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Abstract

We introduce a new method that characterizes quantitgtieebl image descriptors in
terms of their distinctiveness and robustness to geomeeamsformations and brightness
deformations. The quantitative characterization of theperties is important for recog-
nition systems based on local descriptors because it allowthe implementation of a
classifier that selects descriptors based on their distarass and robustness properties.

This classification results in: a) recognition time redmetdue to a smaller number of de-
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scriptors present in the testimage and in the database aflrdesdcriptors; b) improvement
of the recognition accuracy since only the most reliablede®rs for the recognition task
are kept in the model and test images; and c) better sc&jyapilien the smaller number
of descriptors per model. Moreover, the quantitative attar&ation of distinctiveness and
robustness of local descriptors provides a more accurateufation of the recognition pro-
cess, which has the potential to improve the recognitiomr@oy. We show how to train a
multi-layer perceptron that quickly classifies robust arstinictive local image descriptors.
A regressor is also trained to provide quantitative modaisich descriptor. Experimen-
tal results show that the use of these trained models notiorgyoves the performance
of our recognition system, but it also reduces significattty computation time for the

recognition process:

Key words:
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models

1 Introduction

In the last few years, there has been a growing interest mgreton systems us-
ing a collection of local image descriptors for the tasks lgjeot recognition [22],

image matching [31], object discovery and recognition [3hong others. The
model representation used in these systems is based oreatiawilof image de-
I This work was performed while Gustavo Carneiro was at thevéisity of Toronto.
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scriptors with small spatial support extracted from sdliarage regions, such as
corners [18], difference of Gaussians [22], etc. When caegbéo image repre-
sentations based on a large spatial support (i.e., globagenfieature) [25], local
representations achieve a better robustness to clutteialpzcclusion, and com-

mon image deformations.

Current state-of-the-art local image descriptors haven gefully designed to
be robust to geometric transformations and photometriordedtions and also to
be distinctive [23]. However, individual local descriptdnave, in general, differ-
ent discriminating and robustness properties, even tholigy are extracted us-
ing the same algorithm. This happens because some localtest are detected
from regions with different stability properties with resp to image deformations,
and also because some descriptors lie in regions of theréegpace more or less
densely populated. Therefore, an explicit quantitativarabterization of the dis-
tinctiveness and robustness of local descriptors is inaporh order to: 1) provide
a classification scheme that selects descriptors with sukscriminating and ro-
bustness properties, and 2) allow for a more accurate fatnoulof the recognition
process. The descriptor selection decreases the size widtiel database by keep-
ing only the most useful model descriptors for the recognitask, which results
in a faster and more accurate recognition process and in a sualable system
(i.e., the system is able to deal with a higher number of Vislagses). Finally, the
more accurate formulation of the recognition process carane the recognition

accuracy.

In the literature the characterization of local image dgsars for classification and
for estimating their relative importance during a recogmitprocess has usually

been treated separately by several authors.



The use of distinctiveness in order to estimate the relatnmrtance of the model
descriptors has been exploited by Amit and Geman [2]. Inwligk, the authors

estimate the distribution of the descriptor similaritieshwespect to background
descriptors, thus estimating the distinctiveness of tisemator. This characteriza-
tion is used for selecting local descriptors better suitedHe recognition process,
but note that the authors do not propose a classificatiomsgheor do they use
the local descriptor robustness. The use of robustnessstonating the relative

importance of model local descriptors was the focus of varmorks [14,29,34],

where the authors use an exponential distribution to apmrabe the robustness
distribution. Additionally, other works try to estimateetbetectability and discrim-
inating power of a descriptor by calculating how often it epgs in the learning

stage [27,29].

Methods to classify local image descriptors without quaititiely characterizing
their robustness and distinctiveness properties have ineamsively studied lately
[1,14,12,19,28,37,40]. Note that these approaches afel isethe selection pro-
cess, but the absence of a quantitative characterizatiesrou allow these methods
for estimating the relative importance of local descript@pecifically, Ohba and
Ikeuchi [28] select robust descriptors by verifying howitHeature values vary
with deformations, and unique descriptors are filtered bgcking their distinc-
tiveness when compared to other training image descrigters two descriptors
are discarded as ambiguous if they lie too close to each otliee feature space).
Alternatively, Dorko and Schmid [12] proposed an approdudt selects descrip-
tors based exclusively on their discriminating power. Zhatso worked on a de-
scriptor selection method using not only the discrimingtibut also their robust-
ness properties. In other related methods [1,14,37], decing algorithm selects

the descriptors that appear more often during the trainiages However, none



of the methods above estimates quantitatively the robsstaad distinctiveness
distributions in order to properly classify each descrip&s we propose here. In
robotics, there has been some interest in the problem aftseddocal descriptors
for reducing the complexity of the simultaneous locali@aatand mapping (SLAM)
approaches. However, the proposed methods generallywaeolvay of selecting
local descriptors without explicitly characterizing thdistinctiveness and robust-
ness properties, as we propose in this paper. For exampdegtSa. [30] propose a
descriptor selection method for the problem of vision bassdgation of a robot in
a small environment. Their approach, based on graph thewojlyes the partition
of the environment into a minimal set of maximally sized cg, such that for all

positions of a given region, the same setafescriptors is visible.

