
Improved Runtime Analysis of RLS and (1+1) EA
for Dynamic Vertex Cover Problem

Mojgan Pourhassan
Optimisation and Logistics
School of Computer Science
The University of Adelaide

Adelaide, Australia
mojgan.pourhassan@adelaide.edu.au

Vahid Roostapour
Optimisation and Logistics
School of Computer Science
The University of Adelaide

Adelaide, Australia
vahid.roostapour@adelaide.edu.au

Frank Neumann
Optimisation and Logistics
School of Computer Science
The University of Adelaide

Adelaide, Australia
frank.neumann@adelaide.edu.au

Abstract—In this paper, we perform theoretical analyses of the
behaviour of an evolutionary algorithm and a randomised search
algorithm on the dynamic vertex cover problem. The dynamic
vertex cover problem has already been theoretically investigated
for these two algorithms to some extent. We improve some of the
existing results, i. e. we find a linear expected re-optimization time
for a (1+1) EA to maintain a 2-approximation when edges are
dynamically deleted from the graph. Furthermore, we investigate
a different setting for the dynamic version of the problem, in
which a dynamic change happens at each step with probability
PD . We prove that when PD ≤ 1

(2+ε)em
, where m is the number

of edges of the graph, in expected time O(m logm) RLS and
(1+1) EA find a 2-approximate solution from an arbitrary initial
solution. Furthermore, we prove that in expected time O(m)
after the first dynamic change, they maintain the quality of that
solution.

Index Terms—Dynamic Vertex Cover Problem; Local Search;
(1+1) EA; Combinatorial Optimisation

I. INTRODUCTION

Using evolutionary algorithms for solving dynamic com-
binatorial optimization problems have previously been theo-
retically analysed in a number of articles [1], [4], [6], [9],
[11], [12]. Some of the classical problems that have been
investigated in the dynamic context are the OneMax problem,
the makespan scheduling problem and the vertex cover prob-
lem [1], [4], [6], [9]. In a recent work [11], the behaviour of
evolutionary algorithms on linear functions under dynamically
changing constraints is investigated.

In [9] the vertex cover problem is considered with a
simple dynamic setting where the rate of dynamic changes is
small enough, so that the studied algorithm can re-optimize
the problem after a dynamic change, before the following
change happens. The article by Droste [1] on the OneMax
problem presents another setting for dynamically changing
problems, where a dynamic change happens at each step with
probability p′. In that article, the maximum rate of dynamic
changes is found such that the expected optimization time
of (1+1) EA remains polynomial for the studied problem.
In his analyses the goal is to find a solution which has the
minimum Hamming distance to an objective bit-string and

This research has been supported by the Australian Research Council
(ARC) grants DP140103400 and DP160102401.

one bit of the objective bit-string changes at each time step
with a probability p′; which results in the dynamic changes
of the fitness function over time. The author of the article has
proved that the (1+1) EA has a polynomial expected runtime
if p′ = O(log(n)/n), while for every substantially larger
probability the runtime becomes super polynomial. The results
of that article hold even if the expected re-optimization time
of the problem is larger than the expected time until the next
dynamic change happens. Kotzing et al. [4] have reproved
some of the results of [1] by means of drift analysis, and have
extended the work to search spaces with more than two values
for each dimension. Furthermore, they analyse how closely
their investigated algorithm can track the dynamically moving
target over time.

In this paper, we consider both dynamic settings and analyse
two simple randomised algorithms on the vertex cover prob-
lem. Different variants of the classical randomised local search
(RLS) and (1+1) EA have previously been investigated for the
static vertex cover problem in the context of approximations.
This includes a node-based representation examined in [2],
[5], [7], [10] as well as a different edge-based representation
analysed in [3] and a generalization of that for the weighted
vertex cover problem analysed in [8].

