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Classification error

Convolution Neural Networks
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. . [Krlzhevsky et al., 2012] 16.4% error
Image Classification (AlexNet)
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S—[He et al., 2015] 3.6% error (ResNet)

2010 2011 2012 2013 2014015

ILSVRC year [Szegedt et al., 2014] 6.6% error (GooglLeNet)

, [Simonyan et al., 2014] 7.3% error (VGGNet)
[Zeiler et al., 2013] 11.1% error



|depth | tr. input | top-1 |t0p—5 | speed
VGG16 [28], 10 crops 16 224 |28.1] 9.3 -

ResNet-50 [12], our tested 50 224 235 6.8 |75.2
ResNet-101 [12], our tested | 101 | 224 |22.1| 6.1 | 56.8
ResNet-152 [12], our tested | 152 | 224 |21.8| 5.8 |41.8

ResNet-152 [13] 152 | 224 |213]| 55| -
ResNet-152 [13], pre-act. 152 | 224 |21.1]| 5.5 —
ResNet-200 [ 1 3], pre-act. 200 | 224 |20.7] 5.3 -
Google’s best reported results 2016 Inception—v4[[3(])] P 76 | 299 2001 50| —

— Inception-ResNet-v2 [30] 96 | 299([199]49]) -

56-1-1-1-1-9-1-1, Model F 34 56 |252| 7.8 [113.5
112-1-1-1-1-5-1-1, Model E | 26 112 |223] 6.2 | 973
112-1-1-1-1-9-1-1, Model D | 34 112 (221 6.0 | 81.2
112-1-1-1-1-13-1-1, Model C| 42 112 |21.8| 5.9 | 69.2
224-0-1-1-1-1-1-1 16 224 122.0| 5.8 |553
224-0-1-1-1-3-1-1, Model B | 20 224 121.0] 5.5 | 433
224-0-3-3-6-3-1-1, Model A | 38 2240 | 19.2 | 4.7 } 15.7

Table 1. Comparison of networks by top-1 (%) and top-5 (%) er-
rors on the ILSVRC 2012 validation set [27] with 50k images,
obtained using a single crop. Testing speeds (images/second) are
evaluated with ten images/mini-batch using cuDNN 4 on a GTX
980 card. Input sizes during training are also listed. Note that a
smaller size often leads to faster training speed.

“Wider or Deeper: Revisiting the ResNet Model
for Visual Recognition”, arXiv:1611.10080
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Depth estimation from single monocular
images
. Depth acquisition:

— Depth sensors, e.g., Kinect

— Machine learning methods

. Most vision datasets are still RGB images

. Estimate depth from single RGB images
~ Ill-posed problem



Depth Estimation From Single
Monocular Images

Test image Ground-truth Our prediction



Depth Estimation From Single
Monocular Images

. Useful

— Scene understanding
— 3D modelling
— Benefit other vision tasks
. e.g., semantic labellings, pose estimations
. Challenging
— No reliable depth cues

. e.g., stereo correspondence, motion information



Our method

. Joint learning: Continuous CRF + deep CNN
. Exact maximization of log-likelthood

. Closed form solution for MAP inference



Deep convolutional neural fields
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Deep convolutional neural fields

Test image Ground-truth Eigen etal. (NIPS2014)



Deep convolutional neural fields

Test image Ground-truth Our predictions Test image Ground-truth Our predictions



Conclusion

. Deep convolutional neural fields for monocular image
depth estimations

. Combine deep CNN and continuous CRF

. General learning framework

Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields
Fayao Liu, Chunhua Shen, Guosheng Lin

CVPR2015

http://arxiv.org/abs/1502.07411



http://arxiv.org/abs/1502.07411

Monocular Depth Estimation with Augmented Ordinal
Depth Relationships

Motivation:

+ Limited metric RGB-D data in diversity and quantity.
- Relative depth has been proven to be an informative cue.
- Relative depth can be easily acquired from vast stereo videos.

Highlights:

- A new Relative Depth in Stereo (RDIS) dataset is proposed.
» Densely labelled relative depth using existing stereo matching methods.
- State-of-the-art results on benchmark Depth Estimation datasets.



Overview

1. Acquire relative depth from stereo videos.
2. Pretrain a deep ResNet with relative depths.
3. Finetune the ResNet with metric depths.
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Relative Depth Generation

1. Use the absolute difference (AD) matching cost and the semi-global
matching (SGM) method to generate the initial disparity maps.

2. Post-process the disparity maps: Correct vague or missing
boundaries of objects, and smooth disparities within objects and
background. This is done by experienced workers from movie
production companies.

