
Toward A Model of Service Interaction Enabler in
Mobile Environment

Eddie Leung, Maria Indrawan, Sea Ling
Monash University

900 Dandenong Road, Caulfield East,
Victoria 3145, Australia

+61 3 99032535
{Eddie.Leung, Maria.Indrawan, Chris.Ling}@infotech.monash.edu.au

ABSTRACT
Proliferation of mobile devices has posed challenges in the
development of interaction models among devices. These models
should allow the devices involved in an interaction to detect and
analyze possible communications or services to invoke before the
actual interaction can take place. In this paper, we propose a
model that allows analysis of possible interactions of devices. Our
model provides a logical structure to construct and compare the
essential elements that defines the capability of a device. These
elements can then be examined in the proposed interaction
possibility analysis to determine possible interactions through the
invocation of services.

Categories and Subject Descriptors
D.1.m [Programming Techniques]: Miscellaneous

General Terms
Algorithms, Design

Keywords
Device Interaction Analysis, Mobile Service Discovery, Spatial
Model, Location Awareness.

1. INTRODUCTION
Enabling context awareness to service-based computing is a
challenging task, in particular in modeling the interactions and the
dynamic nature of the interactions. Many current service-based
computing is built on the notion of centralized service discovery.
With the proliferation of mobile devices, it is envisaged that there
will be a need to perform peer level discovery rather than relying
on a central discovery process. In mobile environment, before a
particular service can be discovered and executed, it is important
to perform initial check on the device ability in executing the
services due to the heterogeneity nature of the hardware and
software of mobile devices. In this type of environment, the
discovery process is more than just finding the semantically
matched services. It is also important to find the right level of
possible execution based on the device’s hardware and software
capabilities. Unlike service-based computing that serve business
processes, mobile service-based computing may not have
predefined business model or workflow to follow. Hence it is
important to check all the possibilities of interaction in an ad-hoc

manner. In this paper, we present a model of service enabler
interactions in mobile environment. In proposing this model, we
do not consider service strictly as web service that may be
invoked based on WSDL and SOAP protocol. We adopt the more
abstract definition of service which is a task that can be completed
by interacting with another process or application of another
device. In our context, service discovery considers the process of
finding appropriate level of interactions possible for a given task.
In other words, it is assumed that devices involved in the
interaction are aware of each other’s presence, achieved through
the use of location context. The ‘discovery’ process is then
performed to find the appropriate level of service interactions.

Context is defined as any information that can be used to
characterize the situation of an entity, which can be a person,
place or object that is relevant to the interaction between a user
and an application [3]. In our project, context, in particular
location proximity, is used as a trigger to initiate interaction
among devices. It is essential because of the following reasons.
Firstly, location information is an essential context for user to
carry out tasks. Humans are spatially located creatures. In any
point in time, one must be facing a direction, having certain
objects in sight and within reach of certain objects. The way we
manage the spatial information of objects is an instinct, integrated
with the way we plan, think and behave [7]. Secondly, although it
is possible to design applications where human experience does
not play a role, the application designer and developer (also
human) tends to translate their experience with the environment
into the logic of a program. Thirdly, context-aware systems are
inherently bounded to locations (e.g. sensor or communication
range), and therefore they cannot completely take location out of
consideration [1].

We review a number of spatially based device interactions model
and systems in the next section before presenting our proposed
model, system architecture and implementation in sections 3
through 5. Section 6 concludes the paper.

2. RELATED WORK
In 1993, Benford and Fahlén [2] introduced a spatial model of
interaction which allows interaction among objects by using a
number of key concepts including Space, Objects, Aura, Medium,
Nimbus, Focus, Awareness, Adapters and Boundaries. The model
utilizes location information to produce spatial information, which
can be as general as identifying the presence of other devices or as
specific as acquiring information on the proximity of one device
to the others. This type of information can be very valuable to
assist device in autonomous decision-making. However, although
it has been broadly recognized that spatial information can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSSSIA 2008, April 22, Beijing, China
Copyright 2008 ACM ISBN 978-1-60558-107-1/08/04... $5.00

enhance the interaction and collaboration of mobile devices, the
research in this area is limited.

