Artificial Intelligence

Bayes’ Nets

Instructors: David Suter and Qince Li

Course Delivered @ Harbin Institute of Technology

[Many slides adapted from those created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. Some others from colleagues at Adelaide University.]
Probabilistic Models

- Models describe how (a portion of) the world works

- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - “All models are wrong; but some are useful.” — George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information
Independence
Two variables are independent if:

\[\forall x, y : P(x, y) = P(x)P(y) \]

- This says that their joint distribution factors into a product of two simpler distributions.

- Another form:

\[\forall x, y : P(x|y) = P(x) \]

- We write: \(X \perp \!\!\!\!\!\!\!\perp Y \)

Independence is a simplifying modeling assumption.

- Empirical joint distributions: at best “close” to independent.

- What could we assume for \{Weather, Traffic, Cavity, Toothache\}?
Example: Independence?

$$P_1(T, W)$$

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

$$P_2(T, W)$$

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.3</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.3</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.2</td>
</tr>
</tbody>
</table>

$$P(T)$$

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.5</td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
</tr>
</tbody>
</table>

$$P(W)$$

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Example: Independence

- N fair, independent coin flips:

<table>
<thead>
<tr>
<th></th>
<th>(P(X_1))</th>
<th>(P(X_2))</th>
<th>(P(X_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>T</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\[P(X_1; X_2; \ldots X_n) \]

\[2^n \]
Conditional Independence

- $P(\text{Toothache, Cavity, Catch})$

- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - $P(+\text{catch} \mid +\text{toothache}, +\text{cavity}) = P(+\text{catch} \mid +\text{cavity})$

- The same independence holds if I don't have a cavity:
 - $P(+\text{catch} \mid +\text{toothache}, -\text{cavity}) = P(+\text{catch} \mid -\text{cavity})$

- Catch is conditionally independent of Toothache given Cavity:
 - $P(\text{Catch} \mid \text{Toothache, Cavity}) = P(\text{Catch} \mid \text{Cavity})$

- Equivalent statements:
 - $P(\text{Toothache} \mid \text{Catch, Cavity}) = P(\text{Toothache} \mid \text{Cavity})$
 - $P(\text{Toothache, Catch} \mid \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity})$
 $P(\text{Catch} \mid \text{Cavity})$
 - One can be derived from the other easily
Conditional Independence

- Unconditional (absolute) independence very rare
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z if and only if:
 $$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$
 or, equivalently, if and only if
 $$\forall x, y, z : P(x|z, y) = P(x|z)$$
Conditional Independence

- What about this domain:
 - Traffic
 - Umbrella
 - Raining
Conditional Independence

- What about this domain:
 - Fire
 - Smoke
 - Alarm
Conditional Independence and the Chain Rule

- **Chain rule:**
 \[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) \ldots \]

- **Trivial decomposition:**
 \[P(\text{Traffic, Rain, Umbrella}) = \]
 \[P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain, Traffic}) \]

- **With assumption of conditional independence:**
 \[P(\text{Traffic, Rain, Umbrella}) = \]
 \[P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}) \]

- **Bayes’nets / graphical models help us express conditional independence assumptions**
Bayes’Nets: Big Picture
Bayes’ Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time

- Bayes’ nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we’ll be vague about how these interactions are specified
Example Bayes’ Net: Insurance
Graphical Model Notation

- **Nodes**: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- **Arcs**: interactions
 - Indicate “direct influence” between variables
 - Formally: encode conditional independence (more later)
Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence
Example: Traffic

- **Variables:**
 - R: It rains
 - T: There is traffic

- **Model 1: independence**
 - \mathbf{R}
 - \mathbf{T}

- **Model 2: rain causes traffic**
 - \mathbf{R}
 - \mathbf{T}

- Why is an agent using model 2 better?
Let’s build a causal graphical model!

