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In this document, we present the detailed analysis of the proposed prototype algorithm and the approximation approach in
the main paper. We also shows the complete precision and recall curves for CIFAR-10 and MNIST.

1. Prototype algorithm and analysis
Assuming we have the embedding Y := {y1,y2, · · · ,yn} for the entire training data X := {x1,x2, · · · ,xn}, one can

predict the embedding for a new query point xq via

yq =

∑n
i=1 w(xq,xi)yi∑n
i=1 w(xq,xi)

. (1)

However, n is often too massive (millions) to obtain embedding Y at the first place and computing w(xq,xi) for all data is
too expensive. We will show that the following prototype algorithm is able to approximate yq using only a small subset of Y
well. This Prototype Algorithm is based on entropy numbers defined below,

Definition 1 (Entropy numbers[3]). Given any Y ⊆ Rr and m ∈ N, the m-th entropy number εm(Y ) of Y is defined as

εm(Y ) := inf{ε > 0|N(ε, Y, ‖ · − · ‖) ≤ p},

where N is the covering number.

This means εm(Y ) is the smallest radius that Y can be covered by less or equal to m balls.

1.1. Prototype Algorithm

Inspired by Theorem 27 of [3], we construct a Prototype Algorithm below. We use m balls to cover Y , thus obtain m
disjoint nonempty subsets Y1, Y2, · · · , Ym such that for any ε > εm(Y ), ∀j ∈ {1, · · · ,m},∃cj ∈ Rr, s.t. ∀y ∈ Yj , ‖cj −
y‖ ≤ ε and

⋃m
j=1 Yj = Y . We can see that each Yj naturally forms a cluster with the center cj and the index set Ij = {i|yi ∈

Yj}.
Let αi =

w(xq,xi)∑n
j=1 w(xq,xj)

and Cj =
∑
i∈Ij αi. For each cluster index set Ij , j = 1, · · · ,m, we randomly draw `j =

bmCj + 1c many indices from Ij proportional to their weight αi. That is, for µ ∈ {1, · · · , `j}, the µ-th randomly drawn
index uj,µ,

Pr(uj,µ = i) =
αi
Cj
,∀j ∈ {1, · · · ,m}.

We construct ŷq as

ŷq =

m∑
j=1

Cj
`j

`j∑
µ=1

yuj,µ . (2)

Lemma 2. There is at most 2m many unique yuj,µ in ŷq .

∗Appearing in IEEE Conf. Computer Vision and Pattern Recognition, 2013. F. Shen’s contribution was made when he was visiting The University of
Adelaide.
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Proof.
∑m
j=1 `j ≤

∑m
j=1(pCj + 1) = 2m.

Lemma 3. The following holds

E [ŷq] = yq,Var (ŷq) ≤
ε2

m
. (3)

Proof.

E [ŷq] = E [

m∑
j=1

Cj
`j

`j∑
µ=1

yuj,µ ] =

m∑
j=1

Cj
`j

`j∑
µ=1

E [yuj,µ ]

=

m∑
j=1

Cj
`j

`j∑
µ=1

∑
i∈Ij

αi
Cj

yi =

m∑
j=1

∑
i∈Ij

αiyi = yq.

Var (ŷq) =

m∑
j=1

`j∑
µ=1

Var (
Cj
`j

yuj,µ) ≤
m∑
j=1

C2
j

`2j

`j∑
µ=1

ε2

=

m∑
j=1

C2
j

`j
ε2 ≤

m∑
j=1

C2
j

mCj
ε2 =

∑m
j=1 C

2
j

m
ε2 =

ε2

m
.

Above shows the mean is preserved and variance is small.

Theorem 4. For any even number n′ ≤ n. If Prototype Algorithm uses n′ many non-zero y ∈ Y to express ŷq , then

Pr[‖ŷq − yq‖ ≥ t] <
2(εn′

2
(Y ))2

n′t2
. (4)

Proof. Via Chebyshev’s inequality and Lemma 3, we know

Pr
(
‖ŷq − yq‖ ≥ k

√
Var (ŷq)

)
≤ 1

k2
.

Let t = k
√

Var (ŷq) and ε→ εn′
2
(Y ) yields the theorem.

Corollary 5. For an even number n′, any ε > εn′
2
(Y ), any δ ∈ (0, 1) and any t > 0, if n′ ≥ 2ε2

δt2 , then with probability at
least 1− δ,

‖ŷq − yq‖ < t.

Proof. Via Theorem 4, we know that for ε > εn′
2
(Y ), Pr[‖ŷq − yq‖ ≥ t] < 2ε2

n′t2 . Let δ ≥ 2ε2

n′t2 , we have n′ ≥ 2ε2

δt2 .