Realizing that there is insufficient attention on utilizing spatial
relation information for mobile devices interaction and
collaboration, Relate [5] was developed to fill the gap in this area.
The system consists of a set of customer sensor devices called
Relate Dongles, which can be connected to mobile devices
through Universal Serial Bus (USB). Instead of tracking absolute
location of individual device, the Relate dongles capture spatial
information such as the position and orientation of a device as
well as relationship information such as whether other dongles are
moving away or approaching by measuring the relative distance
and angular bearing of other dongles that are within a 2 meters
range using ultrasound. The system provides users with an
interface which can be used to visually detect and locate other
mobile devices that have dongles attached. File exchange between
devices is also possible when there is a wireless connection [5].

Although Relate has proven relative location among devices can
be accurately computed without instrumentation of the
environment, the value of absolute location information provided
by location sensing systems should not be undermined. It should
be noted that systems which operate without instrumentation of
the environment also imply that additional device or computation
power is required to perform tracking of other devices. When
most of the mobile devices have limited processing power, the
flexibility is gained at the cost of increasing the processing burden
on these devices.

Another recent research project in the area is Digital Aura by
Ferscha et al. in 2004 [4]. The project proposes a thought model
intended for managing spontaneous interaction among mobile
devices via the use of the similar concept of Aura in the spatial
model of interaction [2]. A digital aura is built on wireless
technologies, such as Bluetooth, Infrared Data Association (IrDA)
or Radio Frequency Identification (RFID). The physical range of
an aura is determined by the technology used. Interaction between
devices becomes possible when the auras collide, which means
the "signal" of one aura comes across with the "signal" of another
aura. A self describing profile encoded in eXtensible Markup
Language (XML) will then be exchanged spontaneously between
the devices that own the auras. An analysis is then performed on
the profiles to find “sufficient” mutual similarity, and
communications on application level between the objects are
triggered accordingly [4].

The Digital Aura project has provided a realistic implementation
which uses spatial information as context. However, under
observation we have found that the system has a number of
drawbacks as pointed out by Kiang, Indrawan and Ling [6].
Firstly, as the aura size is limited by the wireless technology used,
the flexibility of increasing/decreasing the size of an aura to vary
the possible interaction range is reduced. Secondly, since the
notion of aura is implemented at the technology level, only one
aura at a time is possible as a device can only use the one medium
proffered by the wireless technology. Thirdly, as spatial
information is limited to the presence/absence of other devices
rather than more detailed location information, the involved
devices will not be able to decide whether the interaction should
be initiated based on the environmental information. For example,
it may be desirable for a device to determine whether a large file
should be transfer at a particular distance as the strength of signal
decreases as the distance increases. Lastly, spontaneous
interaction may not be favourable at all time. Even though filters
can be used to protect a device from undesirable information, they

will still compromise the limited computational power of the
devices.

In 2007, Kiang, Indrawan and Ling [6] refined the Spatial Model
of Interaction [2] by introducing an Interaction Initiation Model.
The main purpose is to govern the process in which interactions
among objects are initiated. In the model, the concept of
compatibility is defined by aura type, where auras with the same
type are considered as compatible for interaction. Similar to the
Spatial Model of Interaction, an interaction is initialized when a
collision between the auras takes place. Different types of
collisions between auras are formally defined by a set of collision
models. Each collision model formally specifies what type of
contact between auras should be considered as collision based on
various level of strictness. Systems that utilize the model can then
mix and match the various collision models according to the
objectives.

Although Kiang’s work has eliminated some vague areas of the
Spatial Model of Interaction [2], the model does have a major
shortcoming. In Kiang’s model, aura type is one of the critical
elements for determining whether an interaction is possible as
collisions of auras of different types are disregarded. The model,
however, does not provide any formal definition on what aura
type is or how aura type is defined. Furthermore, as aura type is
not properly defined there is no standard guideline on how various
aura types are compared. As a result, the model is only capable of
handling the most basic result, exact match, of a comparison. It
fails to identify the relationships among aura types, which leads to
an undesired result: interaction between devices immediately
become impossible when aura type does not exactly match with
each other. No alternative path can be considered even though
there are some obvious relationships among many aura types. The
relationships among many aura types are represented by the
device capability model in our proposed framework.