In pattern recognition theory, there has been numerousadstproposed for the
problem of feature selection and extraction[17]. Gengrtike feature selection and
extraction problems consist of building a lower dimensldeature space from the
original one, where tasks such as classification or regnessie performed more
accurately and/or efficiently. The goal of our paper is tHad@scriptor selection

(and characterization). Therefore, the feature spaceadf dascriptor remains in-
tact throughout the algorithm, but the set of descriptopsagenting an image will
be reduced to include only the most robust and distinctivesoiven though the
problem being presented by this paper is on descriptor tsmheand characteri-
zation, traditional methods of feature selection (andaetion) could be adapted.
The main idea to permit such adaptation is to build a feafpaee using the model
descriptors. The issue involved in such approach is thatlitnensionality of the

feature space can grow indefinitely high (note that each remerghtor would define
a new dimension in this feature space), and traditionalhtiecies for feature selec-

tion and extraction (e.g., principal components analyssnifold learning, linear



discriminant analysis) are unlikely to work in these verghhdimensional spaces.
A practical example on how to make this approach work is tlgedfdeatures [9],
where a feature space is built based on the clusters form#eelistribution of lo-
cal descriptors. This means that the new feature space haslaen of dimensions
eqgual to the number of clusters, and the feature values &eengdeed by the num-
ber of votes cast to each cluster. This way, the feature diiorality has a fixed
value, and consequently the traditional techniques meatd@bove can work for
the feature selection/extraction problems. Neverthekbesapproaches in the lit-
erature following such idea focus more on the recognitisk taan on the feature
selection process (e.g., how to build a classifier capableooking in such high
dimensional space and how to cluster the features in ordelpothe classification
task). A recent trend in the computer vision community is wddodescriptor se-
lection methods for specific recognition tasks, such asdbe &nd facial features
detector by Ding and Martinez [11]. This method works based®equence of
several classifiers, each trained to detect a specific figatlre (note that each fa-
cial feature is manually determined). This approach dsffesm ours since there is
no explicit characterization of the descriptors and thegitesf the method is quite

specific for the problem at hand.

There has been studies similar to ours for specific goalshotrcs, which makes
a direct comparison hard to implement. For example, He dtL€].characterize
explicitly the distinctiveness and robustness of locatdesors in order to provide
a classification scheme to filter out descriptors that witlm®effective for a recog-
nition process. In particular, the authors study the proldévision based environ-
ment localization using single images (as opposed to wankSLaAM [10,33] that

generally use pairs of images). Their system uses a tempegalkence of training

images to learn a manifold with the property that nearby iesag the environment



are also close together in the manifold. Using this constréne authors propose
an incremental learning framework that selects robust astihdtive descriptors
for representing images. Notice that although the goal oétd. [19] is similar to
ours, they formulate the problem specifically to solve tharenment localization
task. The method we propose here is more generic becausdesigned for the

problem of visual object recognition.

1.1 Contributions

This paper introduces a novel way of characterizing quantély the distinctive-
ness and robustness of local image descriptors [8]. In alidject recognition
framework, this characterization is used for: 1) selectlrgmost appropriate de-
scriptors based on their robustness and distinctivenegsegres; and 2) formu-
lating more accurately the recognition process. We furghew that it is possible
to train a multi-layer perceptron (MLP) classifier for fagisgriptor selection. We
also train an MLP regressor for quick quantification of thetidctiveness and ro-
bustness properties of the descriptors. The proposed itptasat characterization
and training of the MLP classifier and regressor are quiteggizable in the sense
that the same basic approach can be applied to severakdiffipes of local im-
age descriptors. We show this by applying the whole procésscal descriptor
characterization and MLP training to the following two eéifént types of local de-
scriptors: local phase [5] and SIFT [22] descriptors. We aise the classification
and regression procedures as a pre-processing step faeaagmnition system [7].
Empirical results using this system show that this pre-pssig stage significantly
decreases the time to process test images and also impha/escbgnition accu-

racy.



1.2 Paper Organization

This paper is organized as follows. Section 2 introducegjtrentitative charac-
terization of local image descriptors. The classificatibdescriptors based on ro-
bustness and distinctiveness is presented in Section 3disbession in Section 4
shows the main problems of the quantification and classiicaethods presented
in Section 3, and solutions to these problems are presemteiitions 5 and 6. Ex-
periments showing the advantages of using this quantificand classification
approaches are demonstrated with a full-blown recogntigstem in Section 7,

and Section 8 concludes the work.

2 Quantitative Characterization of Local Image Descriptors

This section introduces a method to quantitatively charazt the distinctiveness
and robustness properties of local image descriptors. Tai@ purpose of this
guantitative characterization is to classify useful dggors and also to weight the

importance of each descriptor for the recognition process.

2.1 Local Image Descriptor

Local image descriptors are photometric features exidoben image regions with
limited spatial support. There is not a precise definitiothia literature about the
actual size of this spatial support, but the assumptionas tte size of a local
image descriptor can be between one pixel and 32 pixels irpiaalyimage of

size around 500 x 500 pixels. These features are generalgotxd from image

regions presenting two basic properties known to be usefuldcognition and



matching processes. The first property is robustness toardatprmations, such
as rotation, scale, translation, and brightness varigtidine second property is
a high degree of information content that helps discrinarthiese regions. The
algorithms that automatically select such regions are rgélgeknown as interest
point detectors [18,22]. From these regions, image featare extracted such that
they possess similar properties (i.e., robustness andien&ss). In this paper, we

define a local image descriptor as the following featurearect
fi =[x, vi], (1)

wherex; € R? is the image position of the descriptfr andv;, € RV is the

descriptor vector with/ photometric values. Section 6 shows two examples
local feature photometric values. The database of modeligésrs extracted from
a model imagd,, is then denoted a®,, = {f||x; € Z,,}, whereZ,, is defined as
the set of interest point locations (1) of each local descriptdy extracted from
imagel,,. Finally, the similarity between two descriptdisandf, is computed by

the functions(f;, f,) € [0,1] (s¢(.) &~ 1 means high similarity).

2.2 Quantitative Characterization of Distributions

As mentioned before, local image descriptors must be distmand stable to im-
age deformations to be useful for several computer visigaiggtions. Although
local descriptors are designed to be distinctive and rofoushage deformations,
each individual descriptor has different degrees of thespasties. In this section,
we explain our method to estimate the following three siai<f each local de-
scriptor: a) distribution of robustness to image defororagi b) distributions of
distinctiveness, and c) probability of detection. Usingsh three statistics, we im-

plement a classification process that keeps only the mosboppate descriptors

of



for visual recognition tasks.

