A Feature-Based Analysis on the Impact of Linear
Constraints for €-Constrained Differential Evolution

Shayan Poursoltan
Optimisation and Logistics
School of Computer Science
The University of Adelaide
Adelaide, SA 5005, Australia
Email: shayan.poursoltan@adelaide.edu.au

Abstract—Feature-based analysis has provided new insights
into what characteristics make a problem hard or easy for a given
algorithms. Studies, so far, considered unconstrained continuous
optimisation problem and classical combinatorial optimisation
problems such as the Travelling Salesperson problem. In this
paper, we present a first feature-based analysis for constrained
continuous optimisation. To start the feature-based analysis of
constrained continuous optimization, we examine how linear
constraints can influence the optimisation behaviour of the well-
known ¢e-constrained differential evolution algorithm. Evolving
the coefficients of a linear constraint, we show that even the type
of one linear constraint can make a difference of 10-30% in terms
of function evaluations for well-known continuous benchmark
functions.

Keywords: Constraints, Continuous Optimisation, Difficulty
Prediction, Linear Constraints, Features

I. INTRODUCTION

Constrained optimisation problems (COP)s are important
and widespread in the real world [1]. This has motivated
the development of algorithmic approaches to tackle the
constrained optimisation problems. A major component of
these algorithms is a mechanism to handle the problem con-
straints. Various evolutionary algorithms such as differential
evolution (DE) [2], particle swarm optimisation (PSO) [3]
and evolutionary strategies (ES) [4] have been used to solve
COPs. To deal with constraints, these algorithms use constraint
handling techniques such as penalty functions, decoder based
methods or special operators that separate the treatment of
the constraints and objective function. For a comprehensive
presentation on the different constraint handling methods, we
refer the reader to [5].

There has been always been the question which algorithm
from a suite of algorithms is most suitable for a given problem.
Mersmann et al. [6] proposed the following steps to answer this
question. First, we need to analyse the performance of different
algorithms in dependence of problem features. Second, one has
to find and extract the problem features that determine problem
difficulty.

The idea of testing algorithms on set of test problems
with different features was initially proposed in [7] which

Frank Neumann
Optimisation and Logistics
School of Computer Science
The University of Adelaide
Adelaide, SA 5005, Australia
Email: frank.neumann@adelaide.edu.au

introduced a benchmark set for constrained continuous opti-
misation. The aim was to test the ability of different algo-
rithms on a variety of constrained optimisation problems. The
features related to these benchmark problems consist of an
objective function type (linear, nonlinear), a type of constraints
(linear, nonlinear, inequality or equality) and the feasibility
ratio p = |F|/|S| of the problem. Later, other functions were
added to this benchmark set in order to address other features
such as the disjoint feasible area and the combination of
linear constraints [8]. Furthermore, there have been additional
benchmark problems proposed to evaluate the evolutionary
algorithm performances [9], [10].

Recently, there has been an increasing interest to un-
derstanding the features that make a problem difficult to
solve [11]. For continuous problems, test case generators
(TCGs) [12], [13] were proposed to study the influence of
the combination of problem features on problem difficulty.
The TCG’s approach is to generate different problems by
varying features such as dimensionality, multi modality, size of
feasible regions, number and type of constraints. Also, many
approaches have been introduced for discrete problems [14],
[15], [16], [17]. The example of such a study is the one for
the TSP problem [14]. Their idea is to generate hard and
easy problem instances by evolving them. This approach is
using an evolutionary algorithm to obtain diverse set of hard
and easy instances for a certain algorithm [14]. By analysing
these instances, it is possible identify features which determine
problem hardness

In this paper, we adopt the evolving approach to ensure
that the sets of instances are varied from hard to easier
ones for constrained continuous optimisation problems. We
start by investigating several benchmark functions under one
linear constrained. Among several features of the problems,
constraints play a vital role in problem hardness. Hence, our
method is to evolve easy and hard instances to investigate
which features of a linear constraint correlate with instance
difficulty. To achieve this information, we use a suitable evo-
lutionary algorithm that handles the constraints. We use the &-
constrained differential evolution with an archive and gradient-
based mutation (¢€DEag) [18] that has better performance than
the other competitors based on the CEC 10 special session
results [9].

