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Abstract—In this paper we present an improved algorithm
for the segmentation of cytoplasm and nuclei from clumps of
overlapping cervical cells. This problem is notoriously difficult
because of the degree of overlap among cells, the poor con-
trast of cell cytoplasm and the presence of mucus, blood and
inflammatory cells. Our methodology addresses these issues by
utilising a joint optimization of multiple level set functions, where
each function represents a cell within a clump, that have both
unary (intra-cell) and pairwise (inter-cell) constraints. The unary
constraints are based on contour length, edge strength and cell
shape, while the pairwise constraint is computed based on the
area of the overlapping regions. In this way, our methodology
enables the analysis of nuclei and cytoplasm from both free-lying
and overlapping cells. We provide a systematic evaluation of our
methodology using a database of over 900 images generated by
synthetically overlapping images of free-lying cervical cells, where
the number of cells within a clump is varied from 2 to 10 and
the overlap coefficient between pairs of cells from 0.1 to 0.5.
This quantitative assessment demonstrates that our methodology
can successfully segment clumps of up to 10 cells, provided the
overlap between pairs of cells is below 0.2. Moreover, if the
clump consists of three or fewer cells, then our methodology can
successfully segment individual cells even when the overlap is
around 0.5. We also evaluate our approach quantitatively and
qualitatively on a set of 16 extended depth of field images, where
we are able to segment a total of 645 cells, of which only around
10% are free-lying. Finally, we demonstrate that our method of
cell nuclei segmentation is competitive when compared to the
current state of the art.

Index Terms—Overlapping cell segmentation, Pap smear image
analysis, Level set method

I. INTRODUCTION

The automated detection and segmentation of overlapping
cells remains one of the most challenging problems in the
analysis of microscopic images [13], such as those obtained
from Pap smear [25]. The Pap smear is a screening test used
to detect pre-cancerous and cancerous processes of the cervix.
It consists of a sample of cells that are deposited onto a
glass slide and further examined under a microscope (see
Fig. 1(a)). The main factors affecting the sensitivity of the Pap
smear test are the number of cells sampled, the overlap among
these cells, the poor contrast of the cell cytoplasm, and the
presence of mucus, blood and inflammatory cells [8]. These
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factors exacerbate both intra- and inter-observer variability and
lead to a large variation in false negative results [23]. These
issues have motivated the development of both automated
cell deposition and slide analysis techniques. Cell deposition
techniques, such as mono-layer preparations, remove a large
portion of blood, mucus and other debris, reduce cell overlap
and produce cells that are more likely to occur in a single focal
plane. This makes both manual and automated slide analysis
faster and easier [9]. Automated slide analysis techniques
attempt to improve both the sensitivity and specificity of
screening by automatically detecting, segmenting and then
classifying individual cells present on a slide [11], [12], [13],
[27], [43].

Clearly, the primary aim of both automated cell deposition
and slide analysis techniques is to reduce the variability
of screening by maximising the number of cells that can
be accurately and unambiguously analysed, i.e., where both
the nucleus and cytoplasm of each cell is clearly visible.
Typically, normal and abnormal cells are distinguished based
on the shape and size of both the nucleus and cytoplasm (and
especially their ratio), plus photometric and textural properties
of the nucleus [29]. However, a certain degree of overlap
between cells is inevitable, even in well established monolayer
preparation systems, such as ThinPrep [26]. Therefore, auto-
mated slide analysis techniques must be capable of analysing
both free-lying and overlapping cells. In the conventional
approach to cell analysis, where the cells are first segmented
before features are extracted, this implies that the segmentation
technique must be capable of both detecting and segmenting
the nucleus and cytoplasm from overlapping cells.

The detection and segmentation of the nuclei and cytoplasm
from cervical cells is a well studied problem [8], [10], [11],
[12], [13], [28]. Current systems can segment the nucleus
and cytoplasm of cervical cells in isolation [13] (i.e., cells
without any overlap with other cells), segment overlapping
nuclei [10], [11], [28] and segment overlapping nuclei plus
the whole region representing the cellular clumps [8], [12],
[14]. However, only recently has the complete segmentation
of overlapping cells been addressed in cervical cytology [2],
[20].

The automated detection and segmentation of overlapping
cells is complicated by the fact that several layers of cervical
cells are present on a glass slide (see Fig. 1(a)). This means
that cells in an upper layer can partially obscure cells lying
underneath [28]. In a manual examination, the cytologist
uses the depth cue that focus provides in order to assist
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in the interpretation of the overlapping cells. However, the
separation of transparent layers from different focal depths is
both a difficult and computationally intense task [38]. This is
especially the case in cervical cytology, where the overlapping
objects (cells) have poor contrast and are located at similar
focal depths. Therefore, our proposed methodology analyses
a single image with (digitally) extended depth of field (EDF),
i.e., a single image where all objects are in focus [4]. This is a
simpler and more efficient approach than analysing the original
3-dimensional ‘stack’ of images containing the overlapping
cells.

In this paper, we propose an improved methodology capable
of segmenting both the cytoplasm and nucleus of each indi-
vidual cell in a clump of overlapping cervical cells. The main
goal of our methodology is to produce a significantly larger
number of fully segmented cells when compared to methods
that only segment free-lying cells (i.e., isolated cells) [13].
Furthermore, the proposed segmentation of cells into nucleus
and cytoplasm provides more information about the cells, as
compared to the segmentation of nuclei only [10], [11], [28],
or the segmentation of nuclei and cellular clump regions [8],
[12]. The main advantage of having a larger number of fully
segmented cells lies in the potential to improve the classifica-
tion of cytologic specimens. The proposed methodology can be
divided into two steps: an initial clump segmentation followed
by a detailed segmentation of each individual cell. The first
step consists of the following stages: i) cell clump detection
using unsupervised classification [6], [39], ii) nuclei detection
using the maximally stable extremal regions (MSER) algo-
rithm [21] and iii) estimation of a shape prior for overlapping
cell regions and an initial segmentation of each cell [37]. The
second step then optimizes the initial segmentation using a
level set methodology that utilises multiple level set functions
to minimize an energy function [44]. This energy function is
constrained by each individual cell’s contour length [19], edge
strength, shape prior [37], and the area of the overlapping
regions between cells.

The main technical contribution of this paper is the energy
formulation and the optimization strategy (second step above)
that can deal with the problem of segmenting overlapping
cervical cells using multiple level set functions (with one level
set function per cell). In addition, we describe a database
of manually segmented cervical cells that, for the first time,
enables a systematic and unambiguous evaluation of both
the detection and (complete) segmentation of overlapping
cervical cells. In this database, the images are produced using
real images of free-lying cells and background. Clumps of
overlapping cells are then produced where the number of cells
in a clump is varied from 2 to 10 and the overlap between
pairs of cells is varied from 10% to 50%. Using this database,
we explore the limitations of our approach and show that the
proposed methodology can successfully segment cell clumps
containing up to 10 cells provided that the overlap between
pairs of cell is below 20%. Furthermore, the segmentation
of cell clumps containing 2 to 3 cells is successful provided
that the overlap is less than 50%. Note that we consider a
successful segmentation to be one that detects at least 80% of
the cells with an average Dice Coefficient larger than 0.9.