Our method of estimating the distinctiveness and robustdestributions of local
descriptors is inspired by Yuille’s approach [39], whictesishe probability distri-
butions Py, and Py corresponding to the true positive and false positive ihgtr
tions, respectively, for the problem of road tracking. Weatide the probability
distribution for robustnes,,(s(f;, f,); fi), i.e., the probability of observing de-
scriptor similaritys;(f;, f,) € [0, 1] given that the descriptdy, is a true match for
the descriptof;. The robustness of a local descripfpalso depends on the prob-
ability that the interest point detector will fire at its ril@ positionx;. We define
this probability asPyei(x;), which is the probability that an interest point is de-
tected in the test image near the location corresponding ¢d descriptorf;. The
distinctiveness o (s ¢ (£}, f,); f;) is the probability of observing;(f;, f,) given that

the descriptof, is a false match for the descriptfhr

The main goal of this section is to present a simple way ofaittarizing the distri-
butions Py, Pof, and Pyet involving a small number of parameters. It is important
to have a representation with a small number of parametecs $he visual mod-
els we consider in this work generally consist of thousarfd$escriptors, so the
complexity of the representation can increase signifigamith the number of pa-
rameters forP,n, Pot, and Pyer. The basic idea of the whole process is depicted in
Figure 1. Step 1 comprises the following tasks: 1) select dahilmage containing
the visual object of interest; 2) apply several synthetiage deformations to this
model image; and 3) build a database of local descriptoraebed from a database
of images that does not contain the model image (this formglttabase of ran-
dom descriptors). Step 2 consists of: 1) matching each kbestriptor from the
model image to the correct position at each deformed imggeoi2 this matching

process, it is possible to build a histogram of similaritgtdbution for each model
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Deformed model image Model image Database dfandom”

Ik,d Ik descriptors
f
STEP 1. / not detected
04)
g4 ¢4
1 2
R
STEP 2: Compute the ratio for f Histogram of true Hist_ct)_grarr_l 0_1; f€}|t_Se
# times f was detecte®T(d) jPositive similarities positive similarities
: FP
# deformations used
0 0 L
0 1 s(.) 0 1 s(.)
STEP 3: Compute detectability Estimgte parameters of Estimqte parameters of_
of descriptor f Beta distribution from histogranBeta distribution from histogre
at position x of positive similarities, of negative similarities,
resulting in the distribution: resulting in the distribution:
Riet %) Rn(s(§):E) R S )

Fig. 1. General view of the method to estimate of the detdittalbobustness, and distinc-

tiveness of local image descriptors.

descriptor and also to determine its ratio of detection (#tie of detection of each
model descriptor is represented by the percentage thateberigtor is detected
at the deformed model images); and 3) matching each locariges from the

model image to each descriptor in the database of randomipess and building

a histogram of false positive matches. Finally, in step & possible to quantita-
tively characterize the detectability, robustness, astrditiveness for each model
descriptor. We first describe how to automatically learrséhparametric models,

and then we define which model we use and how to estimate asaders.

To train the models, we make use of a training set consistfng fixed set of
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foreground and background images (see Appendix B), alotfgsynthetic image
deformations (see Appendix A). Note that the use of synthietage deforma-
tions has become relatively popular lately in order to iaseethe robustness of
classifiers [3,21]. However these works usually do not askithe same issues of
our paper. We propose a method that not only improves thestobss of local
descriptors, but also that selects and quantitativelyazttarizes the descriptors for
improving the accuracy of the probabilistic detection. $keof foreground images
7 has30 images, and the set of background imaesontains240 images, where
7 NR = (. As shown in Appendix B, the sets of foreground and backgioun
images are taken from the same pool of images, which contefarps of land-
scape, people, animals, and texture. There is no conceptieaknce between the
two sets of images. This implementation with foreground background images
taken from the same pool of images has the potential to ingpitoe generalization
capabilities of the learned models. Given an image 7, the set of local descrip-
~, and the set of

.....

77777 ~, Where each
x; € 7, is the respective position of the descripfpe Oy. Typically, the number
of local features per image varies between 1,000 to 10,000s€yuently, the total
number of features in the foreground set is between 30,003@®,000, depending
on the type of local feature used (for details on the spectuinlver of descriptor
per feature type, please see Section 6). Moreover, the sktsafiptors extracted
from the background images is representedR ), which has betweeh00, 000

and1, 000, 000 descriptors, depending on the type of local feature (Se@&)oThe

Poi(s¢(f1,.)), f;) of each descriptof, € Oy is computed from the histogram of

false positive matches

{ss(fi,£,)|f, € O(R)}. (2)

12



— TP
-- FP

Fig. 2. Mean and standard deviation of the distribution ef phase similarity values be-

tween true positive (TP) and false positive (FP) matcheth®phase feature [6].

On the other handPon(s¢(f;, .), f;) is computed from the histogram of descriptor
similarities with respect to an image deformatidre DF, whereDF is a set of
synthetic image deformations (see Appendix A). Assumiragthis the position
of the descriptoff; € O, and that the synthetic deformatidne DJF applied to
I, forms the imagefkvd, where points in;, are mapped to points iﬁ,d as follows:
x4 = M(d)x; +b(d), whereM(d) andb(d) represent the spatial warp for the de-
formationd. Since we depend on the interest point detector to fire seiffilyi close

to that position, we search the corresponding descriptéh@deformed image as:
fiq = argmax{s;(fi, £,)|f; € Op, £, € O(Iia), IM(d)x; +b(d) = %, < €}, (3)

where is fixed at2.0 pixels (as measured in the imafg;, which is down-sampled
according to scale). It is important to mention that the laescriptors considered
in this work are extracted with bandpass filters with peakuency response at
wq = 2m/(4.360,), corresponding to a wavelength 8§ = 4.360,, whereo de-

notes the standard deviation of the filters. Also, test ilmage processed aj = 8,

which makess, ~ 2.0 pixels (empirically, the use ok; = 8 achieves a good
signal-to-noise-ratio). Thus, the uncertainty in termshaf local image descriptor

position is aroun@.0 pixels, hence = 2.0.