3. DEVICE CAPABILITY MODEL
Based on our investigation, we have identified four major
considerations in designing mobile service discovery and
interactions: 1) Capability - Besides recognizing the interested
service interactions, a device must be able to determine whether
the other involved devices, or even itself, is capable of a particular
service interaction. An example of a capability is video
conference. In order to initiate a video conference between two
devices, the foremost requirement is to ascertain that both
involved devices can handle video conferencing. How can devices
discover and determine their own, or even the other parties’
capabilities? What elements can be used to determine the
capabilities of devices? 2) Capability compatibility - When the
capabilities of devices are determined, they need to know whether
these capabilities are compatible with each other. How can
devices ascertain the compatibilities between various capabilities?
3) Capability Information Exchange – In order to determine the
capabilities of each other, devices must exchange information
about their capabilities at some point. When should this
information exchange take place? 4) Interaction Degradation -
Similar to most other objects in the world, there are some
relationships between various types of capability. For example,
there is possibly some relationship among video conference, audio
conference and text-based conference. When a device is
determined as incompatible for a particular capability, would
interaction degradation become possible through these
relationships?

To address the four issues, we propose a capability model along
with an analytical approach called interaction possibility analysis.
The proposed capability model aims to identify the basic elements
that define the physical capabilities of a device. These elements
can then be used in interaction possibility analysis to determine a
possible interaction among these devices. The model also
introduces location awareness to allow location information as the
context information to determine when capability information
exchange should take place. In addition, through analyzing the
result of the interaction possibility analysis, the relationships
among various interactions can be identified. Based on this
relationship information, appropriate level of degradation can then
be offered when interaction is considered as incompatible.

Benford and Fahlén [2] introduced a number of abstract concepts
into the spatial model of interaction to govern interactions among
objects. These abstract concepts are Space, Objects, Aura,
Medium, Nimbus, Focus, Awareness, Adapters and Boundaries.
To realize the model, Kiang, Indrawan and Ling [6] modified
these concepts and developed an interaction model for use in the
real environments. The proposed capability model is also
developed based on these concepts with a number of new
concepts and modification. The model provides a logical structure
to construct devices. Devices that are constructed using the
capability model can then be used in Interaction Possibility
Analysis, which we will present in Section 4. The list below
provides definitions for each the concepts of the model:

• Interaction - We define Interaction as an act in which two or
more Objects communicate with, cooperate with, share
information with, or affect one or each other through
performing a mutual function at the same time. For instance,
interaction between two Objects can be in a form of
conducting a video conference, playing a device-device
game, transferring a file, or providing remote system support.
The feasibility of initiating an Interaction is determined by
three elements: the proximity with other Objects, the
physical ability of the involved Objects and the desire of an
Object to participate an Interaction.

• Objects - Objects are the entities that are capable to initiate
an Interaction. The positions of Objects are monitored by
location tracking system, and based on this information,
possible Interactions among Objects are identified. An
Object must have certain level of processing power and
appropriate networking device for wireless communication.
Examples of Object are laptop, PDA and mobile phone

• Resource - It is defined as the basic unit for defining the
Capabilities of an Object. It can be in the form of hardware
or software. In order to initiate an Interaction, the involved
Objects must have sufficient Resources to support the
functions required in the interaction. Examples of Resource
required for video conferencing are video camera,
microphone, speaker, screen, keyboard (hardware), and video
conference client (software). In order to conduct a video
conference, an Object must be equipped with all these
resources.

• Capability - It is formally defined as a logical grouping of
Resources used for describing a specific physical capability
of an Object. It determines whether an Interaction is possible
from the physical ability point of view. A Capability is
formed by all Resources required to support the
functionalities of a specific interaction. The Resources must
include both software and hardware. When Resources

required for a Capability are equipped, an object is
considered as capable of interacting with other objects by
using the Capability. For instance, when an Object is
equipped with the Resources screen, keyboard, appropriate
networking devices and MSN messenger, the Object is
considered as capable of interacting with other Objects with
same Capability through chatting and transmitting file
facilities, which are the functionalities of MSN messenger
that can be performed with the support of screen, keyboard
and networking devices. Although MSN messenger offers
some other facilities, only those that have the Resource
requirements fulfilled will be enabled. There are few points
need to be noted:

o The Resource set that forms a Capability is always
unique within an Object. Hence, in the process of
initiating an Interaction, one can determine the
Capability required by identifying the Resources needed.

o A Capability does not equal to a particular functionality.
Instead, it represents the functionalities that can be
initiated with the support of the Resources that forms the
Capability.