We further illustrate the efficacy our approach on a database
of 16 real-world cytology images that contain manual an-
notations of both the nuclei and cytoplasm for all cells.
Results show that our proposed technique for cell nuclei
segmentation is on par with the current state of the art [8],
with a Dice coefficient of 0.92. The importance of overlapping
cell segmentation is supported by results in these 16 images
which show that in these fields of view, there are a total of
645 cervical cells, of which only around 10% are free-lying
and the remaining cells overlap with at least one other cellular
object. In addition, the quantitative evaluation on this database
demonstrates segmentation results that are consistent with
those obtained on the synthetic database. Furthermore, results
on this database are presented to qualitatively assess (i.e., by
visual inspection) the segmentation of individual overlapping
cells utilising the proposed methodology. The databases of
synthetic and real cytology images together with ground truth
annotation and Matlab code of the proposed segmentation
algorithm will be made available to enable further research
and benchmarking 1.

It should be noted that while an earlier version of this algo-
rithm has previously been presented [20], this paper introduces
a methodology that produces more accurate segmentation
using the following extensions: 1) a new shape prior [37],
based on the geometry of the detected nuclei and clumps,
is described that produces more accurate constraints for the
subsequent level set optimisation; 2) an updated formulation
of the energy functional for the level set method is presented to
specifically deal with the issue of poor contrast between cell
clump and background; and 3) an expanded evaluation that
includes a thorough and systematic quantitative assessment
of the method utilising a carefully designed database of
synthetically generated cell-clump images, which contains a
varying number of cells and degree of cell overlap.

II. LITERATURE REVIEW

The methods described in the cervical cell segmentation
literature have focused on four basic approaches [22]. The
first and most traditional methods segment just the nuclei
from isolated or partially overlapping cells. For example,
[41] detects the boundary of nuclei by solving an optimal
thresholding problem. Morphological analysis is also used
to detect overlapping nuclei from cervical cell images [27].
There are also a number of nuclei segmentation methods for
other types of cells. For instance, Hu et al. [35] propose a
segmentation of esophageal cell nucleus with an improved
snake. Cloppet an Boucher [34] use the watershed algorithm
to segment overlapping nuclei of fibroblasts from Hutchinson-
Gilford Progeria Syndrome. A comprehensive review for nu-
clei segmentation and classification can be found in [33].

The second approach explored in the literature is the seg-
mentation of both the nucleus and cytoplasm from isolated
(free-lying) cervical cells. For example, [43] adapt the gradient
vector flow (GVF) [42] to cervical cell segmentation by
estimating the orientation of the GVFs in the pixels near
to an edge. The GVF is also explored in the detection of

1Dataset and code: https://github.com/luzhi/cellsegmentation−TIP2015.
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(a) Cervical cytol-
ogy image.

(b) Super-pixel map. (c) Super-pixel edge
map.

(d) Clump convex
hulls.

(e) Clump
boundaries.

(f) Nuclei segmenta-
tion.

(g) Complete cell
segmentation.

Fig. 1. (a) Typical cervical cytology image; (b) Over-segmented super-pixel map generated by Quick Shift; (c) Super-pixel edge map; (d) Convex hull of
each clump; (e) Accurate clump boundaries; (f) Nuclei detection and segmentation;(g) Overlapping cell segmentation of nucleus and cytoplasm.

nuclei and cytoplasm boundaries in a radiating fashion over the
GVF field [13]. This second approach produces competitive
results, but the fact that it only processes free-lying cells (and
thus, a small percentage of the cells present on a typical
cytology specimen) is a limitation that reduces the number
of segmented cells per cytology specimen. The third approach
focuses on the segmentation of overlapping nuclei and the
boundaries of cell clumps. For example, [8], [12] propose
a hierarchical approach, where the nucleus and cytoplasm
candidates of the over-segmented cell images are merged
into more meaningful regions by their spectral and shape
properties. Finally they identify the nucleus and cytoplasm
from these candidate regions through a classification process.
Recently, Zhang et. al. [14] present a method, based on graph-
cuts, that is able to delineate the boundary of a clump of cells
and individual contours of overlapping nuclei from images of
both normal and abnormal cervical cells. However, instead
of providing accurate boundaries for each overlapping cell,
these methods generate a contour of the whole clump of
overlapping cells. Therefore this represents an improvement
with respect to the other approaches presented above, but the
fact that it only segments entire clumps instead of individual
cells within the clumps is an issue that can limit the amount
of information available for the classification of a cytologic
specimen. In the above method, the detection of overlapping
nuclei is facilitated by their homogeneous texture, ellipsoidal
shape and high-gradient boundaries. Unfortunately, none of
these characteristics can be associated with the segmentation
of overlapping cytoplasm. Furthermore, some of the important
features extracted from nuclei are based on optical density
and texture, which may be adversely cross-contaminated when
different nuclei overlap. To reduce the effect of this contami-
nation, overlapping nuclei may still need to be de-focused in
order to adequately separate them for further analysis [38].

The fourth approach focuses on the complete segmentation
of individual cytoplasm and nuclei of overlapping cells. The
methodology proposed in [2] is based on a locally constrained
watershed transform. The results shown in that paper present
limited evidence of the efficacy of the proposed technique.
In particular, it is not clear the extent of cell overlap their
methodology can successfully handle when segmenting the
cytoplasm and nuclei of overlapping cells. Another method-
ology proposed is the one in [20], which is a preliminary
version of the algorithm presented here. This method is based
on an optimization involving several level set functions (each
representing an individual cell within a clump) that interact

with each other using both unary and pairwise terms. Here
we present a number of extensions to that methodology,
as described in Sec. I, and the results confirm that these
extensions improve the accuracy of our previous approach.

In other types of microscopic images, the segmentation of
overlapping cell images has also been explored. However, their
extension to cervical cytology images is not straightforward
because of the different challenges involved in each case. For
instance, Wahlby et al. [40] use a watershed and a statistical
analysis to segment multiple CHO-cells stained with calcein.
A repulsive level set is proposed in [32] to segment breast
tissue microarrays (TMAs), which are hematoxylin-stained. A
sliding band filter is explored in [30] to segment overlapping
cell nuclei and cytoplasm on the Drosophila melanogaster
Kc167 dataset. Furthermore, Dufour et al. [31] present an
active surface-based method to segment and track fluorescent
cells in 3-D imaging. Although broadly relevant to our paper,
these two works are applied to images where the cells present
much smaller overlapping areas, when compared to typical
cervical cytology images. Therefore, we believe that these
approaches would require significant adaptation to be able to
successfully deal with typical cervical cytology images.