For the dynamic version of the problem, three variants of
those randomised algorithms have been investigated in [9]. The
investigated variants include an approach with the classical
node-based representation in addition to two approaches with
edge-based representation introduced in [3]: one with a stan-
dard fitness function, and one with a fitness function that gives
a large penalty for adjacent edges. Among these approaches,
the third one finds a 2-approximation from scratch in expected
time O(m logm) [3], where m is the number of edges. Having
the large penalty for adjacent edges in that approach results in
finding a maximal matching, which induces a 2-approximate
vertex cover. Considering the dynamic version of the problem
where a solution which is a maximal matching is given before
the dynamic change, Pourhassan et al. [9] proved that the
RLS maintains the quality of the solution in expected time
O(m). They also proved that (1+1) EA manages to maintain
the 2-approximation in expected time O(m) when the dynamic
change is adding an edge, but for edge deletion, the expected

time O(m logm) was obtained, which is the same as the
expected time of finding a 2-approximation from scratch.

Our aim in this paper is to improve the expected time
that (1+1) EA with the third approach requires to maintain
a 2-approximation when edges are dynamically deleted from
the graph. Moreover, we investigate the other setting for a
dynamic version of the problem, in which a dynamic change
happens with a certain probability, PD, at each step. We prove
that when PD is small enough, RLS and (1+1) EA with the
third approach, find a 2-approximate solution from an arbitrary
initial solution in expected polynomial time, and maintain the
quality of 2-approximation in expected linear time after a
dynamic change happens.

The rest of the paper is structured as follows. The problem
definition and the investigated algorithm are given in Sec-
tion II. Section III includes the analysis for improving the
re-optimization time of (1+1) EA with the third approach for
dynamic delete of an edge. The other dynamic setting for the
promlem is investigated in Section IV and the conclusion is
given in Section V.

II. ALGORITHMS AND THE DYNAMIC VERTEX COVER
PROBLEM

In this section we present the definition of vertex cover
problem, the dynamic vertex cover problem and the algorithms
that we investigate in this paper. For a given graph G = (V,E)
with set of vertices V = {v1, . . . , vn} and set of edges E =
{e1, . . . , em}, the vertex cover problem is to find a subset of
nodes VC ⊂ V with minimum cardinality, that covers all edges
in E, i.e. ∀e ∈ E, e ∩ VC 6= ∅.

In the dynamic version of the problem, an arbitrary edge
can be added to or deleted from the graph. We investigate two
different settings for applying the dynamism on the problem.
In the first setting, which has previously been analysed in [9],
the changes on the instance of the problem take place every
τ = poly(n) iterations where poly(n) is a polynomial function
in n. We improve some results that were obtained in [9] for this
setting. In the second setting that we investigate, a dynamic
change happens at each step with a probability PD; therefore,
on expectation, a dynamic change happens on the graph each
1
PD

steps.
For solving the vertex cover problem by means of evo-

lutionary algorithms, two kinds of representation have been
suggested: the node-based representation and the edge-based
representation. While the node-based representation is the
natural one for this problem, and is used in most of the
relevant works [2], [5], [7], the edge-based representation,
introduced by Jansen et al. [3], has been suggested to speed
up the approximation process. In their work [3], they have
proved that an evolutionary algorithm using the edge-based
representation and a specific fitness function, can find a 2-
approximate solution in expected time O(m logm) where m
is the number of edges in the graph.

In this representation, each solution is a bit string s ∈
{0, 1}m, describing a selection of edges E(s) = {ei ∈ E|si =
1}. Then the cover set of s, denoted by VC(s), is the set

Algorithm 1 Edge-Based RLS (RLSe) [9]
1: The initial solution, s, is given: a bit-string of size m

which used to be a 2-approximate solution before chang-
ing the graph.

2: Set s′ = s
3: Select i ∈ {1, . . . ,m} uniformly at random and flip ith

bit of s′

4: If f(s′) ≤ f(s) then s := s′

5: If stopping criteria not met continue at line 2

of nodes on both side of each edge in E(s). It should be
noticed that the size of the solution may change according to
the dynamic changes of the graph. In our analysis m is the
maximum number of edges in the graph.

The specific fitness function that Jensen et al. [3] have
suggested for this representation is:

f(s) = |VC(s)|+ (|V |+ 1) · |{e ∈ E|e ∩ VC(s) = ∅}|
+ (|V |+ 1) · (m+ 1)·
|{(e, e′) ∈ E(s)× E(s)|e 6= e′, e ∩ e′ 6= ∅}|. (1)

The goal of the studied evolutionary algorithm is to mini-
mize f(s) which consists of three parts. The first part is the
size of the cover set that we want to minimize. The second
part is a penalty for edges that solution s does not cover, and
the third part is an extra penalty inspired from the fact that
a maximal matching induces a 2-approximate solution for the
vertex cover problem.