The quality of the approximation depends on εn′
2
(Y ) and n′. If data has strong clustering pattern, i.e. data within each

cluster are very close to cluster center, we will have small εn′
2
(Y ), hence better approximation. Likewise, the bigger n′ is,

the better approximation is.

1.2. Approximation of Prototype Algorithm

For a query point xq , Prototype Algorithm samples from clusters and then construct ŷq . The clusters can be obtained via
clustering algorithm such as K-means. For each cluster, the higher Cj =

∑
i∈Ij αi, the more draws are made. At least one

draw is made from each cluster. Since the n could be potentially massive, it is impractical to rank (or compute and keep a
few top ones) αi with in each cluster. Moreover, w(xq,xj) depends on xq — for a different query point xq′ , w(xq′ ,xi) may
be very smaller even if w(xq,xi) is high. Thus we need to consider the entire X instead of a single xq .

Let αi(xq) =
w(xq,xi)∑n
j=1 w(xq,xj)

. Ideally, for each cluster, we want to select the yi that has high overall weight Oi =∑
xq∈X αi(xq). For large scale X , the reality is that we don’t have access to w(x,x′) for all x,x′ ∈ X . We only have
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Figure 1: Euclidean search on 5,000 digital images using the original data, 32D t-SNE embeddings and approximate embed-
dings by IMH with K-means cluster centres.

limited information available such as cluster centers {cj , j ∈ {1, · · · ,m}} and w(cj ,x),x ∈ X . Fortunately, the clustering
result gives useful information about Oi. The cluster centers {cj , j ∈ {1, · · · ,m}} have the largest overall weight w.r.t the
points from their own cluster, i.e.

∑
i∈Ij w(cj ,xi). This suggests we should select all cluster centers to express ŷq . For an

base set B, and any query point xq , we predict the embedding as

ŷq =

∑
x∈B w(xq,x)y∑
x∈B w(xq,x)

. (5)

To illustrate the ability of the method, we conduct searches on a 5,000 subset of MNIST by random sampling. It is clear
that the proposed approximate method obtains much higher MAPs than the linear scan using the original features. With the
increasing number of clusters, the proposed approximation approach gets closer performance to the search on the embedding
obtained by using all data.

2. Experiments
We evaluate nine hashing algorithms including the proposed IMH-tSNE, IMH-LE and seven other state-of-the-art meth-

ods: PCAH [6], SH [7], AGH [5] and STH [8], BRE [4], ITQ [1], Spherical Hashing (SpH) [2]. We use the provided codes
and suggested parameters according to the authors of these methods.

2.1. Results on CIFAR-10

Figure 2 shows the precision and recall curves of hamming ranking for the compared methods with different code lengths.
From the top row, we see that ITQ, SpH and AGH obtain relatively high precisions when a small number of samples are
returned, however their precisions drops significantly with the increasing number of retrieved samples. In contrast, IMH-
tSNE achieve much higher precisions with relatively larger numbers of retrieved points. In terms of recall (shown in the
bottom row of Figure 2), IMH-tSNE consistently outperform all other methods, and IMH-LE achieves good results with
short bit lengths. STH achieves higher recall than AGH, which performs even worse than SH and PCAH with longer bits.
Figure 3 details the precision-recall curves of these methods for different number of hash bits.

A few sample query images and the top retrieved samples are shown in Figure 4.
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Figure 2: Comparison of different methods on CIFAR-10 based on precision (top row) and recall (bottom row) using different
code lengths.
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Figure 3: Comparison of different methods on CIFAR-10 based on precision-recall curves for different code lengths.

2.2. Results on MNIST

Figure 5 shows precision-recall curves for these methods for different numbers of hash bits. It is clearly seen that IMH-
tSNE achieves much broader areas under the precision-recall curves. Specifically with 64 bits, given a 40% recall, IMH-
tSNE obtains about 75% precision, while the best precision of all other methods obtained by STH is around 45%. Another
interesting trend is that, unlike other competing methods, IMH-tSNE, ITQ and BRE consistently improve their performance
as the number of bits increases (although the improvement becomes smaller with the increasing code lengths). This is
consistent with the MAP results shown in the paper.

Figure 6 details the corresponding precision and recall curves. Consistent with Figure 5, IMH-tSNE demonstrates large
margins over other methods for both precision and recall. ITQ, BRE and SpH obtain good results when with long bits,
however are still inferior to IMH-tSNE. Among the LE based methods, IMH-LE perform close to AGH, both of which have
higher precisions than STH and SH.
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Figure 4: The query images (top row) and the retrieved images by IMH-tSNE, SH, AGH and STH with 32 hash bits.
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Figure 5: Comparison of different methods on MNIST based on precision-recall curves for different code lengths.
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Figure 6: Comparison of different methods on MNIST based on precision and recall for different code lengths.
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