Level set methods have been proven to be effective in
numerous image segmentation tasks. Since its introduction by
Osher [24], a number of variants have been proposed. For
example, Wang et. al. [16] incorporate comprehensive pixel
features into the level set method using a tensor representation.
Gao et. al [15] propose an edge-based level set method to
segment objects of interest in a relay fashion. Dambreville
et. al. [17] represent the shape prior, which is used in the
level set evolution, in feature space by kernel PCA and image
domain by intensity. Recently, a DBN learned shape prior that
contains global and local structures was introduced [18], which
is used in a data-driven variational methodology. Finally, Yang
et. al. [50][51] proposed a new level set method, in which
the saliency morphorlogical map (SMM) is incorporated to
generate the intial estimation that is close to the desired object.

III. METHODOLOGY

In this section, we first present the algorithm to build
the EDF images analyzed, followed by a description of the
proposed methodology for segmenting overlapping cervical
cells.
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A. Extended Depth of Field Image

Even when a mono-layer specimen preparation technique is
used, cervical cells typically populate multiple focal planes,
especially at high magnification. Therefore, we first acquire a
‘stack’ of images from multiple focal planes, before converting
them to a single extended depth of field (EDF) image where all
cellular objects are in focus. The advantage of this approach
is that the scene segmentation, described below, need only
be applied to a single EDF image rather than multiple images
from different focal planes. Here, we use a computationally ef-
ficient one-pass algorithm based on the over-complete discrete
wavelet transform [4]. In summary, this algorithm performs a
wavelet transform on each image in the focal plane stack in
turn to select the largest magnitude wavelet coefficient at each
spatial location for each scale. It utilises a simplified contextual
constraint based on the maximum coefficient amplitude in a
local neighbourhood across all three orientation sub-bands and
performs post-processing to ensure that all output pixel values
lie within the same range as those in the original image stack.
This algorithm was shown to produce EDF microscope images
of superior quality when compared to the conventional discrete
and complex wavelet transforms [4]. The acquisition process
of the EDF images is shown in Fig. 2.

B. Scene Segmentation

Scene segmentation consists of three stages: i) the segmen-
tation of cell clumps, ii) the detection and segmentation of
nuclei, and iii) the estimation of the shape priors and initial
segmentations of the cells required for the level set method,
described in Sec. III-C. We provide details of these stages
below.

1) Cell Clump Segmentation: The main goal of this first
stage is to segment the cell clumps and remove the back-
ground, so that subsequent stages can concentrate on the
regions containing cervical cells. This approach reduces the
search space for the subsequent stages, since we can segment
the individual nucleus and cytoplasm of the overlapping cells
inside each clump (as compared to segmentation of the entire
image).

The segmentation of cell clumps consists of a three-stage
process. First, we run the quick shift algorithm [39] (a vari-
ation of mean shift [6]) to find local maxima of a density
function that takes into account gray value similarities and
spatial proximity. The outcome of this step is a map of super-
pixels (see Fig. 1(b)) indicating the pixels linked to one of
the local maxima found by quick shift. Each super-pixel is
labeled with a gray value in the range [0, 1], representing the
mode of the gray values within that super-pixel. The second
stage consists of running an edge detector on this super-pixel
map, resulting in a reasonably clean edge map that detects
the most prominent super-pixel edges, but removes most of
the background information (see Fig. 1(c)). In order to find
candidate cell clumps, the third stage consists of learning
an unsupervised binary classification, where the classes are
“background” and “cell clump.” The initial assignment is
provided by the edge map from the previous stage. Then con-
nected components are found using a connected components

analysis [7] of the edge map and building a convex hull inside
these components (see Fig. 1(d)). In this way, pixels inside a
convex hull belong to the cell clump class and those outside
belong to the background class. Using maximum likelihood
estimation, we learn a Gaussian mixture model (GMM) for
each class, where the features extracted from each pixel
consists of its gray value. After learning these two models, we
classify each pixel using the likelihood ratio between these two
classes. Then, we take the result of this likelihood map and
re-estimate the GMM of both classes and repeat this process
util the GMM parameters are stable (in practice, we found
that iterating this re-estimation process 10 times produces
results that are consistent). As expected, this localized GMM-
based classification produces noisy results in some areas of the
imageand so a post-processing is applied involving a simple
clustering algorithm that merges neighboring pixels that are
classified as clump. This is followed by an elimination of
clusters of size smaller than a preset threshold. A typical final
result of this classification is presented in Fig. 1(e).

2) Nuclei Detection and Segmentation: The accurate detec-
tion and segmentation of nuclei is critical for our methodology
since each nucleus represents a cell hypothesis that is then used
to estimate a shape prior and an initial segmentation for the
subsequent level set optimization. Nuclei can be characterized
by relatively low gray values, homogeneous texture and well
defined and almost circular borders. If we assume that the
nuclei do not overlap, then we can use the Maximally Stable
Extremal Regions (MSER) algorithm [21] using the previously
obtained cell clumps as the input. The MSER algorithm is a
method that detects stable connected components using a range
of level sets of the image. Given the cell clumps as input,
this algorithm will output “blobs” that represent the candidate
nuclei. We then filter out some of these candidates by their
appearance and shape properties (e.g., eccentricity, area, mean
intensity of the “blob”, and the area ratio between the “blob”
and the cells clump it belongs). In the experimental section,
we present quantitative results that show the effectiveness of
the nuclei detection as compared to the state-of-the-art [8]

3) Initial Cell Segmentation and Shape Prior: Based on our
observations, the majority of cytoplasm contours are located
on pixels at the same relative distance from their associated
nuclei. This inspired us to assume that pixels farther away
from the geometric centroid of that cell (and inside the clump
of overlapping cells) have a larger chance of being on the
cytoplasm boundary. At this stage, we use the geometry of
the detected nuclei and clumps to build a shape prior [37]
that represents this assumption. This also provides an initial
segmentation for each individual cell, as required for the level
set optimization described next in Sec. III-C, and is one of
the major contributions of this paper. The shape prior is built
so that we have two types of attractors for the level set: the
estimated boundaries of the clumps and individual cells; and
two types of repellents: the background and the nuclei. After
segmenting the input image (e.g., in Fig. 3(a)) into cell clumps
and nuclei and assuming that each nucleus represents a single
cell (see Fig. 3(b)), the next stage involve building the shape
prior and initial segmentations as follows:

1) Associate each point of the clump boundary to the
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a) Cervical Cytology Specimen b) Acquisition Platform c) Slide with Pap-stained Cells d) EDF Generation
Fig. 2. The process of image acquisition uses a cervical cytology specimen in (a) and the acquisition platform in (b) to produce a stack of at least twenty
focal plane images with a focal depth separation of 1µm (c), which are then converted into an EDF image (d), where all cellular objects are in focus.

nearest nucleus; this indicates a hypothesized cell owner-
ship of that boundary point. The only constraint applied
here is that the line connecting the clump boundary to
the nucleus must be completely inside the clump (this
implies that we are assuming that the cell region forms
a convex set). In clumps containing a large number of
cells, it may happen that some of the nuclei have no
boundary associated with it (i.e., the cell is completely
within the clump), so in this case the cell is assumed
to be circular with radius equal to the distance to the
nearest nucleus within the clump.