Our results show the effectiveness of linear constraint

features on making a problem easy or hard. Analysing these
features by testing the evolved instances on (¢DEag), provides
knowledge on influence of the constraints on the constraint
optimisation problems. This type of information is a successful
key to design an automated algorithm selection system and sets
the basis for studies on the impact of other types of constraints.

The remainder of this paper is as follows: In Section 2 we
introduce the concept of constrained continuous optimisation
and the algorithms that we use to evolve and solve the problem
instances. Our approach to investigate the linear constraints and
their effects on problem hardness is presented in Section 3. In
Section 4 we carry out the analysis of the experimental results.
Finally, we conclude with some remarks and topics for future
work.

II. PRELIMINARIES
A. Constrained continuous optimisation problems

Constrained continuous optimisation problems are optimi-
sation problems where a function on real-valued variables
should be optimized with respect to a given set of constraints.
Constraints are usually given by a set of inequalities and/or
equalities.

Formally, we consider single-objective functions f: S — R,
with § C R”. The constraints impose a feasible subset F C § of
the search space S and the goal is to find an element x € SNF
that minimizes f. We consider problems of the following form:

f(x)7

such that x € SNF. The feasible region F C S of the search
space S is defined by

Minimize x=(x1,...,x,) €R" (D

I <x; <u, 1<i<n ()
where values of /; and u; are lower and upper bounds on the
ith variable, respectively. Additional constraints are given by
the functions

gi(x) <0 Vie{l,...,q},and

: 3)

hj(x)=0 Vje{g+1,....p}
where both g;(x) and hj(x) could be linear or nonlinear.
In this research, we consider the constraint as linear inequality.

B. e€DEag algorithm

One of the most prominent evolutionary algorithms for
COPs is e-constrained differential evolution with an archive
and gradient-based Mutation (¢DEag). The algorithm uses
the e-constrained method [19] to transform algorithms for
unconstrained problems to constrained ones. The e-constrained
method converts a constrained optimisation problem to an
unconstrained one by using é&-level comparison instead of
ordinary one. The &-level comparison is done in lexicographic
order in which ¢ (constraint violation) proceeds f (function
value) since feasibility has higher priority. For any € > 0, the
e-level comparison of two candidates (fi,¢1) and (f2,¢2) is
described as the following:

Algorithm 1: The e-constrained differential evolution
with an archive and gradient-based mutation (¢€DEag)

1) Initialize archive of A with M randomly selected
individuals from search space S.

2) Initialize € level Using control level function.

3) Initialize population by selecting top N individuals
from archive A. Individuals are ranked based on the
€level comparison.

4) Setting the termination condition: when it exceeds
Maximum function evaluation number.

5) DE Operation: compare child and parent
based on € level comparison

6) If child is infeasible, it is changed by the gradient
based mutation with probability P. Go to step 4

7) Control the e-level

8) Gotostep 3

fi<fo, if ¢1,;2<¢
(f1,01) <e (f2,2) <= { f1 < fo, if ¢r=¢
o1 < ¢, otherwise
and
i h, if ¢1,¢<¢
(f17¢1)§£ (f27¢2) —~ f1§f27 if ¢1:¢2
¢ < ¢, otherwise

By adopting an archive (see Algorithm 1) to the simple
(eDEg) [20], the stability, usability and efficiency of the
algorithm has been increased [21], [22]. Using an archive
improves the diversity of individuals (see Algorithm 1). The
offspring generation is adopted in such a way that if the child
is not better than its parent, the parent generates another one.
This leads to more stability to the algorithm.

III. EVOLVING CONSTRAINTS

In this study, we focus on finding the influence of constraint
features on problems. We want to obtain knowledge of what
types of constraints or what features of them make a problem
difficult to evolutionary algorithm.

