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Abstract We contribute to the theoretical understanding of randomized search
heuristics by investigating their optimization behavior on satisfiable random
k-satisfiability instances both in the planted solution model and the uniform
model conditional on satisfiability. Denoting the number of variables by n, our
main technical result is that the simple (1+1) evolutionary algorithm with high
probability finds a satisfying assignment in time O(n log n) when the clause-
variable density is at least logarithmic. For low density instances, evolutionary
algorithms seem to be less effective, and all we can show is a subexponential
upper bound on the runtime for densities below 1

k(k−1) . We complement these

mathematical results with numerical experiments on a broader density spec-
trum. They indicate that, indeed, the (1+1) EA is less efficient on lower den-
sities. Our experiments also suggest that the implicit constants hidden in our
main runtime guarantee are low. Our main result extends and considerably im-
proves the result obtained by Sutton and Neumann [Lecture notes in computer
science, Vol. 8672 (pp. 942–951)] in terms of runtime, minimum density, and
clause length. These improvements are made possible by establishing a close
fitness-distance correlation in certain parts of the search space. This approach
might be of independent interest and could be useful for other average-case
analyses of randomized search heuristics. While the notion of a fitness-distance
correlation has been around for a long time, to the best of our knowledge, this
is the first time that fitness-distance correlation is explicitly used to rigorously
prove a performance statement for an evolutionary algorithm.
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1 Introduction

Randomized search heuristics such as randomized local search, evolutionary al-
gorithms, and ant colony optimization have been widely used to solve complex
combinatorial optimization and engineering problems. Their popularity with
practitioners lies in the broad and easy applicability to many complex prob-
lems in a number of application domains. In contrast to this, the theoretical
understanding still lags behind their practical success due to complex random
processes underlying the run of such algorithms. Nevertheless, the analysis of
randomized search heuristics has made significant progress over the past fif-
teen years. A wide range of randomized search heuristics has been analyzed
for specific fitness functions as well as problems from combinatorial optimiza-
tion. We refer the reader to the timely books [5,21,33] for a comprehensive
presentation.

In this paper, we study the behavior of randomized search heuristics on
one of the most classical combinatorial optimization problems, namely satisfi-
ability. Our aim is to get new insights into the behavior of randomized search
heuristics when dealing with random k-CNF formulas. Random instances give
insight in the average-case (“typical”) behavior of an algorithm as opposed
to worst-case analyses, which give upper bounds valid for all instances (and
thus absolute guarantees), sometimes at the price of being very pessimistic.
So far, there are only a few runtime results of randomized search heuristics on
random instances of combinatorial optimization problems. Witt [40] investi-
gated random instances for makespan scheduling. Based on an analysis of the
well-known 2-OPT local search algorithm on random instances of the Travel-
ing Salesperson problem (TSP) carried out in [17], results have been obtained
for ant colony optimization [25]. Furthermore, runtime results using the fixed
budget perspective [?] have been obtained for evolutionary algorithms [32] and
random instances of the TSP.

In the first runtime analysis for the (1+1) EA on random satisfiability in-
stances [39], a runtime bound ofO(n2 log n) was shown to hold with probability
1 − o(1) for the 3-satisfiability problem when the number of random clauses
is at least Ω(n2), that is, the density is linear. The key argument used in the
proof is that a large proportion of the search space (with sufficiently high prob-
ability) has no pair of Hamming neighbors with fitness gradient pointing away
from the planted assignment. This condition implies that any search point has
a Hamming neighbor closer to the planted solution with strictly higher fit-
ness. Unfortunately, it turns out that this condition is not sufficient to handle
search trajectories that do not only move towards the optimum via moves to
Hamming neighbors. Such trajectories arise, e.g., from mutation steps that
change more than one bit at once. This weakness leads to an additional linear
factor in the runtime bound, which we overcome in this paper by establishing
a fitness-distance correlation (FDC) that implies that trajectories involving
multiple bit flips also make sufficient progress towards the target.

Our proof techniques utilize rigorous bounds on the FDC of an instance to
show there is a sufficiently strong fitness signal that yields a stochastic drift
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toward the optimal solution. This technique may be of independent interest,
and should be extensible to other algorithms and analyses. Historically, the
notion of fitness-distance correlation has been used to qualitatively explain
the hardness of a problem by considering how the distance of search points to
an optimum relates to their fitness values [23]. The intuition is that problems
are easy to solve by evolutionary algorithms if the fitness improves with de-
creasing distance to the optimum and hard to solve if the fitness is pointing in
the opposite direction. While the intuition sounds sensible, it does not always
translate directly into an accurate prediction of algorithm performance. Dif-
ferent counterexamples have been presented in the literature that show FDC
is not always a good predictor of algorithm performance (see, e.g., [4,20,35]).

Furthermore, a strong FDC is only a reliable predictor if a randomized
search heuristic does not encounter any deviations from the assumed usual
behavior. In the case that a deviation from the predicted behavior becomes
very unlikely, a strong FDC can potentially be used to accurately predict the
runtime of randomized search heuristics. This property is explored in this pa-
per, and we show that there is a strong FDC for sufficiently dense k-CNF
formulas. Usually, the FDC is established by sampling search points and cal-
culating the empirical correlation between fitness and the distance to a known
optimum. In order to make it useful for upper bounds on the runtime of ran-
domized search heuristics, we must be able to make rigorous statements about
the properties of the relationship between fitness and distance and show that
those properties hold with high probability. We also require such statements
to explicitly depend on the input size, and hence are valid for all problem sizes
larger than a reasonable minimum bound. Experimental investigations into
FDC, on the other hand, can only make statements about fixed problem sizes.

We prove rigorous bounds on a suitable notion of FDC for k-CNF formulas
having at least logarithmic density. This admits a proof of an improved runtime
bound of O(n log n), attained with probability 1 − o(1), for these instances.
We also present a straightforward matching lower bound for asymptotically
almost all satisfiable k-CNF formulas of sufficiently high constraint density.

We begin by studying the planted model of random k-CNF distributions
and extend our results to the filtered model using a straightforward general-
ization of a correspondence on 3-CNF formulas due to Ben-Sasson et al. [6].
Planted distributions for the maximum clique problem in graphs have also
been studied by Storch [38] in the context of randomized search heuristics.
In propositional satisfiability, the planted distribution of k-CNF formulas is
known to be easy to solve for classical algorithms [27], and our objective is to
advance the theoretical analysis of evolutionary algorithms on random satisfi-
ability models. This article is based on its conference version [14] which carried
out the investigations for 3-CNF formulas. The present article generalizes the
results obtained in the conference version to k-CNF formulas where k ≥ 3 is
a constant.