2) Extrapolate the cell boundary in each of the overlap-
ping regions by following the extreme clump boundary
points associated with that cell. For example, notice
in Fig. 3(c) that the orange polygon represents the
overlapping region between the two cells, and Fig. 3(d)
shows the extrapolated cell boundaries achieved by inter-
polating the clump boundary points between the extreme
points. The interpolation operation is performed by
TriScatteredInterp(), a Matlab built-in function
based on linear interpolation [45];

3) Compute the geometric centre of each cell, using the
extrapolated cell boundaries obtained in step (2) above
(see Fig. 3(e)). This boundary is then used as the initial
cell segmentation for the level set optimisation;

4) For each cell indexed by i, use the boundaries estimated
above to compute the individual shape prior as follows:

hi(x) =


1 , if x outside clump C

−2
1+exp{−βt(x)} + 2 , if x inside cell i
0 , otherwise

,

(1)
where the set C = {hi}|C|i=1 represents a clump with
|C| cells denoted by hi, the function t(.) computes the
distance between the point x on the image domain Ω
and the geometric centre of the initial segmentation
for cell i from step (3) above, β is a free parameter
that is estimated via cross-validation, as explained in
Sec. V. The first condition in (1) indicates that the point
x is outside the clump boundary, the second condition
denotes that the point x is inside the cell i boundary, and
the last condition indicates the case where the point x is
inside the clump C but outside the cell i boundary. The

shape prior constraint for each clump is then defined by
(see Fig. 3(f)):

hC(x) = max
hi∈C

hi(x). (2)

C. Joint Level Set Segmentation of Overlapping Cells

The joint level set optimization introduced in this section
represents another major contribution of this paper and uses
as input the initial segmentation and shape prior previously
described in Sec. III-B3. Consider that φ(x, y, t) : Ω → R
denotes a 2-D time dependent level set function (LSF) (Ω
represents the image domain), and that N cells have been
detected, then the set of LSF’s that are available is denoted
by {φi}Ni=1. The energy functional to be minimized is defined
as:

E({φi}Ni=1) =

N∑
i=1

Eu(φi) +

N∑
i=1

∑
j∈N (i)

Eb(φi, φj), (3)

where Eu(.) denotes the unary energy functional defined for
each LSF independently, Eb(., .) represents the binary function
defined over pairs of LSF’s, and N (i) represents the level set
functions φj such that their zero level set intersects the zero
level set of φi. The unary functional is defined by:

Eu(φi) = µR(φi) + κD(φi), (4)

where µ > 0, κ ∈ R, the first term is a regularization term that
maintains the signed distance property |∇φi| = 1 [19] and is
defined as:

R(φi) =

∫
Ω

p(|∇φi|)dx, (5)

where p : [0,∞) → R is a potential function (e.g., p(s) =
0.5(s− 1)2 [19]),

D(φi) =

∫
Ω

hC(x)gδ(φi)|∇φi|dx, (6)

where hC(x) is the shape prior constraint [37] for a clump
representing the global features of pixels defined in (2), which
assumes that the pixels inside the cell clump have a larger
chance of being located on the cytoplasm boundary if they
are located farther away from its associated nuclei. Here
g = 1

1+|∇Gσ∗I| shows smaller values of edge information
than those of non-edge pixels, which represents the local
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(a) Overlapping cells. (b) Detected nuclei and
clump.

(c) Overlapping region
(orange polygon).

(d) Extrapolation of cell
contours.

(e) Geometric cell cen-
tre and initial contour.
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(f) Clump prior hC .

Fig. 3. (a) Illustration of an overlapping cell image; (b) Cell clump and nuclei detected from the image; (c) Association of contour points from the clump
to cell nuclei; (d) Extrapolation of cell boundary in the overlapping region; (e) Geometric cell center and new extrapolation; and (f) Binary constraint hC ,
where red denotes values close to one and blue values close to zero.

features (I : Ω→ R denotes the image and Gσ the Gaussian
kernel with standard deviation σ), δ(.) represents the Dirac
delta function. The unary term D(φi) is derived from the
length term of the geodesic active contour (GAC) proposed
by Caselles et al. [49], as suggest by [19]. Note that we keep
the term |∇φ| to maintain compatibility with the literature.
But it could be removed because the regularization in [19]
guarantees |∇φ| = 1. Equation (6) is minimized when the
shape of the cell is similar to the prior hC(x) and the zero
level set of φi is located at places in the image I with large
gradient.

The binary functional in (3) is defined as:

Eb(φi, φj) = χ

∫
Ω

hC(x)gH(−φi)H(−φj)dx, (7)

where χ > 0, H(·) is the Heaviside function, and hC(x) is
the binary shape prior (2). This binary functional is minimized
when the intersection of the non-positive regions of the level
set functions φi and φj has a small area, contains regions of
hC(x) with low values (i.e., close to the borders between cell
and background and far from nuclei) and comprises as many
image regions with large gradient as possible (indicating the
presence of edges between the two cells). For the special case
g = 1, the shape prior is not considered (i.e., hC(x) = 1) and
the binary term exactly represents the area of the overlapping
region.

The gradient flow for minimizing the energy functional
E({φi}Ni=1) in (3) is based on finding the steady state solution
of the gradient flow equation [1] for each LSF φi(x, y, t), as
follows:

∂φi
∂t

= −∂E({φi}Ni=1)

∂φi
, (8)

where ∂E({φi}Ni=1)
∂φi

is the Gâteaux derivative of the functional
E({φi}Ni=1). The evolution in (8) follows the steepest direc-
tion of the functional E({φi}Ni=1), which is represented by
−∂E({φi}Ni=1)

∂φi
for each LSF φi. The level set function used in

this paper is basd on DRLSE [19], which is implemented with
a finite difference scheme and the time step ∆t > 1 is used to
speed up curve evolution. Based on (3) and using the linearity
of the Gâteaux derivative, we have:

∂E{φi}Ni=1

∂φi
=
∂Eu(φi)

∂φi
+
∑

j∈N (i)

∂Eb(φi, φj)
∂φi

, (9)

for all cells represented by i ∈ {1, ..., N}. The derivative of

the unary energy term in (9) is computed as follows:

−∂Eu
∂φi

=µdiv(dp(|∇φi|)∇φi)+

κδε(φi)div
(
hCg

∇φi
|∇φi|

)
,

(10)

where dp(x) = p′(x)/x (with p(.) defined above in
(5)), div(.) is the divergence operator, and δε(x) =
(1/(2ε)) (1 + cos(πx/ε)) for |x| ≤ ε and δε(x) = 0 otherwise
(with ε = 1.5 [19]). Finally, the derivative of the binary term
is given by:

−∂Eb(φi, φj)
∂φi

= χ (hCgδε(φi)H(−φj)) . (11)

If φi and φj do not intersect during the level set evolution,
then −∂Eb(φi,φj)∂φi

= 0.
The full algorithm proposed in this paper is outlined in

Table I, where the minimization of (9), represented by step
9 in the algorithm, follows a sequential schedule from cells 1
to N.