While what makes a constrained problem difficult is not a
standalone feature, it is worth noting that the most important
part of these problems (constraints), need to be studied in
detail. Hence, our approach in this study is analysing various
effects of constraints on problem hardness. In this research,
we consider the linear inequality constraint. A linear inequality
constraint is as the form of

g(x) =b+aixi+...+apx,

le; < a; < uc, 1<i<n (@)

where values of /c; and uc; are lower and upper bounds on
the coefficients a; and x1,x;...,x, are values from equation
1, respectively. Also, we consider b < 0 so that the objective
function optimum is always feasible. In this paper, we investi-
gate the relations of linear constraint coefficients (a;) and their
capacity to control problem difficulty.

Dsfine objective Create linsar Define 3 COP with

g function constraint (uniform objective function and
A randomly) linear constraint
0 J
Fun solver on Fitness =FEN of Mntation and Select and replace
each COP the Solver recombination population > Stop
algorithm (linsar constraint) (linear constraint)

Fig. 1: Evolving constraints process

A. Methodology

This experimental study is based on generating easy and
hard instances using the performance of another optimisation
algorithm (problem solver). Using this technique makes it
possible to generate easy and hard instances.

In order to investigate the effects of constraints, first we
need to define variety of them with fixed objective function
(see Figure 1). Then, the evolutionary algorithm is started
by uniform randomly choosing constraint linear coefficients
a;. Next, we define a constraint optimisation problem using
a fixed objective function and newly generated constraint.
This forms the first step of the evolving process. We then
solve the generated COP with the investigated evolutionary
algorithm (solver). The function evaluation number (defined in
next section) that is required for solving the COP is considered
as the fitness value for evolving process. This generational
process is repeated to find the hard and easy linear constraint
for the fixed objective function.

B. Algorithms

For the evolution process, we use differential evolution
[2], which is a reliable and versatile function optimiser. DE
evolves individuals towards global optimum using mutation,
crossover and selection process. The core of DE is based
on enhancing the individual differences. The algorithm of
differential evolution is described in Algorithm 2,3. The Cost
function in Algorithm 2 is equivalent to the function evalua-
tion number (FEN) of solver required to solve the COP. As
mentioned in Algorithm 2, best solution is easy instances. In
order to find hard instances, line 7 needs to be modified as
Cost(S;)>Cost(P,).

Our chosen algorithm for the solver is €éDEag. As we
discussed in the previous section, éDEag is a stable optimisa-
tion algorithm as evidenced by its results in the CEC 2010
competition [9]. We also, modified the ¢éDEag termination
condition in which the solver should be terminated when it
reaches FEN,,,, or

f(xoprimum) - f(xbest) < 8712 (5)

Algorithm 2: Differential evolution (DE) algorithm. The
Cost function indicates the number of required FEN, that
is used to solve the generated instance.

1) inputs: Problem and population size, Crossover e,
Weightingfactor
outputs: Spest

2) Population <« InitializePopulation
EvaluatePopulation(population)
Spest <— GetBestSolution(Population)

3) Repeat

4) NewPopulation < ¢

5) For i starts from 1 to < Populationg;,.-1
6) S; < Newsample

7) If Cost(S;)<Cost(P;)

8) NewPopulation « §;

9) else
10) NewPopulation «+ P,
11) Endif

12) Endfor
13) Population <~ NewPopulation
14) EvaluatePopulation(population)

15) Spest < GetBestSolution(Population)

16) Until (stop condition)

which means the solution xp, is close enough to the opti-
mum solution. Hence, the current function evaluation number
(FEN) is considered as the evolving process fitness value.
Clearly, the instances that require more FEN are harder to solve
comparing to easier ones. This model is repeated until certain
number of generations for the DE evolutionary algorithm.

C. Linear constraint features

We study statistic based features that lead to generating
easy and hard problem instances. In the following the
complete features of the linear constraints are discussed.

e Angle: This feature is related to the angle of the
linear constraint hyperplane and other hyperplane such
as objective function and other dimension axes. To

Algorithm 3: Newsample function in Algorithm 2

(DE/rand/1/bin)
1) inputs: Py, population, NP, F, CR
outputs: S
2) Repeat

3) P; < RandomMember(population)
4) Untill P] 7& P]

5) Repeat

6) P, < RandomMember(population)
7) Untill P, 7& PV P 75 P,

8) Repeat

9) P; <~ RandomMember(population)
10) Until s APV P £P VP £P
11) cutpoint +— RandomMember(population)
12) Sample < 0
13) For j starts from 1 to NP
14) If j = cutpoint A Rand() < CR

]5) Sj — P3j + F*(Plj—sz)
16) Else

17) S; Poj

18) Endif

19) Endfor

20) Return S

calculate the angle between two hyperplane, we need
to find their normal vectors and angle between them
using the following

ny.n
(1 [nz
where ny,ny are normal vectors for two hyperplanes.