The outline of the paper is a follows. We introduce the model and algo-
rithm under investigation in Section 2. We start our analysis by investigating
formulas of high (linear) density in Section 3 and prove the O(n log n) bound.
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We then extend this analysis to formulas of logarithmic density and present a
matching lower bound on the expectation. Finally, we give a short proof in Sec-
tion 4 that the runtime of the (1+1) EA is faster than exponential for very low
constant densities. Our theoretical results are complemented by experimental
investigations in Section 5. We conclude the paper in Section 6.

2 Preliminaries

A k-CNF formula F is obtained from a set of n Boolean variables {v1, v2, . . . , vn}
by forming a logical conjunction of exactly m clauses F = C1 ∧C2 ∧ · · · ∧Cm.
Each clause is the logical disjunction of exactly k literals, Ci = ℓi1 ∨ · · · ∨ ℓik
and each literal ℓij is either an occurrence of a variable v or its negation ¬v. A
k-CNF formula F is satisfiable if and only if there is an assignment of variables
to truth values so that every clause contains at least one true literal.

The set of all assignments to a set of n Boolean variables is isomorphic
to {0, 1}n by interpreting the bit at each position i of the string as the state
of exactly one Boolean variable vi. Given a string x ∈ {0, 1}n, we say a dis-
junctive clause C is satisfied by x if it evaluates to true under the variable
assignment corresponding to x. Otherwise, we say it is unsatisfied or false.
For a length-m formula F on n variables, we define the fitness function f :=
fF : {0, 1}n → {0, . . . ,m} defined by fF (x) := |{C ∈ F : C is satisfied by x}|.
If F is satisfiable, the task of finding a satisfying assignment reduces to the
task of maximizing f .

The standard (1+1) EA, illustrated in Algorithm 1, is a basic evolutionary
algorithm that maintains a size-one population and produces a single offspring
in each step. It can be characterized as a stochastic hill-climbing search that
uses the standard bit-wise uniform mutation operator. Given a length-m for-
mula F on n variables we seek an asymptotic bound on the runtime of the
(1+1) EA searching for a satisfying assignment to F by optimizing the cor-
responding pseudo-Boolean function f = fF . We study the infinite stochastic
process {x(t) : t ∈ N0} on {0, 1}n where x(t) is the assignment generated in
iteration t of Algorithm 1. The runtime of the (1+1) EA is the random variable
T = inf{t ∈ N0 : f(x(t)) = m}.

Algorithm 1: The (1+1) EA.

choose x ∈ {0, 1}n uniformly at random;
repeat forever

y ← x;
flip each bit of y independently with probability 1/n;
if f(y) ≥ f(x) then x← y;

In order to bound the runtime of the (1+1) EA, we will consider the se-
quence (x(0), x(1), . . .) of assignments generated by the (1+1) EA and study
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the drift of corresponding stochastic processes that measure fitness values and
distance values along this sequence. To make precise statements about the
runtime, we rely heavily on the following drift theorem.

Theorem 1 (Multiplicative Drift [12,13]) Let {Xt : t ∈ N0} be a se-
quence of random variables over R≥0. Let T be the random variable that de-
notes the earliest point in time t ≥ 0 such that Xt < 1. Assume that there
exists δ > 0 such that, for all a ≥ 1, E(Xt −Xt+1 | Xt = a) ≥ δ a. Then for
all a ≥ 1, we have

E(T | X0 = a) ≤ 1 + ln(a)

δ

and

Pr

(
T >

λ+ ln(a)

δ

∣∣∣∣ X0 = a

)
≤ e−λ for all λ > 0.

2.1 Random k-CNF distributions

Throughout the paper we assume that k ≥ 3 is an integer constant. We con-
sider distributions of k-CNF formulas consisting of m clauses of length exactly
k over n distinct variables. We also impose the assumption that each clause
consists of distinct variables. We assume clauses are sampled with replacement
(i.e., repeated clauses are allowed). This assumption is common, and simplifies
the proofs.

Definition 1 Let Ωn,m,k be the finite set of all k-CNF formulas over n vari-
ables and m clauses.

We say a property holds for asymptotically almost all formulas with n
variables and m := m(n) clauses if that property holds for all formulas in
Ωn,m,k except for a set of measure tending to zero with n → ∞.

We associate random k-CNF distributions with categorical distributions
over the sample space Ωn,m,k. In particular, the well-known uniform distribu-
tion Un,m,k is defined by

Pr(F ) = |Ωn,m,k|−1

for all F ∈ Ωn,m,k. The filtered distribution USAT
n,m,k is the uniform distribution

conditioned on satisfiability, that is, we have

Pr(F ) = |{F ∈ Ωn,m,k : F is satisfiable}|−1

for all satisfiable formulas F . The planted distribution Pn,m,k is the uniform
distribution conditioned on satisfiability by a “planted assignment” x⋆. For all
formulas F satisfied by the assignment x⋆, we have

Pr(F ) = |{F ∈ Ωn,m,k : F is satisfied by x⋆}|−1.

When considering a formula F constructed from Pn,m,k, without loss of gen-
erality we will hereafter assume that the planted solution is x⋆ = (1, 1, . . . , 1)
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since the behavior of the (1+1) EA is invariant under negating literals of F . We
define the function d : {0, 1}n → {0, . . . , n};x 7→ |{i : xi = 0}| that measures
the Hamming distance to the planted solution.

Definition 2 Fix a small constant ϵ > 0. We define a subset of directed
hypercube edges H = Hϵ ⊆ {0, 1}n × {0, 1}n such that (x, y) ∈ H if and only
if

1. |{i : xi ̸= yi}| = 1,
2. d(y) = d(x)− 1, and
3. d(x) ≤ (1/2 + ϵ)n

The following lemma introduces a two-sided bound on the expected differ-
ence in fitness between pairs in H, provided that F is drawn from the Pn,m,k

distribution.

Lemma 1 Let (x, y) ∈ H. Let F ∼ Pn,m,k and f := fF . Then there exists a
γk : R → R such that

km

(2k − 1)n
(1− γk(n)) ≤ E(f(y)− f(x)) ≤ km

(2k − 1)n
,

where limn→∞ γk(n) = 1−
(
1−2ϵ
2

)k−1
.

Proof Let A be the set of all k-CNF clauses on n variables with at least one
positive literal that are not satisfied by x but are satisfied by y. Similarly, let
B be the set of all k-CNF clauses on n variables with at least one positive
literal that are satisfied by x but not satisfied by y. Let C ⊃ A∪B be the set
of all k-CNF clauses on n variables with at least one positive literal.

