretical analysis and experimental investigations is presented in Section {. Finally, we
finish with some concluding remarks.

2  Preliminaries

In this section, we describe the problem classes and algorithms relevant to our study. Overall, the aim is to
maximize pseudo-boolean fitness/objective functions f: {0,1}"™ — R under constraints on the allowed search
points. _An important class of such functions is given by the so-called submodular functions (Nemhauser
and Wolsey|, 1978). We formulate it here on bit strings on length n; in the literature, also an equivalent
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formulation using subsets of a ground set V' = {vy,...,v,} can be found. The notation = < y for two bit
strings z,y € {0,1}™ means that x is component-wise no larger than y, i.e., x; < y; for alli € {1,...,n}.

Definition 1. A function f: {0,1}" — R* is called submodular if for all z,y € {0,1}" where z < y and all i
where x; = y; = 0 it holds that

fle@e) - fx) = fly®e) — fy)
where a @ e; is the bit string obtained by setting bit 7 of a to 1 (and not changing the other bits).

We will also consider functions that are monotone (either being submodular at the same time or without
being submodular). A function f: {0,1}" — R is called monotone if for all z,y € {0,1}" where z < y it
holds that f(z) < f(y), i.e., setting bits to 1 without setting existing 1-bits to 0 will not decrease fitness.

2.1 Deterministic cost constraint

Optimizing motonone functions becomes difficult if different constraints are introduced. Formally, there is a
cost function ¢: {0,1}"™ — R and a budget B € R that the cost has to respect. Then the general optimization
problem is defined as follows.

Definition 2 (General Optimization Problem). Given a monotone objective function f: {0,1}" — R, a
monotone cost function ¢: {0,1}" — R and a budget B € R, find

arg max f(z) such that ¢(z) < B.
ze{0,1}™

Without loss of generality, we assume that the monotone functions f and ¢ are normalized, i.e. f(0") =
¢(0™) = 0 holds. A constraint function c is called uniform if it just counts the number of one-bits in =,
i.e., c(z) =Y i ;. It should be noted that the most simple setting of optimizing a monotone submodular
function under a uniform constraint, is already NP-hard but allows finding a (1 — 1/e)-approximation using
greedy algorithms (Nemhauser and Wolsey, 1978).

In recent years, several variations of the problem in Definition E have been solved using multi-objective
evolutionary_algorithms like the classical GSEMO algorithm (Friedrich and Neumann, 2015; Qian et al.,
2015, 2017; Roostapour et all, 2022). In the following, we describe the basic concepts of multi-objective
optimization relevant for our approach.

For the deterministic setting, we consider a multi-objective objective function given as fp(z) = (f1(z), fa(x)),
where fo(x) = ¢(x) and

—oco ife(z) > B

f(z) otherwise

fl(x):{

Let z,y € {0,1}"™ be two search points. We say that « (weakly) dominates y (x = y) iff fi(z) > f1(y) and
fa(x) < fa(y) holds. We say z strictly dominates y (z > y) iff z > y and (fi(x) # fi(y) V fa(z) # f2(y))
holds. The dominance relationship applies in the same way to the objective vectors (f(z),c(x)) of the
solutions. The set of non-dominated solutions is called the Pareto set and the set of non-dominated objectice
vectors is called the Pareto front.

The classical goal in multi-objective optimization is to compute for each Pareto optimal objective vector
a corresponding solution. The approaches using Pareto optimization for constrained submodular problems
as investigated in, e.g., Friedrich and Neumann (2015); Qian et al) (2017), differ from this goal. Here the
multi-objective approach is used to obtain a feasible solution, i.e., a solution for which ¢(z) < B holds, that
has the largest possible function value f(z).

2.2 Chance Constrained Problems

Chance constrained problems involve stochastic constraints that are impacted by the expected (cost) value
as well as its variance. In Neumann and Wity (2025), a chance constrained problem has been considered
which involves such stochastic components and has an additional deterministic constraint. Pareto optimiza-
tion approaches are usually used to tackle constrained single-objective optimization problems by taking the
constraint as an additional objective.

We consider the chance constrained problem investigated in Neumann and Witt (2025) and motivate our

multi-objective settings by these recent investigations. Given a set of n items V = {vy,..., v, } with stochastic
weights w;, 1 < i < n, we want to solve
min W subject to  (Pr(w(z) <W)>a)A(|lz)y > k) (1)

where w(z) = > wiz;, € {0,1}", and @ € [1/2,1[. We assume that the weights of the items are
independent of each other and that for each item v; the weight w; is distributed according to a normal
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distribution N (u;,0?), where y; > 1 and 0; > 1, 1 <4 < n. We denote by u(x) = Y, wiz; the expected
weight and by v(z) = Y. | o7z, the variance of the weight of solution x.

Based on the properties of the normal distribution explored in [shii et al| (1981), the problem given in
Equation (Ei) is equivalent to minimizing

() = p(a) + Kar/o(@), (2)

under the condition that |z|; > &k holds (Neumann and Witt, 2025). Here, K, denotes the a-fractile point
of the standard normal distribution.

The uniform constraint |z|; > k requires that each feasible solution has to contain at least k elements. As
expected weights and variances are strictly positive, an optimal solution has exactly k£ elements. Depending
on the choice of «, the difficulty lies in finding the right trade-off between the expected weight and variance
among all solutions with exactly k elements.

It has been shown that the problem given in Equation E can_be solved by the following bi-objective formulation
for any a € [1/2,1] (Theorem 3 in Neumann and Witt (2025)). The objective function is given as fop(x) =

(i(z),0(x)), where

N Doy AT |z >k
xTr) = n

M) {<k Tlel) - U+ S ) el <k

~ _ Z?:l Utle |x|1 2 k

o) = {<k Tlel) - A4S 0?) el <k,

both of which are to be minimized. Here, the model allows to obtain trade-offs with respect to ji and ©
resulting in an optimal solution for any a € [1/2,1].
Similarly as above, we say that a solution z dominates a solution y (z > y) iff fi(z) < a(y) A v(z) < 0(y).
Furthermore, a solution x strongly dominates a solution y (z > y) iff = y and fop(x) # fop(y). The setup
can be generalized by using ¢(x) > k for a constraint function ¢(z) instead of |z|; > k. In the experimental
investigations carried out in Neumann and Witt (2025), c¢(z) is counting the number of dominated nodes in
the dominating set problem in graphs with n nodes. Here, the set of dominated nodes refers to the set of
nodes selected by x and their neighbors in the given graph. The constraint ¢(z) = n is used and enforces
that each node in the graph is either selected by = or a neighbor of a selected node which means that the
set of nodes selected by = forms a dominating set.
The key idea of the result given in Neumann and Witt (2025) is to show that the algorithm computes
the extremal points of the Pareto front of the given problem. As the expected costs and variances are
strictly positive, each Pareto optimal solution contains exactly k elements when considering this bi-objective
formulation.
We also consider the problem of maximizing a given deterministic objective ¢(z) under a given chance
constraint, i.e

maxc(z) subject to Pr(w(z) < B) > a. (3)
with w(z) = 7" | w;x; where each w; is chosen independently of the other according to a normal distribution
N(u;,0?), and B and « € [1/2,1] are a given weight bound and reliability probability.
Such a problem formulation includes for example the maximum coverage problem in graphs with so-called
chance constraints (Doerr et all, 2020; Neumann and Neumann, 2025), where ¢(z) denotes the nodes covered
by a given solution_x_and the costs are stochastic. Furthermore, the chance constrained knapsack problem
as investigated in Xie et al| (2020, 2019) fits into this problem formulation.

2.2.1 3-Objective Formulation
We investigate the 3-objective formulation given as

fsp(z) = (1), v(@), c(x))

where ¢(z) is the constraint value of a given solution that should be maximized. In our theoretical study, we
focus on the case ¢(x) = ||, which turns the constraint |z|; > k into the additional objective of maximizing
the number of bits in the given bitstring.

Similar to the bi-objective model we minimize the expected weight pu(z) = Y. p;x; and the variance
v(z) =Y, o2z; of the weight of solution x. Note that here we do not consider penalty terms for violating
the constraint |z|; > k as done in the bi-objective formulation. We say that a solution z dominates a solution
y (z = y)iff e(z) > c(y) Ap(x) < ply) Av(z) < v(y). Furthermore, a solution x strongly dominates y (z = y)
iff z = y and fsp(z) # fsp(y).
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Algorithm 1: GSEMO

Choose an initial solution z € {0,1}";
P {z};
repeat
Choose x € P uniformly at random,;
Create y by flipping each bit z; of x with probability %;
if Aw € P:w < y then
L P« (P\{zeP|y=z})U{y}k
until stop;

Using the expected cost and variance as objectives for the problem given in Equation E, allows here to
explore the trade-offs with respect to the expected cost and variance for the different values of B and «
that lead to a maximum possible value of ¢(x). It has been shown in Neumann and Witt (2023a) that the
3-objective formulation obtains for any possible B and a € [1/2,1] a feasible solution with the maximal
value for ¢(z) = |z|; in expected pseudo-polynomial time. We will investigate possible speed ups for this
3-objective formulation using our newly developed sliding window technique.

2.3 Notation

In this paper, we use In(z) and log(z) to denote the natural and binary logarithm of z, respectively.

