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1. Results on the bound and solution quality of
SDCut

We demonstrate some results on the bound of SDCut and
the impacts of the parameter σ on the solution quality.

Let us introduce some notations. The objective function
and optimal variables of (6) are denoted as f(X) and X?

respectively. fσ(X) and X?
σ represent the objective func-

tion and the optimal variables of (11) with the parameter σ,
respectively.

Because ‖X‖2F−η2 ≤ 0,∀X ∈ Ω, the optimal objective
value of problem (11) is not larger than that of problem (6)
(and its equivalent form (9)), which therefore can be seen
as a less tight lower-bound of the optimal objective value of
problem (3) (and its equivalent form (5)) compared to the
conventional SDP method.

First, we show that the bound given by (11) can be arbi-
trarily close to the bound given by (6).

Claim A.1. ∀ ε > 0, ∃ σ > 0, which makes the gap between
the optimal objective values of (11) and (6) smaller than ε.

Proof. Based on the definition of (11) and (6), we have:
f(X)− fσ(X) = σ(η2 − ‖X‖2F ) ≤ ση2. (A1)

Set σ to ε/η2, then f(X)− fσ(X) ≤ ε. Therefore,
f(X?)− fσ(X?

σ) ≤ f(X?
σ)− fσ(X?

σ) ≤ ε. (A2)

Next, we demonstrate the monotonicity of the bound
fσ(X?

σ), the conventional SDP objective value 〈X?
σ,A〉 and

the Frobenius norm of X?
σ , with respect to σ.

Claim A.2. For σ1 ≥ σ2 > 0, we have (a): fσ1
(X?

σ1
) ≤

fσ2(X?
σ2

); (b): ‖X?
σ1
‖2F ≤ ‖X?

σ2
‖2F ; (c): 〈X?

σ1
,A〉 ≥

〈X?
σ2
,A〉.

Proof. (a): First we have
fσ1

(X)− fσ2
(X) = (σ1 − σ2)(‖X‖2F − η2) ≤ 0. (A3)

Then,
fσ1

(X?
σ1

)−fσ2
(X?

σ2
) ≤ fσ1

(X?
σ2

)−fσ2
(X?

σ2
) ≤ 0. (A4)

(b): Explicitly, we have
fσ1

(X?
σ1

) ≤ fσ1
(X?

σ2
), (A5)

and fσ2(X?
σ1

) ≥ fσ2(X?
σ2

). (A6)

Then,
fσ1

(X?
σ1

)− fσ2
(X?

σ1
) ≤ fσ1

(X?
σ2

)− fσ2
(X?

σ2
)

⇒ (σ1−σ2)(‖X?
σ1
‖2F−η2) ≤ (σ1−σ2)(‖X?

σ2
‖2F−η2)

⇒ ‖X?
σ1
‖2F ≤ ‖X?

σ2
‖2F . (A7)

(c): Still based on (A5) and (A6), we have

fσ1
(X?

σ1
)− σ1

σ2
fσ2(X?

σ1
) ≤ fσ1(X?

σ2
)− σ1

σ2
fσ2(X?

σ2
)

⇒ (1− σ1
σ2

) · 〈X?
σ1
,A〉 ≤ (1− σ1

σ2
) · 〈X?

σ2
,A〉

⇒ 〈X?
σ1
,A〉 ≥ 〈X?

σ2
,A〉. (A8)

Claim A.1 and Claim A.2 have been varified by the ex-
perimental results shown in Table 1 in the paper. SDCut
is evaluated with different σs, on the task of random graph
bisection. The bound fσ(X?

σ), the objective value 〈X?
σ,A〉

and the norm ‖X?
σ‖2F are shown in the table. With the de-

crease of σ, the lower-bound becomes tigher; Meanwhile,
〈X?

σ,A〉 decreases and ‖X?
σ‖2F increases monotonically.

When σ = 10−4, the lower-bound (−21.31) is very close to
the one given by standard SDP (−21.29).

2. Results on image co-segmentation
In Fig. A1, we demonstrate more results on image co-

segmentation. In our experiments, the confidence maps of
SDCut and LowRank are similar, while SDCut is faster than
LowRank.
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Figure A1: Co-segmentation results on Weizman horses and MSRC databases. The original images, the results of LowRank and SDCut are illustrated from top to bottom.
LowRank and SDCut have similar confidence maps. σ is set to 10−4.