(6)

0 = arccos

e Ratio: In this research, ratio is the relationship of
two coefficients of a constraint (for 2 dimensional
problems).

. al
Ratio = — @)
a»
where a; and a; are constraint coefficients (dimen-
sion=2). Since we have 2 ratios (based on two coeffi-
cients), we only consider the values which are closer
to 0.

e Shortest distance: This feature reflects the shortest
distance between the constraint hyperplane and the
optimum solution. To find the shortest distance of
optimum point (xo1,%p2,.--,Xo,) to the hyperplane
aix; +axx; +...a,x, +b =0 we use

d, = aixo) +axxpo + .. .apxon +b @)
\/a12+a22+~~~+an2

e Constraint coefficients relationship: Statistics
regarding the mean, standard deviation, population
standard deviation and variance of linear constraint
coefficients. It is likely that this information has the
ability to influence the problem difficulty.

IV. EXPERIMENTAL INVESTIGATIONS

We now analyse the linear constraint features for different
variety of easy and hard instances. These easy or hard instances

©) (d)

Fig. 2: Objective functions: a)Sphere: bowl shaped b)Ackley:
Many Local Minima c)Rosenbrock: Valley-Shaped d)Schaffer
N2: Many Local Minima

are obtained by DE algorithm based on the performance
of solver algorithm (eDEag). We start by comparing hard
and easy instances for well known objective functions (see
Figure 2) to provide an understanding between linear constraint
features and problem difficulty. We also, test our approach with
a given COP to check out research results.

A. Experimental setup

In our experiment we generate two sets of hard and easy
COP with linear constraints. In the following we discuss
parameter settings for both algorithm we used:

The parameters for DE algorithm (Algorithm 2,3) are set
as follows:

We use DE/rand/1/bin by performing 5000 generations for
the evolving algorithm to obtain the proper linear constraint.
Other parameters of the DE algorithm are as follows:
population size:40, scaling factor (F): 0.9, crossover rate:
0.5. For each problem dimension we run the evolutionary
algorithm for 30 independent runs (with different initial
population) to evolve hard and easy instances.

The details of eDEag algorithm parameter setting is de-
scribed bellow: We set the eDEag algorithm to solve generated
problem for 1000 generation. Actual parameter values eDEag
are: population size: 40, Scaling factor(F): 0.9, crossover
rate: 0.5. The parameters for €-constraint method are: control
generation (7;): 1000, initial € level (8): 0.9, Archive size:
1007 (n is dimensional number), gradient-based mutation rate
(Py): 0.2 and number of repeating the mutation (R,): 3.

B. Test problems and experimental results

In this part, we start by examining 2 dimension problems
to easily discuss them on figures. Then we continue to extend
the analysis on higher dimension problems to investigate
the effects of constraint features on them. We first do the
experiments on constrained sphere function (see Figure 2) as

0.8

0.6

04

M Easy

02 M Hard

-0.4

-0.6

-0.8

123 45 67 8 9101112151415161718152021

Fig. 3: Linear constraint coefficients ratio for 20 hard and
easy instances - Sphere 2D

the form of:

min f(x):= ixlz

i=1

—5<x<5 ©))

subject to g(x) =b+ayx; +...+apx, (10)

where g(x) <0 and coefficients (¢;) and b (Equation 4) are
considered within the range of -1 < @; <1 and dimension (n)
is 2.

As shown in Figure 4, two different linear constraints create
two COP instances. It can be observed that the feasibility
ratio of easy instance is greater than hard one. Also, we
compared the ratio of coefficients of linear constraints. Since
the objective function is symmetric, we calculate the ratio in
such a way that numerator is always less than denominator to
obtain the results within [-1,1]. We run the test for 30 hard
and easy instances. As observed in Figure 3, interestingly, all
ratio values for easy problems are close to 1 and roughly O for
hard one.

