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Abstract. In this paper we describe an algorithm for accurately seg-
menting the individual cytoplasm and nuclei from a clump of overlapping
cervical cells. Current methods cannot undertake such a complete seg-
mentation due to the challenges involved in delineating cells with severe
overlap and poor contrast. Our approach initially performs a scene seg-
mentation to highlight both free-lying cells, cell clumps and their nuclei.
Then cell segmentation is performed using a joint level set optimization
on all detected nuclei and cytoplasm pairs. This optimisation is con-
strained by the length and area of each cell, a prior on cell shape, the
amount of cell overlap and the expected gray values within the over-
lapping regions. We present quantitative nuclei detection and cell seg-
mentation results on a database of synthetically overlapped cell images
constructed from real images of free-lying cervical cells. We also perform
a qualitative assessment of complete fields of view containing multiple
cells and cell clumps.
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1 Introduction

The Pap smear is a screening test used to detect pre-cancerous changes in a
sample of cells from the uterine cervix and deposited onto a microscope slide
for visual examination. The automated segmentation of overlapping cells in Pap
smears remains one of the most challenging problems in image analysis. The
main factors affecting the sensitivity of the Pap smear test are the number
and type of cells sampled and the presence of mucus, blood and inflammatory
cells [2], which affects both the intra- and inter-observer variability and leads
to a large variation in false negative rates. [8]. These issues have motivated the
development of both automated cell deposition and slide analysis techniques.
The advantages of automated cell deposition techniques, such as mono-layer
preparations, are that they remove a large portion of blood, mucus, and other
debris, reduce cell overlap and produce a mono-layer of easily focused cells.
Automated slide analysis techniques attempt to improve both sensitivity and
specificity by detecting, segmenting and then classifying all of the cells present
on a slide [9, 17, 5, 4, 3].
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(a) Pap smear image (b) Super-pixel map (c) Edge map (white) and
Convex hulls (red)

(d) Clumps boundary (e) Nuclei Segmentation (f) Cell segmentation

Fig. 1. (a) Typical Pap smear image; (b) Over-segmented super-pixel map is generated
by Quick Shift; (c) super-pixel edge map and the convex hull of each clump; (d)
Accurate clump boundary; (e) Nuclei detection and segmentation;(f) Overlapping cell
segmentation.

The classification of cervical cells is typically based on features, such as shape
and area, extracted from the cytoplasm and nucleus of individual cells. This
means that an accurate segmentation is critical to automated screening meth-
ods. Nevertheless, segmentation is complicated by the fact that they often form
overlapping clumps on the glass slide, which means that cells in an upper layer
can partially obscure cells lying underneath [10]. Current systems can segment
the nucleus and cytoplasm of isolated cervical cells [5] (i.e., free-lying cells with-
out any overlap with other cells); segment overlapping nuclei [3, 10]; and segment
nuclei and the whole region representing overlapping cytoplasm [4, 2]. However,
currently segmenting both the individual cytoplasm and nuclei from overlapping
cells in Pap smear images is still a challenging problem due to the presence of
overlapping cells and the poor contrast of cytoplasm [2] (see Fig. 1(a)).

In this paper, we propose a novel algorithm to segment both the cytoplasm
and nucleus of each overlapping cell. The proposed methodology can be divided
into two steps. First scene segmentation, comprising two sub-stages: 1) cell clump
detection using unsupervised classification [14] and 2) nuclei detection using the
maximally stable extremal regions (MSER) algorithm [7]. Second, cell segmen-
tation, which is the main contribution of this paper, assumes that each nucleus
detected in step 1 represents an individual cell that forms a separate level set
function. The optimization that generates the final overlapping cell segmentation
minimizes an energy function that is constrained by the individual contour area
and length [6], an ellipsoidal shape prior [13], and finally the area [18] and gray
values within the overlapping regions. We quantitatively evaluate our method-
ology using a database of 18 synthetically constructed images consisting 60 real
free-lying cell images. The results on this dataset show that we obtain a Jac-



card index > 0.8 with a near zero false negative rate. We also show encouraging
qualitative results using a small set of real Pap smear images. Furthermore, we
demonstrate that the performance of our nuclei detection produces state of the
art results [2].1