3 2-Objective Sliding Window GSEMO

The classical global simple evolutionary multi-objective optimizer (GSEMO) algorithm (Laumanns et all,
2004;_Giel, 2003) (see Algorithm [l|) has been widely used in the context of Pareto optimization. As done
in Qian et al| (2017), we consider the variant starting with the search point 0™ in our investigations for
monotone submodular problems with deterministic constraints. The search point 0™ is crucial for the success
of Pareto optimization algorithms and the basis for obtaining theoretical performance guarantees. More
precisely, the theoretical studies will first bound the time to reach 0™ and from there the time to find certain
points of a good approximation guarantee. GSEMO keeps for each non-dominated objective vector obtained
during the optimization run exactly one solution in its current population P. In each iteration one solution
x € P is chosen for mutation to produce an offspring y. The solution y is accepted and included in the
population if there is no solution z in the current population that strictly dominates y. If y is accepted, then
all solutions that are (weakly) dominated by y are removed from P.

We introduce the Sliding Window GSEMO (SW-GSEMO) algorithm given in Algorithm E We initialize this
algorithm with the search point 0™ which is Pareto optimal and therefore never removed from the population,
and discuss more general initialization for fast Pareto optimization in Section W when considering problems
with stochastic constraints. SW-GSEMO differs from the classical GSEMO algorithm by selecting the parent
x that is used for mutation in a time dependent way with respect to its constraint value ¢(z) (see the sliding-
selection procedure given in Algorithm J). Let t,,4, be the total time that we allocate to the sliding window
approach. Let ¢t the the current iteration number. If ¢t < ¢,,4., then we select an individual of constraint
value which matches the linear time progress from 0 to the constraint bound B, i.e. an individual with
constraint value ¢ = B/t,q,- As this value might not be integral, we use the interval [|¢], [¢]]. In the case
that there is no such individual in the population, the individual x € P with the largest function value
among all individuals with cost less than |¢| in P is chosen (see line 7 of Algorithm ). Note, that there is
always a valid individual to be selected once the search point 0™ has been included in the population.

For mutation we analyze standard bit mutation. Here we create y by flipping each bit z; of x with probability
%. As standard bit mutations have a probability of roughly 1/e of not flipping any bit in a mutation step,
we use the standard-bit-mutation-operator-plus outlined in Algorithm { in our experimental studies. We
note that all theorectical results obtained in this article hold for standard bit mutations and standard bit
mutatations plus.

As done in the area of runtime analysis (Doerr and Neumann, 202(0), we measure the runtime of an algorithm
by the number of fitness evaluations to achieve a desired goal. In particular, we are interested in a ~-
approximation, i.e. a feasible solution x for which f(x) > v - f(xopr) holds, where the parameter v € [0, 1]
specifies the quality of the approximation and zop7 is an optimal solution for the considered problem.

We analyze the Sliding Window GSEMO algorithm with respect to the number of fitness evaluations and
determine values of t,,4, for which the algorithm has obtained good approximation with_high probability,
i.e. with probability 1 — o(1). The determined values of ¢,,,, in our theorems in Section f are significantly
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Algorithm 2: Sliding Window GSEMO (SW-GSEMO)

Set x = 0"
P {x};
t <« 0;
repeat
tet+1;
Choose z = sliding-selection(P, ¢, t a4z, B);
Create y from x by mutation;
if Aw € P:w > y then
| P« (P\{zeP|y=zz})U{yk

until £ > ta0;

Algorithm 3: sliding-selection(P, ¢, tymaz, B)
if t < t,4e then
¢+ (t/tmaac) - B;
P={zeP|e) <cx) <[e]};
if P # () then
L Choose = € P uniformly at random;

else
L= agmaxaer{/(2) | ef2) < 4]

Return z;

lower than the bounds on the expected time to obtain the same approximations by the classical GSEMO
algorithm.

3.1 Determistic Approximations

Friedrich and Neumann (2015) showed that the classical GSEMO finds a (1 — 1/e)-approximation to a
monotone submodular function under a uniform constraint of size B = r in expected time O(n?(logn +r)).
A factor n in their analysis stems from the fact that the population of GSEMO can have size up to r < n.
Thanks to the sliding window approach, which only selects from a certain subset of the population, this
factor n does not appear in the following bound that we prove for SW-GSEMO. More precisely, the runtime
guarantee in the following Theorem [I| is by a factor of ©(n/logn) better if r > logn. For smaller r, we gain
a factor of at least O(n/r).

Theorem 1. Consider the SW-GSEMO using the objective function fp with ¢,,,, = 4ernlnn on a monotone
submodular function f under a uniform constraint of size r. Then with probability 1 — o(1), the time until
a (1 — 1/e)-approximation has been found is bounded from above by t,,4, = O(nrlogn).

Proof. We follow the proof of Theorem 2 in Friedrich and Neumann (2015). As in that work, the aim is to
include for every j € {0,...,r} an element x; in the population such that

flaj) = (1= (1~1/r)")f(OPT) and |a;| < j, (4)

where OPT is an optimal solution. If this holds, then the element, x,. satisfies the desired approximation ratio
as (1— (1 —1/r)") > (1 —1/e). We also know from [Friedrich and Neumann (2015) that the probability of
mutating x; to ;41 is at least 1/(en) since it is sufficient to insert the element yielding the largest increase
of f and not to flip the rest of the bits.

We now consider a sequence of events leading to the inclusion of elements x; in the population for growing j.
By definition of SW-GSEMO, element xg is in the population at time 0. Assume that element z;, where
j €{0,...,r — 1}, is in the population P at time 7; := 4ejnlnn. We show now that x; is available for
selection up to time

Tjit1 —1l=4e(j+1)nlnn—1

[((4e(§ + Dnlan — 1) /tmae) - 7] = 4.
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Algorithm 4: Standard-bit-mutation-plus(x)

Yy
repeat
‘ Create y from x by flipping each bit x; of x with probability %
until z # y;
Return y;

The size of the subset population P that the algorithm selects x; from in the time interval {7;,..., 741 —1}
is bounded from above by 2 since [¢| — [¢] < 1 and there is at most one non-dominated element for every
constraint value. If there is no individual of value in {|¢], [¢]}, then z; is the individual with highest function
value having cost less than |é]. Therefore, the probability of choosing z; and mutating it to ;41 is at least
1/(2en) from time 7; until time 7;,1 — 1, i.e., for a period of 4enlnn steps, and the probability of this not

happening is at most
4enlnn
1 1
1—-— < —.
2en n2

By a union bound over at most r elements to be included, the probability that there is a j € {1,...,r} such
that a desired solution z; fullfilling Equation Y is not included by time 7; is O(1/n).

3.2 Expected Approximation Qualities in Faster Time

Theorem m provides a deterministic bound of 1 —1/e on the approximation quality of the solution that SW-
GSEMO has achieved in time ¢,,4, with high probability. Since the failure probability is o(1), it is sufficient
to re-run the algorithm an expected number of 1+ o(1) times until no failure occurs and the approximation
quality of 1 — 1/e is achieved.

Instead of bounding the approximation quality with high probability, there are studies in the literature
that_derive guarantees for the expected value of the approximation quality in the given scenario. Crawford
(2021)) studied a multi-objective evolutionary algorithm called PO, which is similar to GSEMO, for achieving
approximations on monotone submodular functions, but takes a different perspective on the approximation
guarantee. Her main result, adjusted to the notation of the present article, states that PO finds a solution
of expected approximation ratio (1 —€)(1 — 1/e) in time at most 8enrln(1/e) for any 0 < € < 1. Hence, if,
e.g., e is a small constant, the time is by an asymptotic factor of logn smaller than in Theorem [f above.
Mirzasoleiman et al) (2015) presented an algorithm called stochastic greedy that, again in the scenario of
optimizing monotone submodular functions under a cardinality constraint, computes a solution of expected
approximation ratio (1 — €)(1 — 1/e) in deterministic time O(nlog(1/€)). Note that the latter bound does
not depend on the constraint value r.

Inspired by these prior works, the following theorem will analyze the SW-GSEMO and derive a bound on
the expected approximation ratio depending on the deterministic time bound t,,,, of the algorithm. If
tmaz = 2ernln(l/e) for a constant € > 0, then an expected approximation of 1 — 1/e — € is obtained, which
is similar in style to the result by Crawford mentioned above.

Theorem 2. Consider the SW-GSEMO using objective function fp on a monotone submodular function
under a uniform constraint of size r. Then the expected approximation ratio of the solution at time ¢, is
bounded from below by 1 — e™! — g~ tmes/(2ren)

Proof. Our approach is partially inspired by the proof in Mirzasoleiman et al| (2015). However, their
algorithm is based on a uniform choice of elements and a subsequent greedy procedure, which is different
from the working principles of SW-GSEMO.

Let A; be the solution of cardinality at most ¢ available for selection when the sliding window chooses
from solutions with best function value having at most ¢ elements. (Recall that the algorithm in this window
chooses a solution of constraint value, i. e., cardinality ¢ if available; otherwise, it chooses a solution of largest
constraint value less than ¢; note that there is at most one solution in the population for every constraint
value.) We remark that f(A4;) is random and that the following analysis will derive an approximation
guarantee for the expected value F(f(A4;)) only.