In contrast to coefficients ratio, there is no symmetric rela-
tionship between angle and problem hardness (FEN). Figure 5
shows the constraint hyperplane has different angles based on
the chosen xy,yz,xz plane. In other words, calculating the angle
between the constraint plane and various axis planes gives
similar or different values according to the chosen plane (see
Table I). Choosing the base hyperplane (to measure the angle
with) could be more problematic when dealing with higher
dimension problems.

Also, the shortest distance between optimum and the
linear constraint hyperplane does not have a strong symmetric
relationship to FEN of the COP instance. The results on
distance feature alone, does not provide any insight into
problem difficulty.

In the following, we continue the experiments on higher
dimension problems to see if it holds the same pattern as above.
We run our evolutionary algorithm (DE) to evolve hard and
easy instances for higher dimension problems (30D,50D) with
linear constraints. To study about higher dimension constraints,
we calculate the standard deviation of coefficients (a;) and

Fig. 4: Hard and easy constrained sphere problem (2D). The
left (easy) and right (hard) columns have similar objective
function with different linear constraint (red)

Fig. 5: Different views of easy and hard constraints angle

mean value for both groups of hard and easy problem instances
(see Figure 6). The box plot indicates that almost in all prob-
lems (30D,50D), the standard deviation (including minimum,
maximum and mean value) of coefficient g;s in easy instances
are greater than hardest ones. For example, standard deviation
of a; in Sphere function (30D) varies from 0.33 to 0.50 with
0.45 median for hard instances, where as the minimum value
for easy instance is 0.51 with 0.58 median.

Also it is interesting that all mean values for the constraint
coefficients varies roughly from -0.3 to 0.3 (see Table
ILII). These feature helps us predicting the given constraint
capacity on problem hardness. Some other features such as
angle and distance between optimum and constraint plane
do not exhibit a symmetric relationship with problem difficulty.

To test our results, we generated 30 random instances and
evaluated them in terms of FEN and constraint coefficients.
To do this, we used values chosen uniformly at random
from [—1,1] for the a;. As expected the random instances lie
between the results for the hard and easy instances in terms

07

0.6

. B

04

03
Hard Random Easy

(a)

o7

&= m

l 1

0.3

Hard Random Easy

(©

07

i ﬁ 5

05 | | l
1

Hard Random Easy

(e)

0.3

07

0.6

g

0.4

03
Hard Random Easy

(b)

07

-1

05 T
04

03

Hard Random Easy

(d)

0.7

0.6

. m—

0.4 p A

Hard Random Easy

®

Fig. 6: Box plots of the standard deviation for constraint coefficients. From top to bottom: a)Sphere-30D b)Sphere-50D
c)Rosenbrock-30D d)Rosenbrock-50D e)Ackley-30D f)Ackley-50D.

TABLE I: The angle of easy (lowest FEN) and hard (highest
FEN) 2 dimensional sphere function to XY, XZ and YZ
plane. The angles are measured in degrees.

COP instance FEN XY XZ YZ
plane plane plane
easy 35605 41 57 67
easy 35609 39 64 68
easy 35524 36 66 64
easy 35520 20 81 72
hard 39925 14 76 89
hard 39504 39 60 66
hard 39695 40 83 51
hard 39871 39 64 62

of fitness evaluations. The results for the coefficient of the
random constraints are shown in Figure 6. It can be observed
that they lie between the ones for easy and hard instance as
shown in the box plots.

To summarize the experiment analysis, the variation of
constraint feature values over the problem hardness (function
evaluation number) is more prominent in some features than
the others. The results exhibit that standard deviation, mean
and ratio of linear coefficients have more symmetric relation-
ship with problem hardness than other features. For example,
minimum distance of optimum and constraint hyperplane, as
well as, the angle between the axis and constraint hyper-
plane does not provide any useful knowledge. Interestingly,
increasing the number of dimension achieve almost the same
results (see Figure 6). In general, these experimented values
provide suggestion that which linear constraint feature has
more contribution to problem difficulty.