2 Literature Review

There are three primary approaches to cervical cell segmentation. Traditional
methods segment nuclei from single or overlapping cells. For instance, Wu et
al. [16] detect the boundary of nuclei by solving an optimal thresholding prob-
lem. Morphological analysis is also used to detect overlapping nuclei from cer-
vical cell images [9]. Other approaches segment the nucleus and cytoplasm of
single isolated cervical cells. Yang-Mao et al. [17] adapt the gradient vector flow
(GVF) to cervical cell segmentation by estimating the orientation of the GVFs
in the pixels near an edge. The GVF is also explored in the detection of nu-
cleus and cytoplasm boundaries in a radiating field [5]. This approach produces
competitive results, but can analyse only free-lying cells (and thus, a fraction of
the cells present on a specimen). Finally, the segmentation of overlapping nu-
clei can be performed by identifying the nucleus and cytoplasm from candidate
regions via a classification algorithm [4, 2]. However, instead of accurate bound-
aries for each overlapping cell, these methods generate a contour of the whole cell
clump, which reduces the number of features available for subsequent cellular
analysis, i.e., each cell has its own nucleus, but not its own cytoplasm. In the
above, the detection of overlapping nuclei is facilitated by their homogeneous
texture, ellipsoidal shape and high-gradient boundaries. Unfortunately, none of
these characteristics can be associated with the segmentation of overlapping cy-
toplasm. Furthermore, some of the important features extracted from nuclei are
based on optical density and texture, which may be contaminated when nuclei
overlap.

The segmentation of overlapping cells has been explored in other types of
microscope images. For instance, Wahlby et al. [15] use a watershed segmentation
algorithm and a statistical analysis to segment multiple CHO-cells stained with
calcein. Furthermore, Quelhas et al. [11] explores a sliding band filter to segment
nuclei and cytoplasm of overlapping cells using the Drosophila melanogaster
Kc167 dataset. Although relevant to our paper, these works are applied to images
where the cells present smaller overlapping areas, when compared to the case
of Pap smear images. Therefore, we believe that these approaches would need
significant adaptation in order to segment cervical cell images.

3 Methods

3.1 Extended Depth of Field

A one-pass extended depth of field (EDF) algorithm [1], based on an over-
complete discrete wavelet transform, was applied to a “stack” of focal plane
images to produce a single EDF image where all cellular objects are in focus.
The advantage of this approach is that the scene segmentation, described below,
need only be applied to a single (EDF) image rather than a set of images from
different focal planes.
1 Our code & data set are available at GitHub: github.com/luzhi/miccai2013.git



3.2 Scene Segmentation

Scene segmentation consists of two stages: 1) the segmentation of cell clumps,
which facilitates 2) the detection and segmentation of nuclei.

Segmentation of Cell Clumps The segmentation of cell clumps facilitates
the detection of nuclei by constraining the search space to clumps only. For
instance, in the image of Fig. 1(a), the goal is to segment the six free-lying
cells and the set of overlapping cells in different clumps. This segmentation
process involves three stages. First, we run the quick shift algorithm [14] in
order to find local maxima of a density function that takes into account gray
value similarities and spatial proximity. The outcome of this step is a map of
super-pixels (Fig. 1(b)), which are labeled with gray values in the range [0, 1],
representing the mode of the respective super-pixel. The second stage consists
of running an edge detector on this super-pixel map, resulting in a clean edge
map that detects the most prominent super-pixel edges and removes most of
the background information (Fig. 1(c)). In order to find candidate cell clumps,
the third stage utilises an unsupervised binary classifier, where the classes are
“background” and “cell clump”. The initial assignment is provided by building
a convex hull around the connected components of the edge map computed in
stage 2 (Fig. 1(c)). Hence, pixels inside the convex hull initially belong to the
cell clump class and pixels outside belong to the background. Using maximum
likelihood estimation, we learn a Gaussian mixture model (GMM) for each class,
based on the gray value of each pixel (Fig. 1(d)).