We begin by computing the sizes of the sets A, B and C. Let i ∈ [n] be
the unique index in which x and y differ. Then every clause in A must contain
the variable vi as a positive literal. Furthermore, since the clause is unsatisfied
under x, the polarity of the remaining k − 1 literals in the clause is uniquely
determined by their corresponding bit values in x. There are k − 1 remaining
variables to pick from the set of all variables (excluding vi), so |A| =

(
n−1
k−1

)
.

Similarly, every clause in B must contain the negative literal ¬vi, and the
polarity of the remaining literals in the clause is again uniquely determined by
the state of the corresponding bit values in y. However, this also counts clauses
that contain no positive literal, and so these must be subtracted out. Any k-
clause not satisfied by y has no positive literal if and only if it is comprised
entirely of literals that correspond to variables that are true under y. There
are n− d(y) such variables, so

|B| =
(
n− 1

k − 1

)
−
(
n− d(y)− 1

k − 1

)
≤
(
n− 1

k − 1

)
−
(
n(1/2− ϵ)

k − 1

)
,

where the inequality follows from d(y) = d(x)− 1 ≤ (1/2 + ϵ)n− 1. Setting

γk(n) = 1−
(
n(1/2− ϵ)

k − 1

)
/

(
n− 1

k − 1

)
,
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we have

0 ≤ |B| < γk(n)

(
n− 1

k − 1

)
. (1)

Finally, we note that the set C is constructed by all k-clauses that contain
at least one positive literal, so |C| = (2k − 1)

(
n
k

)
.

To finish the proof, suppose F ∼ Pn,m,k. Let ZA be the random variable
that counts the occurrences of clauses from A in F and ZB be the random
variable that counts the occurrences of clauses from B in F . Since F contains
exactly m clauses chosen from C uniformly at random, we have E(ZA) =
m|A|/|C| and E(ZB) = m|B|/|C|. Hence,

E(f(y)− f(x)) = E(ZA − ZB) = m

(
|A| − |B|

|C|

)
,

and the claimed two-sided bound follows from (1). ⊓⊔

Lemma 2 Let n be sufficiently large and m a function of n. Let (x, y) ∈ H.
Let F ∼ Pn,m,k and f = fF . Then

Pr
(c1m

n
< f(y)− f(x) <

c2m

n

)
= 1− e−Ω(m/n)

for particular positive constants c1 and c2 that depend on k.

Proof We consider the random variables Z = ZA − ZB from the proof of
Lemma 1. Note that ZA and ZB can each be written as the sum of m inde-
pendent indicator random variables (indicating whether or not the i-th clause
belongs to A or B).

By multiplicative Chernoff bounds, for any constant 0 < δ < 1,

Pr

(
ZA ̸∈

[
(1− δ)

km

(2k − 1)n
, (1 + δ)

km

(2k − 1)n

])
= e−Ω(m/n),

For n sufficiently large, γk(n) < (1 + δ/2)
(
1−

(
1−2ϵ
2

)k−1
)
, and so we also

have

Pr

(
ZB ̸∈

[
0, (1 + δ)

(
1−

(
1− 2ϵ

2

)k−1
)

km

(2k − 1)n

])
= e−Ω(m/n),

Thus both random variables take on values in these intervals with probability
1− 2e−Ω(m/n). Under this event,((

1− 2ϵ

2

)k−1

− 2δ

)
km

(2k − 1)n
< Z < (1 + δ)

km

(2k − 1)n
.

The proof is completed by choosing δ small enough. ⊓⊔



8 Benjamin Doerr et al.

2.2 Constraint density

The constraint density of a formula is the ratio of clauses to variables m/n.
The constraint density (apart from the constant factor of k) quantifies the
average number of constraints that are imposed on a variable. Boolean formu-
las with low constraint density are expected to be easy to satisfy, since each
variable has, on average, few constraints. On the other hand, formulas with
high constraint density are, on average, easy to refute because backtracking
search algorithms can quickly derive a contradiction. The study of a thresh-
old phenomenon in the uniform random k-CNF distribution Un,m,k has been
the focus of intense study in the last two decades. The satisfiability threshold
conjecture [2] asserts that for all k ≥ 3 there exists a real number rk such that
if is a formula drawn uniformly at random from the set of all k-CNF formulas
with n variables and m clauses, then

lim
n→∞

Pr{F is satisfiable} =

{
1 m/n < rk;

0 m/n > rk.

Recently, Coja-Oghlan and Panagiotou [?] proved that rk = 2k ln 2 − 1
2 (1 +

ln 2) + o(1) where the error term vanishes as k → ∞. Ding, Sly, and Sun [?]
obtained an exact representation of the threshold for all k ≥ k0, where k0 is
a large enough constant. There are still no exact results for the location of
this threshold at low values of k, but experimental studies on 3-CNF formulas
suggest one exists around r3 ≈ 4.26. For a more detailed treatment of random
satisfiability, see the chapter by Achlioptas [1].

Backtracking SAT solvers like the Davis-Putnam-Logemann-Loveland
(DPLL) procedure exhibit an empirical hardness peak around the critical
value [29,?]. This corresponds to the so-called phase transition phenomenon in
the uniform random Un,m,k model where formulas near the critical threshold
have high decision complexity [24].

The planted Pn,m,k and filtered USAT
n,m,k models obviously have no satisfia-

bility threshold. However, it is interesting to observe how the complexity of
formulas depends on the constraint density parameter on these distributions
since they are formed from the uniform distribution Un,m,k that has been
conditioned on satisfiability.

Planted 3-CNF formulas with density m/n = Ω(n) are known to be easy
for simple greedy algorithms [26] (always flipping the variable assignment that
gives the largest improvement). More sophisticated algorithms can even han-
dle planted formulas with densities bounded below by a sufficiently high con-
stant [27,18].

For low-density planted 3-CNF formulas, a basic hillclimber that accepts
only strictly improving moves fails with high probability for ε < m/n <
(7/6) lnn (where ε is an arbitrary positive constant) because it is likely to
become trapped in a local optimum [7]. This strict hillclimber is claimed to be
successful again at extremely low densities, i.e., m/n ≈ n−1/4 [7]. A slightly



Time Complexity Analysis of EAs on Random Satisfiable k-CNF Formulas 9

more sophisticated hillclimber called GSAT is successful with high probabil-
ity on planted 3-CNF formulas of density Ω(log n) [37]. On the other hand,
the random WalkSAT local search algorithm [34] (which iteratively selects
an unsatisfied clause uniformly at random and flips one of its variables uni-
formly at random) needs an exponential number of steps to find the planted
assignment [42].

Similar to its the uniform counterpart, an empirical easy-hard-easy pattern
has also been also observed on the filtered USAT

n,m,3 model near the same critical
parameter [8]. In the remainder of the paper we characterize the time complex-
ity of the (1+1) EA on the Pn,m,k and USAT

n,m,k models in different constraint
density regimes.