Let k < r be the number of elements of OPT not selected by A;. Let C; be the event that an element in
OPT\ A; is included in a mutation of A;. If all elements from OPT\ A; were added to A; (possibly resulting
in a set of too large cardinality), then the resulting function value would be at least f(OPT) and hence the
total increase at least f(OPT) — f(A;). We claim that if only one such element is included, then on average
over all such elements, the increase of function value is at least (f(OPT) — f(A;))/k. To show the claim, let
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bi,..., b, € OPT \ A; be all elements in OPT but not in A;. Writing the total increase when adding the b;
to A; after one another as a telescoping sum, we have

(f(A;U{b1}) = f(A)) + (f(A; U{b1,b2}) — f(A; U{b1})) + (f(A; U {b1,b2,b3}) — f(A;i U {b1,b2}))
o+ (f(AU{b1, b, 0k }) — (AU {b1, oy .. b1 })) = f(OPT) — f(As).

By submodularity, we have for each j < k that
FA U b1, ba, . b5 }) = f(A U {b1,ba, ... bj1}) < f(A U {bj}) — f(Ai).

Therefore,
k
E F(AU{b;}) — f(As)) > fF(OPT) — f(4),

SO

k
N

> =

which establishes the claim. Hence, under C}, the expected increase of function value is at least
J(OPT) - f(A) _ [(OPT) - f(Ay)
k - r
since the element from OPT \ A; is chosen uniformly at random. The probability of C; happening while the
sliding window makes it possible to select A; is at least

1 tmaz /T
1-— <1 — ) >1-— 6*tmaz/(27’en)7

2en
so the expected function value of A;; is at least
1 _ e_tmaz/(QBen)

E(f(Aiv1) | Ai) > f(A) + (f(OPT) — f(A:)),

r

tmas/(2Ben)

In the following, let s =1 — e~ . After taking expectation over A; on both sides,

E(f(Ai1) > E(f(A) + ~E(f(OPT) — f(4)))
= (1-2) B(f(4) + 2f(OPT).
We prove by induction that 4
B = (1- (1-2)') soe),

This is true for ¢ = 0 since f(A4p) = 0 and establishes the base case. For the inductive step, we plug in the
induction hypothesis in the above bound and have

B = (1-2) (1= (1-2)') sopm) + 2 c0p)

_ (1 - (1 - j)m) F(OPT),

which completes the induction. We conclude

B(f(4) = (1= (1= 2)") F(OPT) > (1 — e=) f(OPT).

r
Substituting s, we have
E(f(4,) > (1— e tes ™) £(OPT)
Using e* < 1+ 2z for < 1 and e tme/(27¢7) < 1 this finally yields
B(f(Ar) > (1= (14 26 tmae/ Grem)) > (1 — 1 _ =t/ Zrem) f(OPT)
Hence, the expected approximation ratio E(f(A,))/f(OPT) is bounded as suggested. O
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3.3 General Cost Constraints

We will show that the sliding window approach can also be used for more general optimization problems
than submodular functions and also leads to improved runtime guarantees there. Specifically, we extend the
approach to cover general cost constraints similar to the scenario studied in Qian et al] (2017). They use
GSEMO (named POMC in their work) for the optimization scenario described in Definition P, i. e., a mono-
tone objective function f: {0,1}" — R™ under the constraint that a monotone cost function c: {0,1}" — R
respects a cost bound B.

When transferring the set-up of Qian et al] (2017), we have introduce the following restriction: the image set
of the cost function must be the positive integers, i.e., ¢: {0,1}" — N. Otherwise, all cost values could be
in a narrow real-valued interval so that the sliding window approach would not necessarily have any effect.
To_formulate our result, we define the submodularity ratio in the same way as in earlier work (e.g., Qian
et al) (2017)).

Definition 3. The submodularity ratio of a function f: {0,1}" — R* is defined as

min flx®e;) — f(x)
z,ye{0,1}",ie{1,...,n} f(y 2] 6i) - f(y)

z<yAz;=y;=0

of = ,

where a @ e; is the bit string obtained by setting bit ¢ of a to 1.

The approximation guarantee proved for GSEMO in Qian et al| (2017) depends on ay and the following
quantity.

Definition 4. The minimal increase of a function ¢: {0,1}" — N is defined as

¢ 3:6{0,1}",iIEn{llI}...,n},x,;:0 cl@®ei) —elw)

In our analysis, we shall follow the assumption from Qian et al) (2017) that 6. > 0, i.e., adding an element
to the solution will always increase the cost value.

Theorem 2 in Qian et al) (2017) depends on the submodularity ratio, minimum increase in function value and
the maximum population size Pp.x reached by a run of GSEMO on the bi-objective function maximizing f
and minimizing a variant ¢ of ¢ (explained below). It states that within O(enBPpax/d¢) iterations, GSEMO
finds a solution # such that f(z) > %-(1—1/e®/) - f(Z), where & is an optimal solution when maximizing f
with the original cost_function ¢ but under a slightly increased budget with respect to B (precisely defined
in Equation (4) in Qian et al! (2017) and further detailed in Zhang and Vorobeychik (2016)). Our main
result, formulated in the following theorem, is that the SW-GSEMO obtains solutions with the same quality
guarantee in an expected time where the Py,.x factor does not appear, but an additional factor of 6z In(nB/dz)
which is usually much smaller.

As a detail in the formulation, the algorithm can be run with an approximation ¢ of the original cost_function
¢ that is by a certain factor ¢(n) larger (i.e., c(z) < é(x) < ¢(n)c(x), see Zhang and Vorobeychik (2016) for
details).

Theorem 3. Consider the problem of maximizing a monotone function f: {0,1}"* — RT under a monotone

approximate cost function é: {0,1}" — Ny with constraint B and apply SW-GSEMO to the objective
function £ (x) = (f1(), f2(x)), where fo(z) = () and

hiw ={

—oco ifé(z) > B
f(z) otherwise

If tiaz = 2enBln(nB/d;), then with probability at least 1 —o(1) a solution of quality at least % (1—1/e/)-
f(2) is found in ¢4, iterations, with d; > 0, ay and & as defined in the two paragraphs preceding the
theorem.

Proof. We follow the proof of Theorem 2 in Qian et al) (2017) and adapt it in a similar way to SW-
GSEMO as we did in the proof of Theorem [ above. According to the analysis in Qian et al| (2017), the
approximation result is achieved by a sequence of steps choosing an individual of cost value at most j, where
j€{0,...,B—1} (here we adapted the proof to the integrality of ¢) and flipping a zero-bit to 1 yielding a
certain minimum increase of f. More precisely, denoting by P the current population of SW-GSEMO, we
analyze the development of the quantity

Jmax =max{j < B—1| 3z e P:é(x) <j A flz)>(1—e /B f(i)}.

10
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If the search point 0™ which is Pareto optimal is included in the population P then Jy.x is at least 0 as
é(0") = 0 and f(0") = (1 — %) f(2) = 0. Let x* be the solution that meets the requirement for Jyax in
the current population P. The value of J,.x increases monotonically as each individual that dominates the
individual z* with the largest j-value in_the population can only increase the value of .J,,,... We recall the key
induction step used in previous works (Qian et al), 2017; Neumann and Neumant|, 2025) that allows to track
the progress of the algorithm. Choosing solution * for mutation and introducing the element e* (not selected

by x*) with the largest marginal gain leads to a solution y with f(y) — f(z*) > M (f(@) = f(z*))
(Lemma 3 in Qian et al| (2017)) as f is monotone and «j-submodular. Therefore, we have

ar(é(y) — é(z™))

fy) = fl@") + -(f(2) = f(27))

> flat) + 252 5@) 1)

> (1) s+ 25 1@)

> (1— O‘gsé) (1= eos/B) - f(a) + O‘j;f“ I (@)
() )

> (1o B g

- (1 _ e_af(j+5a)/B) (@)

Hence, including y into population in the case that y is feasible increases Jya.x by at least d;. If y is not
feasible then we have é(y) > B and hence f(y) > (1 —e™%/) - f(#). In this case, we consider the feasible
solution z with the highest function value containing a single element only. Note that the function value of z
is at least as high as the function value of the solution containing element e* only and that z can be obtained
from the search point 0" by flipping a specific single bit. We have f(y) < f(z*)+f(2)/ay < (f(z*)+f(2))/ay
as f is ag-submodular and ay € [0, 1]. Hence, max{f(z*), f(2)} > & - (1 —e™) f(&).

We now show that x* is chosen and the appropriate zero-bit is flipped with high probability for each of
at most B/d; values that Jyax can take in this sequence of successful steps. By definition of the set Pin
SW-GSEMO, element z* from the population is available for selection for a period of

2enIn(nB/dz)

steps, more precisely between time
2endmax In(nB/d:)

and
2en(Jmax + 1) In(nB/ds) — 1.

Moreover, by the same arguments as in the proof of Theorem m, it holds that |P | < 2 for the subset population
P that the algorithm selects from, and in the case of P =0 the algorithm will chose an individual of highest
objective function value of cost at most Jyax.

Hence, the probability of a success is at least 1/(2en) for each step within the mentioned period. Therefore,
the probability of not having a successful step with respect to x* is bounded from above by

1 2enlIn(nB/ds) 1
1 - — < —F.
( 26n> ~ n(B/d:)

By a union bound over the at most B/d; required successes, the probability of missing at least one success is at
most 1/n, so altogether the desired solution quality is achieved with probability at least 1—1/n = 1—0(1). O

The results from Theorems m and E are just two examples of a runtime result following an inductive sequence
of improving steps based on constraint._cost. value. In the literature, there are further analyses of GSEMO
following a similar approach (e.g., Qian et al] (2023)), which we believe can be transferred to our sliding
window approach to yield improved runtime guarantees.