Detection and Segmentation of Nuclei This is a critical step of our algo-
rithm because each nucleus represents one cell. Nuclei can be characterized by
relatively low gray values, homogeneous texture, and well defined, almost circu-
lar borders. If we assume that the nuclei do not overlap, then we can use the
Maximally Stable Extremal Regions (MSER) algorithm [7] using the cell clumps
as the input. The MSER algorithm uses pixel gray value and proximity to detect
stable connected components, which are characterized by blobs that represent
the candidate nuclei. We filter out some of these candidates if the eccentricity of
the blob detected is larger than a threshold (i.e., keeping only the most circular
blobs).

3.3 Joint Level Set Segmentation of Overlapping Cells

The joint level set optimisation presented in this section is the main contribu-
tion of this paper. The segmentation of overlapping cells uses the set of nuclei
described in Sec. 3.2 as the initial guess for each level set function. Consider that
φ : Ω → R denotes a level set function (LSF) (Ω represents the image domain),
and that N nuclei have been detected, then the set of LSF’s are available is
denoted by {φi}Ni=1. The energy functional to be minimized is defined as:

E({φi}Ni=1) =

N∑
i=1

Eu(φi) +

N∑
i=1

∑
j∈N (i)

Eb(φi, φj), (1)

where Eu(.) denotes the unary energy functional defined for each LSF indepen-
dently, Eb(., .) represents the binary function defined over pairs of LSF’s, and



N (i) represents the level set functions φj such that their zero level set intersects
the zero level set of φi. The unary functional is defined by:

Eu(φi) = µR(φi) + λL(φi) + αA(φi) + ρPp(φi), (2)

where µ, λ > 0, α, ρ ∈ R, R(φ) is a regularization term [6] that maintains the
signed distance property | 5 φi| = 1 (guaranteeing that the LSF is smooth),
L(φi) =

∫
Ω
gδ(φi)| 5 φi|dx measures the length of the zero level set (with δ(.)

denoting the Dirac delta function, g = 1
1+|∇Gσ∗I| , and Gσ the Gaussian kernel

with standard deviation σ), A(φi) =
∫
Ω
gH(−φi)dx measures the area of φi < 0

(H(.) is the Heaviside function), and the shape prior term is defined by [13]:

Pp(φi) =

∫
Ω

gH(−p(φi))dx, (3)

where p(φi) returns an ellipsoidal shaped LSF estimated from the covariance
matrix of the coordinates x for which φi(x) < 0. The binary functional in (1) is
defined as:

Eb(φi, φj) =ζfa

(∫
Ω
gH(−φi)H(−φj)dx∫
Ω
gH(−φi)dx

)
+

ωfg

(∫
Ω
vH(−φi)dx∫

Ω
gH(−φi)dx

−
∫
Ω
vH(−φi)H(−φj)dx∫

Ω
gH(−φi)H(−φj)dx

)
,

(4)

where the first term in (4) denotes the ratio between the areas of (φi < 0)
⋂

(φj <
0) and φi < 0 (with fa(y) defined as y for y > τa and 0 otherwise, where τa
is the maximum overlapping area accepted by the optimisation) [18], and the
second term represents the difference between the average gray value in φi < 0
subtracted by the average gray value in the intersection (φi < 0)

⋂
(φj < 0)

(with fg(y) defined as y for y < 0 and 0 otherwise, and v returns the gray value
of position x). The minimization of the energy functional in (1) follows that

defined by ∂φ
∂t = −∂E({φi}

N
i=1)

∂φ . The derivation of these functions is presented in

the supplemental material.2

4 Material and Experimental Setting

Our dataset consists of four Pap smear images with extended depth of field
(EDF) [1]. Four non-overlapping fields of view (FOVs) were captured from a
single specimen consisting of Papanicolaou-stained cervical cells, prepared using
the AutoCyte PREP technology. The specimen was approximately 20µm “thick”
in the focal-dimension. The numerical aperture of the microscope’s ×40 objective
was 0.75, which gives a depth of field of approximately 1µm. Therefore, for each
FOV, a stack of twenty focal plane images were acquired with a separation of
1µm. In these images, all 135 nuclei were manually annotated, with the 13 free-
lying cells being fully annotated with nucleus and cytoplasm delineations.