V. CONCLUSIONS

This paper has contributed the feature-based analysis on
constrained continuous optimisation problems to provide in-
sights that which features of the problem make it hard to

TABLE II: FEN, Shortest distance value and the linear constraint coefficients (Mean, standard deviation) of different objective
functions (30D)

Function EasyHard | FEN Coefficients | Coefficients | Shortest
Std Average Distance
Sphere 30D Easy 35563 0.58 0.03 (.14
Sphere 30D Hard 39262 045 0.02 -0.06
Rosenbrock 30D Easy 25870 047 0.36 -023
Rosenbrock 30D Hard 39164 044 032 024
Ackley 30D Easy 35450 0.55 03 -0.03
Ackley 30D Hard 37855 047 0.02 -0.06
Schwefel 30D Easy 26343 0.73 044 .17
Schwefel 30D Hard 39946 048 0.30 -0.08
Rastrigin 30D Easy 32786 0.69 0.11 -0.29
Rastrigin 30D Hard 38233 0.55 -0.04 -0.02
Sum Squares 30D Easy 35438 057 -0.008 -0.14
Sum Squares 30D Hard 38206 043 0.002 -001
Dixon-Price 30D Easy 28034 0.61 0.26 0.9
Dixon-Price 30D Hard 39824 0.52 0.03 .16
Zakharov 30D Easy 27985 047 0.40 041
Zakharov 30D Hard 30340 041 03 .23

TABLE III: FEN, Shortest distance value and the linear constraint coefficients (Mean,

standard deviation) of different objective

functions (50D)

Function EasyHard | FEN Coefficients | Coefficients | Shortest
Std Average Distance
Sphere 50D Easy 36072 0.56 001 -0.11
Sphere 50D Hard 39320 047 0.02 0.02
Rosenbrock 50D Easy 28845 052 0.15 -0.04
Rosenbrock 50D Hard 39234 040 .26 0.04
Ackley 50D Easy 35872 0.54 .21 0.04
Ackley 50D Hard 39860 048 0.1 0.6
Schwefel 50D Easy 29645 0.58 0.21 .21
Schwefel 50D Hard 39876 0.51 .11 0.04
Rastrigin 50D Easy 35435 0.67 0.17 -0.03
Rastrigin 50D Hard 39854 0.3 (.33 .16
Sum Square S0D Easy 35654 0.59 0.009 017
Sum Square 50D Hard 29356 047 021 .14
Dixon-Price 50D Easy 34362 0.59 0.03 -0.001
Dixon-Price 50D Hard 39294 046 0.3 .12
Zakharov 50D Easy 28375 047 0.23 -0.09
Zakharov 50D Hard 3187 043 031 011

evolutionary algorithms. This approach has been used in the
field of combinatorial optimisation, however, to the best of
our knowledge, this is the first time that it has been applied
in the field of constrained continuous optimisation. Hence,
for the first step, we investigate that which linear constraint
features influence the problem difficulty. This study used an
evolutionary algorithm to generate hard and easy instances for
the eDEag algorithm. We then analysed variation of linear
constraint features with the problem difficulty to understand
relationship between constraint features and algorithm perfor-
mance. The results of this analysis, show that the coefficient
of even a linear constraint can make a difference of up to 30%
in terms of function evaluations and give a classification of the
hardness of these constraints.

Future work will be focused on analysing polynomial
constraint features and their capacity to problem difficulty.

Extending these features to include other type and combination
of constraints is also a future direction of this research which
is worth to be carried out.

ACKNOWLEDGEMENTS

Frank Neumann has been supported by ARC grants
DP130104395 and DP140103400.

REFERENCES
[1] C. A. Floudas and P. M. Pardalos, A collection of test problems for
constrained global optimization algorithms. Springer, 1990, vol. 455.

R. Storn and K. Price, “Differential evolution—a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341-359, 1997.

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Micro Machine and Human Science, 1995. MHS’95., Pro-
ceedings of the Sixth International Symposium on. 1EEE, 1995, pp.
39-43.

H.-P. P. Schwefel, Evolution and optimum seeking: the sixth generation.
John Wiley & Sons, Inc., 1993.