• Awareness - Awareness (consciousness) is a concept that is
used to determine whether an Interaction via a particular
Capability is possible based on the level the Object desires to
participate in an Interaction. It is manipulated by employing
the concepts of Focus and Nimbus.

• Nimbus - The notion of Nimbus is used in cooperation with
Focus to manipulate the Awareness of a Capability of an
Object. It is represented as numerical value in the proposed
model. When the Nimbus value of a Capability X of an
Object A is higher than the Focus value of Capability X of
another Object B, Capability X of Object A is concealed
from Object B. As a result, Object B is not allowed to
interact with Object A through Capability X. It should be
noted that this is merely a simplified implementation of
Nimbus. Additional levels of Awareness can be acquired by
using various differences between the value of Nimbus and
Focus of two Objects.

• Focus - The notion of Focus is used in cooperation with
Nimbus to manipulate the Awareness of a Capability of an
Object. Similar to Nimbus, Focus is represented as numerical
value in the proposed model. When the Focus value of a
Capability X of an Object A is higher than the Nimbus value
of Capability X of another Object B, Object A is aware of
the Capability X of Object B. Hence, Object A can interact
with Object B through Capability X.

• Aura - The concept of Aura is closely akin to the one
originally proposed in the initiation model of interaction of
Kiang, Indrawan and Ling [6]. An Aura is a conceptual
subspace that acts as an interaction enabler of one or multiple
Capabilities offered by the same application. It can be switch
on or off to activate/ deactivate interaction detection of the
Capability it represents. An Aura determines whether an
interaction is possible from the proximity point of view.
Objects carry their Auras with them as they move around.
When there is a collision between Auras of two Objects, an
Interaction Possibility Analysis is performed to determine
whether an Interaction can be initiated based on the
Capabilities and Awareness of the two involved Objects. If
the requirements for either Capabilities or Awareness are not

met, no interaction will be initiated. In the other words, Aura
provides a primary mechanism to determine if two Objects
can interact based on their proximity with each other at the
initial stage. The approach (mechanism) for connection
establishment between objects is implementation specific.
Implementer is responsible to specify the information on this.

Figure 1 provides a visualization for the abstract concepts
above in a diagram. As shown in the figure, an Object may
have multiple Auras; each Aura represents one or more
Capabilities offered by the same aura-enabled application. A
Capability is formed by a number of Resources and a
Resource may be shared by multiple Capabilities. It should
be noted that Capabilities that share the same Resources can
be any Capabilities of an Object. They are not necessarily
offered by the same application.

Figure 1 Visualization of Capability Model

4. INTERACTION POSSIBILITY
ANALYSIS
The proposed capability model provides a logical structure to
construct aura-enabled devices. By constructing devices using the
capability model, the basic elements that define the physical
capabilities of a device are identified. These elements can then be
used in the proposed analytical approach, Interaction Possibility
Analysis, to determine a possible interaction among these devices.
Through the use of the capability model together with the
proposed analytical approach, the decisions of whether
interactions among devices are feasible will be made based on the
actual capabilities of the involved devices, which is much more
natural in comparison to some arbitrary representation. Moreover,
as the most basic elements that define capabilities are compared
during the analytical approach to determine the possibility of
interaction, the differences of elements can be used to identify the
relationships among various capabilities. By analyzing this
relationship information, appropriate degradation can be offered
when interaction is considered as incompatible.

The analysis is triggered when Auras of two Objects collide. It
consists of two stages of checking: Capability Compatibility
Check and Awareness and Concealment check. If the
requirements of any stage are not met, the analysis will terminate
and no further action will be taken.

4.1 Capability Compatibility Check
In Capability Compatibility Check, the Capabilities represented
by the collided Auras will be examined to determine whether the
Objects have certain common Capabilities that can be used to
initiate an Interaction. The examination will be carried out on the
Resource level, which is the basic unit that forms a Capability.