Figure 2 shows the mean and standard deviation of the hastogf false positive
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(2) and true positive matches (3) for the phase feature [Bpube sets/ andR
described above, where the descriptor similasity) is the phase correlation. No-
tice that the true positive (TP) and false positive (FP)dgsams present a unimodal
structure with a heavy tail, which resembles a beta didinbusee Fig. 4). Quite
similar TP and FP distributions are also shown by Lowe [2n&k, we approx-
imate the distribution$’,, and Py with the beta parametric distribution, which is

defined as follows:

1 a— _
fl tafl(l_t)bfldtw 1(1 - w)b 17 |f X E (O, 1) anda, b > 0
Ps(z;a,b) = ¢ ™ (4)

0, otherwise

This distribution is defined within the range, 1] (i.e., the same range @f;(.)).
Notice that we need to store only two parameters for the histaldition, which
can be considered as a low complexity representation. Iri3Fige see the approx-
imation of the histograms above with the beta distributismg the local phase

descriptors [5,6].

The method of moments (MM) provides a good one-step estiofatee beta pa-
rameterse and b providing results very similar to maximum likelihood eséim
tion [38]. It is based on the first and second moments, namglgnd o—g, of the

histograms folPy and . The parametergs, b) of the fitted beta distribution are

then
p(1=2u5+4u3) b 5
b 0B | anda — Q

Finally, in order to determiné’; of @ model descriptor positior, € Z(1;), we
have to investigate how stable this position is with respathe deformationd €
DF (see Appendix A). Specifically, I€t(x;) be the set of deformations for which

a corresponding interest point can be found in the origimage/;, soC(x;) =

14



Feature vector #260 Feature vector #540

Robustness probability distribution of feature vector #260

Distinctiveness probability distribution of feature vector #260 ROC curve
--- Beta,,, (822030.76332) _-. Bela,, (259118.5382) K P S—— g
— Phase corr. hist. — Phase corr. hist.
q 0.8
0.1] 0.1
5 0.6
k=]
i o
: g
L C 04
0.05] 0.05
b
0.2
0 - 0 9
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 -35 —2.? -2 -15 -1
phase correlation phase correlation Iug10 false positve)
Robustness probability distribution of feature vector #540  p;yinctiveness probability distribution of feature vector #540 ROC curve
--- Beta,, (1.2598,0.4584) _-- Beia,, (269648.79) 1
— Phase corr. hist. —— Phase corr. hist.
0.8
0.1] 0.1
5 0.6
k=]
5]
L] ©
’J 3 0 0.4
0.05] 0.05
[ 0.2
ook : 9 g
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 -35 -3 —2.? -2 -1 -1
phase correlation phase correlation Iug10 false positve)

Fig. 3. Approximation of distinctiveness and robustnessdgrams using the beta distribu-
tion for the local phase descriptors [5,6] (the first row thgp the local phase descriptors
being studied, represented by the white circle on the imadele that the descriptor in
the first image is identified by number 260, and the second tiasber 540. The receiver
operating characteristic (ROC) curves of robustness gtindtiveness for descriptors 260
(second row) and 540 (third row) are shown in the last colufime Pye; of the descriptor
260 is87%, and for descriptor 540 i87%. The two numbers after the legend 'Bgi@

are the estimated parameterandb, respectively (see Eq. 5). Descriptor 540 is filtered out
due to low robustness (seeandb parameters for robustness graph in first row) and low

detectability, while descriptor 260 is kept for the modgiresentation.

{d|3x; € T(I.q) St.||x; — M(d)x; — b(d)|| < €} with ¢ fixed at2.0 pixels (as
measured in the imagk 4, which is down-sampled according to scale), &)

andb(d) represent the spatial warp for the deformatibiHence the detectability
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Beta(4,2) Beta(8,2)
---- Beta(10,5) ---- Beta(20,5)
6 — Beta(20,10) 6f — Beta(40,10)

Beta(2,4)
---- Beta(5,10)
6 — Beta(10,20) 6

Beta(2,8)
---- Beta(5,20)
— Beta(10,40)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(@) (b) (©) (d)
Fig. 4. Examples of beta distributions with different vader the parametersandb. In the

legend, the first and second parameters of the funddiefa represent: andb, respectively.

probability is denoted by
(6)

3 Local Descriptor Classification

We use one key observation about the beta distribution ierdoddefine our classi-
fication process, as depicted in Fig. 4. Notice that in gépasa > b, the mode of
the distribution is close to one, and whep- @, the mode is closer to zero. There-
fore, the ideal distribution foF,, should resemble the graphs (a) and (b) in Fig. 4,
wherea > b because it is desirable that the similarity values for adrreatches
are as close as possible to one, which means that the deseapies are relatively
insensitive to image deformations. On the other hand, thal idistributionPy of

a model descriptor should be similar to the graphs (c) andwdgreb > « since

we want that model descriptors and wrong matches have lovesity values.

Therefore, our classification procedure consists of cimecte following proper-
ties: @) high robustnesg,(f) > 7onbon(f) (i.€., the mode of the,, distribution
gets closer to one); b) high distinctivenégg(f) > 7oraor(f) (i.e., the mode of
the Py distribution gets closer to zero); and c) high detectabfffe(x) > p%. As

a result, we obtain a subset of descripté¥s C O, that have the three properties

16



experiment index

Fig. 5. Experiment showing the EER (vertical axis) and petage of interest points with
respect to the image size (this percentage is denoted byithbar over each marker). The
horizontal axis display the specific parameter values useadch of the 28 experiments as

follows: (7on, Toff, p%).

above. The values,, 7o, andp above are determined in order to have, on average,
the percentage of interest points aroungls of total image size. This percentage
is based on the study by Carneiro and Jepson [6] who notiGdtbe number of
interest points is aroun@ 3% of total image size for the state-of-the-art methods
developed by Lowe [22] and by Mikolajczyk and Schmid [24]Hig. 5, we show

an experiment with varying values of the parameters abotle nespective equal
error rate (EER)? and the percentage of interest points with respect to thgéma
size. According to this graph, we sgf = 7, 7o = 2, andp% = 75% because these
values produced a percentage of interest points arouyd compared to the im-
age size and also because the EER is relatively high (comhpau@her parameter

values).