Variables

- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity
Example: Alarm Network

- **Variables**
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!
Bayes’ Net Semantics
Bayes’ Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]
 - CPT: conditional probability table
 - Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities
Probabilities in BNs

- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)) \]

- Example:

 \[P(+\text{cavity}, +\text{catch}, -\text{toothache}) \]
Why are we guaranteed that setting

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

results in a proper joint distribution?

- Chain rule (valid for all distributions):

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|x_1 \ldots x_{i-1}) \]

- Assume conditional independences:

\[P(x_i|x_1, \ldots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]

\[\rightarrow \text{Consequence:} \]

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies
Only distributions whose variables are absolutely independent can be represented by a Bayes’ net with no arcs.

Example: Coin Flips

For each coin flip, the probability of heads (h) is 0.5 and the probability of tails (t) is 0.5. The joint probability of a sequence of coin flips is calculated as follows:

\[P(h, h, t, h) = \]
Example: Alarm Network

<table>
<thead>
<tr>
<th>B</th>
<th>P(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+b</td>
<td>0.001</td>
</tr>
<tr>
<td>-b</td>
<td>0.999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+e</td>
<td>0.002</td>
</tr>
<tr>
<td>-e</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| B | E | A | P(A|B,E) |
|---|-----|-----|---------|
| +b| +e | +a | 0.95 |
| +b| +e | -a | 0.05 |
| +b| -e | +a | 0.94 |
| -b| +e | +a | 0.29 |
| -b| +e | -a | 0.71 |
| -b| -e | +a | 0.001 |
| -b| -e | -a | 0.999 |

| A | J | P(J|A) |
|---|----|------|
| +a| +j | 0.9 |
| +a| -j | 0.1 |
| -a| +j | 0.05 |
| -a| -j | 0.95 |

| A | M | P(M|A) |
|---|----|------|
| +a| +m | 0.7 |
| +a| -m | 0.3 |
| -a| +m | 0.01 |
| -a| -m | 0.99 |
Example: Traffic

- Causal direction

\[P(R) \]

<table>
<thead>
<tr>
<th>+r</th>
<th>-r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>3/4</td>
</tr>
</tbody>
</table>

\[P(T|R) \]

<table>
<thead>
<tr>
<th>+r</th>
<th>+t</th>
<th>3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-t</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>-r</td>
<td>+t</td>
<td>1/2</td>
</tr>
<tr>
<td>-t</td>
<td>1/2</td>
<td></td>
</tr>
</tbody>
</table>

\[P(T, R) \]

<table>
<thead>
<tr>
<th>+r</th>
<th>+t</th>
<th>3/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>-t</td>
<td>1/16</td>
</tr>
<tr>
<td>-r</td>
<td>+t</td>
<td>6/16</td>
</tr>
<tr>
<td>-r</td>
<td>-t</td>
<td>6/16</td>
</tr>
</tbody>
</table>
Example: Reverse Traffic

- Reverse causality?

\[P(T) \]

\[
\begin{array}{c|c}
+\text{t} & 9/16 \\
-\text{t} & 7/16 \\
\end{array}
\]

\[P(R|T) \]

\[
\begin{array}{c|c|c}
+\text{t} & +\text{r} & 1/3 \\
-\text{r} & 2/3 \\
+\text{t} & +\text{r} & 1/7 \\
-\text{r} & 6/7 \\
\end{array}
\]

\[P(T, R) \]

\[
\begin{array}{c|c|c}
+\text{r} & +\text{t} & 3/16 \\
+\text{r} & -\text{t} & 1/16 \\
-\text{r} & +\text{t} & 6/16 \\
-\text{r} & -\text{t} & 6/16 \\
\end{array}
\]
Causality?

- When Bayes’ nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - End up with arrows that reflect correlation, not causation

- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

\[P(x_i|x_1, \ldots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]
Bayes’ Nets

- So far: how a Bayes’ net encodes a joint distribution

- Next: how to answer queries about that distribution
 - Today:
 - First assembled BNs using an intuitive notion of conditional independence as causality
 - Then saw that key property is conditional independence
 - Main goal: answer queries about conditional independence and influence

- After that: how to answer numerical queries (inference)