The analysis ends with one of the four possible scenarios: Exact
Match, Subset, Intersection and No Match. The scenarios identify
the relationships between the examined Capabilities. By
analyzing the relationship, the possibility of an Interaction is
determined. To define the four possible scenarios formally, the
preliminary definition below will be used:

Preliminary Definition:

Given an object o, let Capabilityo be a capability of object o and ri
(where i is a natural number) be a member of a resource set that
forms a capability. Formally, a capability of object o can be
defined as:

Capabilityo = {r1, … rn}

• Exact Match Scenario - When the two Resource sets that
are compared exactly match with each other, an Exact Match
Scenario occurs. Formally, the scenario is defined as:

Definition 1:

For any two objects x and y, exact match scenario occurs
when:

Capabilityx = Capabilityy

Figure 2 provides a graphical representation of an exact
match scenario.

Figure 2 An Exact Match Scenario

When exact match scenario occurs, the two Objects are equipped
with all resources required for that particular Capability and hence
the interaction between the two Objects via the Capability is
feasible from a physical ability point of view. In Figure 2,
resources that form Capability of x and Capability of y equals to
each other and therefore initiation of the interaction are physically
possible.

• Subset Scenario - When one of the compared Resource set
is a subset of another, a Subset Scenario occurs. The scenario
is formally defined as:

Definition 2:

For any two objects x and y, subset scenario occurs when
either:

o Capabilityy ⊂ Capabilityx ; or

o Capabilityx ⊂ Capabilityy

Figure 3 depicts a subset scenario.

Figure 3 A Subset Scenario

It is often that an object with insufficient Resources to
perform a particular operation can be capable of a similar
task with lower requirement. For example, provided that the
only difference between the Resources required for
conducting a video-conference and audio-conference is a
video camera. An Object can conduct audio-conference but
without a video camera is not capable of a video conference,
as a video camera is requisite to capture the motion.
However, the Object can hold an audio-conference as long as
the Resources it carries fulfill the requirements of audio-
conference. In a similar sense, a device is not equipped with
microphone and therefore is not competent for an audio
conference can in fact support text-based conferencing by
using appropriate input device. When a subset match
scenario occurs, the super resource set must downgrade its
resource requirement to match the sub resource set in order
to initiate an interaction.

• Intersection Scenario - When there is only a partial match
between both of the compared Resource sets, an Intersection
Scenario occurs. The scenario is formally defined as:

Definition 3:

For any two objects x and y, intersection scenario occurs
when the following conditions are satisfied:

o Capabilityx ∩ Capabilityy ≠ Ø ;

o Capabilityy ⊄ Capabilityx ; and

o Capabilityx ⊄ Capabilityy
Figure 4 depicts an intersection scenario.

Figure 4 An Intersection Scenario

When intersection scenario occurs, the Objects need to
search for a Capability that only requires resources that are
common to both Objects. If the Capability is found,
Interaction between the two Objects is possible.

• No Match Scenario - When there is no match between the
compared resource sets, a No Match Scenario occurs.
Formally, the scenario is defined as:

Definition 4:

For any two objects x and y, no match scenario occurs when
Capabilityx ∩ Capabilityy = Ø

Figure 5 shows a no match scenario.

Figure 5 A No Match Scenario

The no match scenario indicates that the Capabilities the
collided auras represent are different from each other and
there is no relationship between the two Capabilities. Hence,
no interaction can be initiated.

If at least one common Capability is found, the Interaction is
considered as physically feasible and the analysis will move
to the Awareness and Concealment Check. In contrast, if the
requirements of Resources are not met, the analysis will
terminate and no further analysis will be performed.

4.2 Awareness and Concealment Check
In Awareness and Concealment Check, the value of Nimbus and
Focus pair of the common Capabilities represented by the
collided Aura will be compared against each other. If a Capability
of one Object can be aware by another, an Interaction is allowed
to be initiated. Conversely, if the required Capability of both
Objects is concealed from each other, the analysis ends and no
action will be taken.