Pourhassan et al. [9] proved that an RLS with the edge-
based representation and the fitness function given in 1 main-
tains the quality of the 2-approximation solution if the initial
solution is a maximal matching in expected time O(m) and
such result holds for (1+1) EA only if changes are limited to
adding edges. For (1+1) EA and dynamic delete of an edge,
the expected time O(m logm) was obtained there, which is
not tight. This bound is improved in this paper. The two
studied algorithms of [9] for the edge-based representation are
presented in Algorithms 1 and 2. In the dynamic setting that
was studied in that paper, a large gap of τ = poly(n) iterations
was assumed in which no dynamic changes happened. We
use this setting for our analysis in Section III. In Section IV,
we consider the second setting for the dynamic vertex cover
problem where a dynamic change happens at each step with
a certain probability. We investigate the behaviour of the two
edge-based algorithms (Algorithms 1 and 2) in that section.
We perform the runtime analysis with respect to the number
of fitness evaluations of the algorithms.

III. IMPROVING RE-OPTIMISATION TIME OF THE
(1+1) EA FOR DYNAMIC VERTEX COVER PROBLEM

In [9], using (1+1) EA with the edge-based representation
(Algorithm 2) and the fitness function given in Equation 1,
it was shown that if a 2-approximate solution is given as the
initial solution, after a dynamic delete happens on the graph,
the re-optimization process takes expected time O(m logm)

Algorithm 2 Edge-Based (1+1) EA ((1+1) EAe) [9]
1: The initial solution, s, is given: a bit-string of size m

which used to be a 2-approximate solution before chang-
ing the graph.

2: Set s′ = s
3: Flip each bit of s′ independently with probability 1

m
4: If f(s′) ≤ f(s) then s := s′

5: If stopping criteria not met continue at line 2

to find a 2-approximate solution. However, this upper bound
is not tight, and is the same as the expected time of finding a
2-approximation from an arbitrary solution. In this section, we
improve the upper bound on the expected time of maintaining
2-approximation with this algorithm.

Consider a solution s that is a matching but not a maximal
matching. The cover set, VC(s), derived from this solution is
not a complete cover. Let k be the number of uncovered edges
of solution s and C be the minimum number of vertexes that
are required to be added to VC(s) to make it a complete cover.
The goal is to find a maximal matching, which induces a 2-
approximation. If s is a matching with C = 0, then it is also
maximal; therefore, the goal is to find a solution that is a
matching and has C = 0. Also let Ct denote the value of C at
step t of the algorithm, and E[∆t] = E[Ct−Ct+1|Ct] denote
the drift on the value of C.

Each covered edge of the graph, is either covered by one
node or two nodes of the induced node set of s. Let the number
of edges that are covered from both ends be D(s). Moreover,
let Ei(s), 1 ≤ i ≤ m, be the set of selected edges in solution
s, that deselecting each of them uncovers i covered edges.
Using these definitions and the following lemmata, we prove
in Theorem 3 that (1+1) EA with the edge-based representation
and fitness function f(s) maintains a 2-approximation for the
dynamic vertex cover problem in expected time O(m).

According to definitions of D(s) and Ei(s) and the total
number of covered edges, the following lemma gives us an
equation that helps us in the proof of Lemma 2.

Lemma 1. For any solution s, |D(s)| +
∑m
i=1 i · |Ei(s)| ≤

m− k, where k is the number of uncovered edges of solution
s and m is the total number of edges.

Proof. Let us first consider all covered edges except those that
are in D(s). By definition of Ei(s), 1 ≤ i ≤ m, deselecting
each edge of Ei(s) uncovers i edges. This implies that all of
these i edges are only covered by the deselected edge and none
of them is uncovered by deselecting another edge. Therefore,
each covered edge that is not in D(s), is counted at most once
in
∑m
i=1 i · |Ei(s)|.

On the other hand, by definition of D(s), none of the edges
of D(s) are uncovered when one of the edges of Ei(s), 1 ≤
i ≤ m is deselected. Therefore, edges of D(s) are not counted
in
∑m
i=1 i · |Ei(s)|. Moreover, the number of covered edges is

m− k, which completes the proof.