E. Mezura-Montes and C. A. Coello Coello, “Constraint-handling
in nature-inspired numerical optimization: past, present and future,”
Swarm and Evolutionary Computation, vol. 1, no. 4, pp. 173-194, 2011.

O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and
G. Rudolph, “Exploratory landscape analysis,” in Proceedings of the
13th annual conference on Genetic and evolutionary computation.
ACM, 2011, pp. 829-836.

Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for con-
strained parameter optimization problems,” Evolutionary computation,
vol. 4, no. 1, pp. 1-32, 1996.

T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evo-
lutionary optimization,” Evolutionary Computation, IEEE Transactions
on, vol. 4, no. 3, pp. 284-294, 2000.

R. Mallipeddi and P. N. Suganthan, “Problem definitions and evaluation
criteria for the cec 2010 competition on constrained real-parameter
optimization,” Nanyang Technological University, Singapore, 2010.

J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. Suganthan,
C. C. Coello, and K. Deb, “Problem definitions and evaluation criteria
for the cec 2006 special session on constrained real-parameter optimiza-
tion,” Journal of Applied Mechanics, vol. 41, 2006.

E. Mezura-Montes and C. C. Coello, “What makes a constrained
problem difficult to solve by an evolutionary algorithm,” Technical
Report EVOCINV-01-2004, CINVESTAV-IPN, México, Tech. Rep.,
2004.

Z. Michalewicz, K. Deb, M. Schmidt, and T. Stidsen, “Test-case
generator for nonlinear continuous parameter optimization techniques,”
Evolutionary Computation, IEEE Transactions on, vol. 4, no. 3, pp.
197-215, 2000.

M. Schmidt and Z. Michalewicz, “Test-case generator tcg-2 for non-
linear parameter optimisation,” in Evolutionary Computation, 2000.
Proceedings of the 2000 Congress on, vol. 1. 1EEE, 2000, pp. 728-735.

K. Smith-Miles, J. van Hemert, and X. Y. Lim, “Understanding tsp dif-
ficulty by learning from evolved instances,” in Learning and intelligent
optimization. Springer, 2010, pp. 266-280.

S. Nallaperuma, M. Wagner, F. Neumann, B. Bischl, O. Mersmann,
and H. Trautmann, “A feature-based comparison of local search and
the christofides algorithm for the travelling salesperson problem,” in
Proceedings of the twelfth workshop on Foundations of genetic algo-
rithms XII. ACM, 2013, pp. 147-160.

S. Nallaperuma, M. Wagner, and F. Neumann, “Ant colony optimisation
and the traveling salesperson problem: hardness, features and parameter
settings,” in GECCO (Companion), C. Blum and E. Alba, Eds. ACM,
2013, pp. 13-14.

O. Mersmann, B. Bischl, H. Trautmann, M. Wagner, J. Bossek, and
F. Neumann, “A novel feature-based approach to characterize algorithm
performance for the traveling salesperson problem,” Annals of Mathe-
matics and Artificial Intelligence, pp. 1-32, 2013.

T. Takahama and S. Sakai, “Constrained optimization by the € con-
strained differential evolution with an archive and gradient-based mu-
tation,” in Evolutionary Computation (CEC), 2010 IEEE Congress on.
IEEE, 2010, pp. 1-9.

T. Takahama and Sakai, “Constrained optimization by & constrained
differential evolution with dynamic é&-level control,” in Advances in
Differential Evolution. Springer, 2008, pp. 139-154.

T. Takahama and S. Sakai, “Efficient constrained optimization by the &
constrained adaptive differential evolution,” in Evolutionary Computa-
tion (CEC), 2010 IEEE Congress on. IEEE, 2010, pp. 1-8.

——, “Constrained optimization by the & constrained differential evo-
lution with gradient-based mutation and feasible elites,” in Evolutionary
Computation, 2006. CEC 2006. IEEE Congress on. IEEE, 2006, pp.
1-8.

——, “Solving difficult constrained optimization problems by the €
constrained differential evolution with gradient-based mutation,” in

Constraint-Handling in Evolutionary Optimization.
pp. 51-72.

Springer, 2009,