To illustrate how the Nimbus and Focus pair of the common
Capability are examined in Awareness and Concealment Check,
assume that there are two Objects x and y and the two Objects
have a common Capability. If the value of Focus of the Capability
of Object x is higher than the value of Nimbus of the Capability of
Object y, Object x can be aware of the Capability of Object y.
Thus, Object x can initiate an Interaction with Object y via the
Capability. On the other hand, if the value of Nimbus of the
Capability of Object x is higher than the value of Nimbus of the
Capability of Object y, the Capability of Object x is concealed
from Object y. As a result, Object y cannot initiate an Interaction
with Object A through the Capability. It should be noted that, in
the later example, although Object y cannot be aware of that
particular Capability of Object x, Object y may still be aware of
other Capabilities of Object x and therefore may still be able to
interact with Object x via other Capabilities.

It should be noted that interaction possibility analysis only acts a
guide line on how to analyze the result of comparison on objects
constructed using capability model. The actual algorithm for
comparing objects is implementation specific. In addition, the
component which is responsible for performing the analysis and
the location where the analysis is performed is not limited. The
analysis does not even need to be carried out in a single
component. The processes required can be separated into multiple
remote components according to the needs of the implementer.

5. SYSTEM ARCHITECTURE AND
IMPLEMENTATION
The proposed system architecture incorporates the capability
model and interaction possibility analysis proposed in Section 3
and Section 4. The architecture is designed based on the
architecture of Kiang, Indrawan and Ling [6] with a number of
enhancements to accommodate the new model into the system.
Figure 6 provides a high-level graphical representation of the
proposed architecture.

Figure 6 High Level View of System Architecture [6].

The Aura system in the figure queries the location tracking system
for location information, which will be used by the Aura system to
create conceptual auras around objects that are constructed using
capability model and to monitor collisions among these auras.
When a collision is detected, the Aura system will perform an
interaction possibility analysis to determine whether there is any
possible interaction. If a possible interaction is found, notification
will be sent to the involved objects. The notification contains
information about the colliding Aura and the common capabilities
that can be used for interaction. The involved application can then
interact with the counterpart of the colliding objects using this
information. Figure 7 provides a more detailed view of the system
architecture. As shown in the figure, there are four main
components of the architecture: user, aura system, location
tracking system and device

• User - They are the end-user of the system. In order to be a
user of system, he/she must have an aura-enabled device.

• Location Tracking System - In the proposed architecture,
user’s devices utilize some form of location tracking
mechanism which sends raw data to a location positioning
system. The location positioning system will then transforms
the received raw data into location coordinates.

• Aura System - Aura system monitors a list of aura-enabled
applications that have provided information of their
capabilities and the device they are installed on to the
system. The aura system periodically queries the location
tracking system for location information of those devices to
calculate the relative distances for creating conceptual aura
and detecting aura collision. When collision is detected, the
aura system will perform an interaction possibility analysis to
determine capabilities that can be used for interaction. Based
on the result, notification will be sent in a form of event to
the interaction manager of the involved devices.

Figure 7 Low Level View of System Architecture

• Device - The aura-enabled devices used by users and
constitute Objects in the capability model. They can be in
many forms from desktop PCs or smart refrigerator to
laptops to handheld mobile devices such as PDAs and Tablet
PCs. Fundamentally, any device with computational
processing power and communication capability can be
categorized as device in the architecture.

As depicted in Figure 7, the sub components installed on the
device include:

o Operating System - A program that manages the
resources of a device such as processor, memory, disk,
networking activities and other applications. In the
proposed architecture, it is responsible to notify
interaction manager when any Aura-Enabled Application
is initiated by user and manage the update of capability
information storage and hardware information storage
when there is any change in aura-enabled application and
hardware.

o Aura-Enabled Application - Applications that support
the proposed capability model. When it is installed, it
notifies operating system about all the capabilities it
offers, the resources required to support these capabilities
and the value of nimbus and focus of each capability.
Operating system will then update the capability
information storage based on the information.

o Capability Information Storage - A data storage that
stores information about capabilities offered by all aura-
enabled application, the resources required to support the
capabilities and the value of nimbus and focus of each
capability. It can be in many forms such as a relational
database file, text file or XML file.

o Hardware Information Storage - A data storage that
stores information about what hardware is available on
the device. It can also be in any form such as a relational
database file, text file or XML file.

o Interaction Manager - A program that acts as a bridge
among aura-enabled application, operating system and
aura system. Upon receiving notification from operating
system when an aura-enabled application is initiated, it
will determine what capabilities offered by this
application are available based on the installed hardware
information. The information of the available capabilities
will then be sent to the aura system to create a conceptual
aura for the capabilities. It also provides features that
enable users to customize the attributes of individual
capability such as nimbus and focus. It is also
responsible for receiving collision notifications sent by
the aura system and notify appropriate application based
on the notification..