Fig. 3 illustrates examples of selected and rejected ldcas@ descriptors, where
Ton = 7, Toff = 2, andp% = 75%. Also, Fig. 6 shows the significant improvement
of the ROC curve and the reduction of the number of descspimm 3.2% to

2 The EER is the point at which the true positive rate equalsroimeis the false positive

rate.

17



ROC curve

Detection

—8.5 -3 -2.5 -2 -15
log 10(false positive)

filtered ROC curve

[ : : :

o o
(2] [ee]

o
s

Detection rate

45 =

-2.5 -2 -15
log 10(false positive)

Fig. 6. ROC curve computed from the descriptors (white eskin each figure above. The
graph in the first row, second column shows the mean and sthridwiation graph of
the ROC curves computed from all the local descriptors atelesngth A = 8 from the
image shown on the top-left corner. The graph in the secowdsecond column shows
the ROC curves with the points filtered by the procedure dmstrin Sec. 3. Notice the
significant improvement in terms of robustness vs. distieoess, and also the reduction

of the number of descriptors detected.

0.3% of total image size when the classification procedure abowéotal phase

descriptors is applied on all the descriptors of the image.
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4 Discussion

There are two problems with the method described above fopating the de-
scriptor robustness and distinctiveness, namely: 1) tisate guarantee that those
distributions learned in artificially deformed images canelxtended to real defor-

mations; and 2) the time needed to learn those distributgoggite large.

The first problem is addressed in Sec. 5 through empiricamx@nts, where we
show that the parameters learned in the artificially deformedels are indeed ap-
plicable to real image perturbations. Further quantieasimalysis given controlled
image deformations would also be worthwhile although thisayond the scope of

this work.

The second problem is solved in Sec. 6 by training two maltel perceptron
models [26] using a supervised learning scheme. The firstiayker perceptron
classifies descriptors according to the properties aboge (pbustness and dis-
tinctiveness), and the second estimates through nonrliegeession the parameter
values for each descriptor selected by the classifier. Bathi+ayer perceptron
models are trained using the filter responses of the localrigesr as the input.
The distribution parameters provide the target output lierregression problem,

and the classification results provide the target outputtferclassification task.

5 Comparison Between Real and Atrtificial Deformations

The main reason why artificial image deformations are usedefrning the de-
scriptor probability distributions is to allow for a comgdecontrol over the corre-

sponding descriptor positions in the deformed images.liiehis learning pro-

19



cedure should be done on real image deformations that wawoldupe a better
estimation of those distributions. However, that woulduiegja knowledge of the
descriptor positions of the model in the images contairtiegleformed model. The
question to be answered here is whether the densities tbauee the sequence of
artificially deformed images are applicable to actual deftions of the model im-

age.

Our quantitative evaluation of local descriptor performegonsists of the follow-

ing steps:

e Take a sequence of N images },c1,. vy containing the model to be studied

under real image deformations. Effectively, a model is aoregresent in all
those images (e.g., a person’s face).

e Extract the local descriptors from the model imdgé¢o form the setD,. Learn
the probability distributions (i.e Fon, Posf, and Pye) Of each descriptor present in
O, using the scheme described in Section 2.

e Extract the local descriptors of each subsequent test invelgieh produce®);
fori>1.

e Find the correspondences between the set of model dessript@nd each set

of test descriptor®; for i > 1, separately, as follows:
Nli = {(flaf‘l”fl € Oi7fl € ’C(fla Ola 'L{';./\/’)a Sf(fbfl) > TS}; (7)

wheres¢(.) € [0, 1] represents the descriptor similarity function such thates
close to one mean high similarity, = 0.75, andk(.) is the set of the top
correspondences with respectst@.) between test image descripore O, and
the database of model descript@rs. For this experiment, the value ef, is not
very relevant, but setting it at two produces a good trad®efiveen speed and

robustness; that is, smaller values produces faster sesudtlarger values results
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in more robust but slower estimation. Either way, the finautes presented here
are not significantly affected. With these correspondences RANSAC [36] to
estimate the affine transformation to align the model dpsms inO; to the test
image descriptors i¥;. Note that the affine transform is computed using robust
parameter estimation. This affine transform provides ahmagproximation of
the deformation that took place between these two images.

e Use the estimated affine transform to compute the approgipaditions of the
descriptors from/; to [;, for i > 1, so that it is possible to compute the ROC
curves for: 1) all model descripto€3,, 2) the filtered model descripto€3;, and

3) the set of rejected descriptors formed®y — O5.

Using the ROC curves computed with the artificial image deftions, it is possi-
ble to verify how well they approximate the ROC produced by hal image de-
formationsd € {DF} (see Appendix A). We show one instance of the experiment
described above in Figures 7 and 8 using the local phaseplesd6]. Notice that
the ROC curves produced by the artificially deformed imagesganerally better
than the ones yielded by the real deformations. This could baen caused by nu-
merous processes, which include: the computed affine ttamsised to determine
the approximate positions of the descriptors frhno /; is not sufficiently precise;
or the set of artificial deformations € {DF} are not a reliable approximation
of the real deformations. However, we see that the curvethéofiltered set of de-
scriptors is always comparable or better than the sets ahdlfejected descriptors.
This indicates that the learning process can be considetidble since it can be

generalized for small real deformations.
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Fig. 7. Real image deformations approximated by an affinerdedtion. The first column of
the first row shows the first image of the sequence contaimiegnodel 'kevin's face’ (i.e.,
01). The remaining images from the second to the fourth coluprasent the deformed
model contour using the affine transform computed with thiehes depicted on the second
row as the red dots. Since the affine transform was computied asrobust parameter
estimation, some matches can be left out of the contour if there considered to be

outliers. The whole sequence contains 30 images.
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Fig. 8. Comparison between the ROC curves produced by rehb#ificial test image
deformations for the case depicted in Fig. 7. The solid blirgecrepresents the detection
performance for the filtered descriptafy, while the dotted red curve is for the unfiltered

descriptors0;, and the dashed green line is for the set of rejected dessipy — OF.
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Fig. 9. Configuration of the phase-based local descriptprTbe center point represents
the location selected by the interest point detector, aedhthe points around it are the

sampling points of the local descriptor.