IV. MATERIALS AND EXPERIMENTS

The dataset utilised in this paper consists of 16 non-
overlapping fields of view (FOV) images obtained from four
cervical cytology specimens. Each FOV consists of between
20 and 60 Papanicolaou stained cervical cells with varying
degrees of overlap, and distributed on average in 11 clumps
with 3.6 cells per clump, where the clump size varies from 1
to 21 cells. The specimens were prepared using the AutoCyte
PREP technology [3] and so each specimen is around 20µm
‘thick’ in the focal-dimension. Images were acquired on an
Olympus BX40 microscope with a ×40 objective and a four
mega-pixel SPOT Insight camera, with square pixels of size of
7.4µm and a 100% fill factor. This gives an image resolution of
around 0.185µm per pixel. The ×40 objective has a numerical
aperture of 0.75, which gives a depth of field of approximately
1µm. Therefore, for each FOV, a stack of at least twenty focal
plane images were acquired with a focal depth separation of
1µm. Each FOV image was then converted to an EDF image
as described in Sec. III-A.

We assess the performance of our proposed methodology
both quantitatively and qualitatively. The quantitative assess-
ment consists of three experiments: the first one assesses the
limitations of our methodology systematically using a compre-
hensive dataset of synthetically generated images containing
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TABLE I
ALGORITHM FOR THE SEGMENTATION OF OVERLAPPING CELLS

Pseudo-code
Input: Cytology specimen
Output: Individual cytoplasm and nucleus
contours of overlapping cervical cells
Stage 0 - Construction of EDF cytology image I
Stage 1 - Scene segmentation

1 Compute super-pixel map from I using
Quick Shift

2 Compute gradient map from super pixels
3 Compute convex hull from gradient map to

initialize clump and background GMM models
4 while clump and background GMM models

not stable
5 Re-estimate clump and background

GMM models
6 end
7 Post-processing to eliminate noise in clumps and

clumps of size smaller than a preset threshold
8 Detect and segment nuclei using blobs

represented by MSER (assume that N nuclei
are detected at this stage)

9 Compute the initial segmentations for the cells
i ∈ {1, ..., N}, and the shape priors, hC (2).

Stage 2 - Joint Level Set for overlapping cell
segmentation

10 {φ∗i }Ni=1 = arg min{φi}Ni=1
E({φi}Ni=1) (3)

11 Re-compute hC (2) using {φ∗i }Ni=1 as the new
initial segmentation for each of the N cells and
iterate 10-11 until reaching a local minimum.

Cell contours are the zero level sets of φ∗i ,
for i ∈ {1, ..., N}.

a varying number of cells with differing degrees of overlap;
the second experiment quantifies performance on a subset of
16 real EDF images; the last experiment measures the perfor-
mance of nuclei detection and segmentation methodology on
these 16 EDF images. The qualitative evaluation consists of a
visual inspection of the segmentation results produced by our
algorithm on the 16 EDF images.

For the systematic assessment, we first divide the 16 EDF
images into a training set consisting of 4 images and a test set
with 12 images (i.e., no overlap between the test and training
images). Initially, all of the cervical cell nuclei, that were not
touching the edge of the EDF image, were manually delineated
by an experienced cytotechnologist. In addition, from the 4
training images, we manually delineated the cytoplasm of
12 isolated cervical cells (i.e., free-lying cells that do not
overlap with other cells). Similarly, from the 12 test images,
we delineated the nuclei and cytoplasm of 41 isolated cervical
cells. Using these cell images, we constructed a synthetic
training and test images with the following properties: 1)
size of 512 × 512 pixels, 2) background formed using the

background pixels randomly selected from any of the EDF
images, 3) between 2 and 10 different cells, and 4) each cell
must overlap at least one cell in the same image with an
overlap coefficient in one of the following ranges: [0, 0.1],
[0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5]. Here, the overlap
coefficient is defined as max( |A

⋂
B|

|A| , |A
⋂
B|

|B| ), with A and
B representing the regions within the delineation of both cells
and |.| denoting the area of the region. In order to create these
synthetic images, we first take a patch of background pixels
from any of the EDF images, and place it in the 512 × 512
image, using mirror transformations to smooth the transitions
among the background pixels. Then, we pick one of the cells
from the training/test set, apply a random rigid geometric
transform (translation, rotation from (0, 2π) and scale from
(0.8, 1.2)) and random linear brightness transform and place
it on the synthetic image, using a random value (from 0.88 to
0.99) for the alpha channel to simulate the partial transparency
effect observed in real EDF cytology images. The next step
consists of adding new cells to the image at random locations,
where each of these new cells overlaps with at least one of the
cells already present in the image and the overlap coefficient
is within the range considered for that subset of images. Using
the test set, we build 45 subsets of test images with the nine
different numbers of cells (i.e., from 2 to 10 cells) and five
overlap ranges, as shown in Table IV. Note that these images
vary in appearance and segmentation difficulty as a function
of the number of cells and degree of overlap (see Fig. 5(a)).
We generate 20 images for each of these 45 subsets, giving a
synthetic testing database of 900 overlapping cell images. A
training set of 45 overlapping cell images is similarly built,
but with the training images, we randomly selected 15 images
for the training process. This training set is used to define the
values of the parameters β, κ, χ in our optimization functions
(1), (4) and (7) (see Table II).

In addition, we also performed a quantitive evaluation on a
subset of five real EDF images, which have both cytoplasm
and nucleus boundaries manually annotated. A comparison of
the results between the synthetic and real images is shown
in Table II. However, the annotation of real cervical cytology
images is a time-consuming and potentially error-prone, which
limits the number of images that could be fully annotated at
this time.

Quantitative performance is then assessed using the average
Dice Coefficient (DC), measured as DC = 2 |A

⋂
B|

|A|+|B| over the
“good” cell segmentations [36], where a “good” segmentation
is considered to be one with a DC above a specific threshold.
Here we evaluate performance over the following range of
DC thresholds: {0.6, 0.7, 0.8, 0.9}. We also report the object
based false negative rate (FNo) obtained as the proportion of
cells having a DC below this threshold. In addition, we show
a pixel-based evaluation using the true positive rate (TPp) and
false positive rate (FPp) for both training and test sets using
the “good” cell segmentations.