5.1 Considerations on Different Approach of
Capability Relationship Definition
In Section 3, we have defined that a capability is created as a set
of resources. There are two possible approaches in forming
capabilities. One is to create a dynamic capability list; the other is
to create a relatively static list.

In the dynamic approach, the capability list is created on-the-fly
during the capability compatibility check in the interaction
possibility analysis. This approach allows maximum flexibility, as
devices can try to form a capability to match another being
checked using any possible resources available in a case of subset
or intersection scenario. However, these advantages do come with
a cost at the efficiency as the capability formation is performed
every time when a subset or intersection scenario occurs. The
devices with capability defined in this approach must have high
processing power in order to handle the search burden.

Another approach is to define the relations statically. This
approach creates capabilities during the initial deployment of the
aura system. The system defines all possible capabilities that can
be recognized by the system. An update after the first deployment
is possible. However, it will involve updates to be propagated to
all devices in the system. In a case of subset or intersection
scenario, the devices will only need to determine whether there is
any predefined capabilities that can match the subset or
intersection. Hence, the number of searches required during the
analysis is significantly lower compared to the dynamic approach.
In contrast to the processing burden of the dynamic approach, the
static approach gains the efficiency at the cost of flexibility.

Based on the needs of implementers, different approaches can be
used to fit the requirements of a particular system.

5.2 Considerations on Different Level of Aura
Implementation
Depending on the requirements of the implementer, Aura can be
implemented using different levels of granularity. The three

possible levels are object level, application level and capability
level. Object refers to the aura-enabled devices that are monitored
by the location tracking system, whereas application refers to the
computer program installed on the object, and capability refers to
the functionality offered by the aura-enabled application.

If Aura is implemented at the object level, a device is represented
by one Aura in the system. All aura-enabled applications on the
device rely on the same aura to keep track of other aura-enabled
devices in the surrounding area for possible interaction. If Aura is
implemented at the application level, a device may have multiple
Auras depending on the number of aura-enabled applications
installed. Each aura-enabled application installed on the device is
represented by one Aura, which will be used by the application it
represents to detect possible interaction. Finally, if Aura is
implemented at the capability level, an Aura represents a single
interaction capable functionality offered by an aura-enabled
application on the device.

The choice of implementation level has a direct impact on the way
how interaction possibility is performed due to the different level
of information carried by an Aura. The following discusses the
differences between different levels of Aura implementation.

• Capability Level - When Aura is implemented at the
capability level, where an Aura only carries the information
of a particular capability it represents, part of interaction
possibility analysis is forced to be switched from the aura
server to the interaction manager of the involved device
When a subset or an intersection scenario occurs, additional
analysis is required to search for possible alternative
capability for interaction, as the aura manager server does not
have any information on what other available capabilities are
in the involved devices. Although this approach may relieve
some processing pressure of the aura manager server, serious
performance issues may establish as the processing burden
are switched to the devices, which normally have far less
processing power compared to the server. Because of this
reason, the capability level implementation may not be
suitable for system in which most of the devices are handheld
devices.

• Object Level - In contrast to Aura implemented at capability
level, an Aura implemented at object level contains the
information of all available capabilities offered by the device
that the Aura represents. As a result, the interaction
possibility analysis can entirely be processed in aura manager
server.

The process of exact match scenario at object level is
identical to the counterpart at capability level. However, the
processes of subset and intersection scenario at object level
are significantly simplified. The reason is that an Aura
implemented at object level contains information of all
capabilities offered by a device, the aura manager server
would therefore have sufficient information to process the
entire interaction possibility analysis locally. As aura
manager server usually has much higher computational
power than the devices being tracked, the performance issues
mentioned previously in the capability level implementation
can be eliminated. Nevertheless, the level does have its
drawback. As an Aura in the system carries the information
of all capabilities offered by a device, the aura manager
server may need to process a large number of unnecessary
searches during the capability compatibility check to analyze

every single capability offered in both Auras. As a result, a
considerable amount of processing power is wasted.