11
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3.4 Experimental investigations

We now carry out experimental investigations of the new Sliding Window GSEMO approach and compare
it against the standard GSEMO which has been used in many theoretical and experimental studies on
submodular gptimization. We initialize the algorithms with the search point 0™ as done in the investigations
in Qian et al| (2017).

3.4.1 Experimental setup

We consider the maximum coverage problem in graphs which is one of the best known NP-hard submodular
combinatorial optimization problems. Given an undirected graph G = (V, E) with node set V = {v1,...,v,},
we denote by N(v;) the set of nodes containing v; and its neighbours in G. Each node v; has a cost ¢(v;)
and the goal is to select a set of nodes indicated by € {0,1}"™ such that the number of nodes covered by z
given as

Coverage(z) =

is maximized under the condition that the cost of the selected nodes does not exceed a given bound B, i.e.

c(vi)z; < B
1

n

?

holds.

Previous studies investigated GSEMO either considered relatively small graphs or small budgets on the
constraints that only allowed a_small number of trade-offs to be produced. We consider sparse graphs from
the network data repository (Rossi and Ahmed, 2015) as dense graphs are usually easy to cover with just a
small number of nodes and do not pose a challenge when considering the maximum coverage problem. We
use the graphs ca-CSphd, ca-GrQc, Erdos992, ca-HepPh, ca-AstroPh, ca-CondMat, which consist of 1882,
4158, 6100, 11204, 17903, 21363 nodes, respectively. Note, that especially the large graphs with more than
10000 nodes are pushing the limits for both algorithms when considering the given fitness evaluation budgets.
To match our theoretical investigations for the uniform constraint, we consider the uniform setting where
¢(v;) = 1 holds for any node v; in the given graph. Note that the uniform setting implies that the number
of trade-offs in the two objectives is at most B + 1. In order to investigate the behaviour of the GSEMO
approaches when there are more possible trade-offs, we investigate for each graph the following random
setting. For an instance in the random setting, the cost of each node v; is chosen independently of the other
uniformly at random in the interval [0.5,1.5]. Note that the expected cost of each node in the random setting
is 1. This setup allows us to work with the same bounds for the uniform and random setting. We use

B =log, n, \/ﬁa Ln/20J7 |_TL/10J

such that the bounds scale with the given number of nodes in the considered graphs. Note that for the
uniform case, all costs are integers and the effective bounds are the stated bounds rounded down to the next
smaller integer. We consider the performance of both algorithms when given them a budget of

tmaz = 100000, 500000, 1000000

fitness evaluations. Note, that especially for the large graphs and for the larger values of B this is pushing
the limits in terms of the size of the instances as the fitness evaluations budgets are much less then what is
stated in the upper bounds on t,,4; in Theorems B d B. For every setting, we carry out 30 independent
runs. We show the coverage values obtained in Table [Il. In this table, we report the mean, standard deviation
and the p-value (with 3 decimal places) obtained by the rank-based Mann Whitney-U test. We call a result
statistically significant if the p-value is at most 0.05. To gain additional insights, we present the mean final
population sizes among the 30 runs for each setting in Table g

3.4.2 Experimental results

The results for all considered graphs, constraint bounds, fitness evaluation budgets in the uniform and
random cost setting are given in Table [ll. The best results are highlighted in bold. Overall, SW-GSEMO is
clearly outperforming GSEMO for almost all settings and almost all results are statistically significant. The
only instances where both algorithms perform equally good are when considering the small constraint bounds
of logyn or y/n for ca-CSphd and log, n for ca-GrQc, Erdos992, ca-HepPh. An important observation is
that SW-GSEMO with only 100,000 iterations is already much better than GSEMO with 1,000,000 fitness
evaluations if the constraint bound is not too small.

Considering the larger constraint bounds [n/20], [n/10] for the graphs, we can see that SW-GSEMO is
significantly outperforming GSEMO. The difference in terms of coverage values between the two algorithms

12
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Figure 1: Example final trade-offs for the graph ca-GrQc (4158 nodes) with randomly chosen costs and budget
B = 415 obtained by GSEMO (g) and Sliding Window GSEMO (gs) for runs with 100k, 500k, and 1M iterations.

becomes even more pronounced when considering the random instances compared to the uniform ones.
Considering the graph ca-HepPh, we can see that standard GSEMO obtains better results than SW-GSEMO
when considering the constraint bound of logy, n in the uniform setting while SW-GSEMO is significantly
outperforming GSEMO in all other settings. Looking at the results for the two largest graphs ca-AstroPh
and ca-CondMat, we can see that SW-GSEMO significantly outperforms GSEMO in all considered settings.
Comparing the uniform and the random setting, we can see that the coverage values obtained by GSEMO in
the random setting are much smaller than in the uniform setting when considering the three larger graphs
ca-HepPh, ca-AstroPh, ca-CondMat. The only exception are some results for the small bound B = log, n.
We attribute this deterioration of GSEMO to the larger number of trade-offs per cost unit encountered in
the optimization process which significantly slows down GSEMO making progress towards the constraint
bound. In contrast to this, the coverage values obtained by SW-GSEMO in the uniform and random setting
when considering t,,,, = 500000,1000000 are quite similar and sometimes higher for the random setting.
This indicates that the sliding window selection keeps steady progress for the random setting and is not
negatively impacted by the larger number of trade-offs in the random setting.

In order to better understand the performance difference between the algorithms, we examine the trade-offs
produced by the algorithms. Figureﬁ illustrates the final set of trade-offs for GSEMO and SW-GSEMO
with respect to cost and coverage values for the different number of fitness evaluations considered. The
three lower trade-off fronts depicted in blue, red, and yellow are obtaining running GSEMO with 100,000,
500,000, and 1,000,000 iterations. The three higher trade-off fronts shown in purple, green, and light blue
have been obtained by SW-GSEMO in 100000, 500000, and 1000000 iterations. It can be observed that the
fronts obtained by SW-GSEMO are significantly better than the ones obtained by GSEMO. The fronts for
SW-GSEMO with 500000 and 1000000 iterations are very similar while the results for 100000 are already
better than the ones obtained by GSEMO with 1000000 iterations. This matches the behaviour that can
already be observed for many results shown in Table [ll. Furthermore, it can be seen that GSEMO has already
difficulties obtaining a solution with cost close to the constraint bound when using the smallest considered
budget of 100000 fitness evaluations.

In Table P}, we show the average number of trade-offs given by the final populations of the two algorithms
for the 30 runs of each setting. We first examine the uniform setting. The budgets for our experiments are
chosen small enough such that not all nodes can be covered by any solution. Therefore, in the ideal case,
both algorithms would produce B+1 trade-offs in the uniform setting. It can be observed that this is roughly
happening for the two smallest graphs ca-CSphd, ca-GrQc. For the remaining 4 graphs, GSEMO produces
significantly less points when considering the constraint bound [n/20], |n/10] while the number of trade-offs
obtained by SW-GSEMO is close to B 4+ 1 is most uniform settings. Considering the random setting, we
can see that the number of trade-offs produced by SW-GSEMO is significantly higher than for GSEMO.
In the case of large graphs, the number of trade-offs produced is up to four times larger than the number
of trade-offs produced by GSEMO, e.g. for graph ca-CondMat and B = 2136. Overall this suggests that
the larger number of trade-offs produced in a systematic way by the sliding window approach significantly
contributes to the superior performance of SW-GSEMO.

13
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Uniform Random
GSEM SW-GSEMO GSEM SW-GSEMO

Graph B tmax Mean Std Mean Std p-value Mean Std Mean td p-value

- 10 100000 222 0.183 222 0.000 0.824 244 2.904 254 13.278 0.00
= 10 500000 222 0.000 222 0.000 1.000 257 3.962 257 13.833 0.929
0, 10 100000 222 0.000 222 0.000 1.000 258 3.938 258 13.788 0.935
o] 43 100000 568 5.756 600 0.535 0.000 539 3.808 624 14.043 0.000
Q 43 500000 600 0.254 600 0.000 0.657 615 3.150 629 13.518 0.000
< 43 1000000 600 0.000 600 0.000 1.000 626 3.588 630 13.554 0.225
© 94 100000 823 6.150 928 0.407 0.000 779 12.898 957 12.190 0.000
94 500000 924 1.570 928 0.000 0.000 915 12.252 962 12.156 0.000

94 1000000 928 0.254 928 0.000 0.657 946 11.660 963 12.171 0.000

188 100000 1087 11.676 1279 0.770 0.000 1036 2.868 1334 12.588 0.000

188 000 1256 2.809 1280 0.254 0.000 1235 2.964 1341 12.936 0.000

188 1000000 1278 1.119 1280 0.000 0.000 1291 1.671 1341 12.831 0.000

12 0000 490 8.798 506 5.128 0.000 535 7.964 96 22.543 0.000

Q 12 000 509 2.539 510 0.000 0.046 601 23.067 619 20.085 0.004
g 12 1000000 510 0.000 510 0.000 1.000 615 22.523 623 21.385 0.169
0] 64 100000 1320 15.662 1512 6.358 0.000 1281 24.326 1638 25.821 0.000
T 64 500000 1490 8.904 1527 3.910 0.000 1516 25.832 1690 26.298 0.000
8 64 1000000 1512 6.244 1529 2.966 0.000 1594 24.659 1700 26.624 0.000
207 00 2151 20.651 2747 7.867 0.000 2044 25.039 837 21.088 0.000