The following lemma finds the drift on the value of C

at each step of the (1+1) EAe. It shows that the expected
improvement of C by the algorithm at each step is lower
bounded by a value depending on C.

Lemma 2. When the solution s at step t of (1+1) EAe is a
matching, the drift on C is E[∆t] ≥ C

em .

Proof. We first investigate the situations where C can be
increased or decreased. Then we find the expected change on
the value of C that happens in each situation and use it for
finding its total drift.

The value of C may only change in an step of the algorithm
with an accepted move. The assumption is that we are starting
with a matching, and according to Lemma 22 and Lemma 23
of [9] a matching is never replaced by a non-matching
or a matching with a greater number of uncovered edges.
Therefore, only solutions with at most the same number of
uncovered edges are accepted by the algorithm. We here define
conditions on the accepted steps to help us with investigating
the changes on C.
• Condition Q : Mutations happen on uncovered edges

only.
• Condition R : Mutations happen on both covered and

uncovered edges.
Let E∗C(s) and E∗U (s) be the set of mutating edges that

are covered and the set of mutating edges that are uncovered
by solution s, respectively. For both conditions we have
|E∗U (s)| ≥ 1. Furthermore, when condition Q holds, we have
|E∗C(s)| = 0, while for condition R we have |E∗C(s)| ≥ 1. We
show that the value of C decreases at a step of the algorithm
where condition Q holds, and it can only increase if condition
R holds. At each accepted step of the algorithm, if the
mutation(s) only include one (or more) of the uncovered edges
(i. e. |E∗U (s)| ≥ 1 and |E∗C(s)| = 0), the value of C decreases
by at least one; because each uncovered edge includes at
least one of the required nodes for making a complete cover.
Therefore, if condition Q is satisfied, C decreases by at least
one. In other words we have

E[∆t|Q] ≥ 1.

Moreover, since the probability of condition Q to be satisfied
is at least the probability of having only one mutation on one
of the uncovered edges, for solutions that are not complete
covers we have

P (Q) ≥ k

m

(
1− 1

m

)m−1
≥ k

em
. (2)

The number of uncovered edges of a solution s is always
greater than or equal to the minimum number of nodes that
have to be added to VC(s) to make it a complete cover. This
implies that

P (Q) ≥ C

em
.

Now we analyse the steps where the value of C may be
increased. Any mutation that removes a required node from the
cover set, uncovers some edges and needs to happen together

with one (or more) mutation(s) that covers at least the same
number of uncovered edges (Lemma 23 in [9]), otherwise it
is rejected by the algorithm. Therefore, C can only increase
at the steps where at least one of the uncovered edges is
selected together with another mutation, which is the definition
of condition R. Note that here we have |E∗C(s)| ≥ 1 and
|E∗U (s)| ≥ 1. Similar to what we explained for condition Q,
since we have |E∗U (s)| ≥ 1, C decreases by at least one.
Furthermore, mutations on covered edges that are not selected
in the current solution make the solution a non-matching;
therefore, in order to be accepted, all mutations on covered
edges must happen on selected edges.

Now we find the expected increase on C that happen as
a result of mutating these edges (i. e. E∗C(s)). Deselecting
each edge happens with probability 1

m at each step. Moreover,
for 1 ≤ i ≤ m we have |Ei(s)| edges that uncover i edges
when they are deselected. Therefore, an expected number of
|Ei(s)|
m edges of Ei(s) are mutated at each step. Furthermore,

deselecting an edge from E1(s) increases C by at most
one, because only one edge is uncovered by that mutation.
Deselecting any edge from Ei(s), 2 ≤ i ≤ m increases C
by at most 2, because including both nodes of the deselected
edge covers all adjacent edges. Moreover, there are |D(s)|
edges that can only be uncovered if the selected edges of their
both ends are deselected. Since the probability of deselecting
two edges at one step is 1

m2 , there are an expected number of
|D(s)|
m2 edges of this kind. Each of them increase the value of
C by at most one, because one node is enough to cover an
uncovered edge. As a result, the drift on the value of C when
condition R holds is:

E[∆C |R] ≥ 1− |D(s)|
m2

− |E1(s)|
m

− 2

m∑
i=2

|Ei(s)|
m

.