Post




Results

State-of-the-art results on NYUD?2

Accuracy Error

6§ <125 §<1.25% §<1.25° rel  logl0 rms
Wangetal.[ '] 60.5% 89.0% 97.0% 0.210 0.094 0.745
Liuetal. [ ] 65.0% 90.6% 97.6% 0.213 0.087 0.759
Eigenetal. [ ] 76.9% 95.0% 98.8% 0.158 - 0.641
Lainaetal. [ '] 81.1% 95.3% 98.8% 0.127 0.055 0.573
Ours 83.1% 96.2 % 98.8 % 0.132 0.057 0.538

State-of-the-art results on KITTI
Accuracy Error
§<1.25 § <1252 §<1.25% rel rmmslog rms
Cap 80 meters

Liuetal. [ 1] 65.6% 88.1% 95.8% 0.217 - 7.046

Eigenetal. ['] 69.2% 89.9% 96.7% 0.190 0.270 7.156

Godard et al. [ 1] 81.8% 92.9% 96.6% 0.141 0242 5.849

Godardetal. CS[''] 83.6% 93.5% 96.8% 0.136 0.236 5.763

Ours 89.0% 96.7 % 98.4% 0.120 0.192 4.533

Cap 50 meters

Gargetal. [ ] 74.0% 90.4% 96.2% 0.169 0.273 5.104

Godard et al. [ (] 84.3% 94.2% 97.2% 0.123 0221 5.061

Godardetal. CS[1]] 85.8% 94.7% 97.4% 0.118 0.215 4.941

Ours 89.7% 96.8 % 98.4% 0.117 0.189 3.753










Semantic pixel labelling using FCN

“tabby cat”
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RefineNet: Multi-Path Refinement Networks
for High-Resolution Semantic Segmentation

Figure 1. Example results of our method on the task of object pars-
ing (left) and semantic segmentation (right).




Existing approaches

ResNet
1/32 1/32

> &) > B

Dilated convolutions

1. Standard multi-layer CNNs, such as ResNet (a):

producing low-resolution (down-sampled) feature maps; fine structures/details are lost.
2. Dilated convolutions (b):

Resulting high-resolution and high-dimension feature maps;

computationally expensive and huge memory consumption if generating large resolution
output.



Our approach

RefineNet
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Prediction

Exploits various levels of detail at different stages of convolutions and fuses them to obtain
a high-resolution prediction without the need to maintain large intermediate feature maps



Multi-path input
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Figure 3. The individual components of our multi-path refinement network architecture RefineNet. Components in RefineNet employ
residual connections with identity mappings. In this way, gradients can be directly propagated within RefineNet via local residual connec-
tions, and also directly propagate to the input paths via long-range residual connections, and thus we achieve effective end-to-end training

of the whole system.



Highlights

1. Exploits features at multiple levels of abstraction for high-resolution output.

RefineNet refines low-resolution (coarse) semantic features with fine-grained low-level features in a recursive manner to
generate high-resolution semantic feature maps. Our model is flexible in that it can be cascaded and modified in various
ways.

2. Effective gradient propagation with identity mappings through short and long
range connections

Our cascaded RefineNets can be effectively trained end-to-end, which is crucial for best prediction performance. All
components in RefineNet employ residual connections with identity mappings, such that gradients can be directly
propagated through short-range and long-range residual connections allowing for both effective and efficient end-to-end
training,

3. Chained residual pooling

We propose a new network component we call “chained residual pooling” which is able to capture background
context from a large image region. It does so by efficiently pooling features with multiple window sizes and fusing
them together with residual connections and learnable weights.



Single RefineNet 2-cascaded RefineNet
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Flexible network architectures
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Figure 7. Illustration of 3 variants of our network architecture: (a) single RefineNet, (b) 2-cascaded RefineNet and (c) 4-cascaded RefineNet

with 2-scale ResNet. Note that our proposed RefineNet block can seamlessly handle different numbers of inputs of arbitrary resolutions
and dimensions without any modification.




Experiments

Our source code 1s available at:

https://github.com/guosheng/refinenet

Table 1. Object parsing results on the Person-Part dataset. Our
method achieves the best performance (bold).

method | ToU

Attention [/] | 56.4

HAZN [15] | 57.5

LG-LSTM [2Y] | 58.0
Graph-LSTM [25] | 60.2
DeepLab [5] | 62.8
DeepLab-v2 (Resl01) [0] | 64.9
RefineNet-Res101 (ours) | 68.6



(a) Test Image (b) Ground Truth (¢) Prediction

Figure 4. Our prediction examples on Person-Parts dataset.