207 500000 2530 13.505 2775 4.291 0.000 2450 18.991 2916 20.257 0.000

207 1000000 2655 9.295 2778 2.755 0.000 2600 13.956 2926 19.962 0.000

415 100000 2704 24.887 3573 7.840 0.000 2407 51.554 3627 13.286 0.000

415 00 3171 13.424 3616 3.309 0.000 3047 19.085 3701 12.535 0.000

415 1000000 3339 10.258 3621 2.177 0.000 3232 13.908 3710 12.891 0.000

12 100000 584 8.094 602 2.385 0.000 635 26.211 74T 34.425 0.000

Q 12 500000 603 1.837 604 0.730 0.016 751 36.183 782 37.781 0.003
3 12 1000000 604 0.254 604 0.000 0.657 774 37.049 786 37.919 0.176
g 78 100000 1835 35.766 2453 5.123 0.000 1658 31.957 2511 42.895 0.000
s 78 500000 2345 18.151 2472 0.791 0.000 2169 35.736 2625 43.764 0.000
m“ 78 1000000 2438 7.439 2473 0.254 0.000 2366 41.017 2634 43.701 0.000
305 100000 2862 54.832 4711 10.543 0.000 2547 60.705 4623 30.507 0.000

305 500000 3824 27.333 4772 1.159 0.000 3534 30.716 4789 21.852 0.000

305 1000000 4201 20.239 4775 1.042 0.000 3898 28.104 4799 21.513 0.000

610 100000 3076 46.668 5252 2.848 0.000 2553 57.540 5325 9.938 0.000

610 500000 4428 31.694 5263 0.679 0.000 4017 50.324 5376 8.608 0.000

610 1000000 4791 22.216 5264 0.305 0.000 4516 33.380 5378 8.794 0.000

= 13 100000 1687 34.310 1800 25.713 0.000 1750 53.601 1966 52.019 0.000
oy 13 500000 1830 27.572 1844 11.230 0.018 1980 50.385 2111 41.582 0.000
o, 13 1000000 1854 15.539 1840 4.173 0.000 2058 50.351 2143 53.197 0.000
] 105 100000 3740 48.996 4641 26.834 0.000 3598 31.674 4820 56.886 0.000
I. 105 500000 4309 28.317 4777 15.980 0.000 4238 40.329 5114 54.093 0.000
I 105 1000000 4516 20.372 4799 14.067 0.000 4490 43.562 5172 48.838 0.000
© 560 100000 5909 73.941 8543 19.580 0.000 5108 86.715 8639 38.123 0.000
560 500000 7092 29.683 8798 12.650 0.000 6802 36.876 9060 31.097 0.000

560 1000000 7527 24.174 8825 6.897 0.000 7249 32.562 9126 31.146 0.000

1120 100000 5919 81.766 10225 19.108 0.000 5098 92.907 10290 19.428 0.000

1120 500000 8148 55.111 10492 8.719 0.000 7209 62.132 10640 16.077 0.000

1120 1000000 8795 30.765 10525 5.148 0.000 8138 62.450 10689 14.832 0.000

o 14 100000 2594 85.426 2881 43.102 0.000 2598 96.079 3026 83.889 0.000
Iy 14 500000 2914 31.062 2975 6.056 0.000 3016 64.712 3322 95.037 0.000
o 14 1000000 2962 12.480 2980 2.564 0.000 3195 77.509 3395 91.802 0.000
£ 133 100000 6484 77.132 8355 58.234 0.000 6221 82.193 8559 70.30 0.000
2] 133 500000 7551 51.042 8710 18.685 0.000 7362 61.676 9218 63.689 0.000
<F 133 1000000 7968 40.202 8751 18.720 0.000 7817 62.797 9369 57.24 0.000
[ 895 00 120.361 15029 32.420 0.000 8170 122.610 15104 38.804 0.000
© 895 00 60.272 15608 16.070 0.000 11387 100.119 15868 31.193 0.000
895 1000000 13017 35.102 15691 11.214 0.000 12490 39.435 601 25.022 0.000

1790 100000 97.540 17036 20.145 0.000 8137 104.415 7148 19.337 0.000

1790 0000 12750 88.401 17471 9.200 0.000 11374 104.602 7688 12.920 0.000

1790 1000000 14103 54.069 17525 8.327 0.000 12743 112.303 7764 11.854 0.000

- 14 100000 1514 56.623 1748 51.276 0.000 1411 76.166 1762 64.178 0.000
< 1 500000 1802 25.451 1856 2.793 0.000 1773 62.028 2018 76.876 0.000
= 14 1000000 1846 8.628 1857 1.925 0.000 1912 69.264 2065 76.075 0.000
o 146 10 0 4388 71.953 6655 66.632 0.000 4106 91.413 6642 69.760 0.000
g 146 500000 5585 61.992 7056 12.468 0.000 5264 65.588 7413 74.394 0.000
@) 146 1000000 6092 50.561 7091 11.059 0.000 5776 64.557 7556 73.427 0.000
i 1068 10000 7187 130.346 15763 35.555 0.000 5779 149.352 5759 55.651 0.000
g 1068 50000 11334 67.041 16727 17.535 0.000 9655 129.937 7041 44.701 0.000
1068 1000000 12364 69.321 16843 13.705 0.000 11533 79.858 7296 43.174 0.000

2136 100000 7211 133.166 19164 33.256 0.000 5823 137.877 9229 47.788 0.000

2136 500000 11556 115.359 20089 13.959 0.000 9675 35.492 20307 24.633 0.000

2136 1000000 13652 84.783 20217 11.957 0.000 11632 96.193 20489 25.097 0.000

Table 1: Maximum coverage scores obtained by GSEMO and SW-GSEMO

4 3-Objective Sliding Window GSEMO

In this section, we define the algorithmic framework incorporating sliding window selection into 3-objective
optimization problems under constraints. It combines the 3-objective problem formulation from Neumann
and Wity (2023a), where the underlying problem is 2-objective and a congfraint is converted to a helper
objective, with the 2-objective window approach introduction in Section B where the problem is single-
objective and the constraint is converted to a helper objective. More precisely, sliding window is based on
the observation that several problems under uniform constraints can be solved by iterating over increasing
constraint values and optimizing the actual objectives for each fixed constraint value.

We recall the 3-objective formulation

fsp(x) = (u(x), v(x), c(x))
given in Section . We consider problems defined on bit strings 2 € {0, 1}"™ involving the minimization of
two objective functions pu(z), v(z): {0,1}" — Ry and an integer-valued constraint function ¢(z): {0,1}" — N
(together with a bound B) that should be maximized to reach a feasible solution, i.e. a solution x with

¢(x) > B. The constraint function ¢(z) and bound B form_the basis for our sliding window selection. Qur
new approach called SW-GSEMO3D is shown in AlgorithnrfE (which will later be extended to Algorithm [] as
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Uniform Random
Graph B tmax G SWG G SWG
- 10 100000 11 1T 73 94
= 10 500000 11 11 125 131
2, 10 1000000 11 11 133 132
N 43 100000 4 44 172 280
O 43 500000 44 44 287 132
& 43 1000000 44 44 390 476
S 94 100000 94 95 281 500
94 500000 95 95 122 692

94 1000000 95 95 540 763

188 100000 180 189 404 784

188 500000 189 189 591 088

188 1000000 189 189 734 1071

12 100000 13 13 30 115

° 12 500000 13 13 142 191
< 12 1000000 13 13 185 235
5 64 100000 65 65 261 137
7 64 500000 65 65 372 688
8 64 1000000 65 65 448 851
207 100000 200 208 493 | 1020
207 500000 207 208 710 1477
207 | 1000000 208 208 8471 1698

i15 100000 347 414 611 1512
415 500000 400 416 967 1993
415 1000000 409 416 1134 | 2227

~ 12 100000 13 13 76 104
i 12 500000 13 13 129 187
2 12 1000000 13 13 181 248
2 78 100000 78 7 237 394
< 78 500000 79 79 330 693
& 78 1000000 79 79 393 911
305 100000 253 30 441 081