• Application Level - The implementation at application level
offers a solution to address the issues of implementations at
both capability level and object level. Interaction possibility
analysis involved in the application level is nearly identical
to those involved in object level, except for the much smaller
number of capability analysis required in each collision as
each Aura in the system is restricted to represent only the
capabilities offered by one application. As devices can only
interact with compatible capability offered by the same
application, even though the number of capabilities
represented by an Aura may be reduced, the potential
opportunity of interaction will still not be compromised

5.3 Implementation
Based on the system architecture, we have developed a prototype
as a proof of concept. The prototype was developed using both C#
2.0 and Java. The inter-components communications are handled
by socket technology and XML web service. However, it should
be noted that the device capability model, interaction possibility
analysis and the system architecture are not tied to any particular
technology. Figure 8 shows a screen capture of the prototype.

Figure 8 A Screen Capture of the Prototype

6. CONCLUSION
Our paper has been concerned with context-based service
interaction discovery and its execution in mobile environment.
Specifically, we have introduced a model which provides a logical
structure for constructing and comparing the essential elements
that defines the capability of a device. The key points of our
model are:

• Software and hardware installed on a device are the most
basic elements that define the capabilities of a device.

• Aura is used as a service interaction enabler to initiate
capability information exchange based on the proximity of
devices

• Nimbus and Focus are used to determine the awareness and
concealment level of a device.

We have also introduced an interaction possibility analysis which
compares the devices constructed using our proposed model.
Through analyzing four possible results, namely Exact Match,
Subset, Intersection and No Match, the possibility of service
interactions and relationships between the service interactions can
be determined.

Finally, we have proposed a system architecture which
incorporates the proposed capability model and interaction
possibility analysis.

With this work established, further research is now required.
Some possible research directions are:

• Standard Interpretation of Resources: The need for resource
standardization is driven by the need of interoperability. To
allow the model to be applied in an opened environment, the
interpretation of resources must be consistent across different
devices. Future research may consider using ontology to
establish a standard for resources.

• Multi Level of Object: In the current model, there is only one
level of object which represents a device of a user. To
enhance the scalability, future researchers can extend object
to multi level, so that an object can contain a number of sub-
objects. For example, an object representing a smart lecture
hall may consist of a number of lower level objects, such as
projector, sound system and lighting system, which can all
interact with other objects in the model.

• Peer to Peer System Architecture: Although the proposed
model and interaction possibility analysis are not tied to any
particular system architecture, the proposed system
architecture is currently developed in a server-client manner.
The architecture is suitable for organization that has a
centralized server running at any time. To allow the model to
be applied in a more general environment, future developer
may consider switching the system architecture to a peer-to-
peer architecture.

7. REFERENCES
[1] Beigl, M., Zimmer, T., et al., A Location Model for

Communicating and Processing of Context. Personal
Ubiquitous Comput. 6 (2002) 341-357.

[2] Benford, S., and Fahlén, L., A Spatial Model of Interaction in
Large Virtual Environments, Third European Conference on
CSCW (ECSCW'93), Milano, Italy, Kluwer, 1993, pp. 16.

[3] Dey, A. K., and Abowd, G. D., PANEL: Toward a Better
Understanding of Context and Context-Awareness, GVU
Technical Report, College of Computing, Georgia Institute
of Technology, 1999.

[4] Ferscha, A., Hechinger, M., et al., Digital Aura, Pervasive
Computing, Second International Conference, Pervasive
2004, Vienna, 2004.

[5] Gerd, K., Christian, K., et al., Sensing and visualizing spatial
relations of mobile devices. Proceedings of the 18th annual
ACM symposium on User interface software and technology
(2005) 93-102.

[6] Kiang, V. J. K., Indrawan, M., Ling, S., Realising Aura for
Initiating Interactions in Real Environments, Faculty of
Information Technology and Systems, Monash University,
Melbourne, 2006, pp. 136.

[7] Kirsh, D., The Intelligent Use of Space. Artificial
Intelligence 73, Issue 1-2 (Feb 1995), 31-68.