6 Reducing the Time to Learn the Distributions

The learning procedure explained in Section 2 is computatip very intensive
due to the requirement for explicitly deforming the imagerder to estimate the
performance statistics of each descriptor. On averagenitake between 20 and
30 hours to estimate the descriptor probabilities for alsingpdel, which is clearly
non-practical for the training and recognition tasks. $pedly, two tasks can be
identified: a) a classification problem that categorizes scdgtor as part of the
set of filtered descriptor®;; and b) a regression task to predict the parameters
of Pon, Pof, and Pyer. The important question is whether it is possible to do the
classification/regression using the filter responses dlanewithout going through

the whole learning procedure).

For the classification task we trained a multi-layer pencep{we also refer to it
as a neural network classifier) using Netlab [26], wherenpet layer received the
following filter responses from the local phase descriffito[6] extracted from a

given locationx; 3 :

3 The local phase descriptor is detected using the scaleefiltearris corner [6], and the
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¢ the values at the sampling points (see Fig. 9) of the secorhtiee of a Gaus-
sian (i.e., the7, filter) and its Hilbert transform (i.e., thH, filter) tuned to the
orientationg)° + 6;, 45° +6;, 90° + 6,, and135° + 6;, whereg, is the dominant ori-
entation at descriptor positiat), and to the scales,, \./v/2, and).v/2 [16](a
total of 216 dimensions);

e [, I, (i.e., horizontal and vertical image derivatives) withitxd window around
x; (a total of 50 dimensions);

e eigenvalues:, u» used to compute the Harris cornerness function [18] and the

following cornerness function value [5]:

B pa(xq)
10 = ) ) + o)

wherec is a constant to avoid a division by zero (a total of 3 dimens)p

e deviation between the local wavelength of the descriptal lacal frequency
tuning of theG, and H, filters, denoted by log(A(x;, \.)) — log(A.)| at the
scales\., \./v/2, A\.v/2, where)(.) denotes the local frequency computed from
positionx; [15], and). represents the local frequency tuning of the filters (a total

of 3 dimensions).

Thus, these filter responses form a 274 dimensional locarigésr f;. The neural
network ideally produces logistic output of O if the destwipshould be filtered out,
and 1 otherwise. Recall from Sec. 3 that a selected descrniptst preseniqn(f) >
Tonbon(E), boit(f) > Toaon(f), and Pyel(x) > p%, Wherery, = 7, 7o = 2, and
p% = 75%. Therefore, the target function for each descrigtan this supervised
learning problem id if f; € O, and0 otherwise. The training algorithm is the
standard error back propagation with weight decay, usiagdaonjugate gradient

for the optimization. Also, we used 300 units for the simpbidien layer.

similarity is computed by the phase correlation functioh [6
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Fig. 10. ROC curve that shows the classifier performance enett set.

The input for the regression problem is the same as the ontadoclassification
problem, but the target values are the two parameters foPgke(f, f; f;) dis-
tribution, the two parameters for théy (s, (f;, f; f;) distribution, and thePyed(x;).
As a result, we have five linear output units. Moreover, a detx f; is part of the

training set only iff;, € O;. We also used the Netlab package [26] for this problem.

In order to determine a sufficient number of training samplesuse the common
rule of thumb that there has to be 5 to 10 times more trainingpées than model
parameters [13]. Given that we ha/et x 300 x 1 = 67,400 = O(10*) parameters,
then we must have®(10°) training samples. Hence, we built a training set with
235,000 descriptors and a test set with 26,000 descrigita@s10 shows the ROC
curve for the classification task computed using the tests;aand Fig. 11 shows
the actual values of thB,, and Py parameters, angéte compared to the output of

the regression network for the test cases.

In order to compare the performance provided by the claasiic procedure us-
ing the neural network above, we show the following expenm&Ve compare
the descriptors in the sé€@; produced by the standard learning procedure shown in
Section 3 and the descriptors@ generated by the neural network classifier using
a threshold).5 on the logistic classifier output. The threshold) &t was estimated

using a hold-out validation set such that the remaining ggeege of descriptors
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Fig. 11. Performance of the regression algorithm to pretthiet’,, and Py parameters,

and Pyet value. Thet5° red line is used as a reference only.

was around).3% of the original image size (see Section 3). Fig. 12 presdriss t
comparison, showing the mean and standard deviation pedduoO; on the cen-
ter and@,’; on the right for the respective test images in the leftmoktroa. Note
that these two images were not used for training the neutalank. The neural
network classifier produces a result that is relatively Einto the original filtering
method, and the relative number of descriptors is againcestitroms3.2% to 0.3%

of the total number of image points. Notice that althouginghe a loss in terms of
performance for the “Filtered” set when compared to theltegroduced by the
original filtering method, it still produces results tha¢ aelatively better than both
the “All” and “Rejected” sets. Moreover, the time for cldgsig the model local de-
scriptors and to determine thét,, Po, and Pye; parameter values is significantly
reduced with the use of the neural networks described irsdaion. Specifically,
the time needed to classify and to determine g P, and Pye USINgG the direct
simulation of deformations is between 20 and 30 hours, whédime spent in this

same activity using the neural networks is around 5 secasdshown in Table 1.
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Fig. 12. Comparison between the ROC curves produced by ip@alrclassification pro-
cedure and the neural network for the images on the left, wivere not used for training

the neural net classifier.
Table 1

Average time taken for each procedure (i.e., direct metimodreeural networks) to learn

the parameters of distributiori%),, Pos, and Pyet.