3 Upper Bounds Based on FDC Arguments

We now study the runtime of the (1+1) EA on high-density planted formulas.
We begin with linear densities in Section 3.1, namely, length-m formulas on
n variables where m/n ≥ cn for a specific constant c. In this regime we prove
a strong FDC condition and use this to show that for asymptotically almost
all formulas, the (1+1) EA finds a satisfying assignment in O(n logn) time
with high probability. For k = 3 this improves by a linear factor the previous
runtime bound [39] for the (1+1) EA at these densities.

In Section 3.2, we consider formulas where m/n ≥ c log n for a particular c.
In this sparser regime, we can only prove a weaker type of FDC (Lemma 4).
We overcome this difficulty by arguing that the typically relatively quick run
of the (1+1) EA only visits a very small part of the search space, hence this
weaker FDC condition suffices. Of course, this argument requires that we work
in the joint probability space of the random decisions of the algorithm and the
formula sampling process.

3.1 Linear density

The following strong FDC condition is the key to our analysis in the case of
linear densities. It contains two crucial parts. The first is that in a sufficient
part of the search space (given by the set H) we gain a significant fitness
increase when going to a Hamming neighbor closer to the planted solution.
This part is very similar to the condition used in [39]. The second part shows
a weaker fitness distance correlation, however, for a much larger set of pairs of
search points (in particular, not only for Hamming neighbors). This part will
enable us to argue that also multi-bit flip mutations cannot be harmful.

Definition 3 We say a formula F has strong FDC if f = fF satisfies the
following two properties.

Property A. For all (x, y) ∈ H, we have c1m/n < f(y)− f(x) < c2m/n.
Property B. For all x, y ∈ {0, 1}n with n/2 + ϵn ≥ d(x) ≥ n/2 + 3ϵn/4 and

d(y) ≤ n/2 + ϵn/2, we have f(x) < f(y).
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Here 0 < c1 < c2 are the constants used in Lemma 2.

Lemma 3 Let F ∼ Pn,m,k, where m/n ≥ cn for a sufficiently large positive
constant c. The probability that F has strong FDC is at least 1− e−Ω(n).

Proof By Lemma 2 together with a union bound over the elements of H,
Property A of Definition 3 holds with probability 1− e−Ω(n).

To show Property B, we first observe that for any z ∈ {0, 1}n, the expected
fitness E(f(z)) depends only on d(z) and not the particular z. More precisely,
let z, z′ ∈ {0, 1}n such that d(z) = d(z′) =: i. Then E(f(z)) = E(f(z′)). We
may thus define Ei := E(f(z)).

Let x, y ∈ {0, 1}n with n/2 + ϵn ≥ d(x) ≥ n/2 + 3ϵn/4 and d(y) ≤ n/2 +
ϵn/2. Let u, v ∈ {0, 1}n such that d(u) = d(x) =: a and d(v) = d(y) =: b and
such that u ≤ v bit-wise, that is, such that u can be transformed into v by
changing a− b ≥ ϵn/4 zeros to ones.

We now argue that Eb ≥ Ea+Θ(m). By a repeated application of Lemma 1,
we have

Eb = E(f(v)) ≥ E(f(u)) +
km

(2k − 1)n
(1− γk(n))(ϵn/4) = Ea +Θ(m).

Let q := (Ea + Eb)/2. Note that f(y) is a random variable that can be
written as sum of m independent 0/1 random variables. Consequently, the
additive Chernoff bound [?, Theorem 1.11] shows that

Pr(f(y) ≤ q) = Pr(f(y) ≤ Eb − (Eb − Ea)/2) ≤ e−Θ(m).

The same argument shows that x has a fitness of at least q with probability
e−Θ(m) only. Consequently, we have f(x) < f(y) with probability 1− e−Θ(m).
Applying a union bound over the applicable pairs x, y ∈ {0, 1}n, we conclude
that Property B of Definition 3 holds with probability at least 1− e−Ω(n). A
final union bound over both properties concludes the proof. ⊓⊔

Note that the proof above actually shows that with probability 1−e−Ω(n),
any x, y ∈ {0, 1}n with d(y) ≤ d(x)− ϵ/4 and d(x) ≤ n/2 + ϵn satisfy f(x) <
f(y). We shall not need this stronger statement, though.

Theorem 2 Let m/n ≥ cn for a sufficiently large positive constant c. For all
but an e−Ω(n)-fraction of the k-CNF formulas with n variables and m clauses
satisfied by 1n, the runtime of the (1+1) EA is O(n log n) with probability
1− o(1).

Proof By Lemma 3, every planted formula at density at least cn has strong
FDC except for an e−Ω(n)-fraction, so we will assume for the remainder of the
proof that we are working with a formula that has the strong FDC property.

If F has strong FDC, then for states that are not too far away from the
planted assignment, the fitness and distance are tightly correlated in the fol-
lowing sense. For all x ∈ {0, 1}n with d(x) ≤ n/2 + ϵn, we have

f(x) + c2d(x)m/n ≥ m and f(x) + c1d(x)m/n ≤ m. (2)
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This follows again from regarding a shortest path from x to 1n and applying
Property A to each edge.

We consider the drift of the stochastic process {Xt : t ∈ N0}, where Xt =
m − f(x(t)). Assume at iteration t that 0 < d(x(t)) ≤ (1/2 + ϵ)n (we will
later show that the second inequality holds with high probability throughout
the run of the algorithm). By the structure of the hypercube, the set S of
y ∈ {0, 1}n such that (x(t), y) ∈ H, has cardinality exactly d(x(t)).

For each y ∈ S, since f(y) > f(x(t)) + c1m/n > f(x(t)), a mutation from
x(t) to y is clearly accepted by selection. Furthermore, selection does not accept
mutations to lower fitness values, so Xt −Xt+1 ≥ 0 with probability one. Let
E denote the event that mutation produces some y ∈ S from x(t). Let a ≥ 1.
By the law of total expectation,

E(Xt −Xt+1 | Xt = a) ≥ E(Xt −Xt+1 | Xt = a ∧ E) Pr(E)

≥ E(Xt −Xt+1 | Xt = a ∧ E)d(x
(t))

en
.

By the first inequality in (2),

Xt

c2m/n
=

m− f(x(t))

c2m/n
≤ d(x(t)).