We assess our methodology both qualitatively and quantitatively. The qual-
itative experiment consists of a visual inspection of the result of our algorithm

2 Appendix at www.cs.cityu.edu.hk/∼luzhi/publications/app MICCAI13.pdf



using the four EDF images. For the quantitative assessment, we generated 18
synthetic Pap smear images (of size 512× 512) containing 2 to 5 cells with dif-
ferent degrees of overlap. In order to generate these synthetic images, we divide
the aforementioned set of 13 manually annotated cells, into: 1) a training set
of 5 cells that is used to build 3 synthetic training images, and 2) a test set
of 8 cells to form 15 test images3. In order to build these synthetic images, we
take samples from the background of the original EDF images, and place them
in the 512 × 512 image, using mirror transformation to smooth the transitions
between the background patch borders. Then, we pick one of the cells from the
training/test set, apply a random rigid transform and random linear brightness
transform, and place them on the synthetic image, using a random value (from 0
to 1) for the alpha channel to simulate the partial transparency effect observed in
real Pap smear images. Note that the training images are used to assess the best
combination of the level set parameters in (1), while the testing images are used
to verify the generalization ability of the method with respect to the level set
parameters found on the training images. Finally, this quantitative performance
is assessed with the average Jaccard index (JI) computed over the “good” cell
segmentations [12], where the cell segmentation has a JI above a threshold of
{0.5, 0.6, 0.7, 0.8}. We also report the object based false negative rate (FNR)
obtained as the proportion of cells having a JI below this threshold. In addition,
pixel based evaluation through true positive rate (TPR) and false positive rate
(FPR) for both training and test set are also shown.

We also compare our nuclei detection methodology from Pap smear images
with that in [2] using the following measurements. First, we compute the pre-
cision and recall of nuclei detection by considering the detection region A and
annotation B, and noting that a correct detection is defined by (A

⋂
B)/A > 0.6

and (A
⋂
B)/B > 0.6. Second, we compute the pixel-based precision and recall

values of the correct detections above, in addition to the Dice coefficient.

5 Experimental Results

We first show the influence of the parameters λ, α, ρ in the unary functional
(2), and ζ and ω in the binary functional (4). The parameter µ is fixed at 0.2
per time step [6], where time step is 5. The JI and corresponding FNR for each
parameter combination and the best parameters combination for training are
shown in Table 1. This table shows the results on the test set using the best
parameter combination obtained on the training set. Moreover, in Table 2 we
show the pixel-based TPR and FPR on the training and test sets for the “good”
segmentations. In Fig. 2, we show examples of the synthetic and real Pap smear
image segmentations.

We compare our nuclei detection with the approach by Aksoy et al. [2], but
this comparison is not ideal as they are run on different data sets4. Specifically,
Aksoy et al.’s approach is tested on Hacettepe data set (which has 139 nuclei),
while ours are the Pap smear images described above (with 135 nuclei). In terms
of object-based nuclei detection, we achieve a precision of .69 and recall .90,
while [2] has precision of .74 and recall .93. Furthermore, the pixel-based result
for our method consists of a precision of .97(±.04), recall .88(±.08) and Dice .92
(±.04); while [2] has precision of .91(±.08), recall .88(±.07) and Dice .89 (±.04).

3 Early experiments showed results stabilise when at least 13 test images are used.
4 As the database in [2] is not publicly available.