In this inequality, 1 is the minimum decrease on C because
we have |E∗U (s)| ≥ 1. Moreover, |E1(s)|

m , 2
∑m
i=2

|Ei(s)|
m and

|D(s)|
m2 are upper bounds on expected increase of C as a

result of deselecting edges in E1(s), Ei(s), 2 ≤ i ≤ m and
uncovering edges of D(s), respectively. By replacing 2 with
i and m2 with m in the inequality above we get:

E[∆t|R] ≥ 1− |D(s)|
m2

− |E1(s)|
m

− 2

m∑
i=2

|Ei(s)|
m

≥ 1− |D(s)|
m

−
m∑
i=1

i · |Ei(s)|
m

. (3)

By Lemma 1 we have:

E[∆t|R] ≥ 1− m− k
m

≥ 1

m
.

The last inequality holds when at least one edge is uncovered,
i. e. k ≥ 1.

The value of C can only change if either condition Q is
satisfied or condition R; therefore, the drift on the value of C
is

E[∆t] = E[∆t|Q] · P (Q) + E[∆t|R] · P (R) (4)

≥ 1 · C
em

+
1

m
· P (R) ≥ C

em
.

We now prove the main theorem of this section. A dynamic
change affects the graph by either deleting an edge or adding
it. However, it is already shown that (1+1) EAe maintains the
quality of the solution when a new edge is added dynamically
in expected time O(m) [9]. Here we prove that the expected
re-optimisation time of (1+1) EAe after a dynamic delete is
also O(m). Using the drift on C which is proven in Lemma
2, Theorem 3 shows that after an edge is dynamically deleted
from a maximal matching , (1+1) EAe turns the matching into
a maximal matching in linear time.

Theorem 3. Starting with a 2-approximate solution s, which
is a maximal matching, (1+1) EAe maintains the quality of
the solution when one edge is dynamically deleted from the
graph in expected time O(m).

Proof. Let e = {v1, v2} be the edge that is deleted from the
graph. If e /∈ E(s) then s is still a maximal matching and
corresponds to a 2-approximate vertex cover. If e ∈ E(s),
then it is deleted from the solution as well. The new s is still
a matching but may not be a maximal matching. The number
of uncovered edges of s after the dynamic delete can be in
O(m), but all of them can be covered by including the two
nodes of the deleted edge; therefore, C ≤ 2 holds just after the
dynamic change. Moreover, according to Lemma 2, the drift on
C is at least C

em ≥
1
em . Therefore, by additive drift analysis,

we find expected time 2
1/em = O(m) to reach a solution s

where C = 0; which implies a complete cover. Moreover, by
Lemma 22 of [9], we know that a non-matching solution is
never accepted by the algorithm; therefore, s is a maximal
matching, which induces a 2-approximate solution.

IV. COMPLEXITY ANALYSIS FOR THE SECOND SETTING
OF DYNAMIC VERTEX COVER PROBLEM

In this section we consider the second setting for the
dynamic vertex cover problem, in which a dynamic change
happens on the graph at each step of the algorithm with
probability PD ≤ 1

(2+ε)em , where 0 ≤ ε ≤ 1 is an arbitrary
small constant. Similar to the previous section, we assume
that the maximum number of edges in the graph is m. Firstly,
we prove a lower bound for the performance of RLSe. After
that, using multiplicative drift analysis, in Theorem 5 we prove
that RLSe and (1+1) EAe find a 2-approximate solution for
this problem in expected time O(m logm) even if they start
from an arbitrary solution. Moreover, in Theorem 6 we find
the expected required time of RLSe and (1+1) EAe to maintain
the quality of a 2-approximate solution after the first dynamic
change happens on the graph.

The following lemma finds the drift on the value of C when
RLSe is solving the problem without considering the dynamic
changes. This lemma is used in the proof of Theorem 5 and
6.

Lemma 4. When the solution s at step t of RLSe is a matching,
the drift on C is E[∆t] ≥ C

m .

Proof. The proof is similar to the Lemma 2. The only dif-
ference is that we only have one mutation at each step and
that mutation has to be on an uncovered edge in order to
be accepted, i.e. E∗U (s) = 1 and E∗C(s) = 0. Otherwise, it
increases the number of uncovered edges. Therefore, the value
of C decreases at least by one at each accepted step. Moreover,
the probability of this event is k/m and since C is less than
k, we have :

E(∆t) ≥
C

m
.