Table 5. Results on the PASCAL VOC 2012 test set (IoU scores). Our RefineNet archives the bes

t performance (IoU 83.4).

=

e gz ® 3 £ 5 . . £ z £ = £t 2 3 T g5 g s
Method ] B = 2 2 2 5 it S 3 = 2 £ g 2 & = g g E mean
FCN-8s |30] 768 342 689 494 603 753 747 776 214 625 468 TLE 639 765 739 452 724 374 709 551 62.2
DeconvNet [15] 809 393 797 639 682 874 812 861 285 770 620 790 803 836 802 S88 834 543 807 650 72.5
CRF-RNN [47] 904 553 887 684 698 883 824 851 326 785 644 796 819 864 818 S86 824 535 774 701 74.7
BoxSup [10] 808 380 892 689 680 896 830 877 344 836 67.1 815 837 852 835 586 849 558 812 707 75.2
DPN [45] 890 616 877 668 747 912 843 876 365 863 66.1 844 878 856 854 636 873 613 794 664 77.5
Context [20] || 94.1 407 8.1 678 759 934 843 884 425 864 647 854 89.0 858 860 675 902 638 809 730 78.0
DeepLab [5] 89.1 38.3 88.1 63.3 69.7 871 83.1 850 293 765 565 798 779 858 824 574 843 549 805 64.1 727
DeepLab2-Resl01 [6] 926 604 916 634 763 950 884 926 327 885 676 896 921 870 874 633 883 600 868 745 79.7
CSupelec-Resl01 [4] || 929 612 910 663 777 953 889 924 338 884 69.1 8§98 929 8§77 8§75 626 899 592 8§71 742 80.2
RefineNet-Res101 || 949 602 928 775 815 950 8§74 933 396 893 730 927 924 854 883 697 922 653 842 787 82.4
RefineNet-Res152 947 643 949 749 829 951 885 947 455 914 763 906 91.8 881 B83.0 699 923 659 887 6.8 834




(a) Test Image (b) Ground Truth (¢) Prediction

Figure 5. Our prediction examples on VOC 2012 dataset.



15 FPS with 720P input on a single GPU

(a) Test Image (b) Ground Truth (¢) Prediction
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Low-level image
processing with very

deep FCN



Convolution Deconvolution

Figure 1: The overall architecture of our proposed network. The network contains layers of symmetric convolution
(encoder) and deconvolution (decoder). Skip shortcuts are connected every a few (in our experiments, two) layers
from convolutional feature maps to their mirrored deconvolutional feature maps. The skip connections divide the
network into several blocks, the size of which is 4, i.e., 2 convolutional and deconvolutional layer respectively. The
response from a convolutional layer is directly propagated to the corresponding mirrored deconvolutional layer, both
forwardly and backwardly.



Figure 5: An example of a building block in the proposed
framework. The rectangle in solid and dotted lines de-
note convolution and deconvolution respectively. & de-
notes element-wise sum of feature maps.



Table 1: Configurations of the 20 and 30 layer networks.
“conv3d” and “deconv3d” stand for convolution and decon-
volution kernels of size 3 x 3. 128, 256 and 512 is the
number of feature maps after each convolution and de-
convolution. “c” is the number of channels of input and
output image. In this work, we test on gray-scale images,
i.e., c = 1. However, it is straightforward to apply to color
images.

RED-Net20 RED-Net30
(conv3-128) x4 (conv3-128) %6
(conv3-256)x3 (conv3-256) x6
(conv3-512)x 3 (conv3-512)x3
(deconv3-512)x2 | (deconv3-512)x2
( (

( (

( (

deconv3-256)x3 | (deconv3-512)x6
deconv3-128) x4 | (deconv3-512)x6

deconv3-c) deconv3-c)




Figure 4: Visualization of the 10-layer convolutional and deconvolutional network. The images from top-left to
bottom-right are: clean image, noisy image, output of conv-2, output of conv-5, output of deconv-3 and output of

9 99

deconv-5, where “conv-i” and “deconv-¢” stand for the i-th convolutional and deconvolutional layer respectively.




Denoise
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Super-resolution












Deblur
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Enhancing JPEG images
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Inpainting

W




. Superior results on Denoising, & Super

resolution
. Many other low-level image processing tasks:

. Deblur
. Dehaze

Image Restoration Using Very Deep Fully Convolutional Encoder-Decoder Networks with

Symmetric Skip Connections, X. Mao, C. Shen, Y. Yang, NIPS 2016.
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(Questions?