Direct Method | Neural Network

Pon, Poff, and Pget param. estimation 25 hours 5 seconds

Therefore, when adopting such strategy, one has to cortsidérade off between

time and performance.

6.1 Using the Multi-layer Perceptron with Other Local Descriptors

In order to show that the classifier and regressor can be uisledifferent types of
local descriptors, we also used the input of the SIFT desuorjp2] to train the same

multi-layer perceptron. The main difference between thevokks trained in Sec-
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tion 6, and the networks below are the input data and the peteaeto select robust
and distinctive descriptors. For the SIFT descriptor, we the 128-dimensional
SIFT descriptor [22] basically consisting of the image geat histograms com-
puted at eight orientation planes around the neighborhbtittaescriptor position

x; with the derivative filter tuned to scale®.

The training set has 30,000 SIFT descriptors and the testased,000 descrip-
tors. The training procedure for SIFT descriptor diffexfirthe one used for local
phase descriptors only in the selection criteria for def§nirell behaved descrip-
tors. More precisely, we usg, = 7, 7o = 0.5, andp% = 50%. We observe that
the percentage of descriptors that are kept in an image ggedeat scalg = 8 is
reduced fron.3% to 0.12%. Fig. 13 shows the ROC curve produce by the clas-
sifier on a test set, and Fig. 14 shows the results for the segme problem with
the actual values of thé,, and Py parameters, anéfye; compared to the output
of the regression network for the test cases for the locadgliascriptors. Notice
that the results for SIFT in Figures 13-11 appear to be macarate than the re-
sults for the local phase features in Figures 10-11. Oneillesgason for that is
that SIFT can populate an effectively smaller dimensioealiure space, and for
this reason the parameters for the discriminative modeliestLin this section can
be learned more easily. For instance, the work by Ke [20] €ubthat the SIFT
descriptor can be reduced to around one sixth of its origimaénsionality (i.e. 20
out of the original 128 dimensions) without affecting itsfpemance in terms of
discriminative properties, and actually improving theusimess properties of the
descriptor. Though interesting, the study of the precisson of this behavior is

out of the scope of this work. Another interesting point edidy this experiment

4 The SIFT descriptors are detected using the difference oé8ans (DoG) interest point

detector, and the similarity function is the Euclideanatist.
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Fig. 14. Performance of the regression algorithm for theTQIEscriptors (see Fig. 11 for

details).

is the fact that different types of local image descripta@seayally present different
trade-offs between robustness and distinctiveness. fdrerex natural way of im-
proving recognition results is then to combine differengey of local descriptors.
For instance, Carneiro and Lowe [4] combined local phaseSdRd@ descriptors,
and developed powerful system capable of recognizing ehgilhg visual object

classes.
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7 Experiments using a Recognition System

In this section we assess the performance of the recogrstistem described by
Carneiro and Jepson [7] using the classification and reigresgtworks proposed
in Section 6 as a pre-processing step for the training anchgedescriptors. Note
that, originally, this system does not make use of a classfi@ regression net.
We only ran the experiments using this recognition modehlite local phase

descriptors , where the training algorithm comprises the following step

e Extract the local descriptors from the model imagg which builds the set of
model descriptor§),,

e Select the well behaved descriptors using the classifiaribesl in Sec. 6 (this
forms the se0;, C Oy), estimate the parameters of the distinctiveness and
robustness models using the regressor introduced in Semdéstore the de-
scriptors and respective model parameters in the moddbasea This results in
the model databas®l = {[f, aon(f), bon(f), aof (), bott (F), Paetx)]|f € O3}

e Learn the pairwise geometric relations of the selectedrgescs [7], which
forms the setGy, = {g(f,,£,)|f;,f, € Oy}, whereg(.) is a function that de-

scribes the geometric pairwise relations betwgemdf,.
The recognition algorithm consists of the following steps:

e Extract the local descriptors from the test imalgdorming the set©O (image

processing step)

e Select the well behaved descriptors using the classifi@ritesl in Sec. 6, which

builds the se®O* C O (pre-processing step)

% Note that based on the results of Sec. 6.1, this classificatiol regression MLPs could

also be used in the recognition model designed by Lowe [22].
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e Form the correspondence set by finding the closest modetipss to each
test descriptor, building the s&f = {(f;, f))|f, € 0%, f € 0%, s;(f,£) > 7.},
wherer, = 0.75 (database search step)

e Using pairwise geometric constraints, eliminate outligmsn the correspon-
dence set [7] (outlier rejection step)

¢ Build several independent hypothesgso, -1z, WhereH denotes the num-

ber of hypotheses anfl, = {(f,,f)|Vf, € O%,, (f,f) € Norf, = 0}. No-
tice that each hypothest contains all the model descriptors fraffy,;, which
means that, for each model descriptor, either a match hadbeed (i.e.(f;, fl) €
N or no match is present i (i.e., f, = ()
e Compute the probability of the model presence in each of yipethesis as fol-
lows:
PE|T, M)P(T|M)P(M)
(En|T, MYP(T|M)P(M) + P(EL|T,~M)P(T|-M)P(-M)’
(8

whereP (M) means our prior expectation that the model is presentPdrd/) =

P(MIET) =

1 — P(M). Notice thatP (7| M) represents the global geometric configuration of
local descriptors giveM/, which we treat to be similar t&(7'|—M) and cancel
these terms from (8). The probabilistic formulation, based29], is as follows:

(1) P(&T, M) ~ Tl z) P((f,,£)|T, M), where we have the following two

€&y,

cases:

(@) (£,0) € &:
P((fi,0) € ET, M) = (1 — Pae(x1)) + Ped(X1) Pon(s < 7s; 1),
(b) (£.£) € &
P((f,£) € E|T, M) ~ Paei(1) Pon(s (i, £1); £1)p(f, £),
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wherep(f;, f,) denotes the probability that the geometric configuration of
the model descriptof; matches the configuration of the test descriptor
f; [7].
(2) P(&n|T, M) = Tlg f)ee, P((f,,f)|T,~M), where we have the following
two cases:

(a) (fla Q)) € gh:
P((£,0) € E|T, ~M) ~ (1 —0.003) +0.003(1 — Pog(s(f;, f;) < 75;£)),

where the numbei.003 represents the average number of interest points
per test image divided by the size of the image (see Sec. 3);
(b) (£, 1) € &

1

P((f. T,-M) ~ (0. P, f,,£):f oo
(8. £) € E|T, ~M) = (0.003) Pon(s (i, £): £) -2 725

In the last term, we assume uniform distribution of posi{jone divided
by the image size), main orientation (one divided2ay, and scale (one
divided by the total number of scales — see Sec.2.1) givertlegbaund
feature.

e Select the hypothesis with maximum value for the Eq. 8, arttlig value is

above a threshold (here, this threshold.iy), accept it as a match.