Also, if E holds, then we have Xt − Xt+1 ≥ c1m/n by Property A. Conse-
quently, we can bound the drift by

E(Xt −Xt+1 | Xt = a) ≥ c1(m/n)
a

en(c2m/n)
= a

c1/c2
en

. (3)

We only need to show that with high probability, the process never leaves
H. Using the multiplicative Chernoff bound, the initial search point generated
uniformly at random has d(x(0)) ≤ n/2 + ϵn/2 with high probability. In this
case, by Property B of Definition 3, the EA can never reach a search point
with distance n/2+3ϵn/4 or worse in H. Since H by definition contains points
at distance at most (1/2 + ϵ)n, in order for the process to leave H, it must
jump over the gap between n/2 + 3ϵn/4 and n/2 + ϵn. This can only occur
after mutating at least ϵn/4 bits: an event that occurs with probability at most
e−Ω(n logn) under uniform mutation.

We thus assume that the process does not leave H, and so the inequality
of (3) is valid for all times t. Finally, we apply Theorem 1 using inequality (3)
by setting δ = c1/(c2en) and λ = log n to obtain the tail bound. ⊓⊔

3.2 Logarithmic density

For smaller densities we can obtain a similar bound on the runtime, but we
have to take a slightly different proof approach. At high densities, in the proof
of Theorem 2 we could argue that (1) all but a vanishing fraction of the
formulas have a certain property and (2) then argue that all formulas having
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this property have an O(n log n) runtime with probability 1−o(1). By this, we
could treat the probability spaces of the random formulas and the actions of
the algorithm separately. At the lower densities we regard in this subsection, we
cannot make this separation, but can only prove that in the joint probability
space we have a runtime of O(n log n) with probability 1 − O(n−1), which is
technically more demanding. Of course, once we have proven these results,
we can deduce that, e.g., only a fraction of at most O(n−1/2) of the formulas
are such that the probability of leading to a runtime higher than O(n log n)
is O(n−1/2). In all these statements we could replace the exponents of n by
arbitrary constants. To increase the readability, we decided to choose specific
constants leading to an overall O(n−1) failure probability.

For any x ∈ {0, 1}n with d(x) = k we define P (x) := (x = x0, x1, . . . , xk =
1n) to be the unique path, where xi+1 is constructed from xi by flipping the
leftmost zero-bit.

Lemma 4 Let c be a sufficiently large positive constant, m/n > c lnn, F ∼
Pn,m,k and f = fF . If d(x) ≤ (1/2+ ϵ)n, then with probability at least 1−n−3

we have that for every (xi, xi+1) ∈ P (x), c1m/n ≤ f(xi+1)− f(xi) ≤ c2m/n.
Here c1, c2 are as in Lemma 2.

Proof For all x, y ∈ {0, 1}n, we define the indicator random variable
χx,y : Ωn,m,k → {0, 1} by

χx,y(F ) =

{
1 if c1m

n < f(y)− f(x) < c2m
n ,

0 otherwise.

A simple union bound shows

Pr

 ∪
(xi,xi+1)∈P (x)

χxi,xi+1(F ) = 0

 ≤
∑

(xi,xi+1)∈P (x)

Pr
(
χxi,xi+1(F ) = 0

)
≤ ne−Ω(m/n) ≤ n−3,

where we have applied Lemma 2 and used the fact that m > cn lnn, c suffi-
ciently large. ⊓⊔

Lemma 4 bounds the probability that the fitness and distance are suffi-
ciently correlated along a path to the planted solution on a random formula
of density at least c lnn for a specific constant c. We now apply this result
to derive a bound on the runtime of the (1+1) EA over such a formula. Note
that the lemma does not immediately imply our results as it is very unlikely
that the (1+1) EA follows exactly the path P (x) when x is the initial search
point. In fact, because of mutations flipping more than one bit, it does happen
regularly that the (1+1) EA does not follow a path in the Hamming cube at
all.
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Theorem 3 Let m/n > c lnn for a sufficiently large positive constant c. Let
F ∼ Pn,m,k and f = fF . Then with probability 1−O(n−1), the runtime of the
(1+1) EA optimizing the random function f is O(n log n). Note that here the
probability is taken over the joint probability space of the random sampling of
the formula and the random actions of the (1+1) EA.

Proof Let r be a sufficiently large constant. We consider the first rn lnn steps
of the (1+1) EA on a formula F drawn from Pn,m,k uniformly at random and
show that, with probability polynomially close to one, the (1+1) EA has found
a satisfying assignment.

We say a bitstring x ∈ {0, 1}n has an FDC path if the following two
properties hold at x.

Property A′. For all (xi, xi+1) ∈ P (x), we have c1m/n ≤ f(xi+1) − f(xi) ≤
c2m/n.

Property B′. d(x) ≤ n/2 + 3ϵn/4.

We say the process has failed at time t if there is an 0 ≤ s ≤ t such that
x(s) does not have an FDC path. We argue by induction that the probability
that the process fails at time t conditioned on the event that it has not failed
at time t − 1 is sufficiently low. Specifically, in each step we show that if the
process has not yet failed, Property B′ holds with probability 1− e−Ω(n), and
the probability of Property A′ conditioned on B′ is polynomially close to one.

For the initial point, we assume a slightly stronger condition than Property
B′, namely that d(x(0)) ≤ n/2 + ϵn/2, which by Chernoff bounds holds with
probability exponentially close to one. Let h = f(x(0)). If t > 0 and the process
has not yet failed at time t − 1, then Property B′ can be violated only if the
(1+1) EA accepts a point sufficiently far away from the planted solution. Let
y be the offspring generated in iteration t of the (1+1) EA. We make a case
distinction on three disjoint events occurring in the mutation step.

Case d(y) > n/2 + ϵn. Since Property B′ holds at x(t−1), in this case at least
ϵn/4 bits must change during mutation to produce y. The number of bits
that change is distributed binomially; at least j bits change with probability
at most

(
n
j

)
(1/n)j ≤ 1/j!. Therefore, this case occurs only with probability

e−Ω(n logn).
Case n/2 + ϵn ≥ d(y) > n/2 + 3ϵn/4. By the same argument as in the proof
of Lemma 3, we have f(y) ≥ h only with e−Ω(m) probability. Since the fitness
of points can only monotonically increase during a run of the (1+1) EA, with
probability 1 − e−Ω(m) we have f(y) < h ≤ f(x(t−1)) and so x(t) = x(t−1)

since y would not be accepted.
Case d(y) ≤ n/2 + 3ϵn/4. In this case, Property B′ will also not be violated
by x(t) because, x(t) = y or x(t) = x(t−1), both of which satisfy Property B′.

Since the first two events occur with exponentially small probability (and the
events partition the probability space), we can conclude that, as long as the
process has not failed by iteration t − 1, then with probability 1 − e−Ω(n),
Property B′ holds at x(t).
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Assuming Property B′ holds at x(t), we can apply Lemma 4 and conclude
the conditional probability that Property A′ also holds at x(t) is at least 1 −
n−3. The joint probability that both properties hold is therefore at least 1 −
O(n−3).