305 500000 291 306 668 1491
305 | 1000000 298 3 777 | 1894

610 100000 296 589 440 | 1431
610 500000 183 610 818 1766
610 1000000 522 611 1014 | 2066
= 13 100000 14 14 o1 116
A 13 500000 14 14 125 160
2, 13 1000000 14 14 143 195
© 105 100000 105 106 344 628
= 105 500000 106 106 489 876
& 105 1000000 106 106 553 1073
S 560 100000 408 558 634 | 2109
560 500000 521 560 1176 | 2837
560 | 1000000 543 561 1364 | 3287
1120 100000 409 1104 644 | 3150
1120 | 500000 813 1115 1306 | 3922
1120 | 1000000 951 1117 1718 | 4333
= 14 100000 15 15 94 120
A 14 500000 15 15 125 159
S 14 1000000 15 15 142 193
= 133 100000 132 134 404 802
@ 133 500000 134 134 565 1075
< 133 1000000 134 134 663 | 1279
& 895 100000 416 889 653 | 3050
© 895 500000 764 895 1372 | 3946
895 | 1000000 818 895 1755 | 4467
1790 100000 413 1740 643 | 4390
1790 | 500000 848 1770 1366 | 5265
1790 | 1000000 || 1121 | 1779 1830 | 5673
= 14 100000 15 15 37 107
s 14 500000 15 15 111 132
= 14 1000000 15 15 124 165
= 146 100000 144 147 410 816
5 146 500000 147 147 572 1083
3 6 1000000 147 147 662 1295
7 1068 | 100000 424 | 1062 650 | 3732
8 1068 | 500000 864 1068 1437 | 5016
1068 | 1000000 952 1069 1929 | 5758
2136 100000 425 | 2098 655 | 5587
2136 | 500000 0 2126 1428 | 7097
2136 | 1000000 || 1228 | 2132 1953 | 7857
Table 2: Final number of trade-off solutions obtained by GSEMO (G) and SW-GSEMO (SWG)

explained below). The sliding window selection in Algorithm B will be used as a module in SW-GSEMO3D
and chooses from its current population P, which is the first parameter of the algorithm. The idea is to
select only from a subpopulation of constraint values in a specific interval determined by the maximum
constrained value B, the current generation ¢, the maximum number of iterations of the algorithm ¢,,,,, and
further parameters. In the simplest case (where the remaining parameters are set to a = 1, ¢pax = —1 and
tjrac = 1), the time interval [1,%,,4,] is uniformly divided into B time intervals in which individuals from
the subpopulation having constraint values in the interval [|¢| — std, [¢] + std], where é = t/t,q,) B, are
selected. Here, std > 0 is a deviation from the interval defined by ¢ in line 1 of Algorithm é that all

selection from a larger interval, which is another heuristic component that we will investigate in Section @S
Moreover, as not all problems may benefit from selecting according to the specific interval order, the calls to
Algorithm [ resort to selection from the interval [B — std, B] for the last (1 — ¢frqc)tmas steps. Finally, since
making progress may become increasingly difficult for increasing constraint values, the selection provides the
parameter a which will allow time intervals of varying length for the different constraint values to choose
from. If a < 1, the time allocated to choosing from a specific constraint value (interval) increases with the
constraint value; if a > 1, it decreases with the constraint value. Lines 8-10 of the algorithm make sure that
solutions with too low constraint value (less than ¢), but not equaling the parameter cy.x are permanently
removed from the population. Line 11 confines the population to select from to the desired window of

15
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Algorithm 5: Sliding Window GSEMO3D (SW-GSEMO3D)

Choose initial solution = € {0,1}";

Set to 71;
P« {a};
Compute f3p(z) = (u(z),v(2), c(2));
t <+ 1;
HMmin — /j,(‘T)’
if Mmin = 0 then
| to+t;
repeat

if (to =—1) A (t <tpag) then
| @<+ argmin{u(z) | z € P} (breaking ties arbitrarily)

| @ = sliding-selection3D(P, t — to, tmaz — t0,0, B, 1,1, —1);
Create y from x by mutation;
Compute f3p(y) = (u(y), v(y), c(y));
if u(y) < fmin then

L HMmin — M(y),
if (to = 71) A (,umin = 0) then

L to < t;
if Aw € P:w > y then

L P« (P\{zeP|y=z})U{yk
t+—t+1;
until ¢ > 003

Algorithm 6: sliding-selection3D (P, t, ¢4z, std, B, tfrac, @, Cmax)

C 4 (ta/(tfrac ' tmaz)a) ' 37
if t < (tfrac - tmaz) then
¢ = |¢| — std;
h = [¢] + std;
else
{ = B — std,;
h = B;
for x € P do
if (e(z) <€) A (c(x) # emax) A (Cmax #Z —1) A (|P| > 1) then
| P+ P\{z}h

P={zeP|l<c(z)<h)
if P =0 then
| P« P
Choose = € P uniformly at random;
Return x;

constraint values [, h]. In case that no solution of those values exists, a uniform choice from the population
remaining after removal of individuals of too low constraint values is made. Hence, even if there are no
individuals with constraint values in the interval [¢, h], then lines 8-10 favor increasing constraint values.

The SW-GSEMO3D starts out with a solution = € {0,1}"™ chosen by the user, e.g., as the all-zeros string
or uniformly at random. It works in two phases. As long as the minimum p-value of the population
called pimi, is positive, it chooses a solution of this smallest p-value, applies mutation, usually standard bit
mutation avoiding duplicates (Algorithm ), and accepts the offspring into the population if it is not strictly
dominated by another member of the population. All individuals that are weakly dominated by the offspring
are then removed from the population. In any case, the current population always consists of mutually non-
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Algorithm 7: Fast Sliding-Window GSEMO3D (Fast SW-GSEMO3D) (Parameters: tmqz, tfrac, Std, a, €)

Choose initial solution z € {0,1}";
to < —1,t < 1, tmin < (), Cmax < —1;
P {x};

if (c(x) > cmax) A (c(z) < B) then
| Cmax + c(x);
if Mmin = 0 then
| to+t;
repeat
t—t+1;
if (to = _1) A (t < tfrac © tmax) then
| @< argmin{u(z) | z € P}
else
if (t > trac - tmaz) A (Cmax < B - 6) then
| @< argmax{c(z) | z € P}
else
| @ = sliding-selection3D(P, t — to, tmas — to, std, B, tfrac, @, Cmax);

Create y from x by mutation;

Compute f(y) = (u(y), v(y), c(y));
if u(y) < pmin then
Hmin <= p(Y);

if (to = —1) A (ftmin = 0) then

| to<t;
if (C(y) > CmaX) A (C(y) < B) then

| cmax < c(y);
if Aw € P:w > y then

| P (P\{zePly==2})Ulyh
until ¢ > tes;

dominating solutions only. From the point of time ¢y, on where a solution x satisfying p(z) = 0 is found for
the first time, the algorithm chooses from the pgpulation using sliding window selection (see Algorithm [)
for the remaining ¢,,,, — to steps. In Algorithm fj, the choice ¢pax = —1 implies that lines 8-10 do nothing.
Algorithm [ called Fast SW-GSEMO3D extends Algorithm [ with heuristic elements as follows. First of all,
sliding window selection is called with user-specified choices of std, s, and a as defined above. Moreover,
it keeps track of the maximum constraint value ¢pay found in the population (lines 24-25), uses that in the
sliding window selection and introduces a margin parameter € that enables the algorithm to obtain solutions
at the constraint bound.

Here, the parameter ¢ defines an interval at the boundary where we aim to produce solutions. If the algorithm
has not obtained enough process towards the constraint boundary as indicated by a value of cp . less than
B — €, then the last tfrc - timez steps are used to produce such an individual by selecting the individual z
with maximal ¢(z)-value to produce an offspring.

Afterwards, i.e., when the algorithm is close to the constraint boundary, making further progress in the
constraint value may be too difficult for sliding window selection. Therefore, for the last (1 — tfrac)tmas
steps, the algorithm chooses an individual of maximum constraint value if ¢ < B — € holds.

These heuristic elements underlying the parameters std, tfqc and € and the use of cpax in the sliding
window selection will show some empirical benefits in Section §.2.

The classical GSEMO algorithm (see Algorithm [ll) that has inspired the developments of Algorithms E and H
serves as seline in our experiments. Depending on the number of objectives used in the experiments
in Section Y.2, we will consider specific instances of the algorithm called GSEMO2D and GSEMO3D which
denotes GSEMO with the respective number of objectives.

4.1 Runtime Analysis of 3D Sliding Window Algorithm

Based on the ideas for the 3-objective GSEMO from Neumann and Witt| (20234)), we formulate the following
result for SW-GSEMO3D (Algorithm f). The analysis is additionally inspired by our previous analysis for
the bi-objective sliding window approach. Our theorem assumes an initialization with the all-zeros string. If
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uniform initialization is used, SW-GSEMO3D nevertheless reaches the all-zeros string efficiently, as shown
in a subsequent theorem (Theorem f).

The following theorem is based on the maximum population size Prglax observed in any of the sliding window

intervals. Note that when running the algorithm, the runtime for a given sliding window can be adapted

to tff;zlx = Plﬁlixn Inn during the run based on the observed value of PLZV in_order to guarantee the stated

approximation result. Note that the previous result from Neumann and Witt (2023a) showed an upper bound
of O(n?Ppax), where Py is the overall maximum population size observed in the run of the algorithm. If

the largest P s significantly smaller than Py, the following theorem gives a significantly stronger upper
bound.

Theorem 4. Let PISQX denote the largest number of individuals with constraint Value i present in the pop-
ulation at all points 1n time where SW-GSEMO3D can select such individuals, let tmax = P( maxT Inn and

let tmer = 4en maxl-zo §an Then SW-GSEMOS3D, initialized with 0™, _computes a population which in-
cludes an optimal solution for the stochastic problem given in Equation (m) (for any choice of k € {0,...,n}
and « € [1/2,1]) and Equation (E) (with ¢(x) = |z|y for any choice of B € {0,...,n} and « € [1/2,1]) until

time tq, = O(max;_ {Pélax} n?logn) with probability 1 — o(1).