The last three points represent the verification step. Tvagesequences were used
(see Fig. 15), where the Kevin sequence contains 120 fraamelsthe Dudek se-
guence contains 140 frames. Table 2 shows the recognitiforpence for the se-
guences of Fig. 15. Notice the significantly better perfarogan terms of true/false
positives and false negatives matched in both sequendals. Fahows the average
time spent (in seconds per test image) in the main activiti¢se recognition sys-

tem run on a state-of-the-art PC computer for the sequeridég.dl5. Notice the
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(b) Dudek sequence (four of 140 frames)

Fig. 15. Sequences used to assess the performance of thymitexo system. The con-
tour represents the model (first column) and the matchesr(ow 2-4) in the respective
sequences.

substantial reduction in computation time per test imadeexed with the use of

the classifier.

8 Summary and Conclusions

In this paper, we introduce a method to quantitatively ctiarize the distinctive-
ness and robustness of local image descriptors. This dearation is shown to
provide a useful classification method that selects welblsed descriptors to be
stored in the model database. Moreover, this charactenzét used to formu-
late more accurately the recognition process. We furtheseat a discriminative
classifier that provides a fast and reliable descriptorcsele, and a regressor that
estimates the robustness and distinctiveness propeftige aescriptor. Finally,

we show that such classifier and regressor models not onligeesignificantly the
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Table 2

Performance of the recognition system in terms of true pes{i P), false positive (FP),
and false negative (FN) produced in the sequences of Figvith &nd without the neural
net (NN) classifier). Note that TP + FN = Sequence length lsthe system either detects
or does not detect the visual object. However, the numbealséfpositives (FP) can be
anything greater than or equal to zero since a single imaghaa more than one matching

of the same obiject.

Kevin Sequence Sequence length TP | FP | FN

with NN classifier 120 120 O 0

without NN classifier 120 108| 5 | 12

Dudek Sequence Sequence length TP | FP | FN

with NN classifier 140 133| 0 7

without NN classifier 140 106| O | 34

Table 3
Average time performance per frame (in seconds) of eacto$tbp recognition algorithm

with and without the neural net (NN) classifier.

with NN classifier| without NN classifier
Database search 1 40
Outlier rejection 2 120
Verification 5 600
Total 8 760

recognition time, but they also allow for a more accurategadion.
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A Image Deformations Studied

The image deformations described in this section are usadtoate the robustness
to perturbations of the interest point detector and thd lieedure extractor. The set

of image deformation®F = {d} considered here are: a) two types of global
brightness changes, b) non-uniform local brightness trans, c) additive noise,

d) scale changes, e) 2D rotation, f) shear and g) sub-piaekkation. The non-
uniform global brightness changes are implemented by adadinonstant to the
brightness value, taking into account the gamma correctionlinearity:7;(x) =

255 * [max (0, (%)7 + kz)ﬁ wherey = 2.2, I is the original image, and <
{-0.5,—-0.25,0,0.25,0.5} controls the changes in brightness. The resulting image
is linearly mapped to values between 0 and 255, and thenigadn®he uniform

brightness change is simply based on the division of grayesgby a constant

ce{1,2,3}.

For the non-uniform local brightness variations, hightgére simulated at specific
locations of the imagdx;|: = 1,..., N}, where the positions; are selected at
regular intervals of 15 pixels both in the horizontal andtieal directions. The

highlights are simulated by adding the following image oti&sian blobs:

N
I,(x) :Z:rig(x—xi;a), (A.1)

wheres = 15, r; is a normally distributed random variable with mean zero and
standard deviation one, andx; 0) = exp (—z?/(20?)). The deformed image is
then computed ak;(x) = I(x) + pl,(x), wherep € {5, 10,15, 20,25,30}. Again,

the resulting image is mapped to values between 0 and 258%handjuantized. For
noise deformations, we simply add Gaussian noise with mgrgtandard deviation

(0 = 255 % {1073,1072,107'}), followed by normalization and quantization, as
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Fig. A.1. Model image for deformations in Fig. A.2.

Non-uniform Additive Gaussian Non-uniform Local Uniform Global

Global Brightness Noise Brightness Brightness

Translation

Fig. A.2. Image deformations studied.

above. The geometric deformations are 2D rotations (freé#t° to +90° in inter-
vals of 15°), uniform scale changes (with expansion factors in the ed6g5, 1]
with steps of0.125), shear in the horizontal direction (so that a vertical imper-
turbed by+26°), and sub-pixel translation (in the range [0,1] in step8.2§ pixel.
The geometrically deformed images are quantize®1055] without normaliza-
tion. All the deformations described above are depictedign &.2, which shows

several deformed versions of the image in Fig. A.1.
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B Database of Images used in the Quantitative Evaluations

The images used for the quantitative evaluation consisépéral pictures of land-
scape, people, animals, and texture. We use a pool of 270esragd randomly
sample 30 to form the foreground database (see Figures &d)the remaining
240 images form the background database (Figure B.2) Thddtdbase is avail-

able in [41].

o ]

Fig. B.1. Subset of database of images
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Fig. B.2. Subset of database of images
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