Now by induction on t, the process does not fail for rn lnn steps with
probability at least 1 − O(n−1). Conditioning on the event that the process
has not failed for a phase of rn lnn steps, the bound on the drift during this
phase is the same as with inequality (3). We can again apply Theorem 1 with
λ = rn lnn to obtain the tail bound. ⊓⊔

3.3 Extension to the uniform filtered distribution

In an unpublished manuscript, Ben-Sasson et al. [6] proved that for at least
logarithmic densities and k = 3, the uniform planted distribution Pn,m,3 be-
comes statistically close to the uniform filtered distribution USAT

n,m,3. In this
section, we show this remains true for any constant k. This allows us to apply
our runtime bounds that hold with high probability on dense planted instances
to the uniform filtered k-CNF distribution. To ease the notation when working
with different distributions, let us write Pr(E | F ∼ D) to denote the probabil-
ity that the event E holds for a formula F chosen randomly with distribution
D.

We begin with the following technical lemma, which yields a straightfor-
ward extension of the results of [6] to higher arity clauses. Denote by X(F ) the
random variable over Ωn,m,k that counts the number of satisfying assignments
to F .

Lemma 5 If m/n > 2(2k − 1) lnn, the following three properties hold.

1. Pr(X(F ) = 1 | F ∼ Pn,m,k) = 1− o(1).
2. Pr(X(F ) = 1 | F ∼ USAT

n,m,k) = 1− o(1).
3. For all f ∈ Ωn,m,k such that X(f) = 1,

Pr(F = f | F ∼ Pn,m,k) = Pr(F = f | F ∼ USAT
n,m,k).

Proof To prove property 1, consider a planted formula F with planted solu-
tion x⋆ = (1, 1, . . . , 1) (w.l.o.g.). Let Aδ denote the event that an arbitrary
assignment x′ with d(x′) = δ satisfies a k-clause that is selected uniformly at
random from the set of all clauses satisfied by x⋆.

For simplicity, we assume without loss of generality that x′ and x⋆ agree
on the first n− δ positions, that is,

x′ = (1, 1, . . . , 1︸ ︷︷ ︸
n−δ

, 0, 0, . . . , 0︸ ︷︷ ︸
δ

).

Let C be drawn uniformly at random from all clauses satisfying x⋆. There are
two events that can occur for C to be satisfied by x′. The first event is that
all k variables of C are chosen from the first n − δ variables. In this case, C
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must be satsified by x′ since it is also satisfied by x⋆. The second event is
that not all k variables of C are chosen from the first n − δ, but the signs of
the literals are set correctly so that C is still satisfied by x′. The first event
happens with probability

(
n−δ
k

)
/
(
n
k

)
. In the second event, the probability that

not all variables of C are chosen from the first n − δ is 1 −
(
n−δ
k

)
/
(
n
k

)
. Given

the chosen variables, the probability that C is not satisfied by x′ is 1/(2k − 1)
since there are exactly 2k − 1 possible ways to set the literals to ensure C is
still satisfied by x⋆, and each clause is made false by exactly one setting of its
k variables. Thus,

Pr(Aδ) =

(
n−δ
k

)(
n
k

) +
2k − 2

2k − 1

(
1−

(
n−δ
k

)(
n
k

) )

≤ 2k − 2

2k − 1
+

1

2k − 1

(
n− δ

n

)
= 1− δ

(2k − 1)n
.

By the union bound, the probability that there are more satisfying assignments
than x⋆ is at most

Pr (X(F ) > 1 | F ∼ Pn,m,k) ≤
n∑

δ=1

(
n

δ

)
Pr(Aδ)

m

≤
n∑

δ=1

(
n

δ

)(
1− δ

(2k − 1)n

)2(2k−1)n lnn

≤
n∑

δ=1

nδe−2δ lnn =
n∑

δ=1

e−δ lnn = o(1).

The proof of property 2 is identical to the proof of Lemma 3.3 in [6], but we
derive it again here in our own notation for completeness. We first define the

following sets. For i ∈ [2n], let S
(i)
n,m,k = {F : F ∈ Ωn,m,k and X(F ) = i} and

Sn,m,k =
∪2n

i=1 S
(i)
n,m,k. When sampling a formula from Pn,m,k, the planted as-

signment x⋆ is sampled first uniformly at random from all 2n assignments. Let
s := |{F ∈ Sn,m,k : F is satisfied by x⋆}|. By a simple symmetry argument,
for an arbitrary y ∈ {0, 1}n, |{F ∈ Sn,m,k : F is satisfied by y}| = s.

Suppose there exists a formula F ∈ Ωn,m,k with X(F ) = i. This F is
generated by the planted model if (1) one of the i assignments that satisfies
F is selected as the planted assignment x⋆, and (2) F is then selected from
the set of formulas satisfied by x⋆. By definition, the planted model selects a
formula uniformly from the formulas that satisfy the planted assignment so
(1) occurs with probability i/2n and (2) occurs with probability 1/s. We thus
have

Pr (X(F ) = i | F ∼ Pn,m,k) =
i|S(i)

n,m,k|
2ns

≤
i|S(i)

n,m,k|
|Sn,m,k|

, (4)
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because |Sn,m,k| ≤ 2ns. Since the uniform filtered distribution chooses uni-
formly from every satisfiable formula,

Pr(X(F ) = 1 | F ∼ USAT
n,m,k) =

|S(1)
n,m,k|

|Sn,m,k|
≥ Pr(X(F ) = 1 | F ∼ Pn,m,k) = 1− o(1)

by Equation (4) and Property 1.
Finally, observing that both distributions give equal weight among all sat-

isfying assignments with unique solutions yields property 3. ⊓⊔

Theorem 4 Let E be an event defined for a formula F . If m/n > c log n for
a particular constant c > 0, then

Pr
(
E | F ∼ USAT

n,m,k

)
= Pr (E | F ∼ Pn,m,k)± o(1).

Proof For notational simplicity define the event A := {X(F ) = 1} and the
distributions P (·) := Pr(· | F ∼ Pn,m,k) and Q(·) := Pr(· | F ∼ USAT

n,m,k). By
the law of total probability,

Q(E) = Q(E | A)Q(A) +Q(E | A)Q(A), and

P (E) = P (E | A)P (A) + P (E | A)P (A).

By property 3 of Lemma 5, P (F |A) = Q(F |A) so

Q(E) =
(
P (E)− P (E | A)P (A)

) Q(A)

P (A)
+Q(E | A)Q(A)

= (P (E)− o(1))
1− o(1)

1− o(1)
+ o(1),

by properties 1 and 2, which completes the proof. ⊓⊔

We conclude the typical runtime of the (1+1) EA very rarely deviates
above O(n log n) for all satisfiable formulas of sufficiently high density, except
for a set of measure vanishing with n.