Proof. Let X* = {x € {0,1}" | |z|; = k} be the set of all solutions having exactly k elements. We show
the following more technical statement S: the population P at time t¢,,,, will, with the probability bound
claimed in the theorem, contain for each o € [1/2,1] and k € {0,...,n} a solution

zk = arg mm { )+ K, \/7} (5)

ie, P2 {2k |0<k <n,ae[1/2,1]}. By Theorem 4.3 in Neumann and Witt (2023a), such a population
contains the optimal solutions for any choice of o € [1/2,1]. Note that not the whole set of Pareto optimal
solutions is necessarily required.
To show statement S, we re-use the following definitions from Neumann and Witt) (2025). Let \;; =
2

2

2
m for the pair of elements e; and e; of the given input where o;
1<i<j<n. Theset A ={Ao,A1,..., ¢, Aep1} where A, ..., A\, are the values Ai,; in increasing order and
Ao =0 and )\g+1 = 1. Moreover, we define the function fy(z) = Au(x) + (1 — A\)v(z) and also use it applied
to elements e, i.e. fi(e)) =i+ (1= N)o?.

As noted in Neumann and Witt (2025) for a given A and a given number k of elements to include, the
function f) can be optimized by a greedy approach which iteratively selects a set of k smallest elements
according to fy(e;). For any A € [0, 1], an optimal solution for f) with k elements is Pareto optimal as there
is no other solution with at least k£ elements that improves the expected cost or variance without impairing
the other. Hence, once obtained such a solution z, the resulting objective vector fsp(z) will remain in the
population for the rest of the run of SW-GSEMO3D. Furthermore, the set of optimal solutions for different
) values only change at the X values of the set A as these A values constitute the weighting where the order
of items according to fy can switch. This is a. direct consequence of the definition of the A; ; above and has
already been used in the same way in [shii et al| (1981)); Neumann and Wity (2025).

We consider a A; € A with 0 < ¢ < £. Similarly to [shii et al| (1981), we define A} = (A; + Aiy1)/2. The
order of items according to the weighting of expected value and variance can only change at values \; € A
and the resulting objective vectors are not necessarily unique for values \; € A. Choosing the A}-values in
the defined way gives optimal solutions for all A € [A;, A\;11] which means that we consider all orders of the
items that can lead to optimal solutions when inserting the items greedily according to any fixed weighting
of expected weights and variances.

In the following, we analyze the time until an optimal solution with exactly k elements has been produced
for fas(z) = A\jp(z) + (1 — Af)v(z) for any k € {0,...,n} and any i € {0,...,/}. Note that these A values
allow to obtain all optimal solutions for the set of functions fx, A € [0, 1].

For a given i, let the items be ordered such that fi:(e1) < - < fas(eg) <--- < far(en) holds. An optimal
solution for k elements and A} consists of k elements with the smallest fy-(e;)-value. If there are more than
one element with the value f: (ex) then reordering these elements does not change the objective vector or
[az-value. '

Note that for £ = 0 the search point 0" is optimal for any A € [0,1]. Picking an optimal solution with k
elements for fy+ and inserting an element with value fy: (ex+1) leads to an optimal solution for fy+ with k+1
elements. We call such a step, picking the solution that is optimal for f): with k elements and 1nsert1ng an

element with value fy:(ex+1), a success. Assuming such a solution is plcked the probability of inserting the

< 0‘]2 and p; > pj; holds,
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element is at least (1/n)(1 — 1/n)"~1 > 1/(en) since it suffices that SW-GSEMO3D flips a specific bit and
does not flip the rest.

We now consider a sequence of events leading to the successes for all values of k € {0,...,n — 1} and all
i € {0,...,£ —1}. We abbreviate Pk, = mabx?:_[)1 PY).. By the assumption from the theorem, 0", an

optimal solution for k£ = 0, is in the population at time 0. Assume that optimal solutions with k elements
all for fy», where i € {0,...,/}, are in the population P at time 74 = kt,a./n = 4Py, knlnn.

Then, by definition of the set P of GSEMO3D, for any fixed ¢, such a solution is available for selection up
to time

Ti1 — 1= (K + Ditpee/n — 1 =4ePy  (k+1)nlnn —1
since |((k 4+ Dtmaz/n — 1)/tmaz) -] = k. The size of the subset population that the algorithm selects from
during this period has been denoted by PI(I@X. Therefore, the probability of a success at any fixed value k

and 7 is at least 1/(P151@Xen) from time 75 until time 7,41 — 1, i. e., for a period of 4e P}, . nlnn > 4ePE)ninn
steps, and the probability of this not happening is at most

1 4ePr$]];)xnlnn 1
(1 - Pél@xen> = nt

The number ¢ of different values of Af is at most the number of pairs of elements and therefore at most n?.
By a union bound over this number of values and all k, the probability to have not obtained all optimal
solutions for all fy», where i € {0,...,¢}, and all values of k € {0,..., B} by time #,,q, is O(1/n). This
shows the result for Equation ({l).

We obtain the result for Equation (B) by executing the arguments used in the proof of (Neumann and Witt,
2023a, Theorem 4.3). Consider any fixed B € {0,...,n}. Let z*, o € [1/2,1], be an optimal solution for
the problems given in Equation (E) According to Equation (E)7 the solution z, in P is the solution with

exactly j elements that minimizes p(x) + Kq+/v(7). Hence, the solution 27, with the maximal value of j for

which p(22) + Koy/v(2d) < B holds satisfies |7 | = |2%| as otherwise 27, would not be a solution with the
maximal number of elements for which the constraint holds or x, would not be an optimal solution for the
given value of a. Therefore, P includes with probability 1 — o(1) after ¢,,q, steps an optimal solution for
Equation (EE) and any B € {0,...,n} and any « € [1/2, 1], which completes the proof.

O

Finally, as mentioned above, we consider a uniform choice of the initial individual of SW-GSEMO3D and
show that the time to reach the all-zeros string is bounded by O(nlogn) if the largest possible expected
value fimax = Y i, i; of an individual is polynomially bounded. Hence, this constitutes a lower-order term
in terms of the optimization time bound proved in Theorem { above. Even if fimayx is exponential like 27
for a constant ¢, the bound of the following theorem is still polynomial.

Theorem 5. Consider SW-GSEMO3D initialized with a random bit string. Then the expected time until its
population includes the all-zeros string for the first time is bounded from above by O(n(log timax + 1)).

Proof. We apply multiplicative drift analysis (Doerr et al), 2012) with respect to the stochastic process
X; = min{u(z) | = € P}, i.e., the minimum expected value of the individuals of the population at
time ¢. By definition, before the all-zeros string is included in the population, SW-GSEMO3D chooses only
individuals of minimum p-value for mutation. Note that there might be more than one such individual.
The current p-value of an individual is the sum of the expected values belonging to the bit positions that
are set to 1. Standard-bit mutation flips each of these positions to 0 without flipping any other bit with
probability at least (1/n)(1 —1/n)"~! > 1/(en). Such steps decrease the u-value of the solution, which is
therefore not dominated by any other solution in the population and will be included afterwards. Hence,
we obtain the drift E(X; — X1 | Xi) > Xi/(en). We can now set the parameters of the multiplicative
drift theorem.. First, from the analysis above we have § = 1/(en). Moreover, clearly Xy < pimax. Since by
assumption p; > 1 for all ¢ € {1,...,n}, the smallest possible non-zero value of X; is at least 1. Hence,

the multiplicative drift theorem gives an expected time of at most M = O(n(log pimax + 1)) to reach
state 0 in the X;-process, i.e., an individual with all zeros. O

It should be noted that our approaches using sliding-window selection are not able to go back and corre
important steps that they might have missed. This can be observed from the statements in Theorem j and
that hold with probability 1 — o(1). There is a failure of achieving the desired result which can happen if
important steps of inserting the "right” element are missed.
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4.2 Experiments

We carry out experimental investigations for the new sliding window approach on the chance constrained
dominating set_problem _and show_where_the new approach performs significantly better than the ones
introduced in Neumann and Witt (2023a, 2025).

Table 3: Results for stochastic minimum weight dominating set with uniform weights and different confidence levels
of a where a = 1 — 3. Results after 10M fitness evaluations. pi: Test GSEMO2D vs GSEMO3D, p2: Test GSEMO2D
vs Fast SW-GSEMOB3D, ps: Test GSEMO3D vs Fast SW-GSEMO3D, p4: Fast GSEMO3D vs Fast SW-GSEMO3Dy.
Penalty function value for run not obtaining a feasible solution is 10'° (applied to GSEMO3D for graphs ca-GrQc

and Erdos992 )
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Table 4: Results for stochastic minimum weight dominating set with degree-based weights and different confidence
levels of a@ where oo = 1 — . Results after 10M fitness evaluations. pi: Test GSEMO2D vs GSEMO3D, ps: Test
GSEMO2D vs Fast SW-GSEMO3D, ps: Test GSEMO3D vs Fast SW-GSEMO3D, ps: Fast GSEMO3D vs Fast
SW-GSEMO3Dy. Penalty function value for run not obtaining a feasible solution is 10*° (applied to GSEMO3D for

graphs ca-GrQc and Erdos992 )
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Table 5: Results for stochastic minimum weight dominating set with uniform weights and different confidence levels
of @ where a = 1 — 3. Results after 1M fitness evaluations. pi: Test (14+1) EA vs GSEMO2D, py: Test (14+1) EA vs
Fast SW-GSEMO3D, p3: Test GSEMO2D vs Fast SW-GSEMO3D, p4: Test (14+1) EA vs Fast SW-GSEMO3Dy, ps:

Test GSEMO2D vs Fast SW-GSE
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Table 6: Results for stochastic minimum weight dominating set with degree-based weights and different confidence
levels of a where o = 1— . Results after 1M fitness evaluations. p1: Test (1+1) EA vs GSEMO2D, pa: Test (14+1) EA
vs Fast SW-GSEMO3D, ps: Test GSEMO2D vs Fast SW-GSEMO3D, p4: Test (141) EA vs Fast SW-GSEMO3Do,
ps: Test GSEMO2D vs Fast SW-GSEMO3Dy, ps: Test Fast GSEMO3D vs Fast SW-GSEMO3Dy.
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Table 7: Average maximum population size and standard deviation during the 30 runs of 1M iterations for Fast
SW-GSEMO3D and Fast SW-GSEMO3Dy in the uniform random, degree-based setting for large graphs.