Finally, we also compare our nuclei detection methodology
with that of Aksoy et al. using the same criteria reported
in [8]. Specifically, first we compute the precision and recall
of nuclei detection by considering the detection region A and
(ground-truth) annotation B, and noting that a correct detection
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is represented by (A
⋂
B)/A > τ and (A

⋂
B)/B > τ ,

where τ = 0.6. Second, we compute the pixel-based precision
and recall values of the correct detections using the Dice
Coefficient [8].

Ideally, we would like to compare our overlapping cell seg-
mentation with other approaches available from the literature,
but as observed by Plissiti and Nikou [29] this is a largely
unexplored area of research. To the best of our knowledge,
the only method present in the literature is the one by [2], but
we cannot reproduce it reliably with the description presented
in that paper. Moreover, other overlapping cell segmentation
methodologies [40], [30] need to be substantially extended
to work with Pap Smear images. Therefore, we decided to
present our results and compare them with those of our
preliminary version [20]. We shall also have the training and
test databases and our methodology publicly available such
that a fair comparison with other methodologies is enabled in
this field.

V. EXPERIMENTAL RESULTS

We first show the influence of the parameters κ, χ in the
unary and binary terms (4), (7) over the training and test sets
of synthetic images. The time step ∆t is set as 5, the width
of the Dirac Delta function ε = 1.5 and the parameter µ is
fixed at 0.2/∆t = 0.04 per time step to fulfill the Courant-
Friedrichs-Lewy (CFL) condition that µ∆t < 1

4 , as suggested
in [19]. We assess the sensitivity of our methodology to the
time step ∆t and width of the Dirac Delta function ε, and we
note that the segmentation accuracy does not vary significantly
with respect to these two variables (we show the results in
the supplementary document). In addition, a relatively large
∆t > 1 can reduce the number of iterations of level set evo-
lution while maintaining numerical accuracy. The parameter
β is fixed at 5 since this is the value that produces the best
result in the training set. The DC and corresponding FNo, TPp
and FPp for each parameter combination on the training set
are shown in Table II. This table also shows the results on
the test set and real EDF images using the best parameter
combination obtained on the training set (κ = 13, χ = 3). It
shows that the algorithm’s performance is largely robust to the
specific parameters values, but (as expected) performance is
better on the training set than on the test set. This is especially
the case for FNo which gets significantly worse on the test
set, i.e., by around 0.2 in each case. Table II also shows
the pixel-based TPp and FPp on the training and test sets
for the “good” segmentations (DC > {0.6, 0.7, 0.8, 0.9}),
which show typical TPp over 0.9 and FPp approaching zero.
In addition, it shows that as the “good” segmentation threshold
increases, both DC and FNo increase. This clearly illustrates
the trade-off between the detection of cellular objects and their
accurate segmentation. It also demonstrates that our results
on the synthetic images are indicative of those that can be
expected on real cervical cytology images.

Table III shows a comparison of the performance of the
algorithm described in this paper with that of the previous
version of this algorithm [20]. These results were obtained
using the test database described in [20] and show a consistent

improvement in performance for both DC and TPp with either
no detriment, or slight improvements in FPo and FPp.

Next, using the parameters that produced the best results on
the training data (i.e., κ = 13, χ = 3 as shown in Table II), we
compute DC, FNo, TPp and FPp on the test set of synthetic
images for a “good” segmentation threshold of DC > 0.7.
These results are presented in Table IV as a function of the
number of cells and pairwise overlap coefficient. A graphical
visualization of Table IV is depicted in Fig. 4. These results
show that our methodology can successfully segment cell
clumps with a large number of cells (between 8 and 10
cells) provided the overlap between pairs of cells is relatively
low (between 0.1 and 0.2). Furthermore, if the clump has
a small number of cells (between two and three cells), our
methodology can successfully segment the cells even when
the overlap coefficient is between 0.4 and 0.5. Six typical
segmentations for a differing number of cells and degree of
cell overlap are shown in Fig. 5 (a), where we show not
only the automated detection, but also the ground truth. A
visual inspection of these results verify the quantitative results
presented in Table IV. Fig. 5 (b) shows four of the real EDF
images in the dataset. While these segmentations contain a
number of false nuclei detections and are unlikely to perfectly
delineate each cell’s cytoplasm, they demonstrate the efficacy
of our proposed approach on field of view images of real-world
cytological specimens. It is also important to mention that our
methodology is able to segment 645 cells which is roughly 10
times more than the initial 53 free-lying cells present in these
16 EDF images. Note that a larger set of visual results for both
the synthetic and real images are shown in the supplementary
material.

Moreover, we compare our nuclei detection with the ap-
proach by [8]. However, this comparison is not ideal as they
are run on different data sets as the database in [8] is not
publicly available. Specifically, Aksoy et al.’s approach is
tested on Hacettepe data set (which has 139 nuclei), while
ours are the EDF cytology images described above (with 645
nuclei). In terms of object-based nuclei detection, we achieve
an equivalent precision of 0.73, but with a slightly worse
recall of 0.85, as compared to [8] which report a precision
of 0.74 and recall 0.93. Furthermore, the pixel-based results
for our method are slightly better consisting of a precision of
0.96(±.06), recall 0.90(±.08) and Dice 0.92(±.05); while [8]
has a precision of 0.91(±.08), recall 0.88(±.07) and Dice 0.89
(±.04).

Finally, the average running time of our algorithm on the
synthetic images is reported in Fig. 6 as a function of the
number of cells and cell overlap. This figures have been
obtained using an un-optimized Matlab code on a PC with
2.66 GHz Intel Core 2 Duo processor and 8 GB RAM.

VI. DISCUSSION

The unary and binary terms, weighted by κ and χ in the
optimization functions (4), (7) are shown to be important,
according to the results in Table II. Nevertheless it is important
to notice that the regularization term in (5) alone produces
competitive results, which can be attributed to the reliable
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TABLE II
QUANTITATIVE EVALUATION (MEAN AND STANDARD DEVIATION IN BRACKETS) SHOWING THE INFLUENCE OF THE LEVEL SET PARAMETERS IN THE
TRAINING PROCESS AND TEST RESULTS (BOTH REAL EDF IMAGES & SYNTHETIC TESTING IMAGES) IN TERMS OF THE DC, FNo , TPp AND FPp FOR

“GOOD” SEGMENTATIONS (EACH COLUMN SHOWS A DIFFERENT CRITERION FOR A “GOOD” SEGMENTATION).

