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Safe Ways to Scan the Body

Stethoscope

v Affordable

v Portable

v Pervasive

% Can't see inside the body

% Limited diagnostic value




Safe Ways to Scan the Body

Traditional Ultrasound

v See inside the body in real time
v Powerful diagnostic

% Expensive

% Unwieldy

X Scarce
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Usability Minimal experience required

e Ultrasound requires specialized training
o Radiologists, Sonographers

e Delay between requests and reads can
be hours
e Point-of-care US

Requires years of training



From Idea to Product
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What does it take to actually get a
medical ML system to production?



Bigger Datasets

MNIST Handwritten digits
Google House Numbers
CIFAR-10

PASCAL VOC

ImageNet

60k training + 10k testing
600k training + 30k testing
50k training + 10k testing
11k training in 20 classes

Tmm Training in 1000 classes

Most medical image/voxel datasets
have fewer than 300 samples in both

training and test

N 4
N



H4

Does your dataset distribution match the real world?

—

Banana Shaped 6% Cavity Obliteration 5%



Annotator variability
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You don’t need to be fully automatic to be clinically useful

[Suggestion to cIinicianJ { 2nd Read J { Fu[!_Automgted }
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You don't need to be fully automatic to be clinically useful
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Model Confidence

e Important to know when a model is not confident.

o Most DL models are poorly calibrated [1].
o If amodel isnt confident, need to turn over control to a human.
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[1] On Calibration of Modern Neural Networks, Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger



Provenance and Correctability
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. Edges to Photo

zebra — horse summer — winter input output

Zhu et al, ICCV 2017 Liu et al., NIPS 2017
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Domain Adaptation

e Pixel-level domain adaptation across imaging devices
e Can we ensure that we don’t introduce unwanted

artifacts
Train Test Accuracy Mean Class
External Device Butterfly 49 6% 62 0%
Fake Butterﬂy Butterﬂy 95.2% 96.7%
Butterfly Butterfly 97.2% 98.1%

Domain Adaptation via Dataset Mimicry, Harry Yang, Nathan Silberman, In Progress

Harry Yang, USC
PhD Candidate
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Multi-Task Models

e How can we leverage data

across tasks?

o ImageNet-style
pretraining?

o Avoid O(N) data scaling

e Deploy smaller models with

shared layers

o Wider models?

Segmentation
Decoder

Encoder

Localization
Decoder

Classification
Decoder
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Butterfly Network msofka@4catalyzer.com
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