Fast SW-GSEMO3D Fast SW-GSEMO3Dg
Graph uniform degree uniform degree
Mean Std Mean Std Mean Std Mean Std
ca-CSphd 665 40.555 670 37.727 225 16.829 230 15.616

ca-HepPh 2770 124.786 2713 166.804 125 15.561 128 20.372
ca-AstroPh 3608 167.880 3602 132.344 140 26.422 144 25.647
ca-CondMat 5196 130.968 5245 109.568 107 20.817 104 19.662

We recall the chance-constrained dominating set problem. The input is given as a graph G = (V, E) with
node set V.= {wy,...,v,} and weights on the nodes. The goal is to compute a set of nodes D C V of
minimal weight such that each node of the graph is dominated by D, i.e. either contained in D or adjacent
to a node in D. In our setting the weight w; of each node v; is chosen independently of the others according
to a normal distribution N (i;,0?) and the goal is to find a dominating set of minimal weight with respect
to Equation (g) for a given confidence level of a.. The constraint function c(z) counts the number of nodes
dominated by the given search point z. As each node needs to be dominated in a feasible solution, x is
feasible iff ¢(x) = n holds and therefore work with the bound B = n in the algorithms. We start with an
initial solution = € {0,1}" chosen uniformly at random. We also investigate starting with = 0™ for Fast
SW-GSEMO3D (denoted as Fast SW-GSEMO3Dy) in the case of large graphs as this could be beneficial
for such settings. We try to give some explanation by considering how the maximal population size differs
when starting with a. solution chosen uniformly at random or with 0™.

As done in Neumann and Wit{ (2023a, 2025), we consider the graphs cfat200-1, cfat200-2, ca-netscience,
ca-GrQc, and Erdos992 consisting of 200, 200, 379, 4158, and 6100 nodes respectively, together with the
following categories for choosing the weights. In the uniform setting each weight u(u) is an integer chosen
independently and uniformly at random in {n,...,2n}. The variance v(u) is an integer chosen independently
and uniformly at random in {n2,...,2n2}. In the degree-based setting, we have u(u) = (n + deg(u))®/n*
where deg(u) is the degree of node u in the given graph. The variance v(u) is an integer chosen independently
and uniformly at random in {n?,...,2n%}. For these graphs, we use 10M (million) fitness evaluations for
each run. We also use the graphs ca-CSphd, ca-HepPh, ca-AstroPh, ca-CondMat, which consist of 1882,
11204, 17903, 21363 nodes already used in the experiments for the bi-objective formulation for maximum
coverage. We examine the same uniform random and degree-based setting as described before. We consider
1M fitness evaluations for these graphs in order to investigate the performance on large graphs with a smaller
fitness evaluation budget.

For our new sliding window algorithms we use ¢, = 0.9, std = 10, a = 0.5, ¢ = 0 based on some preliminary
experimental investigations. Furthermore, we consider 10M fitness evaluations for_all algorithms and results
presented in Table Egand and 1M fitness evaluations for the instances in Table gand . For each setting,
each considered algorithm is run on the same set of 30 randomly generated instances. We use the rank-based
Mann Whitney-U test to compute the p-value for algorithm pairs to check whether results are statistically
significant, which we assume to be the case if the p-value is at most 0.05.

We first consider results for the instances already investigated in Neumann and Witt (2023a). We consid
instances with uniform and degree-based weights. Results for the examined algorithms are shown in TableeE
and W, respectively. We note that the results for the GSEMO2D and GSEMOS3D have already been obtained
in Neumann and Witt (2023a). Each run that does not obtain a dominating set gets allocated a fitness
value of 10'. We note that this only applies to GSEMO3D for ca-GrQc and Erdos992 and GSEMO3D. It
has already been stated in Neumann and Witt] (2023a) that GSEMO3D has difficulties in obtaining feasible
solutions for these graphs. In fact, it never returns a feasible solution for Erdos992 in both chance constrained
settings and only in 1 out of 30 runs for ca-GrQc in both chance constrained settings. Comparing the results
of GSEMO2D and GSEMO3D to our new approaches Fast SW-GSEMO3D and Fast SW-GSEMO3D,, we
can see that all approaches behave quite similar for cfat200-1 and cfat200-2. For ca-netscience, there is a
slight advantage for our fast sliding window approaches that is statistically significant when compared to
GSEMO2D and GSEMO3D, but no real difference on whether the sliding window approach starts with an
initial solution chosen uniformly at random or with the search point 0". Both Fast SW-GSEMO3D and
Fast SW-GSEMO3Dg show their real advantage for the larger graphs ca-GrQc and Erdos992 where the
3-objective approach GSEMO3D was unable to produce feasible solutions. On these instance GSEMO2D is
clearly outperformed by the sliding window 3-objective approaches.

Results for the instances based on the graphs ca-CSphd, ca-HepPh, ca-AstroPh, ca-CondMat, which consist
of 1882, 4158, 6100, 11204, 17903, 21363 nodes are shown in Table f for the case of uniform weights and in
Table é for the case of degree-based weights. Note that the graphs (except. ca-CSphd) have more than 10000
nodes and are therefore significantly larger than the ones examined in Neumann and Wit (2023a). As we
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are dealing with larger graphs and a. smaller fitness evaluation budget of 1M, we also consider the (14+1) EA
approach presented in Neumann and Witt (2025). Here each run of the (14+1) EA tackles each value of
a (see Equation @) separately with a budget of 1M fitness evaluations, which implies the single-objective
approach uses a fitness evaluation budget that is ten times the one of the multi-objective approaches. We
observe that Fast SW-GSEMO3D overall produces the best results. For the smallest graph ca-CSphd, there
is no significant difference on whether to start with an initial solution chosen uniformly at random or with
the search point 0”. However, for the larger graphs ca-HepPh, ca-AstroPh, ca-CondMat consisting of more
than 10000 nodes, starting with the initial search point 0™ in the sliding window approach is crucial for
the success of the algorithm. In particular, we can observe that Fast SW-GSEMO3D starting uniformly at
random is performing significantly worse than the (1+1) EA and GSEMO2D for the graphs ca-AstroPh,
ca-CondMat consisting of 17903 and 21363 nodes, respectively. All observations hold for the uniform as well
as the degree-based chance constrained settings.

As mentioned, starting with 0™ in our sliding window approach provides a clear benefit when dealing with
large graphs. We have already seen in our analysis that the sliding window approach starts at the constraint
value of 0 which gives a partial explanation of its benefit. In order to gain additional insights, we provide in
Table [1] the maximum population sizes that the approaches Fast SW-GSEMO3D and Fast SW-GSEMO3D,
encounter for the graphs ca-CSphd, ca-HepPh, ca-AstroPh, ca-CondMat. We can observe that the maximum
population sizes when starting with the search point 0™ are significantly smaller than when starting with an
initial solution chosen uniformly at random. For the graph ca-CondMat, the average maximum population
size among the executed 30 runs for Fast SW-GSEMO3D is almost by a factor of 50 larger than for Fast
SW-GSEMO3D, (5196 vs. 107). Given that large populations can significantly slow down the progress of
the sliding window approach, we regard the difference in maximum population sizes as a clear explanation
why Fast SW-GSEMO3Dy clearly outperforms Fast SW-GSEMO3D on the graphs ca-HepPh, ca-AstroPh,
and ca-CondMat.

5 Conclusions

Many optimization problems in the area of artificial intelligence can be stated in terms of a submodular
function under a given set of constraints. Pareto optimization using GSEMO has widely been applied in the
context of submodular optimization. We introduced the two-objective Sliding Window GSEMO algorithm
which selects an individual due to time progress and constraint value in the parent selection step. Our
theoretical analysis provides better runtime bounds for SW-GSEMO while achieving the same worst-case
approxmation ratios as GSEMO. Our experimental investigations for the maximum coverage problem shows
that SW-GSEMO outperforms GSEMO for a wide range of settings. We also provided additional insights into
the optimization process by showing that SW-GSEMO computes significantly more trade-off then GSEMO
for instances with random weights or uniform instances with large budgets.

Afterwards, we adapted the sliding window approach to 3-objective formulations. We have shown how to
significantly speed and scale up the 3-objective approach for chance constrained problems introduced in
Neumann and Witt (2023a) and presented a scalable sliding window approach for it. The new approach
provides with high probability the same theoretical approximation quality as the one given in Neumann and
Witt (2023a) but within a significantly smaller fitness evaluation budget. Our experimental investigations
show that the new approach is able to deal with chance constrained instances of the dominating set. problem
with up to 20,000 nodes (within 1M iterations) whereas the previous approach given in Neumann and Witt
(2023a) was not able to produce good quality (or even feasible) solutions for already medium size instances
of around 4,000 nodes (within 10M iterations).
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