κ χ DC> 0.6 DC> 0.7 DC> 0.8 DC> 0.9
Training set

0 0 DC=.89(.09),FNo=.08(.15) DC=.90(.08),FNo=.10(.16) DC=.93(.05),FNo=.26(.22) DC=.95(.02), FNo=.48(.24)
TPp=.93(.09),FPp=.01(.01) TPp=.94(.07),FPp=.01(.01) TPp=.95(.04),FPp=.01(.01) TPp=.95(.04),FPp=.00(.00)

0 3 DC=.87(.09),FNo=.12(.19) DC=.90(.06),FNo=.19(.23) DC=.91(.04),FNo=.28(.27) DC=.94(.03), FNo=.61(.36)
TPp=.83(.13),FPp=.00(.00) TPp=.85(.10),FPp=.00(.00) TPp=.87(.08),FPp=.00(.00) TPp=.92(.06),FPp=.00(.00)

13 0 DC=.89(.09),FNo=.08(.15) DC=.90(.08),FNo=.10(.16) DC=.92(.05),FNo=.24(.22) DC=.95(.02), FNo=.46(.23)
TPp=.93(.10),FPp=.01(.01) TPp=.94(.07),FPp=.01(.01) TPp=.95(.04),FPp=.01(.01) TPp=.95(.04),FPp=.00(.00)

13 3 DC=.90(.08),FNo=.09(.15) DC=.91(.07),FNo=.11(.17) DC=.92(.05),FNo=.18(.22) DC=.95(.03), FNo=.44(.28)
TPp=.91(.10),FPp=.01(.01) TPp=.91(.08),FPp=.01(.01) TPp=.92(.06),FPp=.00(.00) TPp=.93(.05),FPp=.00(.00)

Test set
13 3 DC=.87(.10),FNo=.24(.27) DC=.89(.08),FNo=.31(.29) DC=.92(.06),FNo=.43(.31) DC=.96(.03), FNo=.63(.33)

TPp=.89(.11),FPp=.00(.01) TPp=.90(.10),FPp=.00(.00) TPp=.92(.08),FPp=.00(.00) TPp=.95(.05),FPp=.00(.00)
Five real EDF images

13 3 DC=.84(.11),FNo=0.26(.07) DC=.87(.09),FNo=.36(.08) DC=.91(.06),FNo=.53(.06) DC=.96(.03),FNo=.72(.08)
TPp=.88(.12),FPp=.00(.00) TPp=.90(.10),FPp=.00(.00) TPp=.91(.08),FPp=.00(.00) TPp=.94(.04),FPp=.00(.00)

TABLE III
QUANTITATIVE COMPARISON AGAINST THE PREVIOUS VERSION OF OUR METHODOLOGY [20] ON THE TEST SET OF [20], AND THE SUBSET OF REAL

EDF IMAGES (USING THE MEAN AND STANDARD DEVIATION RESULT OF EACH MEASURE).

Our result
DC> 0.6 DC> 0.7 DC> 0.8 DC> 0.9

DC=.93(.08),FNo=.00(.00) DC=.94(.07),FNo=.02(.06) DC=.96(.03),FNo=.11(.15) DC=.97(.02), FNo=.17(.19)
TPp=.95(.07),FPp=.004(.01) TPp=.95(.07),FPp=.004(.01) TPp=.96(.04),FPp=.002(.004) TPp=.96(.04),FPp=.001(.002)

Result from our previous approach [20]
DC=.90(.08),FNo=.02(.09) DC=.90(.08),FNo=.02(.09) DC=.92(.05),FNo=.13(.18) DC=.95(.02), FNo=.38(.26)

TPp=.88(.11),FPp=.003(.01) TPp=.88(.11),FPp=.003(.01) TPp=.89(.09),FPp=.002(.004) TPp=.94(.03),FPp=.001(.002)

TABLE IV
RESULTS (MEAN AND STANDARD DEVIATION IN BRACKETS) ON THE TEST SET IN TERMS OF THE DC, FNo , TPp AND FPp FOR “GOOD” SEGMENTATIONS

WITH DC > 0.7, AS A FUNCTION OF THE NUMBER OF CELLS.

Overlap ∈ [0, 0.1] Overlap ∈ [0.1, 0.2] Overlap ∈ [0.2, 0.3] Overlap ∈ [0.3, 0.4] Overlap ∈ [0.4, 0.5]
2 cells DC=.98(.02),FNo=.1(.3) DC=.92(.06),FNo=.1(.2) DC=.92(.06),FNo=.1(.3) DC=.91(.06), FNo=.2(.4) DC=.88(.06), FNo=.1(.3)

TPp=.99(.03),FPp=.00(.00) TPp=.93(.05),FPp=.00(.00) TPp=0.92(.07),FPp=.00(.00) TPp=.89(.11),FPp=.00(.00) TPp=.89(.09),FPp=.00(.00)
3 cells DC=.98(.02),FNo=.1(.3) DC=.90(.07),FNo=.1(.3) DC=.88(.07),FNo=.2(.3) DC=.88(.07), FNo=.3(.4) DC=.87(.08), FNo=.3(.3)

TPp=.99(.03),FPp=.00(.00) TPp=.90(.08),FPp=.00(.00) TPp=.89(.09),FPp=.00(.00) TPp=.90(.09),FPp=.00(.01) TPp=.88(.11),FPp=.00(.00)
4 cells DC=.98(.03),FNo=.2(.2) DC=.90(.07),FNo=.1(.2) DC=.86(.08),FNo=.2(.3) DC=.88(.07), FNo=.3(.3) DC=.85(.07), FNo=.4(.3)

TPp=.98(.03),FPp=.00(.00) TPp=.90(.07),FPp=.00(.00) TPp=.88(.09),FPp=.00(.01) TPp=.90(.10),FPp=.00(.01) TPp=.88(.10),FPp=.01(.00)
5 cells DC=.98(.02),FNo=.2(.1) DC=0.89(.07),FNo=.2(.3) DC=.88(.07),FNo=.2(.3) DC=.86(.07), FNo=.4(.4) DC=.84(.07), FNo=.3(.3)

TPp=.98(.03),FPp=.00(.00) TPp=.90(.08),FPp=.00(.01) TPp=.89(.09),FPp= .00(.00) TPp=.89(.10),FPp=.01(.01) TPp=.87(.11),FPp=.01(.01)
6 cells DC=.98(.03),FNo=.1(.2) DC=.88(.08),FNo=.1(.2) DC=.87(.07),FNo=.3(.3) DC=.85(.08), FNo=.4(.3) DC=0.85(.07), FNo=.5(.3)

TPp=.97(.04),FPp=.00(.00) TPp=.88(.10),FPp=.00(.00) TPp=.88(.11),FPp=.00(.00) TPp=.88(.12),FPp=.01(.01) TPp=.87(.09),FPp=.01(.01)
7 cells DC=.98(.04),FNo=.2(.1) DC=.89(.07),FNo=.2(.3) DC=.87(.08),FNo=.2(.2) DC=.84(.07), FNo=.5(.3) DC=.85(.07), FNo=.5(.2)