Corollary 1 Let m/n > c lnn for a sufficiently large positive constant c. The
runtime of the (1+1) EA is bounded by O(n log n) with probability 1 − o(1)
on asymptotically almost all satisfiable k-CNF formulas on n variables and m
clauses.

Wemay also use these results to derive a simple lower bound on the runtime
of the (1+1) EA.

Theorem 5 On asymptotically almost all satisfiable k-CNF formulas of den-
sity m/n > c lnn, c a sufficiently large constant, the runtime of the (1+1) EA
is Ω(n log n) with high probability.
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Proof By Lemma 5, setting c := 2(2k − 1), for densities above c lnn, asymp-
totically almost all formulas have a unique satisfying assignment. For the re-
mainder of the proof, assume that F is satisfied by a unique x⋆ ∈ {0, 1}n,
that is, the corresponding fitness function fF has a unique optimum x⋆. Let
t = γ(n− 1) ln(n) with γ < 1 a constant. The probability that the initial indi-
vidual and the t individuals generated in the first t iterations all have the ith
bit different from x⋆

i , is (1/2)(1 − 1/n)t ≥ (1/2)e−γ ln(n) = n−γ/2. Note that
this event implies that the (1+1) EA has not found the optimum within the
first t iterations. Since the (1+1) EA, apart from the selection step, treats the
bits independently, the probability that none of these n bad events happens,
is at most (1− n−γ/2)n ≤ exp(−n1−γ/2) = o(1).

The proof above mostly builds on the well-known fact that the (1+1) EA
needs Ω(n log n) iterations to optimize a function with unique global optimum.
However, we have not found such a simple proof for a high-probability state-
ment in the literature. For the expectation, this was shown already in Droste
et al. [16] (for linear functions with positive weights, but it is clear that the
proof extends to arbitrary functions with unique optimum).

4 Low-density regime

On the uniform k-CNF distribution, formulas that appear to be difficult for
complete search algorithms lie near the critical threshold rk. For example 3-
CNF formulas are empirically harder for DPLL near r3 ≈ 4.26 [29]. However,
at very low densities, random formulas become easy to solve again on average,
even by very simple linear-time backtracking-free heuristics such as the unit
clause heuristic, which succeeds with asymptotically positive probability at all
densities m/n < (1 − εk)(e/2)2

k/k where εk tends to zero for large k [28]. A
slight generalization of the unit clause heuristic (called the small clause heuris-
tic) succeeds with high probability for densities up tom/n < (1−εk)(e

2/8)2k/k
and can even be improved to (1.817 − εk)2

k/k if limited backtracking is al-
lowed [19]. The pure literal heuristic again succeeds with high probability if
m/n is below some constant ck, however, with ck = O(log k) only [30,31]. For
k = 3, for example, we have ck ≈ 1.637.

In the context of randomized search heuristics, Alekhnovich and Ben-
Sasson [3] discovered a deep connection between a randomized local search
algorithm (known as RWalkSAT that iteratively flips a single randomly cho-
sen variable in a random unsatisfied clause) and the pure literal heuristic.
They proved that such a constraint-directed random walk finds a satisfying
assignment on uniform random 3-CNF formulas with high probability in lin-
ear time for constraint densities at most 1.637. More recently, Coja-Oghlan
and Frieze proved that this approach works for all k > k0 (where k0 > 3 is
a constant) when the density is below (1/25)2k/k [10]. We should point out,
though, that this randomized search heuristic is quite different from typical
evolutionary algorithms. In particular, RWalkSAT is completely ignorant of
the fitness (except that is stops when a satisfying assignment is found).
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In the interest of a more complete picture, we would also like to understand
the behavior of the (1+1) EA at very sparse densities. While it may be easy
to believe that such instances are easy for the (1+1) EA, we can support this
potential belief only weakly via our experimental results in Section 5. The fact
that all known efficient heuristics of such instances ignore the fitness may even
shed some doubt. In this section, we show that if the density is O(k−2), then
the structure of the constraints is so sparse that the formula breaks up into
logarithmic-size components that the (1+1) EA can solve separately. However,
even from this we can only derive a subexponential, but not a polynomial time
bound.

Lemma 6 Let H = Hk(n,m) denote a random k-uniform hypergraph with n
vertices and exactly m hyperedges selected uniformly at random with replace-
ment from the family of all

(
n
k

)
possible k-sets.

Let α = km/n denote the average degree of H. If α < (k−1)−1, then with
high probability, the number of vertices in the largest connected component of
H is O(log n).

Proof Let H be the random hypergraph obtained from m times selecting a
k-set chosen independently and uniformly at random (that is, with replace-
ment). Let H0 be the hypergraph obtained from deleting multiple hyperedges.
Note that H and H0 have the same connected components. Let H1 be the
hypergraph obtained from H0 by repeatedly adding random hyperedges not
yet present until the number of hyperedges is exactly m. By construction, ev-
ery connected component of H0 (and thus of H) is contained in a connected
component of H1. In particular, the largest component of H is not larger than
the largest component of H1. Finally, due to a result of Schmidt-Pruzan and
Shamir [36], the largest component of H1 has size O(log n) with high proba-
bility. ⊓⊔

The constraint hypergraph of a formula is a hypergraph H = (X,E) where
X corresponds to the set of variables in F and E is a sequence of m nonempty
subsets ofX constructed as follows. Each clause C of F corresponds to a unique
S ∈ E that contains exactly the variables that appear as literals in C. Thus,
every k-CNF formula on n variables with m clauses has a unique k-uniform
constraint hypergraph with m hyperedges (parallel hyperedges are allowed).
It is easy to see that at very low constant densities, the constraint structure
of Boolean formulas breaks up into small components that the (1+1) EA can
solve separately. This is captured by the following theorem.

Theorem 6 Let F be a k-CNF formula drawn from Un,m,k with density
m/n < 1

k(k−1) . Then with high probability, the (1+1) EA finds a satisfying

assignment for F in subexponential time.

Proof We consider the average degree α of the constraint hypergraph H of
F . Since F is sampled uniformly at random from Ωn,m,k, its constraint hy-
pergraph is a random k-uniform hypergraph with n vertices and m edges
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sampled uniformly at random with replacement since each of the 2k distinct
clauses associated with each unique k-set is also selected uniformly at random.
Since α = km/n < 1/(k − 1), by Lemma 6, with high probability the largest
connected component in H contains O(log n) vertices.