Theorem 5. Consider the dynamic vertex cover problem
where an arbitrary edge is dynamically added to or deleted
from the graph with probability PD ≤ 1

(2+ε)em at each
step, where 0 ≤ ε ≤ 1 is an arbitrary small constant.
Starting with an arbitrary solution s, (1+1) EAe and RLSe
find a 2-approximate solution for this problem in expected
time O(m logm).

Proof. We split the analysis into two phases. The algorithm
finds a matching in the first phase, and finds a maximal
matching in the second phase. Jansen et al. [3] have proved
in Theorem 11 of their paper, that (1+1) EAe and RLSe with
their specified fitness function, finds a matching in expected
time O(m logm) for the static version of the problem. In their
proof they show that deselecting an edge that shares a node
with another selected edge, improves the fitness and is always
accepted until the selected edges do not share nodes. They
show that this problem is easier than OneMax; therefore, the
algorithm finds a matching in expected time O(m logm). The
changes that happen on the graph in the dynamic version of
the problem (adding an edge or removing an edge) do not
increase the number of shared nodes between the selected
edges. Therefore, their proof holds for the dynamic vertex
cover problem as well, i. e. the first phase needs expected time
O(m logm).

Now we analyse the second phase. The drift on the value of
C in the dynamic setting that we are analysing in this section
consists of the expected changes that the algorithms makes
on C in addition to the expected changes that are caused by
the dynamic changes of the graph. We denote the latter by
E(∆D). Lemma 2 and 4 give us the drift on C that is a result
of running (1+1) EAe and RLSe, respectively. This value is
at least C

em for both of these algorithms, because m ≤ em.
Therefore, for the total drift on C we have

E(∆t) ≥
C

em
+ E(∆D). (5)

Now we find E(∆D). We consider an upper bound on ∆D

which denotes the difference between Ct and Ct+1 (∆D =

Ct − Ct+1) that is a result of a dynamic change in a step t.
If a new edge is added to the graph by a dynamic change
and one of its adjacent edges is already selected, then the new
edge is covered. Otherwise, it can be covered by adding only
one vertex to the cover set. The other case is that an edge is
dynamically deleted from the graph. If the deleted edge had
been selected in the soluion, then this change may uncover
many edges. However, adding the vertices of the deleted edge
to the cover set guarantees to cover the uncovered edges again.
Hence, a dynamic change increases the value of C by at most
2, i. e. ∆D ≥ −2. Since a dynamic change happens at each
step with probability PD, we have

E(∆D) ≥ −2 · PD ≥
−2

(2 + ε)em
. (6)

Using Equations 6 in 5 we have the total drift on C as

E(∆t) ≥
C

em
− 2

(2 + ε)em
.

Knowing that C ≥ 1 we find

E(∆C) ≥ (2 + ε)C − 2

(2 + ε)em
≥ ε · C

(2 + ε)em
.

Let T be the first hitting time T = min{t|Ct = 0}, C0 ≤ m
the initial value of C, and δ = ε

(2+ε)em where 0 ≤ ε ≤ 1 is
an arbitrary constant. By multiplicative drift we have

E(T |C0) ≤ lnm+ 1
ε

(2+ε)em

= O(m logm).

This completes the proof.

Theorem 6. Consider the dynamic vertex cover problem
where an arbitrary edge is dynamically added to or deleted
from the graph with probability PD ≤ 1

(2+ε)em at each step,
where 0 ≤ ε ≤ 1 is an arbitrary small constant. Starting with
a 2-approximate solution s, which is a maximal matching,
(1+1) EAe and RLSe maintain the quality of the solution in
expected time O(m).

Proof. This theorem can be seen as a special case of Theorem
5. As it is proved in Theorem 5, a dynamic change increases
the value of C by at most 2. Since solution is a maximal
matching before the dynamic change happens, we can use the
multiplicative drift analysis that we had in Theorem 6 with
initial value of C0 = 2. Therefore, we have:

E(T |C0) ≤ ln 2 + 1
ε

(2+ε)em

= O(m).