Table 1. Qualitative evaluation to show training process and test results in terms of
the JI for “good” segmentations.

Training set
α λ ρ ζ ω JI> 0.5 JI> 0.6 JI> 0.7 JI> 0.8
-5 4 0.15 3 4.1 0.91 (FNR=0) 0.91 (FNR=0) 0.91 (FNR=0) 0.93 (FNR=0.08)
-5 0 0 0 0 0.87 (FNR=0) 0.87 (FNR=0) 0.87 (FNR=0) 0.92 (FNR=0.3)
0 4 0 0 0 0.93 (FNR=0.67) 0.93 (FNR=0.67) 0.93 (FNR=0.67) 0.93 (FNR=0.67)
0 0 0.15 0 0 0.77 (FNR=0.25) 0.83 (FNR=0.42) 0.86 (FNR=0.5) 0.93 (FNR=0.67)
0 0 0 3 0 0.91 (FNR=0) 0.91 (FNR=0) 0.91 (FNR=0) 0.92 (FNR=0.08)
0 0 0 0 4.1 0.91 (FNR=0) 0.91 (FNR=0) 0.91 (FNR=0) 0.92 (FNR=0.08)

Test set
-5 4 0.15 3 4.1 0.83 (FNR=0.02) 0.85(FNR=0.09) 0.88(FNR=0.21) 0.91(FNR=0.34)

Table 2. Pixel-based TPR/FPR on training & test sets for “good” segmentations.

Training set (TPR/FPR)
α λ ρ ζ ω JI> 0.5 JI> 0.6 JI> 0.7 JI> 0.8
-5 4 0.15 3 4.1 0.92/0.0005 0.92/0.0005 0.92/0.0005 0.94/0.0005
-5 0 0 0 0 0.94/0.0038 0.94/0.0038 0.94/0.0038 0.94/0.0013
0 4 0 0 0 0.93/0.0001 0.93/0.0001 0.93/0.0001 0.93/0.0001
0 0 0.15 0 0 0.77/0.0001 0.84/0.0001 0.87/0.0001 0.93/0.0001
0 0 0 3 0 0.93/0.0011 0.93/0.0011 0.93/0.0011 0.94/0.0011
0 0 0 0 4.1 0.93/0.0010 0.93/0.0010 0.93/0.0010 0.94/0.0009

Test set (TPR/FPR)
-5 4 0.15 3 4.1 0.88/0.0032 0.89/0.0025 0.92/0.0023 0.93/0.0017

Finally, our algorithm shows an average running time of 56 seconds per cell
through the test set using an unoptimized Matlab code on a PC with 2.7GHz
Intel Xeon processor and 128 GB RAM.

6 Discussion and Conclusion

In the results, we can see that on the test set our methodology produces a JI
= 0.83 with a nearly zero FNR, which in general can be considered to be an
acceptable result, if the “good” cell segmentations has the minimal JI > 0.5. In-
deed, the qualitative results in Fig. 2 demonstrate that for all the isolated cells
and most of the overlapping cells, our approach successfully segments the indi-
vidual cytoplasm and nuclei. According to the results in Table 1, it is possible to
conclude that both binary terms have a strong positive influence on the results.
The main failures observed are caused by the weak transitions between the cyto-
plasm and background that make the segmentation border move either outside
or inside the cytoplasm. Moreover, our nuclei detection produces quantitative
results on par with the state of the art [2].

The methodology proposed in this paper provides reasonably accurate re-
sults on the challenging problem of segmenting both nuclei and cytoplasm from
overlapping cervical cells. Nevertheless, there are a few points that need to be
addressed to improve the effectiveness of our approach. The most important
issue is that the system still misses the boundary of the cytoplasm on some
overlapping cells in regions of poor contrast. Also, to obtain more robust results



(a) Synthetic images (b) Real Pap smear images

Fig. 2. Qualitative assessment of results.

the system should be extended to process the original stack of multi-focal plane
images (see Sec. 4) as per manual analysis.
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