In this case, let q be the number of connected components in H. We par-
tition the clause set into S1, S2, . . . , Sq such that Si is the set of clauses that
contain only variables from the i-th connected component of H (in some ar-
bitrary order). The fitness function f can be expressed as f(x) =

∑q
i=1 fi(x)

where fi(x) counts the number of clauses in Si that are satisfied by x. Since
each fi depends on at most O(log n) bits of x, f is decomposable into linearly
separable subfunctions of bounded size.

The proof is then completed by a simple fitness level argument [41]. In
particular, let (A0, . . . , Am) be a partition of {0, 1}n such that for all x ∈ Aj ,
f(x) = j. Let t be an arbitrary iteration in the execution of the (1+1) EA and
set ℓ := f(x(t)). As long as there is an unsolved subfunction fi with respect
to the assignment corresponding to x(t), the (1+1) EA can generate a strictly
improving offspring by solving fi and flipping no other bit outside of Si. The
resulting offspring must lie in some Aℓ′ with ℓ′ > ℓ. The probability of this
event is at least (1 − 1/n)n−|Si|(1/n)|Si| ≥ n−|Si|/e, and the waiting time to
increase the fitness level by at least one is bounded by en|Si|. Since there are at
most m = O(n) suboptimal fitness levels, the expected time until F is solved
is bounded by nO(logn) = 2o(n). ⊓⊔

Note that if we only aim at a statement on the expectation, then most of
the last paragraph of the proof could have been simply replaced by applying
a general result on optimization times of separable functions (Theorem 12
in [15]).

5 Experiments

In this section we report numerical experiments that investigate the constants
in the asymptotic bounds proved in this paper, and explore the runtime char-
acter of the (1+1) EA at lower densities. In Figure 1 we investigate the runtime
divided by n lnn as a function of n = 300, 310, . . . , 1000 for the Pn,m,k model
with k ∈ {3, 4, 5} and m/n = n. For each value of n and k we generate 100
random k-CNF formulas, and for each such random formula we conduct 100
runs of the (1+1) EA, measuring the first iteration in which it finds a satis-
fying assignment. Thus, for each value of n and k we have a total of 10000
measurements. We then calculate the quartiles of the number of iterations to
solve each formula as a robust statistic for the runtime as a function of n.
For each value of k ∈ {3, 4, 5}, the plotted value appears to converge to some
constant c ≤ e. Note that c might depend on k, but we cannot draw such
a conclusion from these experiments, as there exists a significant overlap in
the interquartile ranges. Most importantly, the plot provides empirical evi-
dence that the runtime bound proved in this paper is tight, and suggests that
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Fig. 1: Median runtime of the (1+1) EA divided by n lnn as a function of
n on formulas sampled from the Pn,m,k model where k ∈ {3, 4, 5}, m = n2

(constraint density is Θ(n)). The error bars denote the interquartile range.
The statistics are taken from 100 runs each on 100 random formulas generated
for each value of n.

the true runtime on the linear-density Pn,m,k model is concentrated around
cn lnn±O(n).

We repeat this experiment for asymptotically lower densities and plot the
results in Figure 2. In this case, we set m/n = 2(2k − 1) lnn for each random
formula corresponding to the statement of Theorem 3. The value of the leading
constant is taken from the proof of Theorem 5. The behavior that can be
observed in Figure 2 is very similar to the linear density case. Specifically, for
some a constant c ≤ e (again, that may depend on k), the true runtime on
log-density instances from Pn,m,k appears to be concentrated around cn lnn±
O(n).
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Fig. 2: Median runtime of the (1+1) EA divided by n lnn as a function
of n on formulas sampled from the Pn,m,k model where k ∈ {3, 4, 5}, m =
2(2k − 1)n lnn (constraint density is Θ(log n)). The error bars denote the
interquartile range. The statistics are taken from 100 runs each on 100 random
formulas generated for each value of n.

5.1 Phase transition behavior

In order to gain a more precise understanding of the behavior of the (1+1) EA
on random planted k-CNF formulas across the density spectrum, we report
numerical experiments that measure the time until a satisfying assignment is
found at different densities for some distinct values of n.

We focus on the case k = 3. On the Pn,m,3 model, for three distinct values of
n, i.e., n ∈ {100, 300, 1000}, we generate formulas using 100 equidistant values
of m such that the constraint density ranges from 1 to 10. For each distinct
density value, we generate 100 formulas from the random Pn,m,3 model and
run the (1+1) EA 100 times on each formula. Runs that do not complete in
at most 107 iterations are halted and removed from consideration. Of the runs
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Fig. 3: Runtime statistics for the (1+1) EA on the Pn,m,3 model controlling
m for constraint density. The statistics are taken from 100 runs each on 100
random formulas generated for each value of m/n. The marked lines denote
the median runtime. The error bars denote the interquartile range.

that do not fail, the median runtime as a function of constraint density for
these trials is plotted in Figure 3. We also plot the percentage of runs that
failed as a function of constraint density in Figure 4.

In these results, we also observe the classical easy-hard-easy pattern similar
to the one that occurs for complete DPLL solvers on the uniform random
model [29,?]. Remarkably, our experiments suggest that there is also a critical
density in the planted model Pn,m,3 for the (1+1) EA at which formulas are on
average more difficult to optimize. We also observe that the hardness peak for
the (1+1) EA occurs close to density values ofm/n ≈ 4.26, which is the critical
density for DPLL solvers on the uniform model Un,m,3. This corresponds to
the conjectured satisfiability threshold r3 for random unfiltered, unplanted
formulas.
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Fig. 4: Percentage of runs (out of 10000) for the (1+1) EA on the Pn,m,3

model requiring ≥ 107 iterations at each density value.

Below the hardness peak, the (1+1) EA appears to find a satisfying as-
signment quickly. Theorem 6 guarantees only subexponential time (and only
for densities below 1/6 on Un,m,3) and it remains an open theoretical question
whether or not polynomial time is possible again for low densities. As density
increases beyond the critical point, the empirical running time in Figure 3
appears to converge again toward en lnn for each n value. Theorem 3 estab-
lishes an asymptotic bound on the density at which most formulas become
easy again. An interesting open problem is the location of the critical density
below which formulas become difficult on average for the (1+1) EA.

6 Conclusions

We have presented a time complexity analysis of the (1+1) EA for randomly
constructed k-CNF formulas. Investigating the fitness distance correlation for
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high density formulas, we have shown an improved bound of O(n log n) on
the (1+1) EA. In extension to the investigations in [39], the O(n log n) bound
holds for formulas of logarithmic density with probability 1 − o(1), and for
k-CNF formulas where the only restriction on k is that it is constant. Our
complementary experimental investigations imply the leading constants in our
asymptotic bounds are low, and extend the investigations to other density
ratios.
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