By Theorems 5 and 6, we have proved that (1+1) EAe and
RLSe find the first 2-approximate solution for the dynamic
vertex cover problem with the defined setting in expected time
O(m logm), while this quality can be maintained in O(m)
after a dynamic change happens on the graph.

V. CONCLUSION

The expected required time for re-optimization process of
the vertex cover problem after a dynamic change had been
analysed in [9] for the (1+1) EA and RLS. In this paper, we
improved the results of the analysis of (1+1) EA. Moreover,
we have investigated another setting for the dynamic version
of the problem, in which the instance of the problem is
subject to a change at each step with probability PD. We
have proved that starting from an arbitrary solution, RLS
and (1+1) EA achieve a maximal matching which is a 2-
approximate solution in expected time O(m logm), when the
dynamic changes take place with probability PD ≤ 1

(2+ε)em .
Furthermore, with the same setting, we have proved that
the two investigated algorithms maintain the quality of 2-
approximation, in expected time of O(m).

ACKNOWLEDGMENT

This research has been supported by the Australian Research
Council (ARC) grants DP140103400 and DP160102401.

REFERENCES

[1] S. Droste. Analysis of the (1+1) EA for a dynamically changing
ONEMAX-variant. In Evolutionary Computation, 2002. CEC ’02.
Proceedings of the 2002 Congress on, volume 1, pages 55–60, May
2002.

[2] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt. Approx-
imating covering problems by randomized search heuristics using multi-
objective models. Evolutionary Computation, 18(4):617–633, 2010.

[3] T. Jansen, P. S. Oliveto, and C. Zarges. Approximating vertex cover
using edge-based representations. In F. Neumann and K. A. D. Jong,
editors, Foundations of Genetic Algorithms XII, FOGA ’13, Adelaide,
SA, Australia, January 16-20, 2013, pages 87–96. ACM, 2013.

[4] T. Kötzing, A. Lissovoi, and C. Witt. (1+1)-EA on generalized dynamic
onemax. In Proceedings of the 2015 ACM Conference on Foundations
of Genetic Algorithms XIII, FOGA ’15, pages 40–51, New York, NY,
USA, 2015. ACM.

[5] S. Kratsch and F. Neumann. Fixed-parameter evolutionary algorithms
and the vertex cover problem. Algorithmica, 65(4):754–771, 2013.

[6] F. Neumann and C. Witt. On the runtime of randomized local search
and simple evolutionary algorithms for dynamic makespan scheduling.
In Proceedings of the 24th International Conference on Artificial Intel-
ligence, IJCAI’15, pages 3742–3748. AAAI Press, 2015.

[7] P. S. Oliveto, J. He, and X. Yao. Analysis of the (1+1)-EA for
finding approximate solutions to vertex cover problems. IEEE Trans.
Evolutionary Computation, 13(5):1006–1029, 2009.

[8] M. Pourhassan, T. Friedrich, and F. Neumann. On the use of the
dual formulation for minimum weighted vertex cover in evolutionary
algorithms. In Proceedings of the 14th ACM/SIGEVO Conference on
Foundations of Genetic Algorithms, FOGA ’17, pages 37–44, New York,
NY, USA, 2017. ACM.

[9] M. Pourhassan, W. Gao, and F. Neumann. Maintaining 2-approximations
for the dynamic vertex cover problem using evolutionary algorithms. In
Proceedings of the 2015 Annual Conference on Genetic and Evolution-
ary Computation, GECCO ’15, pages 903–910, New York, NY, USA,
2015. ACM.

[10] M. Pourhassan, F. Shi, and F. Neumann. Parameterized analysis of
multi-objective evolutionary algorithms and the weighted vertex cover
problem. In Proceedings of the 14th International Conference of Parallel
Problem Solving from Nature – PPSN XIV, pages 729–739. Springer
International Publishing, 2016.

[11] F. Shi, M. Schirneck, T. Friedrich, T. Kötzing, and F. Neumann.
Reoptimization times of evolutionary algorithms on linear functions
under dynamic uniform constraints. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’17, pages 1407–1414,
New York, NY, USA, 2017. ACM.

[12] S. A. Stanhope and J. M. Daida. Genetic algorithm fitness dynamics
in a changing environment. In Proceedings of the 1999 Congress on
Evolutionary Computation (CEC1999), pages 1851–1858, Piscataway,
NJ, 1999. IEEE.