TPp=.98(.04),FPp=.00(.00) TPp=.89(.09),FPp=.00(.00) TPp=0.88(.09),FPp=.00(.01) TPp=0.88(.10),FPp=.01(.01) TPp=0.87(.11),FPp=.01(.01)
8 cells DC=.97(.04),FNo=.1(.1) DC=.89(.07),FNo=.3(.2) DC=.85(.06),FNo=.3(.2) DC=.84(.07), FNo=.5(.2) DC=.83(.08), FNo=.5(.2)

TPp=.97(.05),FPp=.00(.00) TPp=.91(.07),FPp=.00(.00) TPp=.86(.11),FPp=.01(.01) TPp=.87(.10),FPp=.01(.01) TPp=.85(.12),FPp=.01(.01)
9 cells DC=.97(.04),FNo=.1(.1) DC=.88(.07),FNo=.2(.2) DC=0.85(.08),FNo=.3(.2) DC=.85(.07), FNo=.5(.2) DC=.84(.07), FNo=.7(.2)

TPp=.96(.05),FPp=.00(.00) TPp=.89(.09),FPp=.00(.00) TPp=0.87(.11),FPp=.00(.00) TPp=.86(.10),FPp=.00(.01) TPp=.85(.12),FPp=.01(.01)
10 cells DC=.95(.06),FNo=.1(.1) DC=.88(.08),FNo=.2(.2) DC=.85(.08),FNo=.4(.2) DC=.85(.08), FNo=.5(.2) DC=.83(.07), FNo=.6(.2)

TPp=.95(.06),FPp=.00(.00) TPp=.88(.10),FPp=.00(.00) TPp=.87(.10),FPp=.00(.01) TPp=.86(.11),FPp=.00(.00) TPp=.86(.11),FPp=.01(.01)

initializations for each level set function produced by our
methodology. Another important point worth mentioning is the
small gap between the training and test set results, with the
exception of the relatively larger FNo. This larger FNo results
are mostly due to the false negative nucleus detection, where
most of the nuclei that were not detected are represented by
light black spot in their appearance and have blur transition
to the cytoplasm, which makes the MSER algorithm fail.
Compared to our previous methodology [20], we notice in
Table III that the methodology proposed in this paper shows
significant improvements in all of the performance measures.

The qualitative results obtained from visual inspection of the
segmentation on the synthetic and real EDF images, shown
in Fig. 5(b), allow us to conclude that our methodology
produces robust results even on challenging images containing
large clumps of cells. Also, the use of our segmentation
algorithm produces 10 times more cells from the 16 EDF
images than current methodologies that only segment free-
lying cells. Finally, our nuclei detection produces quantitative
results on par with the state-of-the-art [8].

The methodology proposed in this paper produces robust
results on the problem of segmenting both nuclei and cyto-
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(a) Dice (b) FNo
Fig. 4. Mean Dice coefficient (a) and object based false negative rate (b) as a function of number of cells and overlap ratio. This is a visualization of the
results in Table IV.

(a) Synthetic images (automated detection on top, and ground truth on bottom)

(b) Real EDF images
Fig. 5. Segmentation results on the synthetic images (a) and real EDF images (b).

plasm from overlapping cervical cells. There are a few issues
we have encountered, such as the lack of precision when
segmenting cells embedded in clumps with a large number of
cells and a large overlap between cells. Another issue is when
one of the cells to be segmented does not present a significant
proportion of its border in the clump boundary. This issue
causes a failure in the estimation of the shape prior based on
geometric constraints (Sec. III-B3), which cannot produce the
initial segmentation, the unary (1) and the binary constraints
(2) for that cell. Furthermore, the false negative detection of
nuclei is another issue, as previously explained. One last issue
is the slow running time of the algorithm, which is severely
affected by the interpolation used in the computation of the

shape prior for each cell, as described in (1) and (2).

There are a few points that need to be addressed to improve
the effectiveness of our approach. For instance, the level set
method we use is based on the classic level set method [24]
that has issues with the initial segmentation and the re-
initialization of the distance function. The issue related with
the re-initialization of the distance function has been dealt
with by a method proposed by [19], which is the level set
method used in our paper, but we still need to provide good
initial segmentations for the level set functions representing the
detection of each cell. Nevertheless, the more recent proposal
of [5] has introduced a global optimizer for the level set
method that addresses both of these issues, and we plan to
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Fig. 6. Running time (in minutes) of our algorithm on the synthetic images.

adapt this method to our problem. Another improvement that
can be applied in our approach is an extension to further refine
segmentation results based on information in the original stack
of multi-focal plane images (see Sec. IV) as per the manual
cervical cell analysis. In addition, we have only tested the
algorithm on normal appearing cervical cytology images and
different levels of difficulty by varying both number of cells
and their degree of overlap. However, abnormal cervical cells
can have quite a different appearance, with enlarged nuclei and
more varied shape indicative of their disease state. Therefore,
further work should also adapt the system and test images
to process both normal and abnormal cells by modifying the
nuclei detection strategy and shape prior.

Automation in the analysis of various types of cytology
specimens is both desirable and ongoing [47] [48]. The
algorithm proposed here is suitable for extension to other
types of cytological cells such as buccal and breast fine-
needle-aspirates [46]. This is likely to be fairly straightforward,
provided there is reliable prior knowledge of the nucleus-
cytoplasm structure. Without this information, it is likely
that the effectiveness of the methodology will be severely
compromised. This is because, in our method, the cytoplasm
segmentation is underpinned by the accuracy of the initial
segmentation of the LSF, which is extrapolated using the
boundaries of the clumps of overlapping cells and the de-
tected nuclei produced by the initial scene segmentation.
For example, MSER-based nuclei detection method cannot
readily detect cells from microscopic fluorescence images,
which contain a large number of bright spots with no nucleus-
cytoplasm structure. In future, we would like to generalise the
cell detection function of the algorithm to make it more readily
adaptable to a variety of cell types and depositions.

VII. CONCLUSIONS

In this paper we have presented an algorithm that addresses
the challenging problem of segmenting each individual cell’s
nucleus and cytoplasm from a clump of cervical cells de-
posited on a microscope slide. The method is based on a joint
optimisation of several level set functions and is demonstrated
to perform well on clumps of up to 10 cells, provided the
overlap between pairs of cells is below 0.2. In addition, if the
clump consists of three or fewer cells, then our methodology

can successfully segment individual cells when the overlap is a
large as 0.5. These results hold the promise that the automated
analysis of cervical cytology specimens can be improved via a
more complete analysis of a larger subset of the cells present
on each cytology specimen.
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